xref: /dragonfly/sys/dev/drm/i915/intel_pm.c (revision 38b5d46c)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 
33 /**
34  * RC6 is a special power stage which allows the GPU to enter an very
35  * low-voltage mode when idle, using down to 0V while at this stage.  This
36  * stage is entered automatically when the GPU is idle when RC6 support is
37  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
38  *
39  * There are different RC6 modes available in Intel GPU, which differentiate
40  * among each other with the latency required to enter and leave RC6 and
41  * voltage consumed by the GPU in different states.
42  *
43  * The combination of the following flags define which states GPU is allowed
44  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
45  * RC6pp is deepest RC6. Their support by hardware varies according to the
46  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
47  * which brings the most power savings; deeper states save more power, but
48  * require higher latency to switch to and wake up.
49  */
50 #define INTEL_RC6_ENABLE			(1<<0)
51 #define INTEL_RC6p_ENABLE			(1<<1)
52 #define INTEL_RC6pp_ENABLE			(1<<2)
53 
54 static void bxt_init_clock_gating(struct drm_device *dev)
55 {
56 	struct drm_i915_private *dev_priv = dev->dev_private;
57 
58 	/* WaDisableSDEUnitClockGating:bxt */
59 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
60 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
61 
62 	/*
63 	 * FIXME:
64 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
65 	 */
66 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
67 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
68 
69 	/*
70 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
71 	 * to stay fully on.
72 	 */
73 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
74 		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
75 			   PWM1_GATING_DIS | PWM2_GATING_DIS);
76 }
77 
78 static void i915_pineview_get_mem_freq(struct drm_device *dev)
79 {
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	u32 tmp;
82 
83 	tmp = I915_READ(CLKCFG);
84 
85 	switch (tmp & CLKCFG_FSB_MASK) {
86 	case CLKCFG_FSB_533:
87 		dev_priv->fsb_freq = 533; /* 133*4 */
88 		break;
89 	case CLKCFG_FSB_800:
90 		dev_priv->fsb_freq = 800; /* 200*4 */
91 		break;
92 	case CLKCFG_FSB_667:
93 		dev_priv->fsb_freq =  667; /* 167*4 */
94 		break;
95 	case CLKCFG_FSB_400:
96 		dev_priv->fsb_freq = 400; /* 100*4 */
97 		break;
98 	}
99 
100 	switch (tmp & CLKCFG_MEM_MASK) {
101 	case CLKCFG_MEM_533:
102 		dev_priv->mem_freq = 533;
103 		break;
104 	case CLKCFG_MEM_667:
105 		dev_priv->mem_freq = 667;
106 		break;
107 	case CLKCFG_MEM_800:
108 		dev_priv->mem_freq = 800;
109 		break;
110 	}
111 
112 	/* detect pineview DDR3 setting */
113 	tmp = I915_READ(CSHRDDR3CTL);
114 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
115 }
116 
117 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
118 {
119 	struct drm_i915_private *dev_priv = dev->dev_private;
120 	u16 ddrpll, csipll;
121 
122 	ddrpll = I915_READ16(DDRMPLL1);
123 	csipll = I915_READ16(CSIPLL0);
124 
125 	switch (ddrpll & 0xff) {
126 	case 0xc:
127 		dev_priv->mem_freq = 800;
128 		break;
129 	case 0x10:
130 		dev_priv->mem_freq = 1066;
131 		break;
132 	case 0x14:
133 		dev_priv->mem_freq = 1333;
134 		break;
135 	case 0x18:
136 		dev_priv->mem_freq = 1600;
137 		break;
138 	default:
139 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
140 				 ddrpll & 0xff);
141 		dev_priv->mem_freq = 0;
142 		break;
143 	}
144 
145 	dev_priv->ips.r_t = dev_priv->mem_freq;
146 
147 	switch (csipll & 0x3ff) {
148 	case 0x00c:
149 		dev_priv->fsb_freq = 3200;
150 		break;
151 	case 0x00e:
152 		dev_priv->fsb_freq = 3733;
153 		break;
154 	case 0x010:
155 		dev_priv->fsb_freq = 4266;
156 		break;
157 	case 0x012:
158 		dev_priv->fsb_freq = 4800;
159 		break;
160 	case 0x014:
161 		dev_priv->fsb_freq = 5333;
162 		break;
163 	case 0x016:
164 		dev_priv->fsb_freq = 5866;
165 		break;
166 	case 0x018:
167 		dev_priv->fsb_freq = 6400;
168 		break;
169 	default:
170 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
171 				 csipll & 0x3ff);
172 		dev_priv->fsb_freq = 0;
173 		break;
174 	}
175 
176 	if (dev_priv->fsb_freq == 3200) {
177 		dev_priv->ips.c_m = 0;
178 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
179 		dev_priv->ips.c_m = 1;
180 	} else {
181 		dev_priv->ips.c_m = 2;
182 	}
183 }
184 
185 static const struct cxsr_latency cxsr_latency_table[] = {
186 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
187 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
188 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
189 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
190 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
191 
192 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
193 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
194 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
195 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
196 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
197 
198 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
199 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
200 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
201 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
202 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
203 
204 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
205 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
206 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
207 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
208 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
209 
210 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
211 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
212 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
213 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
214 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
215 
216 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
217 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
218 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
219 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
220 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
221 };
222 
223 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
224 							 int is_ddr3,
225 							 int fsb,
226 							 int mem)
227 {
228 	const struct cxsr_latency *latency;
229 	int i;
230 
231 	if (fsb == 0 || mem == 0)
232 		return NULL;
233 
234 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
235 		latency = &cxsr_latency_table[i];
236 		if (is_desktop == latency->is_desktop &&
237 		    is_ddr3 == latency->is_ddr3 &&
238 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
239 			return latency;
240 	}
241 
242 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
243 
244 	return NULL;
245 }
246 
247 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
248 {
249 	u32 val;
250 
251 	mutex_lock(&dev_priv->rps.hw_lock);
252 
253 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
254 	if (enable)
255 		val &= ~FORCE_DDR_HIGH_FREQ;
256 	else
257 		val |= FORCE_DDR_HIGH_FREQ;
258 	val &= ~FORCE_DDR_LOW_FREQ;
259 	val |= FORCE_DDR_FREQ_REQ_ACK;
260 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
261 
262 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
263 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
264 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
265 
266 	mutex_unlock(&dev_priv->rps.hw_lock);
267 }
268 
269 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
270 {
271 	u32 val;
272 
273 	mutex_lock(&dev_priv->rps.hw_lock);
274 
275 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
276 	if (enable)
277 		val |= DSP_MAXFIFO_PM5_ENABLE;
278 	else
279 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
280 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
281 
282 	mutex_unlock(&dev_priv->rps.hw_lock);
283 }
284 
285 #define FW_WM(value, plane) \
286 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
287 
288 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
289 {
290 	struct drm_device *dev = dev_priv->dev;
291 	u32 val;
292 
293 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
294 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
295 		POSTING_READ(FW_BLC_SELF_VLV);
296 		dev_priv->wm.vlv.cxsr = enable;
297 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
298 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
299 		POSTING_READ(FW_BLC_SELF);
300 	} else if (IS_PINEVIEW(dev)) {
301 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
302 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
303 		I915_WRITE(DSPFW3, val);
304 		POSTING_READ(DSPFW3);
305 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
306 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
307 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
308 		I915_WRITE(FW_BLC_SELF, val);
309 		POSTING_READ(FW_BLC_SELF);
310 	} else if (IS_I915GM(dev)) {
311 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
312 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
313 		I915_WRITE(INSTPM, val);
314 		POSTING_READ(INSTPM);
315 	} else {
316 		return;
317 	}
318 
319 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
320 		      enable ? "enabled" : "disabled");
321 }
322 
323 
324 /*
325  * Latency for FIFO fetches is dependent on several factors:
326  *   - memory configuration (speed, channels)
327  *   - chipset
328  *   - current MCH state
329  * It can be fairly high in some situations, so here we assume a fairly
330  * pessimal value.  It's a tradeoff between extra memory fetches (if we
331  * set this value too high, the FIFO will fetch frequently to stay full)
332  * and power consumption (set it too low to save power and we might see
333  * FIFO underruns and display "flicker").
334  *
335  * A value of 5us seems to be a good balance; safe for very low end
336  * platforms but not overly aggressive on lower latency configs.
337  */
338 static const int pessimal_latency_ns = 5000;
339 
340 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
341 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
342 
343 static int vlv_get_fifo_size(struct drm_device *dev,
344 			      enum i915_pipe pipe, int plane)
345 {
346 	struct drm_i915_private *dev_priv = dev->dev_private;
347 	int sprite0_start, sprite1_start, size;
348 
349 	switch (pipe) {
350 		uint32_t dsparb, dsparb2, dsparb3;
351 	case PIPE_A:
352 		dsparb = I915_READ(DSPARB);
353 		dsparb2 = I915_READ(DSPARB2);
354 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
355 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
356 		break;
357 	case PIPE_B:
358 		dsparb = I915_READ(DSPARB);
359 		dsparb2 = I915_READ(DSPARB2);
360 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
361 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
362 		break;
363 	case PIPE_C:
364 		dsparb2 = I915_READ(DSPARB2);
365 		dsparb3 = I915_READ(DSPARB3);
366 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
367 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
368 		break;
369 	default:
370 		return 0;
371 	}
372 
373 	switch (plane) {
374 	case 0:
375 		size = sprite0_start;
376 		break;
377 	case 1:
378 		size = sprite1_start - sprite0_start;
379 		break;
380 	case 2:
381 		size = 512 - 1 - sprite1_start;
382 		break;
383 	default:
384 		return 0;
385 	}
386 
387 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
388 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
389 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
390 		      size);
391 
392 	return size;
393 }
394 
395 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
396 {
397 	struct drm_i915_private *dev_priv = dev->dev_private;
398 	uint32_t dsparb = I915_READ(DSPARB);
399 	int size;
400 
401 	size = dsparb & 0x7f;
402 	if (plane)
403 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
404 
405 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
406 		      plane ? "B" : "A", size);
407 
408 	return size;
409 }
410 
411 static int i830_get_fifo_size(struct drm_device *dev, int plane)
412 {
413 	struct drm_i915_private *dev_priv = dev->dev_private;
414 	uint32_t dsparb = I915_READ(DSPARB);
415 	int size;
416 
417 	size = dsparb & 0x1ff;
418 	if (plane)
419 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
420 	size >>= 1; /* Convert to cachelines */
421 
422 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
423 		      plane ? "B" : "A", size);
424 
425 	return size;
426 }
427 
428 static int i845_get_fifo_size(struct drm_device *dev, int plane)
429 {
430 	struct drm_i915_private *dev_priv = dev->dev_private;
431 	uint32_t dsparb = I915_READ(DSPARB);
432 	int size;
433 
434 	size = dsparb & 0x7f;
435 	size >>= 2; /* Convert to cachelines */
436 
437 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438 		      plane ? "B" : "A",
439 		      size);
440 
441 	return size;
442 }
443 
444 /* Pineview has different values for various configs */
445 static const struct intel_watermark_params pineview_display_wm = {
446 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
447 	.max_wm = PINEVIEW_MAX_WM,
448 	.default_wm = PINEVIEW_DFT_WM,
449 	.guard_size = PINEVIEW_GUARD_WM,
450 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
451 };
452 static const struct intel_watermark_params pineview_display_hplloff_wm = {
453 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
454 	.max_wm = PINEVIEW_MAX_WM,
455 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
456 	.guard_size = PINEVIEW_GUARD_WM,
457 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 };
459 static const struct intel_watermark_params pineview_cursor_wm = {
460 	.fifo_size = PINEVIEW_CURSOR_FIFO,
461 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
462 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
463 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
464 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 };
466 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
467 	.fifo_size = PINEVIEW_CURSOR_FIFO,
468 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
469 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
470 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
471 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
472 };
473 static const struct intel_watermark_params g4x_wm_info = {
474 	.fifo_size = G4X_FIFO_SIZE,
475 	.max_wm = G4X_MAX_WM,
476 	.default_wm = G4X_MAX_WM,
477 	.guard_size = 2,
478 	.cacheline_size = G4X_FIFO_LINE_SIZE,
479 };
480 static const struct intel_watermark_params g4x_cursor_wm_info = {
481 	.fifo_size = I965_CURSOR_FIFO,
482 	.max_wm = I965_CURSOR_MAX_WM,
483 	.default_wm = I965_CURSOR_DFT_WM,
484 	.guard_size = 2,
485 	.cacheline_size = G4X_FIFO_LINE_SIZE,
486 };
487 static const struct intel_watermark_params valleyview_wm_info = {
488 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
489 	.max_wm = VALLEYVIEW_MAX_WM,
490 	.default_wm = VALLEYVIEW_MAX_WM,
491 	.guard_size = 2,
492 	.cacheline_size = G4X_FIFO_LINE_SIZE,
493 };
494 static const struct intel_watermark_params valleyview_cursor_wm_info = {
495 	.fifo_size = I965_CURSOR_FIFO,
496 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
497 	.default_wm = I965_CURSOR_DFT_WM,
498 	.guard_size = 2,
499 	.cacheline_size = G4X_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params i965_cursor_wm_info = {
502 	.fifo_size = I965_CURSOR_FIFO,
503 	.max_wm = I965_CURSOR_MAX_WM,
504 	.default_wm = I965_CURSOR_DFT_WM,
505 	.guard_size = 2,
506 	.cacheline_size = I915_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params i945_wm_info = {
509 	.fifo_size = I945_FIFO_SIZE,
510 	.max_wm = I915_MAX_WM,
511 	.default_wm = 1,
512 	.guard_size = 2,
513 	.cacheline_size = I915_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params i915_wm_info = {
516 	.fifo_size = I915_FIFO_SIZE,
517 	.max_wm = I915_MAX_WM,
518 	.default_wm = 1,
519 	.guard_size = 2,
520 	.cacheline_size = I915_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params i830_a_wm_info = {
523 	.fifo_size = I855GM_FIFO_SIZE,
524 	.max_wm = I915_MAX_WM,
525 	.default_wm = 1,
526 	.guard_size = 2,
527 	.cacheline_size = I830_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params i830_bc_wm_info = {
530 	.fifo_size = I855GM_FIFO_SIZE,
531 	.max_wm = I915_MAX_WM/2,
532 	.default_wm = 1,
533 	.guard_size = 2,
534 	.cacheline_size = I830_FIFO_LINE_SIZE,
535 };
536 static const struct intel_watermark_params i845_wm_info = {
537 	.fifo_size = I830_FIFO_SIZE,
538 	.max_wm = I915_MAX_WM,
539 	.default_wm = 1,
540 	.guard_size = 2,
541 	.cacheline_size = I830_FIFO_LINE_SIZE,
542 };
543 
544 /**
545  * intel_calculate_wm - calculate watermark level
546  * @clock_in_khz: pixel clock
547  * @wm: chip FIFO params
548  * @pixel_size: display pixel size
549  * @latency_ns: memory latency for the platform
550  *
551  * Calculate the watermark level (the level at which the display plane will
552  * start fetching from memory again).  Each chip has a different display
553  * FIFO size and allocation, so the caller needs to figure that out and pass
554  * in the correct intel_watermark_params structure.
555  *
556  * As the pixel clock runs, the FIFO will be drained at a rate that depends
557  * on the pixel size.  When it reaches the watermark level, it'll start
558  * fetching FIFO line sized based chunks from memory until the FIFO fills
559  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
560  * will occur, and a display engine hang could result.
561  */
562 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
563 					const struct intel_watermark_params *wm,
564 					int fifo_size,
565 					int pixel_size,
566 					unsigned long latency_ns)
567 {
568 	long entries_required, wm_size;
569 
570 	/*
571 	 * Note: we need to make sure we don't overflow for various clock &
572 	 * latency values.
573 	 * clocks go from a few thousand to several hundred thousand.
574 	 * latency is usually a few thousand
575 	 */
576 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
577 		1000;
578 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
579 
580 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
581 
582 	wm_size = fifo_size - (entries_required + wm->guard_size);
583 
584 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
585 
586 	/* Don't promote wm_size to unsigned... */
587 	if (wm_size > (long)wm->max_wm)
588 		wm_size = wm->max_wm;
589 	if (wm_size <= 0)
590 		wm_size = wm->default_wm;
591 
592 	/*
593 	 * Bspec seems to indicate that the value shouldn't be lower than
594 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
595 	 * Lets go for 8 which is the burst size since certain platforms
596 	 * already use a hardcoded 8 (which is what the spec says should be
597 	 * done).
598 	 */
599 	if (wm_size <= 8)
600 		wm_size = 8;
601 
602 	return wm_size;
603 }
604 
605 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
606 {
607 	struct drm_crtc *crtc, *enabled = NULL;
608 
609 	for_each_crtc(dev, crtc) {
610 		if (intel_crtc_active(crtc)) {
611 			if (enabled)
612 				return NULL;
613 			enabled = crtc;
614 		}
615 	}
616 
617 	return enabled;
618 }
619 
620 static void pineview_update_wm(struct drm_crtc *unused_crtc)
621 {
622 	struct drm_device *dev = unused_crtc->dev;
623 	struct drm_i915_private *dev_priv = dev->dev_private;
624 	struct drm_crtc *crtc;
625 	const struct cxsr_latency *latency;
626 	u32 reg;
627 	unsigned long wm;
628 
629 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
630 					 dev_priv->fsb_freq, dev_priv->mem_freq);
631 	if (!latency) {
632 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
633 		intel_set_memory_cxsr(dev_priv, false);
634 		return;
635 	}
636 
637 	crtc = single_enabled_crtc(dev);
638 	if (crtc) {
639 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
640 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
641 		int clock = adjusted_mode->crtc_clock;
642 
643 		/* Display SR */
644 		wm = intel_calculate_wm(clock, &pineview_display_wm,
645 					pineview_display_wm.fifo_size,
646 					pixel_size, latency->display_sr);
647 		reg = I915_READ(DSPFW1);
648 		reg &= ~DSPFW_SR_MASK;
649 		reg |= FW_WM(wm, SR);
650 		I915_WRITE(DSPFW1, reg);
651 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
652 
653 		/* cursor SR */
654 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
655 					pineview_display_wm.fifo_size,
656 					pixel_size, latency->cursor_sr);
657 		reg = I915_READ(DSPFW3);
658 		reg &= ~DSPFW_CURSOR_SR_MASK;
659 		reg |= FW_WM(wm, CURSOR_SR);
660 		I915_WRITE(DSPFW3, reg);
661 
662 		/* Display HPLL off SR */
663 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
664 					pineview_display_hplloff_wm.fifo_size,
665 					pixel_size, latency->display_hpll_disable);
666 		reg = I915_READ(DSPFW3);
667 		reg &= ~DSPFW_HPLL_SR_MASK;
668 		reg |= FW_WM(wm, HPLL_SR);
669 		I915_WRITE(DSPFW3, reg);
670 
671 		/* cursor HPLL off SR */
672 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
673 					pineview_display_hplloff_wm.fifo_size,
674 					pixel_size, latency->cursor_hpll_disable);
675 		reg = I915_READ(DSPFW3);
676 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
677 		reg |= FW_WM(wm, HPLL_CURSOR);
678 		I915_WRITE(DSPFW3, reg);
679 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
680 
681 		intel_set_memory_cxsr(dev_priv, true);
682 	} else {
683 		intel_set_memory_cxsr(dev_priv, false);
684 	}
685 }
686 
687 static bool g4x_compute_wm0(struct drm_device *dev,
688 			    int plane,
689 			    const struct intel_watermark_params *display,
690 			    int display_latency_ns,
691 			    const struct intel_watermark_params *cursor,
692 			    int cursor_latency_ns,
693 			    int *plane_wm,
694 			    int *cursor_wm)
695 {
696 	struct drm_crtc *crtc;
697 	const struct drm_display_mode *adjusted_mode;
698 	int htotal, hdisplay, clock, pixel_size;
699 	int line_time_us, line_count;
700 	int entries, tlb_miss;
701 
702 	crtc = intel_get_crtc_for_plane(dev, plane);
703 	if (!intel_crtc_active(crtc)) {
704 		*cursor_wm = cursor->guard_size;
705 		*plane_wm = display->guard_size;
706 		return false;
707 	}
708 
709 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
710 	clock = adjusted_mode->crtc_clock;
711 	htotal = adjusted_mode->crtc_htotal;
712 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
713 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
714 
715 	/* Use the small buffer method to calculate plane watermark */
716 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
717 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
718 	if (tlb_miss > 0)
719 		entries += tlb_miss;
720 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
721 	*plane_wm = entries + display->guard_size;
722 	if (*plane_wm > (int)display->max_wm)
723 		*plane_wm = display->max_wm;
724 
725 	/* Use the large buffer method to calculate cursor watermark */
726 	line_time_us = max(htotal * 1000 / clock, 1);
727 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
728 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
729 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
730 	if (tlb_miss > 0)
731 		entries += tlb_miss;
732 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
733 	*cursor_wm = entries + cursor->guard_size;
734 	if (*cursor_wm > (int)cursor->max_wm)
735 		*cursor_wm = (int)cursor->max_wm;
736 
737 	return true;
738 }
739 
740 /*
741  * Check the wm result.
742  *
743  * If any calculated watermark values is larger than the maximum value that
744  * can be programmed into the associated watermark register, that watermark
745  * must be disabled.
746  */
747 static bool g4x_check_srwm(struct drm_device *dev,
748 			   int display_wm, int cursor_wm,
749 			   const struct intel_watermark_params *display,
750 			   const struct intel_watermark_params *cursor)
751 {
752 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
753 		      display_wm, cursor_wm);
754 
755 	if (display_wm > display->max_wm) {
756 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
757 			      display_wm, display->max_wm);
758 		return false;
759 	}
760 
761 	if (cursor_wm > cursor->max_wm) {
762 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
763 			      cursor_wm, cursor->max_wm);
764 		return false;
765 	}
766 
767 	if (!(display_wm || cursor_wm)) {
768 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
769 		return false;
770 	}
771 
772 	return true;
773 }
774 
775 static bool g4x_compute_srwm(struct drm_device *dev,
776 			     int plane,
777 			     int latency_ns,
778 			     const struct intel_watermark_params *display,
779 			     const struct intel_watermark_params *cursor,
780 			     int *display_wm, int *cursor_wm)
781 {
782 	struct drm_crtc *crtc;
783 	const struct drm_display_mode *adjusted_mode;
784 	int hdisplay, htotal, pixel_size, clock;
785 	unsigned long line_time_us;
786 	int line_count, line_size;
787 	int small, large;
788 	int entries;
789 
790 	if (!latency_ns) {
791 		*display_wm = *cursor_wm = 0;
792 		return false;
793 	}
794 
795 	crtc = intel_get_crtc_for_plane(dev, plane);
796 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
797 	clock = adjusted_mode->crtc_clock;
798 	htotal = adjusted_mode->crtc_htotal;
799 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
800 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
801 
802 	line_time_us = max(htotal * 1000 / clock, 1);
803 	line_count = (latency_ns / line_time_us + 1000) / 1000;
804 	line_size = hdisplay * pixel_size;
805 
806 	/* Use the minimum of the small and large buffer method for primary */
807 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
808 	large = line_count * line_size;
809 
810 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
811 	*display_wm = entries + display->guard_size;
812 
813 	/* calculate the self-refresh watermark for display cursor */
814 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
815 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
816 	*cursor_wm = entries + cursor->guard_size;
817 
818 	return g4x_check_srwm(dev,
819 			      *display_wm, *cursor_wm,
820 			      display, cursor);
821 }
822 
823 #define FW_WM_VLV(value, plane) \
824 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
825 
826 static void vlv_write_wm_values(struct intel_crtc *crtc,
827 				const struct vlv_wm_values *wm)
828 {
829 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
830 	enum i915_pipe pipe = crtc->pipe;
831 
832 	I915_WRITE(VLV_DDL(pipe),
833 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
834 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
835 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
836 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
837 
838 	I915_WRITE(DSPFW1,
839 		   FW_WM(wm->sr.plane, SR) |
840 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
841 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
842 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
843 	I915_WRITE(DSPFW2,
844 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
845 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
846 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
847 	I915_WRITE(DSPFW3,
848 		   FW_WM(wm->sr.cursor, CURSOR_SR));
849 
850 	if (IS_CHERRYVIEW(dev_priv)) {
851 		I915_WRITE(DSPFW7_CHV,
852 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
853 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
854 		I915_WRITE(DSPFW8_CHV,
855 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
856 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
857 		I915_WRITE(DSPFW9_CHV,
858 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
859 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
860 		I915_WRITE(DSPHOWM,
861 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
862 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
863 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
864 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
865 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
866 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
867 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
868 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
869 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
870 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
871 	} else {
872 		I915_WRITE(DSPFW7,
873 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
874 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
875 		I915_WRITE(DSPHOWM,
876 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
877 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
878 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
879 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
880 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
881 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
882 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
883 	}
884 
885 	/* zero (unused) WM1 watermarks */
886 	I915_WRITE(DSPFW4, 0);
887 	I915_WRITE(DSPFW5, 0);
888 	I915_WRITE(DSPFW6, 0);
889 	I915_WRITE(DSPHOWM1, 0);
890 
891 	POSTING_READ(DSPFW1);
892 }
893 
894 #undef FW_WM_VLV
895 
896 enum vlv_wm_level {
897 	VLV_WM_LEVEL_PM2,
898 	VLV_WM_LEVEL_PM5,
899 	VLV_WM_LEVEL_DDR_DVFS,
900 };
901 
902 /* latency must be in 0.1us units. */
903 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
904 				   unsigned int pipe_htotal,
905 				   unsigned int horiz_pixels,
906 				   unsigned int bytes_per_pixel,
907 				   unsigned int latency)
908 {
909 	unsigned int ret;
910 
911 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
912 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
913 	ret = DIV_ROUND_UP(ret, 64);
914 
915 	return ret;
916 }
917 
918 static void vlv_setup_wm_latency(struct drm_device *dev)
919 {
920 	struct drm_i915_private *dev_priv = dev->dev_private;
921 
922 	/* all latencies in usec */
923 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
924 
925 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
926 
927 	if (IS_CHERRYVIEW(dev_priv)) {
928 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
929 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
930 
931 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
932 	}
933 }
934 
935 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
936 				     struct intel_crtc *crtc,
937 				     const struct intel_plane_state *state,
938 				     int level)
939 {
940 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
941 	int clock, htotal, pixel_size, width, wm;
942 
943 	if (dev_priv->wm.pri_latency[level] == 0)
944 		return USHRT_MAX;
945 
946 	if (!state->visible)
947 		return 0;
948 
949 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
950 	clock = crtc->config->base.adjusted_mode.crtc_clock;
951 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
952 	width = crtc->config->pipe_src_w;
953 	if (WARN_ON(htotal == 0))
954 		htotal = 1;
955 
956 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
957 		/*
958 		 * FIXME the formula gives values that are
959 		 * too big for the cursor FIFO, and hence we
960 		 * would never be able to use cursors. For
961 		 * now just hardcode the watermark.
962 		 */
963 		wm = 63;
964 	} else {
965 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
966 				    dev_priv->wm.pri_latency[level] * 10);
967 	}
968 
969 	return min_t(int, wm, USHRT_MAX);
970 }
971 
972 static void vlv_compute_fifo(struct intel_crtc *crtc)
973 {
974 	struct drm_device *dev = crtc->base.dev;
975 	struct vlv_wm_state *wm_state = &crtc->wm_state;
976 	struct intel_plane *plane;
977 	unsigned int total_rate = 0;
978 	const int fifo_size = 512 - 1;
979 	int fifo_extra, fifo_left = fifo_size;
980 
981 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
982 		struct intel_plane_state *state =
983 			to_intel_plane_state(plane->base.state);
984 
985 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
986 			continue;
987 
988 		if (state->visible) {
989 			wm_state->num_active_planes++;
990 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
991 		}
992 	}
993 
994 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
995 		struct intel_plane_state *state =
996 			to_intel_plane_state(plane->base.state);
997 		unsigned int rate;
998 
999 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1000 			plane->wm.fifo_size = 63;
1001 			continue;
1002 		}
1003 
1004 		if (!state->visible) {
1005 			plane->wm.fifo_size = 0;
1006 			continue;
1007 		}
1008 
1009 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1010 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1011 		fifo_left -= plane->wm.fifo_size;
1012 	}
1013 
1014 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1015 
1016 	/* spread the remainder evenly */
1017 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1018 		int plane_extra;
1019 
1020 		if (fifo_left == 0)
1021 			break;
1022 
1023 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1024 			continue;
1025 
1026 		/* give it all to the first plane if none are active */
1027 		if (plane->wm.fifo_size == 0 &&
1028 		    wm_state->num_active_planes)
1029 			continue;
1030 
1031 		plane_extra = min(fifo_extra, fifo_left);
1032 		plane->wm.fifo_size += plane_extra;
1033 		fifo_left -= plane_extra;
1034 	}
1035 
1036 	WARN_ON(fifo_left != 0);
1037 }
1038 
1039 static void vlv_invert_wms(struct intel_crtc *crtc)
1040 {
1041 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1042 	int level;
1043 
1044 	for (level = 0; level < wm_state->num_levels; level++) {
1045 		struct drm_device *dev = crtc->base.dev;
1046 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1047 		struct intel_plane *plane;
1048 
1049 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1050 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1051 
1052 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1053 			switch (plane->base.type) {
1054 				int sprite;
1055 			case DRM_PLANE_TYPE_CURSOR:
1056 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1057 					wm_state->wm[level].cursor;
1058 				break;
1059 			case DRM_PLANE_TYPE_PRIMARY:
1060 				wm_state->wm[level].primary = plane->wm.fifo_size -
1061 					wm_state->wm[level].primary;
1062 				break;
1063 			case DRM_PLANE_TYPE_OVERLAY:
1064 				sprite = plane->plane;
1065 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1066 					wm_state->wm[level].sprite[sprite];
1067 				break;
1068 			}
1069 		}
1070 	}
1071 }
1072 
1073 static void vlv_compute_wm(struct intel_crtc *crtc)
1074 {
1075 	struct drm_device *dev = crtc->base.dev;
1076 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1077 	struct intel_plane *plane;
1078 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1079 	int level;
1080 
1081 	memset(wm_state, 0, sizeof(*wm_state));
1082 
1083 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1084 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1085 
1086 	wm_state->num_active_planes = 0;
1087 
1088 	vlv_compute_fifo(crtc);
1089 
1090 	if (wm_state->num_active_planes != 1)
1091 		wm_state->cxsr = false;
1092 
1093 	if (wm_state->cxsr) {
1094 		for (level = 0; level < wm_state->num_levels; level++) {
1095 			wm_state->sr[level].plane = sr_fifo_size;
1096 			wm_state->sr[level].cursor = 63;
1097 		}
1098 	}
1099 
1100 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1101 		struct intel_plane_state *state =
1102 			to_intel_plane_state(plane->base.state);
1103 
1104 		if (!state->visible)
1105 			continue;
1106 
1107 		/* normal watermarks */
1108 		for (level = 0; level < wm_state->num_levels; level++) {
1109 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1110 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1111 
1112 			/* hack */
1113 			if (WARN_ON(level == 0 && wm > max_wm))
1114 				wm = max_wm;
1115 
1116 			if (wm > plane->wm.fifo_size)
1117 				break;
1118 
1119 			switch (plane->base.type) {
1120 				int sprite;
1121 			case DRM_PLANE_TYPE_CURSOR:
1122 				wm_state->wm[level].cursor = wm;
1123 				break;
1124 			case DRM_PLANE_TYPE_PRIMARY:
1125 				wm_state->wm[level].primary = wm;
1126 				break;
1127 			case DRM_PLANE_TYPE_OVERLAY:
1128 				sprite = plane->plane;
1129 				wm_state->wm[level].sprite[sprite] = wm;
1130 				break;
1131 			}
1132 		}
1133 
1134 		wm_state->num_levels = level;
1135 
1136 		if (!wm_state->cxsr)
1137 			continue;
1138 
1139 		/* maxfifo watermarks */
1140 		switch (plane->base.type) {
1141 			int sprite, level;
1142 		case DRM_PLANE_TYPE_CURSOR:
1143 			for (level = 0; level < wm_state->num_levels; level++)
1144 				wm_state->sr[level].cursor =
1145 					wm_state->wm[level].cursor;
1146 			break;
1147 		case DRM_PLANE_TYPE_PRIMARY:
1148 			for (level = 0; level < wm_state->num_levels; level++)
1149 				wm_state->sr[level].plane =
1150 					min(wm_state->sr[level].plane,
1151 					    wm_state->wm[level].primary);
1152 			break;
1153 		case DRM_PLANE_TYPE_OVERLAY:
1154 			sprite = plane->plane;
1155 			for (level = 0; level < wm_state->num_levels; level++)
1156 				wm_state->sr[level].plane =
1157 					min(wm_state->sr[level].plane,
1158 					    wm_state->wm[level].sprite[sprite]);
1159 			break;
1160 		}
1161 	}
1162 
1163 	/* clear any (partially) filled invalid levels */
1164 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1165 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1166 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1167 	}
1168 
1169 	vlv_invert_wms(crtc);
1170 }
1171 
1172 #define VLV_FIFO(plane, value) \
1173 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1174 
1175 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1176 {
1177 	struct drm_device *dev = crtc->base.dev;
1178 	struct drm_i915_private *dev_priv = to_i915(dev);
1179 	struct intel_plane *plane;
1180 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1181 
1182 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1183 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1184 			WARN_ON(plane->wm.fifo_size != 63);
1185 			continue;
1186 		}
1187 
1188 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1189 			sprite0_start = plane->wm.fifo_size;
1190 		else if (plane->plane == 0)
1191 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1192 		else
1193 			fifo_size = sprite1_start + plane->wm.fifo_size;
1194 	}
1195 
1196 	WARN_ON(fifo_size != 512 - 1);
1197 
1198 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1199 		      pipe_name(crtc->pipe), sprite0_start,
1200 		      sprite1_start, fifo_size);
1201 
1202 	switch (crtc->pipe) {
1203 		uint32_t dsparb, dsparb2, dsparb3;
1204 	case PIPE_A:
1205 		dsparb = I915_READ(DSPARB);
1206 		dsparb2 = I915_READ(DSPARB2);
1207 
1208 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1209 			    VLV_FIFO(SPRITEB, 0xff));
1210 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1211 			   VLV_FIFO(SPRITEB, sprite1_start));
1212 
1213 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1214 			     VLV_FIFO(SPRITEB_HI, 0x1));
1215 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1216 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1217 
1218 		I915_WRITE(DSPARB, dsparb);
1219 		I915_WRITE(DSPARB2, dsparb2);
1220 		break;
1221 	case PIPE_B:
1222 		dsparb = I915_READ(DSPARB);
1223 		dsparb2 = I915_READ(DSPARB2);
1224 
1225 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1226 			    VLV_FIFO(SPRITED, 0xff));
1227 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1228 			   VLV_FIFO(SPRITED, sprite1_start));
1229 
1230 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1231 			     VLV_FIFO(SPRITED_HI, 0xff));
1232 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1233 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1234 
1235 		I915_WRITE(DSPARB, dsparb);
1236 		I915_WRITE(DSPARB2, dsparb2);
1237 		break;
1238 	case PIPE_C:
1239 		dsparb3 = I915_READ(DSPARB3);
1240 		dsparb2 = I915_READ(DSPARB2);
1241 
1242 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1243 			     VLV_FIFO(SPRITEF, 0xff));
1244 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1245 			    VLV_FIFO(SPRITEF, sprite1_start));
1246 
1247 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1248 			     VLV_FIFO(SPRITEF_HI, 0xff));
1249 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1250 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1251 
1252 		I915_WRITE(DSPARB3, dsparb3);
1253 		I915_WRITE(DSPARB2, dsparb2);
1254 		break;
1255 	default:
1256 		break;
1257 	}
1258 }
1259 
1260 #undef VLV_FIFO
1261 
1262 static void vlv_merge_wm(struct drm_device *dev,
1263 			 struct vlv_wm_values *wm)
1264 {
1265 	struct intel_crtc *crtc;
1266 	int num_active_crtcs = 0;
1267 
1268 	wm->level = to_i915(dev)->wm.max_level;
1269 	wm->cxsr = true;
1270 
1271 	for_each_intel_crtc(dev, crtc) {
1272 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1273 
1274 		if (!crtc->active)
1275 			continue;
1276 
1277 		if (!wm_state->cxsr)
1278 			wm->cxsr = false;
1279 
1280 		num_active_crtcs++;
1281 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1282 	}
1283 
1284 	if (num_active_crtcs != 1)
1285 		wm->cxsr = false;
1286 
1287 	if (num_active_crtcs > 1)
1288 		wm->level = VLV_WM_LEVEL_PM2;
1289 
1290 	for_each_intel_crtc(dev, crtc) {
1291 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1292 		enum i915_pipe pipe = crtc->pipe;
1293 
1294 		if (!crtc->active)
1295 			continue;
1296 
1297 		wm->pipe[pipe] = wm_state->wm[wm->level];
1298 		if (wm->cxsr)
1299 			wm->sr = wm_state->sr[wm->level];
1300 
1301 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1302 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1303 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1304 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1305 	}
1306 }
1307 
1308 static void vlv_update_wm(struct drm_crtc *crtc)
1309 {
1310 	struct drm_device *dev = crtc->dev;
1311 	struct drm_i915_private *dev_priv = dev->dev_private;
1312 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1313 	enum i915_pipe pipe = intel_crtc->pipe;
1314 	struct vlv_wm_values wm = {};
1315 
1316 	vlv_compute_wm(intel_crtc);
1317 	vlv_merge_wm(dev, &wm);
1318 
1319 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1320 		/* FIXME should be part of crtc atomic commit */
1321 		vlv_pipe_set_fifo_size(intel_crtc);
1322 		return;
1323 	}
1324 
1325 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1326 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1327 		chv_set_memory_dvfs(dev_priv, false);
1328 
1329 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1330 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1331 		chv_set_memory_pm5(dev_priv, false);
1332 
1333 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1334 		intel_set_memory_cxsr(dev_priv, false);
1335 
1336 	/* FIXME should be part of crtc atomic commit */
1337 	vlv_pipe_set_fifo_size(intel_crtc);
1338 
1339 	vlv_write_wm_values(intel_crtc, &wm);
1340 
1341 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1342 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1343 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1344 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1345 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1346 
1347 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1348 		intel_set_memory_cxsr(dev_priv, true);
1349 
1350 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1351 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1352 		chv_set_memory_pm5(dev_priv, true);
1353 
1354 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1355 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1356 		chv_set_memory_dvfs(dev_priv, true);
1357 
1358 	dev_priv->wm.vlv = wm;
1359 }
1360 
1361 #define single_plane_enabled(mask) is_power_of_2(mask)
1362 
1363 static void g4x_update_wm(struct drm_crtc *crtc)
1364 {
1365 	struct drm_device *dev = crtc->dev;
1366 	static const int sr_latency_ns = 12000;
1367 	struct drm_i915_private *dev_priv = dev->dev_private;
1368 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1369 	int plane_sr, cursor_sr;
1370 	unsigned int enabled = 0;
1371 	bool cxsr_enabled;
1372 
1373 	if (g4x_compute_wm0(dev, PIPE_A,
1374 			    &g4x_wm_info, pessimal_latency_ns,
1375 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1376 			    &planea_wm, &cursora_wm))
1377 		enabled |= 1 << PIPE_A;
1378 
1379 	if (g4x_compute_wm0(dev, PIPE_B,
1380 			    &g4x_wm_info, pessimal_latency_ns,
1381 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1382 			    &planeb_wm, &cursorb_wm))
1383 		enabled |= 1 << PIPE_B;
1384 
1385 	if (single_plane_enabled(enabled) &&
1386 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1387 			     sr_latency_ns,
1388 			     &g4x_wm_info,
1389 			     &g4x_cursor_wm_info,
1390 			     &plane_sr, &cursor_sr)) {
1391 		cxsr_enabled = true;
1392 	} else {
1393 		cxsr_enabled = false;
1394 		intel_set_memory_cxsr(dev_priv, false);
1395 		plane_sr = cursor_sr = 0;
1396 	}
1397 
1398 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1399 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1400 		      planea_wm, cursora_wm,
1401 		      planeb_wm, cursorb_wm,
1402 		      plane_sr, cursor_sr);
1403 
1404 	I915_WRITE(DSPFW1,
1405 		   FW_WM(plane_sr, SR) |
1406 		   FW_WM(cursorb_wm, CURSORB) |
1407 		   FW_WM(planeb_wm, PLANEB) |
1408 		   FW_WM(planea_wm, PLANEA));
1409 	I915_WRITE(DSPFW2,
1410 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1411 		   FW_WM(cursora_wm, CURSORA));
1412 	/* HPLL off in SR has some issues on G4x... disable it */
1413 	I915_WRITE(DSPFW3,
1414 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1415 		   FW_WM(cursor_sr, CURSOR_SR));
1416 
1417 	if (cxsr_enabled)
1418 		intel_set_memory_cxsr(dev_priv, true);
1419 }
1420 
1421 static void i965_update_wm(struct drm_crtc *unused_crtc)
1422 {
1423 	struct drm_device *dev = unused_crtc->dev;
1424 	struct drm_i915_private *dev_priv = dev->dev_private;
1425 	struct drm_crtc *crtc;
1426 	int srwm = 1;
1427 	int cursor_sr = 16;
1428 	bool cxsr_enabled;
1429 
1430 	/* Calc sr entries for one plane configs */
1431 	crtc = single_enabled_crtc(dev);
1432 	if (crtc) {
1433 		/* self-refresh has much higher latency */
1434 		static const int sr_latency_ns = 12000;
1435 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1436 		int clock = adjusted_mode->crtc_clock;
1437 		int htotal = adjusted_mode->crtc_htotal;
1438 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1439 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1440 		unsigned long line_time_us;
1441 		int entries;
1442 
1443 		line_time_us = max(htotal * 1000 / clock, 1);
1444 
1445 		/* Use ns/us then divide to preserve precision */
1446 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1447 			pixel_size * hdisplay;
1448 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1449 		srwm = I965_FIFO_SIZE - entries;
1450 		if (srwm < 0)
1451 			srwm = 1;
1452 		srwm &= 0x1ff;
1453 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1454 			      entries, srwm);
1455 
1456 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1457 			pixel_size * crtc->cursor->state->crtc_w;
1458 		entries = DIV_ROUND_UP(entries,
1459 					  i965_cursor_wm_info.cacheline_size);
1460 		cursor_sr = i965_cursor_wm_info.fifo_size -
1461 			(entries + i965_cursor_wm_info.guard_size);
1462 
1463 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1464 			cursor_sr = i965_cursor_wm_info.max_wm;
1465 
1466 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1467 			      "cursor %d\n", srwm, cursor_sr);
1468 
1469 		cxsr_enabled = true;
1470 	} else {
1471 		cxsr_enabled = false;
1472 		/* Turn off self refresh if both pipes are enabled */
1473 		intel_set_memory_cxsr(dev_priv, false);
1474 	}
1475 
1476 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1477 		      srwm);
1478 
1479 	/* 965 has limitations... */
1480 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1481 		   FW_WM(8, CURSORB) |
1482 		   FW_WM(8, PLANEB) |
1483 		   FW_WM(8, PLANEA));
1484 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1485 		   FW_WM(8, PLANEC_OLD));
1486 	/* update cursor SR watermark */
1487 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1488 
1489 	if (cxsr_enabled)
1490 		intel_set_memory_cxsr(dev_priv, true);
1491 }
1492 
1493 #undef FW_WM
1494 
1495 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1496 {
1497 	struct drm_device *dev = unused_crtc->dev;
1498 	struct drm_i915_private *dev_priv = dev->dev_private;
1499 	const struct intel_watermark_params *wm_info;
1500 	uint32_t fwater_lo;
1501 	uint32_t fwater_hi;
1502 	int cwm, srwm = 1;
1503 	int fifo_size;
1504 	int planea_wm, planeb_wm;
1505 	struct drm_crtc *crtc, *enabled = NULL;
1506 
1507 	if (IS_I945GM(dev))
1508 		wm_info = &i945_wm_info;
1509 	else if (!IS_GEN2(dev))
1510 		wm_info = &i915_wm_info;
1511 	else
1512 		wm_info = &i830_a_wm_info;
1513 
1514 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1515 	crtc = intel_get_crtc_for_plane(dev, 0);
1516 	if (intel_crtc_active(crtc)) {
1517 		const struct drm_display_mode *adjusted_mode;
1518 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1519 		if (IS_GEN2(dev))
1520 			cpp = 4;
1521 
1522 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1523 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1524 					       wm_info, fifo_size, cpp,
1525 					       pessimal_latency_ns);
1526 		enabled = crtc;
1527 	} else {
1528 		planea_wm = fifo_size - wm_info->guard_size;
1529 		if (planea_wm > (long)wm_info->max_wm)
1530 			planea_wm = wm_info->max_wm;
1531 	}
1532 
1533 	if (IS_GEN2(dev))
1534 		wm_info = &i830_bc_wm_info;
1535 
1536 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1537 	crtc = intel_get_crtc_for_plane(dev, 1);
1538 	if (intel_crtc_active(crtc)) {
1539 		const struct drm_display_mode *adjusted_mode;
1540 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1541 		if (IS_GEN2(dev))
1542 			cpp = 4;
1543 
1544 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546 					       wm_info, fifo_size, cpp,
1547 					       pessimal_latency_ns);
1548 		if (enabled == NULL)
1549 			enabled = crtc;
1550 		else
1551 			enabled = NULL;
1552 	} else {
1553 		planeb_wm = fifo_size - wm_info->guard_size;
1554 		if (planeb_wm > (long)wm_info->max_wm)
1555 			planeb_wm = wm_info->max_wm;
1556 	}
1557 
1558 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1559 
1560 	if (IS_I915GM(dev) && enabled) {
1561 		struct drm_i915_gem_object *obj;
1562 
1563 		obj = intel_fb_obj(enabled->primary->state->fb);
1564 
1565 		/* self-refresh seems busted with untiled */
1566 		if (obj->tiling_mode == I915_TILING_NONE)
1567 			enabled = NULL;
1568 	}
1569 
1570 	/*
1571 	 * Overlay gets an aggressive default since video jitter is bad.
1572 	 */
1573 	cwm = 2;
1574 
1575 	/* Play safe and disable self-refresh before adjusting watermarks. */
1576 	intel_set_memory_cxsr(dev_priv, false);
1577 
1578 	/* Calc sr entries for one plane configs */
1579 	if (HAS_FW_BLC(dev) && enabled) {
1580 		/* self-refresh has much higher latency */
1581 		static const int sr_latency_ns = 6000;
1582 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1583 		int clock = adjusted_mode->crtc_clock;
1584 		int htotal = adjusted_mode->crtc_htotal;
1585 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1586 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1587 		unsigned long line_time_us;
1588 		int entries;
1589 
1590 		line_time_us = max(htotal * 1000 / clock, 1);
1591 
1592 		/* Use ns/us then divide to preserve precision */
1593 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1594 			pixel_size * hdisplay;
1595 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1596 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1597 		srwm = wm_info->fifo_size - entries;
1598 		if (srwm < 0)
1599 			srwm = 1;
1600 
1601 		if (IS_I945G(dev) || IS_I945GM(dev))
1602 			I915_WRITE(FW_BLC_SELF,
1603 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1604 		else if (IS_I915GM(dev))
1605 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1606 	}
1607 
1608 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1609 		      planea_wm, planeb_wm, cwm, srwm);
1610 
1611 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1612 	fwater_hi = (cwm & 0x1f);
1613 
1614 	/* Set request length to 8 cachelines per fetch */
1615 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1616 	fwater_hi = fwater_hi | (1 << 8);
1617 
1618 	I915_WRITE(FW_BLC, fwater_lo);
1619 	I915_WRITE(FW_BLC2, fwater_hi);
1620 
1621 	if (enabled)
1622 		intel_set_memory_cxsr(dev_priv, true);
1623 }
1624 
1625 static void i845_update_wm(struct drm_crtc *unused_crtc)
1626 {
1627 	struct drm_device *dev = unused_crtc->dev;
1628 	struct drm_i915_private *dev_priv = dev->dev_private;
1629 	struct drm_crtc *crtc;
1630 	const struct drm_display_mode *adjusted_mode;
1631 	uint32_t fwater_lo;
1632 	int planea_wm;
1633 
1634 	crtc = single_enabled_crtc(dev);
1635 	if (crtc == NULL)
1636 		return;
1637 
1638 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1639 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1640 				       &i845_wm_info,
1641 				       dev_priv->display.get_fifo_size(dev, 0),
1642 				       4, pessimal_latency_ns);
1643 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1644 	fwater_lo |= (3<<8) | planea_wm;
1645 
1646 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1647 
1648 	I915_WRITE(FW_BLC, fwater_lo);
1649 }
1650 
1651 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1652 {
1653 	uint32_t pixel_rate;
1654 
1655 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1656 
1657 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1658 	 * adjust the pixel_rate here. */
1659 
1660 	if (pipe_config->pch_pfit.enabled) {
1661 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1662 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1663 
1664 		pipe_w = pipe_config->pipe_src_w;
1665 		pipe_h = pipe_config->pipe_src_h;
1666 
1667 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1668 		pfit_h = pfit_size & 0xFFFF;
1669 		if (pipe_w < pfit_w)
1670 			pipe_w = pfit_w;
1671 		if (pipe_h < pfit_h)
1672 			pipe_h = pfit_h;
1673 
1674 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1675 				     pfit_w * pfit_h);
1676 	}
1677 
1678 	return pixel_rate;
1679 }
1680 
1681 /* latency must be in 0.1us units. */
1682 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1683 			       uint32_t latency)
1684 {
1685 	uint64_t ret;
1686 
1687 	if (WARN(latency == 0, "Latency value missing\n"))
1688 		return UINT_MAX;
1689 
1690 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1691 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1692 
1693 	return ret;
1694 }
1695 
1696 /* latency must be in 0.1us units. */
1697 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1698 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1699 			       uint32_t latency)
1700 {
1701 	uint32_t ret;
1702 
1703 	if (WARN(latency == 0, "Latency value missing\n"))
1704 		return UINT_MAX;
1705 
1706 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1707 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1708 	ret = DIV_ROUND_UP(ret, 64) + 2;
1709 	return ret;
1710 }
1711 
1712 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1713 			   uint8_t bytes_per_pixel)
1714 {
1715 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1716 }
1717 
1718 struct ilk_wm_maximums {
1719 	uint16_t pri;
1720 	uint16_t spr;
1721 	uint16_t cur;
1722 	uint16_t fbc;
1723 };
1724 
1725 /*
1726  * For both WM_PIPE and WM_LP.
1727  * mem_value must be in 0.1us units.
1728  */
1729 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1730 				   const struct intel_plane_state *pstate,
1731 				   uint32_t mem_value,
1732 				   bool is_lp)
1733 {
1734 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1735 	uint32_t method1, method2;
1736 
1737 	if (!cstate->base.active || !pstate->visible)
1738 		return 0;
1739 
1740 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1741 
1742 	if (!is_lp)
1743 		return method1;
1744 
1745 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1746 				 cstate->base.adjusted_mode.crtc_htotal,
1747 				 drm_rect_width(&pstate->dst),
1748 				 bpp,
1749 				 mem_value);
1750 
1751 	return min(method1, method2);
1752 }
1753 
1754 /*
1755  * For both WM_PIPE and WM_LP.
1756  * mem_value must be in 0.1us units.
1757  */
1758 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1759 				   const struct intel_plane_state *pstate,
1760 				   uint32_t mem_value)
1761 {
1762 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1763 	uint32_t method1, method2;
1764 
1765 	if (!cstate->base.active || !pstate->visible)
1766 		return 0;
1767 
1768 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1769 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1770 				 cstate->base.adjusted_mode.crtc_htotal,
1771 				 drm_rect_width(&pstate->dst),
1772 				 bpp,
1773 				 mem_value);
1774 	return min(method1, method2);
1775 }
1776 
1777 /*
1778  * For both WM_PIPE and WM_LP.
1779  * mem_value must be in 0.1us units.
1780  */
1781 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1782 				   const struct intel_plane_state *pstate,
1783 				   uint32_t mem_value)
1784 {
1785 	/*
1786 	 * We treat the cursor plane as always-on for the purposes of watermark
1787 	 * calculation.  Until we have two-stage watermark programming merged,
1788 	 * this is necessary to avoid flickering.
1789 	 */
1790 	int cpp = 4;
1791 	int width = pstate->visible ? pstate->base.crtc_w : 64;
1792 
1793 	if (!cstate->base.active)
1794 		return 0;
1795 
1796 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1797 			      cstate->base.adjusted_mode.crtc_htotal,
1798 			      width, cpp, mem_value);
1799 }
1800 
1801 /* Only for WM_LP. */
1802 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1803 				   const struct intel_plane_state *pstate,
1804 				   uint32_t pri_val)
1805 {
1806 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1807 
1808 	if (!cstate->base.active || !pstate->visible)
1809 		return 0;
1810 
1811 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1812 }
1813 
1814 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1815 {
1816 	if (INTEL_INFO(dev)->gen >= 8)
1817 		return 3072;
1818 	else if (INTEL_INFO(dev)->gen >= 7)
1819 		return 768;
1820 	else
1821 		return 512;
1822 }
1823 
1824 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1825 					 int level, bool is_sprite)
1826 {
1827 	if (INTEL_INFO(dev)->gen >= 8)
1828 		/* BDW primary/sprite plane watermarks */
1829 		return level == 0 ? 255 : 2047;
1830 	else if (INTEL_INFO(dev)->gen >= 7)
1831 		/* IVB/HSW primary/sprite plane watermarks */
1832 		return level == 0 ? 127 : 1023;
1833 	else if (!is_sprite)
1834 		/* ILK/SNB primary plane watermarks */
1835 		return level == 0 ? 127 : 511;
1836 	else
1837 		/* ILK/SNB sprite plane watermarks */
1838 		return level == 0 ? 63 : 255;
1839 }
1840 
1841 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1842 					  int level)
1843 {
1844 	if (INTEL_INFO(dev)->gen >= 7)
1845 		return level == 0 ? 63 : 255;
1846 	else
1847 		return level == 0 ? 31 : 63;
1848 }
1849 
1850 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1851 {
1852 	if (INTEL_INFO(dev)->gen >= 8)
1853 		return 31;
1854 	else
1855 		return 15;
1856 }
1857 
1858 /* Calculate the maximum primary/sprite plane watermark */
1859 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1860 				     int level,
1861 				     const struct intel_wm_config *config,
1862 				     enum intel_ddb_partitioning ddb_partitioning,
1863 				     bool is_sprite)
1864 {
1865 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1866 
1867 	/* if sprites aren't enabled, sprites get nothing */
1868 	if (is_sprite && !config->sprites_enabled)
1869 		return 0;
1870 
1871 	/* HSW allows LP1+ watermarks even with multiple pipes */
1872 	if (level == 0 || config->num_pipes_active > 1) {
1873 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1874 
1875 		/*
1876 		 * For some reason the non self refresh
1877 		 * FIFO size is only half of the self
1878 		 * refresh FIFO size on ILK/SNB.
1879 		 */
1880 		if (INTEL_INFO(dev)->gen <= 6)
1881 			fifo_size /= 2;
1882 	}
1883 
1884 	if (config->sprites_enabled) {
1885 		/* level 0 is always calculated with 1:1 split */
1886 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1887 			if (is_sprite)
1888 				fifo_size *= 5;
1889 			fifo_size /= 6;
1890 		} else {
1891 			fifo_size /= 2;
1892 		}
1893 	}
1894 
1895 	/* clamp to max that the registers can hold */
1896 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1897 }
1898 
1899 /* Calculate the maximum cursor plane watermark */
1900 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1901 				      int level,
1902 				      const struct intel_wm_config *config)
1903 {
1904 	/* HSW LP1+ watermarks w/ multiple pipes */
1905 	if (level > 0 && config->num_pipes_active > 1)
1906 		return 64;
1907 
1908 	/* otherwise just report max that registers can hold */
1909 	return ilk_cursor_wm_reg_max(dev, level);
1910 }
1911 
1912 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1913 				    int level,
1914 				    const struct intel_wm_config *config,
1915 				    enum intel_ddb_partitioning ddb_partitioning,
1916 				    struct ilk_wm_maximums *max)
1917 {
1918 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1919 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1920 	max->cur = ilk_cursor_wm_max(dev, level, config);
1921 	max->fbc = ilk_fbc_wm_reg_max(dev);
1922 }
1923 
1924 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1925 					int level,
1926 					struct ilk_wm_maximums *max)
1927 {
1928 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1929 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1930 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1931 	max->fbc = ilk_fbc_wm_reg_max(dev);
1932 }
1933 
1934 static bool ilk_validate_wm_level(int level,
1935 				  const struct ilk_wm_maximums *max,
1936 				  struct intel_wm_level *result)
1937 {
1938 	bool ret;
1939 
1940 	/* already determined to be invalid? */
1941 	if (!result->enable)
1942 		return false;
1943 
1944 	result->enable = result->pri_val <= max->pri &&
1945 			 result->spr_val <= max->spr &&
1946 			 result->cur_val <= max->cur;
1947 
1948 	ret = result->enable;
1949 
1950 	/*
1951 	 * HACK until we can pre-compute everything,
1952 	 * and thus fail gracefully if LP0 watermarks
1953 	 * are exceeded...
1954 	 */
1955 	if (level == 0 && !result->enable) {
1956 		if (result->pri_val > max->pri)
1957 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1958 				      level, result->pri_val, max->pri);
1959 		if (result->spr_val > max->spr)
1960 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1961 				      level, result->spr_val, max->spr);
1962 		if (result->cur_val > max->cur)
1963 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1964 				      level, result->cur_val, max->cur);
1965 
1966 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1967 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1968 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1969 		result->enable = true;
1970 	}
1971 
1972 	return ret;
1973 }
1974 
1975 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1976 				 const struct intel_crtc *intel_crtc,
1977 				 int level,
1978 				 struct intel_crtc_state *cstate,
1979 				 struct intel_plane_state *pristate,
1980 				 struct intel_plane_state *sprstate,
1981 				 struct intel_plane_state *curstate,
1982 				 struct intel_wm_level *result)
1983 {
1984 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1985 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1986 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1987 
1988 	/* WM1+ latency values stored in 0.5us units */
1989 	if (level > 0) {
1990 		pri_latency *= 5;
1991 		spr_latency *= 5;
1992 		cur_latency *= 5;
1993 	}
1994 
1995 	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
1996 					     pri_latency, level);
1997 	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
1998 	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
1999 	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2000 	result->enable = true;
2001 }
2002 
2003 static uint32_t
2004 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2005 {
2006 	struct drm_i915_private *dev_priv = dev->dev_private;
2007 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2008 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2009 	u32 linetime, ips_linetime;
2010 
2011 	if (!intel_crtc->active)
2012 		return 0;
2013 
2014 	/* The WM are computed with base on how long it takes to fill a single
2015 	 * row at the given clock rate, multiplied by 8.
2016 	 * */
2017 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2018 				     adjusted_mode->crtc_clock);
2019 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2020 					 dev_priv->cdclk_freq);
2021 
2022 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2023 	       PIPE_WM_LINETIME_TIME(linetime);
2024 }
2025 
2026 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2027 {
2028 	struct drm_i915_private *dev_priv = dev->dev_private;
2029 
2030 	if (IS_GEN9(dev)) {
2031 		uint32_t val;
2032 		int ret, i;
2033 		int level, max_level = ilk_wm_max_level(dev);
2034 
2035 		/* read the first set of memory latencies[0:3] */
2036 		val = 0; /* data0 to be programmed to 0 for first set */
2037 		mutex_lock(&dev_priv->rps.hw_lock);
2038 		ret = sandybridge_pcode_read(dev_priv,
2039 					     GEN9_PCODE_READ_MEM_LATENCY,
2040 					     &val);
2041 		mutex_unlock(&dev_priv->rps.hw_lock);
2042 
2043 		if (ret) {
2044 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2045 			return;
2046 		}
2047 
2048 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2049 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2050 				GEN9_MEM_LATENCY_LEVEL_MASK;
2051 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2052 				GEN9_MEM_LATENCY_LEVEL_MASK;
2053 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2054 				GEN9_MEM_LATENCY_LEVEL_MASK;
2055 
2056 		/* read the second set of memory latencies[4:7] */
2057 		val = 1; /* data0 to be programmed to 1 for second set */
2058 		mutex_lock(&dev_priv->rps.hw_lock);
2059 		ret = sandybridge_pcode_read(dev_priv,
2060 					     GEN9_PCODE_READ_MEM_LATENCY,
2061 					     &val);
2062 		mutex_unlock(&dev_priv->rps.hw_lock);
2063 		if (ret) {
2064 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2065 			return;
2066 		}
2067 
2068 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2069 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2070 				GEN9_MEM_LATENCY_LEVEL_MASK;
2071 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2072 				GEN9_MEM_LATENCY_LEVEL_MASK;
2073 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2074 				GEN9_MEM_LATENCY_LEVEL_MASK;
2075 
2076 		/*
2077 		 * WaWmMemoryReadLatency:skl
2078 		 *
2079 		 * punit doesn't take into account the read latency so we need
2080 		 * to add 2us to the various latency levels we retrieve from
2081 		 * the punit.
2082 		 *   - W0 is a bit special in that it's the only level that
2083 		 *   can't be disabled if we want to have display working, so
2084 		 *   we always add 2us there.
2085 		 *   - For levels >=1, punit returns 0us latency when they are
2086 		 *   disabled, so we respect that and don't add 2us then
2087 		 *
2088 		 * Additionally, if a level n (n > 1) has a 0us latency, all
2089 		 * levels m (m >= n) need to be disabled. We make sure to
2090 		 * sanitize the values out of the punit to satisfy this
2091 		 * requirement.
2092 		 */
2093 		wm[0] += 2;
2094 		for (level = 1; level <= max_level; level++)
2095 			if (wm[level] != 0)
2096 				wm[level] += 2;
2097 			else {
2098 				for (i = level + 1; i <= max_level; i++)
2099 					wm[i] = 0;
2100 
2101 				break;
2102 			}
2103 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2104 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2105 
2106 		wm[0] = (sskpd >> 56) & 0xFF;
2107 		if (wm[0] == 0)
2108 			wm[0] = sskpd & 0xF;
2109 		wm[1] = (sskpd >> 4) & 0xFF;
2110 		wm[2] = (sskpd >> 12) & 0xFF;
2111 		wm[3] = (sskpd >> 20) & 0x1FF;
2112 		wm[4] = (sskpd >> 32) & 0x1FF;
2113 	} else if (INTEL_INFO(dev)->gen >= 6) {
2114 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2115 
2116 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2117 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2118 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2119 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2120 	} else if (INTEL_INFO(dev)->gen >= 5) {
2121 		uint32_t mltr = I915_READ(MLTR_ILK);
2122 
2123 		/* ILK primary LP0 latency is 700 ns */
2124 		wm[0] = 7;
2125 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2126 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2127 	}
2128 }
2129 
2130 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2131 {
2132 	/* ILK sprite LP0 latency is 1300 ns */
2133 	if (INTEL_INFO(dev)->gen == 5)
2134 		wm[0] = 13;
2135 }
2136 
2137 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2138 {
2139 	/* ILK cursor LP0 latency is 1300 ns */
2140 	if (INTEL_INFO(dev)->gen == 5)
2141 		wm[0] = 13;
2142 
2143 	/* WaDoubleCursorLP3Latency:ivb */
2144 	if (IS_IVYBRIDGE(dev))
2145 		wm[3] *= 2;
2146 }
2147 
2148 int ilk_wm_max_level(const struct drm_device *dev)
2149 {
2150 	/* how many WM levels are we expecting */
2151 	if (INTEL_INFO(dev)->gen >= 9)
2152 		return 7;
2153 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2154 		return 4;
2155 	else if (INTEL_INFO(dev)->gen >= 6)
2156 		return 3;
2157 	else
2158 		return 2;
2159 }
2160 
2161 static void intel_print_wm_latency(struct drm_device *dev,
2162 				   const char *name,
2163 				   const uint16_t wm[8])
2164 {
2165 	int level, max_level = ilk_wm_max_level(dev);
2166 
2167 	for (level = 0; level <= max_level; level++) {
2168 		unsigned int latency = wm[level];
2169 
2170 		if (latency == 0) {
2171 			DRM_ERROR("%s WM%d latency not provided\n",
2172 				  name, level);
2173 			continue;
2174 		}
2175 
2176 		/*
2177 		 * - latencies are in us on gen9.
2178 		 * - before then, WM1+ latency values are in 0.5us units
2179 		 */
2180 		if (IS_GEN9(dev))
2181 			latency *= 10;
2182 		else if (level > 0)
2183 			latency *= 5;
2184 
2185 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2186 			      name, level, wm[level],
2187 			      latency / 10, latency % 10);
2188 	}
2189 }
2190 
2191 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2192 				    uint16_t wm[5], uint16_t min)
2193 {
2194 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2195 
2196 	if (wm[0] >= min)
2197 		return false;
2198 
2199 	wm[0] = max(wm[0], min);
2200 	for (level = 1; level <= max_level; level++)
2201 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2202 
2203 	return true;
2204 }
2205 
2206 static void snb_wm_latency_quirk(struct drm_device *dev)
2207 {
2208 	struct drm_i915_private *dev_priv = dev->dev_private;
2209 	bool changed;
2210 
2211 	/*
2212 	 * The BIOS provided WM memory latency values are often
2213 	 * inadequate for high resolution displays. Adjust them.
2214 	 */
2215 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2216 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2217 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2218 
2219 	if (!changed)
2220 		return;
2221 
2222 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2223 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2224 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2225 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2226 }
2227 
2228 static void ilk_setup_wm_latency(struct drm_device *dev)
2229 {
2230 	struct drm_i915_private *dev_priv = dev->dev_private;
2231 
2232 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2233 
2234 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2235 	       sizeof(dev_priv->wm.pri_latency));
2236 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2237 	       sizeof(dev_priv->wm.pri_latency));
2238 
2239 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2240 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2241 
2242 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2243 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2244 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2245 
2246 	if (IS_GEN6(dev))
2247 		snb_wm_latency_quirk(dev);
2248 }
2249 
2250 static void skl_setup_wm_latency(struct drm_device *dev)
2251 {
2252 	struct drm_i915_private *dev_priv = dev->dev_private;
2253 
2254 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2255 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2256 }
2257 
2258 /* Compute new watermarks for the pipe */
2259 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2260 			       struct drm_atomic_state *state)
2261 {
2262 	struct intel_pipe_wm *pipe_wm;
2263 	struct drm_device *dev = intel_crtc->base.dev;
2264 	const struct drm_i915_private *dev_priv = dev->dev_private;
2265 	struct intel_crtc_state *cstate = NULL;
2266 	struct intel_plane *intel_plane;
2267 	struct drm_plane_state *ps;
2268 	struct intel_plane_state *pristate = NULL;
2269 	struct intel_plane_state *sprstate = NULL;
2270 	struct intel_plane_state *curstate = NULL;
2271 	int level, max_level = ilk_wm_max_level(dev);
2272 	/* LP0 watermark maximums depend on this pipe alone */
2273 	struct intel_wm_config config = {
2274 		.num_pipes_active = 1,
2275 	};
2276 	struct ilk_wm_maximums max;
2277 
2278 	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2279 	if (IS_ERR(cstate))
2280 		return PTR_ERR(cstate);
2281 
2282 	pipe_wm = &cstate->wm.optimal.ilk;
2283 
2284 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2285 		ps = drm_atomic_get_plane_state(state,
2286 						&intel_plane->base);
2287 		if (IS_ERR(ps))
2288 			return PTR_ERR(ps);
2289 
2290 		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2291 			pristate = to_intel_plane_state(ps);
2292 		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2293 			sprstate = to_intel_plane_state(ps);
2294 		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2295 			curstate = to_intel_plane_state(ps);
2296 	}
2297 
2298 	config.sprites_enabled = sprstate->visible;
2299 	config.sprites_scaled = sprstate->visible &&
2300 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2301 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2302 
2303 	pipe_wm->pipe_enabled = cstate->base.active;
2304 	pipe_wm->sprites_enabled = config.sprites_enabled;
2305 	pipe_wm->sprites_scaled = config.sprites_scaled;
2306 
2307 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2308 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2309 		max_level = 1;
2310 
2311 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2312 	if (config.sprites_scaled)
2313 		max_level = 0;
2314 
2315 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2316 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2317 
2318 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2319 		pipe_wm->linetime = hsw_compute_linetime_wm(dev,
2320 							    &intel_crtc->base);
2321 
2322 	/* LP0 watermarks always use 1/2 DDB partitioning */
2323 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2324 
2325 	/* At least LP0 must be valid */
2326 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2327 		return -EINVAL;
2328 
2329 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2330 
2331 	for (level = 1; level <= max_level; level++) {
2332 		struct intel_wm_level wm = {};
2333 
2334 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2335 				     pristate, sprstate, curstate, &wm);
2336 
2337 		/*
2338 		 * Disable any watermark level that exceeds the
2339 		 * register maximums since such watermarks are
2340 		 * always invalid.
2341 		 */
2342 		if (!ilk_validate_wm_level(level, &max, &wm))
2343 			break;
2344 
2345 		pipe_wm->wm[level] = wm;
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 /*
2352  * Merge the watermarks from all active pipes for a specific level.
2353  */
2354 static void ilk_merge_wm_level(struct drm_device *dev,
2355 			       int level,
2356 			       struct intel_wm_level *ret_wm)
2357 {
2358 	struct intel_crtc *intel_crtc;
2359 
2360 	ret_wm->enable = true;
2361 
2362 	for_each_intel_crtc(dev, intel_crtc) {
2363 		const struct intel_crtc_state *cstate =
2364 			to_intel_crtc_state(intel_crtc->base.state);
2365 		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2366 		const struct intel_wm_level *wm = &active->wm[level];
2367 
2368 		if (!active->pipe_enabled)
2369 			continue;
2370 
2371 		/*
2372 		 * The watermark values may have been used in the past,
2373 		 * so we must maintain them in the registers for some
2374 		 * time even if the level is now disabled.
2375 		 */
2376 		if (!wm->enable)
2377 			ret_wm->enable = false;
2378 
2379 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2380 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2381 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2382 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2383 	}
2384 }
2385 
2386 /*
2387  * Merge all low power watermarks for all active pipes.
2388  */
2389 static void ilk_wm_merge(struct drm_device *dev,
2390 			 const struct intel_wm_config *config,
2391 			 const struct ilk_wm_maximums *max,
2392 			 struct intel_pipe_wm *merged)
2393 {
2394 	struct drm_i915_private *dev_priv = dev->dev_private;
2395 	int level, max_level = ilk_wm_max_level(dev);
2396 	int last_enabled_level = max_level;
2397 
2398 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2399 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2400 	    config->num_pipes_active > 1)
2401 		return;
2402 
2403 	/* ILK: FBC WM must be disabled always */
2404 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2405 
2406 	/* merge each WM1+ level */
2407 	for (level = 1; level <= max_level; level++) {
2408 		struct intel_wm_level *wm = &merged->wm[level];
2409 
2410 		ilk_merge_wm_level(dev, level, wm);
2411 
2412 		if (level > last_enabled_level)
2413 			wm->enable = false;
2414 		else if (!ilk_validate_wm_level(level, max, wm))
2415 			/* make sure all following levels get disabled */
2416 			last_enabled_level = level - 1;
2417 
2418 		/*
2419 		 * The spec says it is preferred to disable
2420 		 * FBC WMs instead of disabling a WM level.
2421 		 */
2422 		if (wm->fbc_val > max->fbc) {
2423 			if (wm->enable)
2424 				merged->fbc_wm_enabled = false;
2425 			wm->fbc_val = 0;
2426 		}
2427 	}
2428 
2429 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2430 	/*
2431 	 * FIXME this is racy. FBC might get enabled later.
2432 	 * What we should check here is whether FBC can be
2433 	 * enabled sometime later.
2434 	 */
2435 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2436 	    intel_fbc_is_active(dev_priv)) {
2437 		for (level = 2; level <= max_level; level++) {
2438 			struct intel_wm_level *wm = &merged->wm[level];
2439 
2440 			wm->enable = false;
2441 		}
2442 	}
2443 }
2444 
2445 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2446 {
2447 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2448 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2449 }
2450 
2451 /* The value we need to program into the WM_LPx latency field */
2452 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2453 {
2454 	struct drm_i915_private *dev_priv = dev->dev_private;
2455 
2456 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2457 		return 2 * level;
2458 	else
2459 		return dev_priv->wm.pri_latency[level];
2460 }
2461 
2462 static void ilk_compute_wm_results(struct drm_device *dev,
2463 				   const struct intel_pipe_wm *merged,
2464 				   enum intel_ddb_partitioning partitioning,
2465 				   struct ilk_wm_values *results)
2466 {
2467 	struct intel_crtc *intel_crtc;
2468 	int level, wm_lp;
2469 
2470 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2471 	results->partitioning = partitioning;
2472 
2473 	/* LP1+ register values */
2474 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2475 		const struct intel_wm_level *r;
2476 
2477 		level = ilk_wm_lp_to_level(wm_lp, merged);
2478 
2479 		r = &merged->wm[level];
2480 
2481 		/*
2482 		 * Maintain the watermark values even if the level is
2483 		 * disabled. Doing otherwise could cause underruns.
2484 		 */
2485 		results->wm_lp[wm_lp - 1] =
2486 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2487 			(r->pri_val << WM1_LP_SR_SHIFT) |
2488 			r->cur_val;
2489 
2490 		if (r->enable)
2491 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2492 
2493 		if (INTEL_INFO(dev)->gen >= 8)
2494 			results->wm_lp[wm_lp - 1] |=
2495 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2496 		else
2497 			results->wm_lp[wm_lp - 1] |=
2498 				r->fbc_val << WM1_LP_FBC_SHIFT;
2499 
2500 		/*
2501 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2502 		 * level is disabled. Doing otherwise could cause underruns.
2503 		 */
2504 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2505 			WARN_ON(wm_lp != 1);
2506 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2507 		} else
2508 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2509 	}
2510 
2511 	/* LP0 register values */
2512 	for_each_intel_crtc(dev, intel_crtc) {
2513 		const struct intel_crtc_state *cstate =
2514 			to_intel_crtc_state(intel_crtc->base.state);
2515 		enum i915_pipe pipe = intel_crtc->pipe;
2516 		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2517 
2518 		if (WARN_ON(!r->enable))
2519 			continue;
2520 
2521 		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2522 
2523 		results->wm_pipe[pipe] =
2524 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2525 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2526 			r->cur_val;
2527 	}
2528 }
2529 
2530 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2531  * case both are at the same level. Prefer r1 in case they're the same. */
2532 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2533 						  struct intel_pipe_wm *r1,
2534 						  struct intel_pipe_wm *r2)
2535 {
2536 	int level, max_level = ilk_wm_max_level(dev);
2537 	int level1 = 0, level2 = 0;
2538 
2539 	for (level = 1; level <= max_level; level++) {
2540 		if (r1->wm[level].enable)
2541 			level1 = level;
2542 		if (r2->wm[level].enable)
2543 			level2 = level;
2544 	}
2545 
2546 	if (level1 == level2) {
2547 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2548 			return r2;
2549 		else
2550 			return r1;
2551 	} else if (level1 > level2) {
2552 		return r1;
2553 	} else {
2554 		return r2;
2555 	}
2556 }
2557 
2558 /* dirty bits used to track which watermarks need changes */
2559 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2560 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2561 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2562 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2563 #define WM_DIRTY_FBC (1 << 24)
2564 #define WM_DIRTY_DDB (1 << 25)
2565 
2566 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2567 					 const struct ilk_wm_values *old,
2568 					 const struct ilk_wm_values *new)
2569 {
2570 	unsigned int dirty = 0;
2571 	enum i915_pipe pipe;
2572 	int wm_lp;
2573 
2574 	for_each_pipe(dev_priv, pipe) {
2575 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2576 			dirty |= WM_DIRTY_LINETIME(pipe);
2577 			/* Must disable LP1+ watermarks too */
2578 			dirty |= WM_DIRTY_LP_ALL;
2579 		}
2580 
2581 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2582 			dirty |= WM_DIRTY_PIPE(pipe);
2583 			/* Must disable LP1+ watermarks too */
2584 			dirty |= WM_DIRTY_LP_ALL;
2585 		}
2586 	}
2587 
2588 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2589 		dirty |= WM_DIRTY_FBC;
2590 		/* Must disable LP1+ watermarks too */
2591 		dirty |= WM_DIRTY_LP_ALL;
2592 	}
2593 
2594 	if (old->partitioning != new->partitioning) {
2595 		dirty |= WM_DIRTY_DDB;
2596 		/* Must disable LP1+ watermarks too */
2597 		dirty |= WM_DIRTY_LP_ALL;
2598 	}
2599 
2600 	/* LP1+ watermarks already deemed dirty, no need to continue */
2601 	if (dirty & WM_DIRTY_LP_ALL)
2602 		return dirty;
2603 
2604 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2605 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2606 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2607 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2608 			break;
2609 	}
2610 
2611 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2612 	for (; wm_lp <= 3; wm_lp++)
2613 		dirty |= WM_DIRTY_LP(wm_lp);
2614 
2615 	return dirty;
2616 }
2617 
2618 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2619 			       unsigned int dirty)
2620 {
2621 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2622 	bool changed = false;
2623 
2624 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2625 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2626 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2627 		changed = true;
2628 	}
2629 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2630 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2631 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2632 		changed = true;
2633 	}
2634 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2635 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2636 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2637 		changed = true;
2638 	}
2639 
2640 	/*
2641 	 * Don't touch WM1S_LP_EN here.
2642 	 * Doing so could cause underruns.
2643 	 */
2644 
2645 	return changed;
2646 }
2647 
2648 /*
2649  * The spec says we shouldn't write when we don't need, because every write
2650  * causes WMs to be re-evaluated, expending some power.
2651  */
2652 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2653 				struct ilk_wm_values *results)
2654 {
2655 	struct drm_device *dev = dev_priv->dev;
2656 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2657 	unsigned int dirty;
2658 	uint32_t val;
2659 
2660 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2661 	if (!dirty)
2662 		return;
2663 
2664 	_ilk_disable_lp_wm(dev_priv, dirty);
2665 
2666 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2667 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2668 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2669 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2670 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2671 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2672 
2673 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2674 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2675 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2676 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2677 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2678 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2679 
2680 	if (dirty & WM_DIRTY_DDB) {
2681 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2682 			val = I915_READ(WM_MISC);
2683 			if (results->partitioning == INTEL_DDB_PART_1_2)
2684 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2685 			else
2686 				val |= WM_MISC_DATA_PARTITION_5_6;
2687 			I915_WRITE(WM_MISC, val);
2688 		} else {
2689 			val = I915_READ(DISP_ARB_CTL2);
2690 			if (results->partitioning == INTEL_DDB_PART_1_2)
2691 				val &= ~DISP_DATA_PARTITION_5_6;
2692 			else
2693 				val |= DISP_DATA_PARTITION_5_6;
2694 			I915_WRITE(DISP_ARB_CTL2, val);
2695 		}
2696 	}
2697 
2698 	if (dirty & WM_DIRTY_FBC) {
2699 		val = I915_READ(DISP_ARB_CTL);
2700 		if (results->enable_fbc_wm)
2701 			val &= ~DISP_FBC_WM_DIS;
2702 		else
2703 			val |= DISP_FBC_WM_DIS;
2704 		I915_WRITE(DISP_ARB_CTL, val);
2705 	}
2706 
2707 	if (dirty & WM_DIRTY_LP(1) &&
2708 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2709 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2710 
2711 	if (INTEL_INFO(dev)->gen >= 7) {
2712 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2713 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2714 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2715 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2716 	}
2717 
2718 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2719 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2720 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2721 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2722 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2723 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2724 
2725 	dev_priv->wm.hw = *results;
2726 }
2727 
2728 static bool ilk_disable_lp_wm(struct drm_device *dev)
2729 {
2730 	struct drm_i915_private *dev_priv = dev->dev_private;
2731 
2732 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2733 }
2734 
2735 /*
2736  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2737  * different active planes.
2738  */
2739 
2740 #define SKL_DDB_SIZE		896	/* in blocks */
2741 #define BXT_DDB_SIZE		512
2742 
2743 /*
2744  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2745  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2746  * other universal planes are in indices 1..n.  Note that this may leave unused
2747  * indices between the top "sprite" plane and the cursor.
2748  */
2749 static int
2750 skl_wm_plane_id(const struct intel_plane *plane)
2751 {
2752 	switch (plane->base.type) {
2753 	case DRM_PLANE_TYPE_PRIMARY:
2754 		return 0;
2755 	case DRM_PLANE_TYPE_CURSOR:
2756 		return PLANE_CURSOR;
2757 	case DRM_PLANE_TYPE_OVERLAY:
2758 		return plane->plane + 1;
2759 	default:
2760 		MISSING_CASE(plane->base.type);
2761 		return plane->plane;
2762 	}
2763 }
2764 
2765 static void
2766 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2767 				   const struct intel_crtc_state *cstate,
2768 				   const struct intel_wm_config *config,
2769 				   struct skl_ddb_entry *alloc /* out */)
2770 {
2771 	struct drm_crtc *for_crtc = cstate->base.crtc;
2772 	struct drm_crtc *crtc;
2773 	unsigned int pipe_size, ddb_size;
2774 	int nth_active_pipe;
2775 
2776 	if (!cstate->base.active) {
2777 		alloc->start = 0;
2778 		alloc->end = 0;
2779 		return;
2780 	}
2781 
2782 	if (IS_BROXTON(dev))
2783 		ddb_size = BXT_DDB_SIZE;
2784 	else
2785 		ddb_size = SKL_DDB_SIZE;
2786 
2787 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2788 
2789 	nth_active_pipe = 0;
2790 	for_each_crtc(dev, crtc) {
2791 		if (!to_intel_crtc(crtc)->active)
2792 			continue;
2793 
2794 		if (crtc == for_crtc)
2795 			break;
2796 
2797 		nth_active_pipe++;
2798 	}
2799 
2800 	pipe_size = ddb_size / config->num_pipes_active;
2801 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2802 	alloc->end = alloc->start + pipe_size;
2803 }
2804 
2805 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2806 {
2807 	if (config->num_pipes_active == 1)
2808 		return 32;
2809 
2810 	return 8;
2811 }
2812 
2813 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2814 {
2815 	entry->start = reg & 0x3ff;
2816 	entry->end = (reg >> 16) & 0x3ff;
2817 	if (entry->end)
2818 		entry->end += 1;
2819 }
2820 
2821 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2822 			  struct skl_ddb_allocation *ddb /* out */)
2823 {
2824 	enum i915_pipe pipe;
2825 	int plane;
2826 	u32 val;
2827 
2828 	memset(ddb, 0, sizeof(*ddb));
2829 
2830 	for_each_pipe(dev_priv, pipe) {
2831 		enum intel_display_power_domain power_domain;
2832 
2833 		power_domain = POWER_DOMAIN_PIPE(pipe);
2834 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2835 			continue;
2836 
2837 		for_each_plane(dev_priv, pipe, plane) {
2838 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2839 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2840 						   val);
2841 		}
2842 
2843 		val = I915_READ(CUR_BUF_CFG(pipe));
2844 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2845 					   val);
2846 
2847 		intel_display_power_put(dev_priv, power_domain);
2848 	}
2849 }
2850 
2851 static unsigned int
2852 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2853 			     const struct drm_plane_state *pstate,
2854 			     int y)
2855 {
2856 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2857 	struct drm_framebuffer *fb = pstate->fb;
2858 
2859 	/* for planar format */
2860 	if (fb->pixel_format == DRM_FORMAT_NV12) {
2861 		if (y)  /* y-plane data rate */
2862 			return intel_crtc->config->pipe_src_w *
2863 				intel_crtc->config->pipe_src_h *
2864 				drm_format_plane_cpp(fb->pixel_format, 0);
2865 		else    /* uv-plane data rate */
2866 			return (intel_crtc->config->pipe_src_w/2) *
2867 				(intel_crtc->config->pipe_src_h/2) *
2868 				drm_format_plane_cpp(fb->pixel_format, 1);
2869 	}
2870 
2871 	/* for packed formats */
2872 	return intel_crtc->config->pipe_src_w *
2873 		intel_crtc->config->pipe_src_h *
2874 		drm_format_plane_cpp(fb->pixel_format, 0);
2875 }
2876 
2877 /*
2878  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2879  * a 8192x4096@32bpp framebuffer:
2880  *   3 * 4096 * 8192  * 4 < 2^32
2881  */
2882 static unsigned int
2883 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2884 {
2885 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2886 	struct drm_device *dev = intel_crtc->base.dev;
2887 	struct intel_plane *intel_plane;
2888 	unsigned int total_data_rate = 0;
2889 
2890 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2891 		const struct drm_plane_state *pstate = intel_plane->base.state;
2892 
2893 		if (pstate->fb == NULL)
2894 			continue;
2895 
2896 		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2897 			continue;
2898 
2899 		/* packed/uv */
2900 		total_data_rate += skl_plane_relative_data_rate(cstate,
2901 								pstate,
2902 								0);
2903 
2904 		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2905 			/* y-plane */
2906 			total_data_rate += skl_plane_relative_data_rate(cstate,
2907 									pstate,
2908 									1);
2909 	}
2910 
2911 	return total_data_rate;
2912 }
2913 
2914 static void
2915 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2916 		      struct skl_ddb_allocation *ddb /* out */)
2917 {
2918 	struct drm_crtc *crtc = cstate->base.crtc;
2919 	struct drm_device *dev = crtc->dev;
2920 	struct drm_i915_private *dev_priv = to_i915(dev);
2921 	struct intel_wm_config *config = &dev_priv->wm.config;
2922 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2923 	struct intel_plane *intel_plane;
2924 	enum i915_pipe pipe = intel_crtc->pipe;
2925 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2926 	uint16_t alloc_size, start, cursor_blocks;
2927 	uint16_t minimum[I915_MAX_PLANES];
2928 	uint16_t y_minimum[I915_MAX_PLANES];
2929 	unsigned int total_data_rate;
2930 
2931 	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2932 	alloc_size = skl_ddb_entry_size(alloc);
2933 	if (alloc_size == 0) {
2934 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2935 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2936 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2937 		return;
2938 	}
2939 
2940 	cursor_blocks = skl_cursor_allocation(config);
2941 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2942 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2943 
2944 	alloc_size -= cursor_blocks;
2945 	alloc->end -= cursor_blocks;
2946 
2947 	/* 1. Allocate the mininum required blocks for each active plane */
2948 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2949 		struct drm_plane *plane = &intel_plane->base;
2950 		struct drm_framebuffer *fb = plane->state->fb;
2951 		int id = skl_wm_plane_id(intel_plane);
2952 
2953 		if (fb == NULL)
2954 			continue;
2955 		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2956 			continue;
2957 
2958 		minimum[id] = 8;
2959 		alloc_size -= minimum[id];
2960 		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2961 		alloc_size -= y_minimum[id];
2962 	}
2963 
2964 	/*
2965 	 * 2. Distribute the remaining space in proportion to the amount of
2966 	 * data each plane needs to fetch from memory.
2967 	 *
2968 	 * FIXME: we may not allocate every single block here.
2969 	 */
2970 	total_data_rate = skl_get_total_relative_data_rate(cstate);
2971 
2972 	start = alloc->start;
2973 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2974 		struct drm_plane *plane = &intel_plane->base;
2975 		struct drm_plane_state *pstate = intel_plane->base.state;
2976 		unsigned int data_rate, y_data_rate;
2977 		uint16_t plane_blocks, y_plane_blocks = 0;
2978 		int id = skl_wm_plane_id(intel_plane);
2979 
2980 		if (pstate->fb == NULL)
2981 			continue;
2982 		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983 			continue;
2984 
2985 		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2986 
2987 		/*
2988 		 * allocation for (packed formats) or (uv-plane part of planar format):
2989 		 * promote the expression to 64 bits to avoid overflowing, the
2990 		 * result is < available as data_rate / total_data_rate < 1
2991 		 */
2992 		plane_blocks = minimum[id];
2993 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2994 					total_data_rate);
2995 
2996 		ddb->plane[pipe][id].start = start;
2997 		ddb->plane[pipe][id].end = start + plane_blocks;
2998 
2999 		start += plane_blocks;
3000 
3001 		/*
3002 		 * allocation for y_plane part of planar format:
3003 		 */
3004 		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3005 			y_data_rate = skl_plane_relative_data_rate(cstate,
3006 								   pstate,
3007 								   1);
3008 			y_plane_blocks = y_minimum[id];
3009 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3010 						total_data_rate);
3011 
3012 			ddb->y_plane[pipe][id].start = start;
3013 			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3014 
3015 			start += y_plane_blocks;
3016 		}
3017 
3018 	}
3019 
3020 }
3021 
3022 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3023 {
3024 	/* TODO: Take into account the scalers once we support them */
3025 	return config->base.adjusted_mode.crtc_clock;
3026 }
3027 
3028 /*
3029  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3030  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3031  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3032  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3033 */
3034 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3035 			       uint32_t latency)
3036 {
3037 	uint32_t wm_intermediate_val, ret;
3038 
3039 	if (latency == 0)
3040 		return UINT_MAX;
3041 
3042 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3043 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3044 
3045 	return ret;
3046 }
3047 
3048 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3049 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3050 			       uint64_t tiling, uint32_t latency)
3051 {
3052 	uint32_t ret;
3053 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3054 	uint32_t wm_intermediate_val;
3055 
3056 	if (latency == 0)
3057 		return UINT_MAX;
3058 
3059 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3060 
3061 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3062 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3063 		plane_bytes_per_line *= 4;
3064 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3065 		plane_blocks_per_line /= 4;
3066 	} else {
3067 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3068 	}
3069 
3070 	wm_intermediate_val = latency * pixel_rate;
3071 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3072 				plane_blocks_per_line;
3073 
3074 	return ret;
3075 }
3076 
3077 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3078 				       const struct intel_crtc *intel_crtc)
3079 {
3080 	struct drm_device *dev = intel_crtc->base.dev;
3081 	struct drm_i915_private *dev_priv = dev->dev_private;
3082 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3083 
3084 	/*
3085 	 * If ddb allocation of pipes changed, it may require recalculation of
3086 	 * watermarks
3087 	 */
3088 	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3089 		return true;
3090 
3091 	return false;
3092 }
3093 
3094 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3095 				 struct intel_crtc_state *cstate,
3096 				 struct intel_plane *intel_plane,
3097 				 uint16_t ddb_allocation,
3098 				 int level,
3099 				 uint16_t *out_blocks, /* out */
3100 				 uint8_t *out_lines /* out */)
3101 {
3102 	struct drm_plane *plane = &intel_plane->base;
3103 	struct drm_framebuffer *fb = plane->state->fb;
3104 	uint32_t latency = dev_priv->wm.skl_latency[level];
3105 	uint32_t method1, method2;
3106 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3107 	uint32_t res_blocks, res_lines;
3108 	uint32_t selected_result;
3109 	uint8_t bytes_per_pixel;
3110 
3111 	if (latency == 0 || !cstate->base.active || !fb)
3112 		return false;
3113 
3114 	bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
3115 	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3116 				 bytes_per_pixel,
3117 				 latency);
3118 	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3119 				 cstate->base.adjusted_mode.crtc_htotal,
3120 				 cstate->pipe_src_w,
3121 				 bytes_per_pixel,
3122 				 fb->modifier[0],
3123 				 latency);
3124 
3125 	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3126 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3127 
3128 	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3129 	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3130 		uint32_t min_scanlines = 4;
3131 		uint32_t y_tile_minimum;
3132 		if (intel_rotation_90_or_270(plane->state->rotation)) {
3133 			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3134 				drm_format_plane_cpp(fb->pixel_format, 1) :
3135 				drm_format_plane_cpp(fb->pixel_format, 0);
3136 
3137 			switch (bpp) {
3138 			case 1:
3139 				min_scanlines = 16;
3140 				break;
3141 			case 2:
3142 				min_scanlines = 8;
3143 				break;
3144 			case 8:
3145 				WARN(1, "Unsupported pixel depth for rotation");
3146 			}
3147 		}
3148 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3149 		selected_result = max(method2, y_tile_minimum);
3150 	} else {
3151 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3152 			selected_result = min(method1, method2);
3153 		else
3154 			selected_result = method1;
3155 	}
3156 
3157 	res_blocks = selected_result + 1;
3158 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3159 
3160 	if (level >= 1 && level <= 7) {
3161 		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3162 		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3163 			res_lines += 4;
3164 		else
3165 			res_blocks++;
3166 	}
3167 
3168 	if (res_blocks >= ddb_allocation || res_lines > 31)
3169 		return false;
3170 
3171 	*out_blocks = res_blocks;
3172 	*out_lines = res_lines;
3173 
3174 	return true;
3175 }
3176 
3177 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3178 				 struct skl_ddb_allocation *ddb,
3179 				 struct intel_crtc_state *cstate,
3180 				 int level,
3181 				 struct skl_wm_level *result)
3182 {
3183 	struct drm_device *dev = dev_priv->dev;
3184 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3185 	struct intel_plane *intel_plane;
3186 	uint16_t ddb_blocks;
3187 	enum i915_pipe pipe = intel_crtc->pipe;
3188 
3189 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3190 		int i = skl_wm_plane_id(intel_plane);
3191 
3192 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3193 
3194 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3195 						cstate,
3196 						intel_plane,
3197 						ddb_blocks,
3198 						level,
3199 						&result->plane_res_b[i],
3200 						&result->plane_res_l[i]);
3201 	}
3202 }
3203 
3204 static uint32_t
3205 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3206 {
3207 	if (!cstate->base.active)
3208 		return 0;
3209 
3210 	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3211 		return 0;
3212 
3213 	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3214 			    skl_pipe_pixel_rate(cstate));
3215 }
3216 
3217 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3218 				      struct skl_wm_level *trans_wm /* out */)
3219 {
3220 	struct drm_crtc *crtc = cstate->base.crtc;
3221 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3222 	struct intel_plane *intel_plane;
3223 
3224 	if (!cstate->base.active)
3225 		return;
3226 
3227 	/* Until we know more, just disable transition WMs */
3228 	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3229 		int i = skl_wm_plane_id(intel_plane);
3230 
3231 		trans_wm->plane_en[i] = false;
3232 	}
3233 }
3234 
3235 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3236 				struct skl_ddb_allocation *ddb,
3237 				struct skl_pipe_wm *pipe_wm)
3238 {
3239 	struct drm_device *dev = cstate->base.crtc->dev;
3240 	const struct drm_i915_private *dev_priv = dev->dev_private;
3241 	int level, max_level = ilk_wm_max_level(dev);
3242 
3243 	for (level = 0; level <= max_level; level++) {
3244 		skl_compute_wm_level(dev_priv, ddb, cstate,
3245 				     level, &pipe_wm->wm[level]);
3246 	}
3247 	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3248 
3249 	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3250 }
3251 
3252 static void skl_compute_wm_results(struct drm_device *dev,
3253 				   struct skl_pipe_wm *p_wm,
3254 				   struct skl_wm_values *r,
3255 				   struct intel_crtc *intel_crtc)
3256 {
3257 	int level, max_level = ilk_wm_max_level(dev);
3258 	enum i915_pipe pipe = intel_crtc->pipe;
3259 	uint32_t temp;
3260 	int i;
3261 
3262 	for (level = 0; level <= max_level; level++) {
3263 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3264 			temp = 0;
3265 
3266 			temp |= p_wm->wm[level].plane_res_l[i] <<
3267 					PLANE_WM_LINES_SHIFT;
3268 			temp |= p_wm->wm[level].plane_res_b[i];
3269 			if (p_wm->wm[level].plane_en[i])
3270 				temp |= PLANE_WM_EN;
3271 
3272 			r->plane[pipe][i][level] = temp;
3273 		}
3274 
3275 		temp = 0;
3276 
3277 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3278 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3279 
3280 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3281 			temp |= PLANE_WM_EN;
3282 
3283 		r->plane[pipe][PLANE_CURSOR][level] = temp;
3284 
3285 	}
3286 
3287 	/* transition WMs */
3288 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3289 		temp = 0;
3290 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3291 		temp |= p_wm->trans_wm.plane_res_b[i];
3292 		if (p_wm->trans_wm.plane_en[i])
3293 			temp |= PLANE_WM_EN;
3294 
3295 		r->plane_trans[pipe][i] = temp;
3296 	}
3297 
3298 	temp = 0;
3299 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3300 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3301 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3302 		temp |= PLANE_WM_EN;
3303 
3304 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3305 
3306 	r->wm_linetime[pipe] = p_wm->linetime;
3307 }
3308 
3309 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3310 				i915_reg_t reg,
3311 				const struct skl_ddb_entry *entry)
3312 {
3313 	if (entry->end)
3314 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3315 	else
3316 		I915_WRITE(reg, 0);
3317 }
3318 
3319 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3320 				const struct skl_wm_values *new)
3321 {
3322 	struct drm_device *dev = dev_priv->dev;
3323 	struct intel_crtc *crtc;
3324 
3325 	for_each_intel_crtc(dev, crtc) {
3326 		int i, level, max_level = ilk_wm_max_level(dev);
3327 		enum i915_pipe pipe = crtc->pipe;
3328 
3329 		if (!new->dirty[pipe])
3330 			continue;
3331 
3332 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3333 
3334 		for (level = 0; level <= max_level; level++) {
3335 			for (i = 0; i < intel_num_planes(crtc); i++)
3336 				I915_WRITE(PLANE_WM(pipe, i, level),
3337 					   new->plane[pipe][i][level]);
3338 			I915_WRITE(CUR_WM(pipe, level),
3339 				   new->plane[pipe][PLANE_CURSOR][level]);
3340 		}
3341 		for (i = 0; i < intel_num_planes(crtc); i++)
3342 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3343 				   new->plane_trans[pipe][i]);
3344 		I915_WRITE(CUR_WM_TRANS(pipe),
3345 			   new->plane_trans[pipe][PLANE_CURSOR]);
3346 
3347 		for (i = 0; i < intel_num_planes(crtc); i++) {
3348 			skl_ddb_entry_write(dev_priv,
3349 					    PLANE_BUF_CFG(pipe, i),
3350 					    &new->ddb.plane[pipe][i]);
3351 			skl_ddb_entry_write(dev_priv,
3352 					    PLANE_NV12_BUF_CFG(pipe, i),
3353 					    &new->ddb.y_plane[pipe][i]);
3354 		}
3355 
3356 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3357 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3358 	}
3359 }
3360 
3361 /*
3362  * When setting up a new DDB allocation arrangement, we need to correctly
3363  * sequence the times at which the new allocations for the pipes are taken into
3364  * account or we'll have pipes fetching from space previously allocated to
3365  * another pipe.
3366  *
3367  * Roughly the sequence looks like:
3368  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3369  *     overlapping with a previous light-up pipe (another way to put it is:
3370  *     pipes with their new allocation strickly included into their old ones).
3371  *  2. re-allocate the other pipes that get their allocation reduced
3372  *  3. allocate the pipes having their allocation increased
3373  *
3374  * Steps 1. and 2. are here to take care of the following case:
3375  * - Initially DDB looks like this:
3376  *     |   B    |   C    |
3377  * - enable pipe A.
3378  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3379  *   allocation
3380  *     |  A  |  B  |  C  |
3381  *
3382  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3383  */
3384 
3385 static void
3386 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum i915_pipe pipe, int pass)
3387 {
3388 	int plane;
3389 
3390 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3391 
3392 	for_each_plane(dev_priv, pipe, plane) {
3393 		I915_WRITE(PLANE_SURF(pipe, plane),
3394 			   I915_READ(PLANE_SURF(pipe, plane)));
3395 	}
3396 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3397 }
3398 
3399 static bool
3400 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3401 			    const struct skl_ddb_allocation *new,
3402 			    enum i915_pipe pipe)
3403 {
3404 	uint16_t old_size, new_size;
3405 
3406 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3407 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3408 
3409 	return old_size != new_size &&
3410 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3411 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3412 }
3413 
3414 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3415 				struct skl_wm_values *new_values)
3416 {
3417 	struct drm_device *dev = dev_priv->dev;
3418 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3419 	bool reallocated[I915_MAX_PIPES] = {};
3420 	struct intel_crtc *crtc;
3421 	enum i915_pipe pipe;
3422 
3423 	new_ddb = &new_values->ddb;
3424 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3425 
3426 	/*
3427 	 * First pass: flush the pipes with the new allocation contained into
3428 	 * the old space.
3429 	 *
3430 	 * We'll wait for the vblank on those pipes to ensure we can safely
3431 	 * re-allocate the freed space without this pipe fetching from it.
3432 	 */
3433 	for_each_intel_crtc(dev, crtc) {
3434 		if (!crtc->active)
3435 			continue;
3436 
3437 		pipe = crtc->pipe;
3438 
3439 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3440 			continue;
3441 
3442 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3443 		intel_wait_for_vblank(dev, pipe);
3444 
3445 		reallocated[pipe] = true;
3446 	}
3447 
3448 
3449 	/*
3450 	 * Second pass: flush the pipes that are having their allocation
3451 	 * reduced, but overlapping with a previous allocation.
3452 	 *
3453 	 * Here as well we need to wait for the vblank to make sure the freed
3454 	 * space is not used anymore.
3455 	 */
3456 	for_each_intel_crtc(dev, crtc) {
3457 		if (!crtc->active)
3458 			continue;
3459 
3460 		pipe = crtc->pipe;
3461 
3462 		if (reallocated[pipe])
3463 			continue;
3464 
3465 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3466 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3467 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3468 			intel_wait_for_vblank(dev, pipe);
3469 			reallocated[pipe] = true;
3470 		}
3471 	}
3472 
3473 	/*
3474 	 * Third pass: flush the pipes that got more space allocated.
3475 	 *
3476 	 * We don't need to actively wait for the update here, next vblank
3477 	 * will just get more DDB space with the correct WM values.
3478 	 */
3479 	for_each_intel_crtc(dev, crtc) {
3480 		if (!crtc->active)
3481 			continue;
3482 
3483 		pipe = crtc->pipe;
3484 
3485 		/*
3486 		 * At this point, only the pipes more space than before are
3487 		 * left to re-allocate.
3488 		 */
3489 		if (reallocated[pipe])
3490 			continue;
3491 
3492 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3493 	}
3494 }
3495 
3496 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3497 			       struct skl_ddb_allocation *ddb, /* out */
3498 			       struct skl_pipe_wm *pipe_wm /* out */)
3499 {
3500 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3501 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3502 
3503 	skl_allocate_pipe_ddb(cstate, ddb);
3504 	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3505 
3506 	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3507 		return false;
3508 
3509 	intel_crtc->wm.active.skl = *pipe_wm;
3510 
3511 	return true;
3512 }
3513 
3514 static void skl_update_other_pipe_wm(struct drm_device *dev,
3515 				     struct drm_crtc *crtc,
3516 				     struct skl_wm_values *r)
3517 {
3518 	struct intel_crtc *intel_crtc;
3519 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3520 
3521 	/*
3522 	 * If the WM update hasn't changed the allocation for this_crtc (the
3523 	 * crtc we are currently computing the new WM values for), other
3524 	 * enabled crtcs will keep the same allocation and we don't need to
3525 	 * recompute anything for them.
3526 	 */
3527 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3528 		return;
3529 
3530 	/*
3531 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3532 	 * other active pipes need new DDB allocation and WM values.
3533 	 */
3534 	for_each_intel_crtc(dev, intel_crtc) {
3535 		struct skl_pipe_wm pipe_wm = {};
3536 		bool wm_changed;
3537 
3538 		if (this_crtc->pipe == intel_crtc->pipe)
3539 			continue;
3540 
3541 		if (!intel_crtc->active)
3542 			continue;
3543 
3544 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3545 						&r->ddb, &pipe_wm);
3546 
3547 		/*
3548 		 * If we end up re-computing the other pipe WM values, it's
3549 		 * because it was really needed, so we expect the WM values to
3550 		 * be different.
3551 		 */
3552 		WARN_ON(!wm_changed);
3553 
3554 		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3555 		r->dirty[intel_crtc->pipe] = true;
3556 	}
3557 }
3558 
3559 static void skl_clear_wm(struct skl_wm_values *watermarks, enum i915_pipe pipe)
3560 {
3561 	watermarks->wm_linetime[pipe] = 0;
3562 	memset(watermarks->plane[pipe], 0,
3563 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3564 	memset(watermarks->plane_trans[pipe],
3565 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3566 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3567 
3568 	/* Clear ddb entries for pipe */
3569 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3570 	memset(&watermarks->ddb.plane[pipe], 0,
3571 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3572 	memset(&watermarks->ddb.y_plane[pipe], 0,
3573 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3574 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3575 	       sizeof(struct skl_ddb_entry));
3576 
3577 }
3578 
3579 static void skl_update_wm(struct drm_crtc *crtc)
3580 {
3581 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3582 	struct drm_device *dev = crtc->dev;
3583 	struct drm_i915_private *dev_priv = dev->dev_private;
3584 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3585 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3586 	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3587 
3588 
3589 	/* Clear all dirty flags */
3590 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3591 
3592 	skl_clear_wm(results, intel_crtc->pipe);
3593 
3594 	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3595 		return;
3596 
3597 	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3598 	results->dirty[intel_crtc->pipe] = true;
3599 
3600 	skl_update_other_pipe_wm(dev, crtc, results);
3601 	skl_write_wm_values(dev_priv, results);
3602 	skl_flush_wm_values(dev_priv, results);
3603 
3604 	/* store the new configuration */
3605 	dev_priv->wm.skl_hw = *results;
3606 }
3607 
3608 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3609 {
3610 	struct drm_device *dev = dev_priv->dev;
3611 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3612 	struct ilk_wm_maximums max;
3613 	struct intel_wm_config *config = &dev_priv->wm.config;
3614 	struct ilk_wm_values results = {};
3615 	enum intel_ddb_partitioning partitioning;
3616 
3617 	ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
3618 	ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3619 
3620 	/* 5/6 split only in single pipe config on IVB+ */
3621 	if (INTEL_INFO(dev)->gen >= 7 &&
3622 	    config->num_pipes_active == 1 && config->sprites_enabled) {
3623 		ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
3624 		ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3625 
3626 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3627 	} else {
3628 		best_lp_wm = &lp_wm_1_2;
3629 	}
3630 
3631 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3632 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3633 
3634 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3635 
3636 	ilk_write_wm_values(dev_priv, &results);
3637 }
3638 
3639 static void ilk_update_wm(struct drm_crtc *crtc)
3640 {
3641 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3642 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3643 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3644 
3645 	WARN_ON(cstate->base.active != intel_crtc->active);
3646 
3647 	/*
3648 	 * IVB workaround: must disable low power watermarks for at least
3649 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3650 	 * when scaling is disabled.
3651 	 *
3652 	 * WaCxSRDisabledForSpriteScaling:ivb
3653 	 */
3654 	if (cstate->disable_lp_wm) {
3655 		ilk_disable_lp_wm(crtc->dev);
3656 		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3657 	}
3658 
3659 	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3660 
3661 	ilk_program_watermarks(dev_priv);
3662 }
3663 
3664 static void skl_pipe_wm_active_state(uint32_t val,
3665 				     struct skl_pipe_wm *active,
3666 				     bool is_transwm,
3667 				     bool is_cursor,
3668 				     int i,
3669 				     int level)
3670 {
3671 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3672 
3673 	if (!is_transwm) {
3674 		if (!is_cursor) {
3675 			active->wm[level].plane_en[i] = is_enabled;
3676 			active->wm[level].plane_res_b[i] =
3677 					val & PLANE_WM_BLOCKS_MASK;
3678 			active->wm[level].plane_res_l[i] =
3679 					(val >> PLANE_WM_LINES_SHIFT) &
3680 						PLANE_WM_LINES_MASK;
3681 		} else {
3682 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3683 			active->wm[level].plane_res_b[PLANE_CURSOR] =
3684 					val & PLANE_WM_BLOCKS_MASK;
3685 			active->wm[level].plane_res_l[PLANE_CURSOR] =
3686 					(val >> PLANE_WM_LINES_SHIFT) &
3687 						PLANE_WM_LINES_MASK;
3688 		}
3689 	} else {
3690 		if (!is_cursor) {
3691 			active->trans_wm.plane_en[i] = is_enabled;
3692 			active->trans_wm.plane_res_b[i] =
3693 					val & PLANE_WM_BLOCKS_MASK;
3694 			active->trans_wm.plane_res_l[i] =
3695 					(val >> PLANE_WM_LINES_SHIFT) &
3696 						PLANE_WM_LINES_MASK;
3697 		} else {
3698 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3699 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3700 					val & PLANE_WM_BLOCKS_MASK;
3701 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3702 					(val >> PLANE_WM_LINES_SHIFT) &
3703 						PLANE_WM_LINES_MASK;
3704 		}
3705 	}
3706 }
3707 
3708 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3709 {
3710 	struct drm_device *dev = crtc->dev;
3711 	struct drm_i915_private *dev_priv = dev->dev_private;
3712 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3713 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3714 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3715 	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3716 	enum i915_pipe pipe = intel_crtc->pipe;
3717 	int level, i, max_level;
3718 	uint32_t temp;
3719 
3720 	max_level = ilk_wm_max_level(dev);
3721 
3722 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3723 
3724 	for (level = 0; level <= max_level; level++) {
3725 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3726 			hw->plane[pipe][i][level] =
3727 					I915_READ(PLANE_WM(pipe, i, level));
3728 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3729 	}
3730 
3731 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3732 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3733 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3734 
3735 	if (!intel_crtc->active)
3736 		return;
3737 
3738 	hw->dirty[pipe] = true;
3739 
3740 	active->linetime = hw->wm_linetime[pipe];
3741 
3742 	for (level = 0; level <= max_level; level++) {
3743 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3744 			temp = hw->plane[pipe][i][level];
3745 			skl_pipe_wm_active_state(temp, active, false,
3746 						false, i, level);
3747 		}
3748 		temp = hw->plane[pipe][PLANE_CURSOR][level];
3749 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3750 	}
3751 
3752 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3753 		temp = hw->plane_trans[pipe][i];
3754 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3755 	}
3756 
3757 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3758 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3759 
3760 	intel_crtc->wm.active.skl = *active;
3761 }
3762 
3763 void skl_wm_get_hw_state(struct drm_device *dev)
3764 {
3765 	struct drm_i915_private *dev_priv = dev->dev_private;
3766 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3767 	struct drm_crtc *crtc;
3768 
3769 	skl_ddb_get_hw_state(dev_priv, ddb);
3770 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3771 		skl_pipe_wm_get_hw_state(crtc);
3772 }
3773 
3774 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3775 {
3776 	struct drm_device *dev = crtc->dev;
3777 	struct drm_i915_private *dev_priv = dev->dev_private;
3778 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3779 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3780 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3781 	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3782 	enum i915_pipe pipe = intel_crtc->pipe;
3783 	static const i915_reg_t wm0_pipe_reg[] = {
3784 		[PIPE_A] = WM0_PIPEA_ILK,
3785 		[PIPE_B] = WM0_PIPEB_ILK,
3786 		[PIPE_C] = WM0_PIPEC_IVB,
3787 	};
3788 
3789 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3790 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3791 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3792 
3793 	active->pipe_enabled = intel_crtc->active;
3794 
3795 	if (active->pipe_enabled) {
3796 		u32 tmp = hw->wm_pipe[pipe];
3797 
3798 		/*
3799 		 * For active pipes LP0 watermark is marked as
3800 		 * enabled, and LP1+ watermaks as disabled since
3801 		 * we can't really reverse compute them in case
3802 		 * multiple pipes are active.
3803 		 */
3804 		active->wm[0].enable = true;
3805 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3806 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3807 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3808 		active->linetime = hw->wm_linetime[pipe];
3809 	} else {
3810 		int level, max_level = ilk_wm_max_level(dev);
3811 
3812 		/*
3813 		 * For inactive pipes, all watermark levels
3814 		 * should be marked as enabled but zeroed,
3815 		 * which is what we'd compute them to.
3816 		 */
3817 		for (level = 0; level <= max_level; level++)
3818 			active->wm[level].enable = true;
3819 	}
3820 
3821 	intel_crtc->wm.active.ilk = *active;
3822 }
3823 
3824 #define _FW_WM(value, plane) \
3825 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3826 #define _FW_WM_VLV(value, plane) \
3827 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3828 
3829 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3830 			       struct vlv_wm_values *wm)
3831 {
3832 	enum i915_pipe pipe;
3833 	uint32_t tmp;
3834 
3835 	for_each_pipe(dev_priv, pipe) {
3836 		tmp = I915_READ(VLV_DDL(pipe));
3837 
3838 		wm->ddl[pipe].primary =
3839 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3840 		wm->ddl[pipe].cursor =
3841 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3842 		wm->ddl[pipe].sprite[0] =
3843 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3844 		wm->ddl[pipe].sprite[1] =
3845 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3846 	}
3847 
3848 	tmp = I915_READ(DSPFW1);
3849 	wm->sr.plane = _FW_WM(tmp, SR);
3850 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3851 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3852 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3853 
3854 	tmp = I915_READ(DSPFW2);
3855 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3856 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3857 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3858 
3859 	tmp = I915_READ(DSPFW3);
3860 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3861 
3862 	if (IS_CHERRYVIEW(dev_priv)) {
3863 		tmp = I915_READ(DSPFW7_CHV);
3864 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3865 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3866 
3867 		tmp = I915_READ(DSPFW8_CHV);
3868 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3869 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3870 
3871 		tmp = I915_READ(DSPFW9_CHV);
3872 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3873 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3874 
3875 		tmp = I915_READ(DSPHOWM);
3876 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3877 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3878 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3879 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3880 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3881 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3882 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3883 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3884 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3885 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3886 	} else {
3887 		tmp = I915_READ(DSPFW7);
3888 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3889 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3890 
3891 		tmp = I915_READ(DSPHOWM);
3892 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3893 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3894 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3895 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3896 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3897 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3898 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3899 	}
3900 }
3901 
3902 #undef _FW_WM
3903 #undef _FW_WM_VLV
3904 
3905 void vlv_wm_get_hw_state(struct drm_device *dev)
3906 {
3907 	struct drm_i915_private *dev_priv = to_i915(dev);
3908 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3909 	struct intel_plane *plane;
3910 	enum i915_pipe pipe;
3911 	u32 val;
3912 
3913 	vlv_read_wm_values(dev_priv, wm);
3914 
3915 	for_each_intel_plane(dev, plane) {
3916 		switch (plane->base.type) {
3917 			int sprite;
3918 		case DRM_PLANE_TYPE_CURSOR:
3919 			plane->wm.fifo_size = 63;
3920 			break;
3921 		case DRM_PLANE_TYPE_PRIMARY:
3922 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3923 			break;
3924 		case DRM_PLANE_TYPE_OVERLAY:
3925 			sprite = plane->plane;
3926 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3927 			break;
3928 		}
3929 	}
3930 
3931 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3932 	wm->level = VLV_WM_LEVEL_PM2;
3933 
3934 	if (IS_CHERRYVIEW(dev_priv)) {
3935 		mutex_lock(&dev_priv->rps.hw_lock);
3936 
3937 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3938 		if (val & DSP_MAXFIFO_PM5_ENABLE)
3939 			wm->level = VLV_WM_LEVEL_PM5;
3940 
3941 		/*
3942 		 * If DDR DVFS is disabled in the BIOS, Punit
3943 		 * will never ack the request. So if that happens
3944 		 * assume we don't have to enable/disable DDR DVFS
3945 		 * dynamically. To test that just set the REQ_ACK
3946 		 * bit to poke the Punit, but don't change the
3947 		 * HIGH/LOW bits so that we don't actually change
3948 		 * the current state.
3949 		 */
3950 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3951 		val |= FORCE_DDR_FREQ_REQ_ACK;
3952 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3953 
3954 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3955 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3956 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
3957 				      "assuming DDR DVFS is disabled\n");
3958 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
3959 		} else {
3960 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3961 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3962 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
3963 		}
3964 
3965 		mutex_unlock(&dev_priv->rps.hw_lock);
3966 	}
3967 
3968 	for_each_pipe(dev_priv, pipe)
3969 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3970 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
3971 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
3972 
3973 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3974 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3975 }
3976 
3977 void ilk_wm_get_hw_state(struct drm_device *dev)
3978 {
3979 	struct drm_i915_private *dev_priv = dev->dev_private;
3980 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3981 	struct drm_crtc *crtc;
3982 
3983 	for_each_crtc(dev, crtc)
3984 		ilk_pipe_wm_get_hw_state(crtc);
3985 
3986 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3987 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3988 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3989 
3990 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3991 	if (INTEL_INFO(dev)->gen >= 7) {
3992 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3993 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3994 	}
3995 
3996 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3997 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3998 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3999 	else if (IS_IVYBRIDGE(dev))
4000 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4001 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4002 
4003 	hw->enable_fbc_wm =
4004 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4005 }
4006 
4007 /**
4008  * intel_update_watermarks - update FIFO watermark values based on current modes
4009  *
4010  * Calculate watermark values for the various WM regs based on current mode
4011  * and plane configuration.
4012  *
4013  * There are several cases to deal with here:
4014  *   - normal (i.e. non-self-refresh)
4015  *   - self-refresh (SR) mode
4016  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4017  *   - lines are small relative to FIFO size (buffer can hold more than 2
4018  *     lines), so need to account for TLB latency
4019  *
4020  *   The normal calculation is:
4021  *     watermark = dotclock * bytes per pixel * latency
4022  *   where latency is platform & configuration dependent (we assume pessimal
4023  *   values here).
4024  *
4025  *   The SR calculation is:
4026  *     watermark = (trunc(latency/line time)+1) * surface width *
4027  *       bytes per pixel
4028  *   where
4029  *     line time = htotal / dotclock
4030  *     surface width = hdisplay for normal plane and 64 for cursor
4031  *   and latency is assumed to be high, as above.
4032  *
4033  * The final value programmed to the register should always be rounded up,
4034  * and include an extra 2 entries to account for clock crossings.
4035  *
4036  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4037  * to set the non-SR watermarks to 8.
4038  */
4039 void intel_update_watermarks(struct drm_crtc *crtc)
4040 {
4041 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4042 
4043 	if (dev_priv->display.update_wm)
4044 		dev_priv->display.update_wm(crtc);
4045 }
4046 
4047 /**
4048  * Lock protecting IPS related data structures
4049  */
4050 struct lock mchdev_lock;
4051 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
4052 
4053 /* Global for IPS driver to get at the current i915 device. Protected by
4054  * mchdev_lock. */
4055 static struct drm_i915_private *i915_mch_dev;
4056 
4057 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4058 {
4059 	struct drm_i915_private *dev_priv = dev->dev_private;
4060 	u16 rgvswctl;
4061 
4062 	assert_spin_locked(&mchdev_lock);
4063 
4064 	rgvswctl = I915_READ16(MEMSWCTL);
4065 	if (rgvswctl & MEMCTL_CMD_STS) {
4066 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4067 		return false; /* still busy with another command */
4068 	}
4069 
4070 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4071 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4072 	I915_WRITE16(MEMSWCTL, rgvswctl);
4073 	POSTING_READ16(MEMSWCTL);
4074 
4075 	rgvswctl |= MEMCTL_CMD_STS;
4076 	I915_WRITE16(MEMSWCTL, rgvswctl);
4077 
4078 	return true;
4079 }
4080 
4081 static void ironlake_enable_drps(struct drm_device *dev)
4082 {
4083 	struct drm_i915_private *dev_priv = dev->dev_private;
4084 	u32 rgvmodectl = I915_READ(MEMMODECTL);
4085 	u8 fmax, fmin, fstart, vstart;
4086 
4087 	spin_lock_irq(&mchdev_lock);
4088 
4089 	/* Enable temp reporting */
4090 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4091 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4092 
4093 	/* 100ms RC evaluation intervals */
4094 	I915_WRITE(RCUPEI, 100000);
4095 	I915_WRITE(RCDNEI, 100000);
4096 
4097 	/* Set max/min thresholds to 90ms and 80ms respectively */
4098 	I915_WRITE(RCBMAXAVG, 90000);
4099 	I915_WRITE(RCBMINAVG, 80000);
4100 
4101 	I915_WRITE(MEMIHYST, 1);
4102 
4103 	/* Set up min, max, and cur for interrupt handling */
4104 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4105 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4106 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4107 		MEMMODE_FSTART_SHIFT;
4108 
4109 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4110 		PXVFREQ_PX_SHIFT;
4111 
4112 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4113 	dev_priv->ips.fstart = fstart;
4114 
4115 	dev_priv->ips.max_delay = fstart;
4116 	dev_priv->ips.min_delay = fmin;
4117 	dev_priv->ips.cur_delay = fstart;
4118 
4119 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4120 			 fmax, fmin, fstart);
4121 
4122 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4123 
4124 	/*
4125 	 * Interrupts will be enabled in ironlake_irq_postinstall
4126 	 */
4127 
4128 	I915_WRITE(VIDSTART, vstart);
4129 	POSTING_READ(VIDSTART);
4130 
4131 	rgvmodectl |= MEMMODE_SWMODE_EN;
4132 	I915_WRITE(MEMMODECTL, rgvmodectl);
4133 
4134 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4135 		DRM_ERROR("stuck trying to change perf mode\n");
4136 	mdelay(1);
4137 
4138 	ironlake_set_drps(dev, fstart);
4139 
4140 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4141 		I915_READ(DDREC) + I915_READ(CSIEC);
4142 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4143 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4144 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4145 
4146 	spin_unlock_irq(&mchdev_lock);
4147 }
4148 
4149 static void ironlake_disable_drps(struct drm_device *dev)
4150 {
4151 	struct drm_i915_private *dev_priv = dev->dev_private;
4152 	u16 rgvswctl;
4153 
4154 	spin_lock_irq(&mchdev_lock);
4155 
4156 	rgvswctl = I915_READ16(MEMSWCTL);
4157 
4158 	/* Ack interrupts, disable EFC interrupt */
4159 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4160 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4161 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4162 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4163 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4164 
4165 	/* Go back to the starting frequency */
4166 	ironlake_set_drps(dev, dev_priv->ips.fstart);
4167 	mdelay(1);
4168 	rgvswctl |= MEMCTL_CMD_STS;
4169 	I915_WRITE(MEMSWCTL, rgvswctl);
4170 	mdelay(1);
4171 
4172 	spin_unlock_irq(&mchdev_lock);
4173 }
4174 
4175 /* There's a funny hw issue where the hw returns all 0 when reading from
4176  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4177  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4178  * all limits and the gpu stuck at whatever frequency it is at atm).
4179  */
4180 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4181 {
4182 	u32 limits;
4183 
4184 	/* Only set the down limit when we've reached the lowest level to avoid
4185 	 * getting more interrupts, otherwise leave this clear. This prevents a
4186 	 * race in the hw when coming out of rc6: There's a tiny window where
4187 	 * the hw runs at the minimal clock before selecting the desired
4188 	 * frequency, if the down threshold expires in that window we will not
4189 	 * receive a down interrupt. */
4190 	if (IS_GEN9(dev_priv->dev)) {
4191 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4192 		if (val <= dev_priv->rps.min_freq_softlimit)
4193 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4194 	} else {
4195 		limits = dev_priv->rps.max_freq_softlimit << 24;
4196 		if (val <= dev_priv->rps.min_freq_softlimit)
4197 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4198 	}
4199 
4200 	return limits;
4201 }
4202 
4203 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4204 {
4205 	int new_power;
4206 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4207 	u32 ei_up = 0, ei_down = 0;
4208 
4209 	new_power = dev_priv->rps.power;
4210 	switch (dev_priv->rps.power) {
4211 	case LOW_POWER:
4212 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4213 			new_power = BETWEEN;
4214 		break;
4215 
4216 	case BETWEEN:
4217 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4218 			new_power = LOW_POWER;
4219 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4220 			new_power = HIGH_POWER;
4221 		break;
4222 
4223 	case HIGH_POWER:
4224 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4225 			new_power = BETWEEN;
4226 		break;
4227 	}
4228 	/* Max/min bins are special */
4229 	if (val <= dev_priv->rps.min_freq_softlimit)
4230 		new_power = LOW_POWER;
4231 	if (val >= dev_priv->rps.max_freq_softlimit)
4232 		new_power = HIGH_POWER;
4233 	if (new_power == dev_priv->rps.power)
4234 		return;
4235 
4236 	/* Note the units here are not exactly 1us, but 1280ns. */
4237 	switch (new_power) {
4238 	case LOW_POWER:
4239 		/* Upclock if more than 95% busy over 16ms */
4240 		ei_up = 16000;
4241 		threshold_up = 95;
4242 
4243 		/* Downclock if less than 85% busy over 32ms */
4244 		ei_down = 32000;
4245 		threshold_down = 85;
4246 		break;
4247 
4248 	case BETWEEN:
4249 		/* Upclock if more than 90% busy over 13ms */
4250 		ei_up = 13000;
4251 		threshold_up = 90;
4252 
4253 		/* Downclock if less than 75% busy over 32ms */
4254 		ei_down = 32000;
4255 		threshold_down = 75;
4256 		break;
4257 
4258 	case HIGH_POWER:
4259 		/* Upclock if more than 85% busy over 10ms */
4260 		ei_up = 10000;
4261 		threshold_up = 85;
4262 
4263 		/* Downclock if less than 60% busy over 32ms */
4264 		ei_down = 32000;
4265 		threshold_down = 60;
4266 		break;
4267 	}
4268 
4269 	I915_WRITE(GEN6_RP_UP_EI,
4270 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4271 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4272 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4273 
4274 	I915_WRITE(GEN6_RP_DOWN_EI,
4275 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4276 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4277 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4278 
4279 	 I915_WRITE(GEN6_RP_CONTROL,
4280 		    GEN6_RP_MEDIA_TURBO |
4281 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4282 		    GEN6_RP_MEDIA_IS_GFX |
4283 		    GEN6_RP_ENABLE |
4284 		    GEN6_RP_UP_BUSY_AVG |
4285 		    GEN6_RP_DOWN_IDLE_AVG);
4286 
4287 	dev_priv->rps.power = new_power;
4288 	dev_priv->rps.up_threshold = threshold_up;
4289 	dev_priv->rps.down_threshold = threshold_down;
4290 	dev_priv->rps.last_adj = 0;
4291 }
4292 
4293 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4294 {
4295 	u32 mask = 0;
4296 
4297 	if (val > dev_priv->rps.min_freq_softlimit)
4298 		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4299 	if (val < dev_priv->rps.max_freq_softlimit)
4300 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4301 
4302 	mask &= dev_priv->pm_rps_events;
4303 
4304 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4305 }
4306 
4307 /* gen6_set_rps is called to update the frequency request, but should also be
4308  * called when the range (min_delay and max_delay) is modified so that we can
4309  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4310 static void gen6_set_rps(struct drm_device *dev, u8 val)
4311 {
4312 	struct drm_i915_private *dev_priv = dev->dev_private;
4313 
4314 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4315 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4316 		return;
4317 
4318 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4319 	WARN_ON(val > dev_priv->rps.max_freq);
4320 	WARN_ON(val < dev_priv->rps.min_freq);
4321 
4322 	/* min/max delay may still have been modified so be sure to
4323 	 * write the limits value.
4324 	 */
4325 	if (val != dev_priv->rps.cur_freq) {
4326 		gen6_set_rps_thresholds(dev_priv, val);
4327 
4328 		if (IS_GEN9(dev))
4329 			I915_WRITE(GEN6_RPNSWREQ,
4330 				   GEN9_FREQUENCY(val));
4331 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4332 			I915_WRITE(GEN6_RPNSWREQ,
4333 				   HSW_FREQUENCY(val));
4334 		else
4335 			I915_WRITE(GEN6_RPNSWREQ,
4336 				   GEN6_FREQUENCY(val) |
4337 				   GEN6_OFFSET(0) |
4338 				   GEN6_AGGRESSIVE_TURBO);
4339 	}
4340 
4341 	/* Make sure we continue to get interrupts
4342 	 * until we hit the minimum or maximum frequencies.
4343 	 */
4344 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4345 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4346 
4347 	POSTING_READ(GEN6_RPNSWREQ);
4348 
4349 	dev_priv->rps.cur_freq = val;
4350 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4351 }
4352 
4353 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4354 {
4355 	struct drm_i915_private *dev_priv = dev->dev_private;
4356 
4357 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4358 	WARN_ON(val > dev_priv->rps.max_freq);
4359 	WARN_ON(val < dev_priv->rps.min_freq);
4360 
4361 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4362 		      "Odd GPU freq value\n"))
4363 		val &= ~1;
4364 
4365 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4366 
4367 	if (val != dev_priv->rps.cur_freq) {
4368 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4369 		if (!IS_CHERRYVIEW(dev_priv))
4370 			gen6_set_rps_thresholds(dev_priv, val);
4371 	}
4372 
4373 	dev_priv->rps.cur_freq = val;
4374 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4375 }
4376 
4377 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4378  *
4379  * * If Gfx is Idle, then
4380  * 1. Forcewake Media well.
4381  * 2. Request idle freq.
4382  * 3. Release Forcewake of Media well.
4383 */
4384 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4385 {
4386 	u32 val = dev_priv->rps.idle_freq;
4387 
4388 	if (dev_priv->rps.cur_freq <= val)
4389 		return;
4390 
4391 	/* Wake up the media well, as that takes a lot less
4392 	 * power than the Render well. */
4393 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4394 	valleyview_set_rps(dev_priv->dev, val);
4395 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4396 }
4397 
4398 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4399 {
4400 	mutex_lock(&dev_priv->rps.hw_lock);
4401 	if (dev_priv->rps.enabled) {
4402 		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4403 			gen6_rps_reset_ei(dev_priv);
4404 		I915_WRITE(GEN6_PMINTRMSK,
4405 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4406 	}
4407 	mutex_unlock(&dev_priv->rps.hw_lock);
4408 }
4409 
4410 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4411 {
4412 	struct drm_device *dev = dev_priv->dev;
4413 
4414 	mutex_lock(&dev_priv->rps.hw_lock);
4415 	if (dev_priv->rps.enabled) {
4416 		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4417 			vlv_set_rps_idle(dev_priv);
4418 		else
4419 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4420 		dev_priv->rps.last_adj = 0;
4421 		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4422 	}
4423 	mutex_unlock(&dev_priv->rps.hw_lock);
4424 
4425 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4426 	while (!list_empty(&dev_priv->rps.clients))
4427 		list_del_init(dev_priv->rps.clients.next);
4428 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4429 }
4430 
4431 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4432 		    struct intel_rps_client *rps,
4433 		    unsigned long submitted)
4434 {
4435 	/* This is intentionally racy! We peek at the state here, then
4436 	 * validate inside the RPS worker.
4437 	 */
4438 	if (!(dev_priv->mm.busy &&
4439 	      dev_priv->rps.enabled &&
4440 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4441 		return;
4442 
4443 	/* Force a RPS boost (and don't count it against the client) if
4444 	 * the GPU is severely congested.
4445 	 */
4446 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4447 		rps = NULL;
4448 
4449 	lockmgr(&dev_priv->rps.client_lock, LK_EXCLUSIVE);
4450 	if (rps == NULL || list_empty(&rps->link)) {
4451 		spin_lock_irq(&dev_priv->irq_lock);
4452 		if (dev_priv->rps.interrupts_enabled) {
4453 			dev_priv->rps.client_boost = true;
4454 			queue_work(dev_priv->wq, &dev_priv->rps.work);
4455 		}
4456 		spin_unlock_irq(&dev_priv->irq_lock);
4457 
4458 		if (rps != NULL) {
4459 			list_add(&rps->link, &dev_priv->rps.clients);
4460 			rps->boosts++;
4461 		} else
4462 			dev_priv->rps.boosts++;
4463 	}
4464 	lockmgr(&dev_priv->rps.client_lock, LK_RELEASE);
4465 }
4466 
4467 void intel_set_rps(struct drm_device *dev, u8 val)
4468 {
4469 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4470 		valleyview_set_rps(dev, val);
4471 	else
4472 		gen6_set_rps(dev, val);
4473 }
4474 
4475 static void gen9_disable_rps(struct drm_device *dev)
4476 {
4477 	struct drm_i915_private *dev_priv = dev->dev_private;
4478 
4479 	I915_WRITE(GEN6_RC_CONTROL, 0);
4480 	I915_WRITE(GEN9_PG_ENABLE, 0);
4481 }
4482 
4483 static void gen6_disable_rps(struct drm_device *dev)
4484 {
4485 	struct drm_i915_private *dev_priv = dev->dev_private;
4486 
4487 	I915_WRITE(GEN6_RC_CONTROL, 0);
4488 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4489 }
4490 
4491 static void cherryview_disable_rps(struct drm_device *dev)
4492 {
4493 	struct drm_i915_private *dev_priv = dev->dev_private;
4494 
4495 	I915_WRITE(GEN6_RC_CONTROL, 0);
4496 }
4497 
4498 static void valleyview_disable_rps(struct drm_device *dev)
4499 {
4500 	struct drm_i915_private *dev_priv = dev->dev_private;
4501 
4502 	/* we're doing forcewake before Disabling RC6,
4503 	 * This what the BIOS expects when going into suspend */
4504 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4505 
4506 	I915_WRITE(GEN6_RC_CONTROL, 0);
4507 
4508 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4509 }
4510 
4511 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4512 {
4513 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4514 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4515 			mode = GEN6_RC_CTL_RC6_ENABLE;
4516 		else
4517 			mode = 0;
4518 	}
4519 	if (HAS_RC6p(dev))
4520 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4521 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4522 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4523 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4524 
4525 	else
4526 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4527 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4528 }
4529 
4530 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4531 {
4532 	/* No RC6 before Ironlake and code is gone for ilk. */
4533 	if (INTEL_INFO(dev)->gen < 6)
4534 		return 0;
4535 
4536 	/* Respect the kernel parameter if it is set */
4537 	if (enable_rc6 >= 0) {
4538 		int mask;
4539 
4540 		if (HAS_RC6p(dev))
4541 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4542 			       INTEL_RC6pp_ENABLE;
4543 		else
4544 			mask = INTEL_RC6_ENABLE;
4545 
4546 		if ((enable_rc6 & mask) != enable_rc6)
4547 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4548 				      enable_rc6 & mask, enable_rc6, mask);
4549 
4550 		return enable_rc6 & mask;
4551 	}
4552 
4553 	if (IS_IVYBRIDGE(dev))
4554 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4555 
4556 	return INTEL_RC6_ENABLE;
4557 }
4558 
4559 int intel_enable_rc6(const struct drm_device *dev)
4560 {
4561 	return i915.enable_rc6;
4562 }
4563 
4564 static void gen6_init_rps_frequencies(struct drm_device *dev)
4565 {
4566 	struct drm_i915_private *dev_priv = dev->dev_private;
4567 	uint32_t rp_state_cap;
4568 	u32 ddcc_status = 0;
4569 	int ret;
4570 
4571 	/* All of these values are in units of 50MHz */
4572 	dev_priv->rps.cur_freq		= 0;
4573 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4574 	if (IS_BROXTON(dev)) {
4575 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4576 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4577 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4578 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4579 	} else {
4580 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4581 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4582 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4583 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4584 	}
4585 
4586 	/* hw_max = RP0 until we check for overclocking */
4587 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4588 
4589 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4590 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4591 	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4592 		ret = sandybridge_pcode_read(dev_priv,
4593 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4594 					&ddcc_status);
4595 		if (0 == ret)
4596 			dev_priv->rps.efficient_freq =
4597 				clamp_t(u8,
4598 					((ddcc_status >> 8) & 0xff),
4599 					dev_priv->rps.min_freq,
4600 					dev_priv->rps.max_freq);
4601 	}
4602 
4603 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4604 		/* Store the frequency values in 16.66 MHZ units, which is
4605 		   the natural hardware unit for SKL */
4606 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4607 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4608 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4609 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4610 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4611 	}
4612 
4613 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4614 
4615 	/* Preserve min/max settings in case of re-init */
4616 	if (dev_priv->rps.max_freq_softlimit == 0)
4617 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4618 
4619 	if (dev_priv->rps.min_freq_softlimit == 0) {
4620 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4621 			dev_priv->rps.min_freq_softlimit =
4622 				max_t(int, dev_priv->rps.efficient_freq,
4623 				      intel_freq_opcode(dev_priv, 450));
4624 		else
4625 			dev_priv->rps.min_freq_softlimit =
4626 				dev_priv->rps.min_freq;
4627 	}
4628 }
4629 
4630 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4631 static void gen9_enable_rps(struct drm_device *dev)
4632 {
4633 	struct drm_i915_private *dev_priv = dev->dev_private;
4634 
4635 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4636 
4637 	gen6_init_rps_frequencies(dev);
4638 
4639 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4640 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4641 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4642 		return;
4643 	}
4644 
4645 	/* Program defaults and thresholds for RPS*/
4646 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4647 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4648 
4649 	/* 1 second timeout*/
4650 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4651 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4652 
4653 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4654 
4655 	/* Leaning on the below call to gen6_set_rps to program/setup the
4656 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4657 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4658 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4659 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4660 
4661 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4662 }
4663 
4664 static void gen9_enable_rc6(struct drm_device *dev)
4665 {
4666 	struct drm_i915_private *dev_priv = dev->dev_private;
4667 	struct intel_engine_cs *ring;
4668 	uint32_t rc6_mask = 0;
4669 	int unused;
4670 
4671 	/* 1a: Software RC state - RC0 */
4672 	I915_WRITE(GEN6_RC_STATE, 0);
4673 
4674 	/* 1b: Get forcewake during program sequence. Although the driver
4675 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4676 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4677 
4678 	/* 2a: Disable RC states. */
4679 	I915_WRITE(GEN6_RC_CONTROL, 0);
4680 
4681 	/* 2b: Program RC6 thresholds.*/
4682 
4683 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4684 	if (IS_SKYLAKE(dev))
4685 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4686 	else
4687 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4688 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4689 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4690 	for_each_ring(ring, dev_priv, unused)
4691 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4692 
4693 	if (HAS_GUC_UCODE(dev))
4694 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4695 
4696 	I915_WRITE(GEN6_RC_SLEEP, 0);
4697 
4698 	/* 2c: Program Coarse Power Gating Policies. */
4699 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4700 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4701 
4702 	/* 3a: Enable RC6 */
4703 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4704 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4705 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4706 			"on" : "off");
4707 	/* WaRsUseTimeoutMode */
4708 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4709 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4710 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4711 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4712 			   GEN7_RC_CTL_TO_MODE |
4713 			   rc6_mask);
4714 	} else {
4715 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4716 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4717 			   GEN6_RC_CTL_EI_MODE(1) |
4718 			   rc6_mask);
4719 	}
4720 
4721 	/*
4722 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4723 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4724 	 */
4725 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4726 	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4727 		I915_WRITE(GEN9_PG_ENABLE, 0);
4728 	else
4729 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4730 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4731 
4732 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4733 
4734 }
4735 
4736 static void gen8_enable_rps(struct drm_device *dev)
4737 {
4738 	struct drm_i915_private *dev_priv = dev->dev_private;
4739 	struct intel_engine_cs *ring;
4740 	uint32_t rc6_mask = 0;
4741 	int unused;
4742 
4743 	/* 1a: Software RC state - RC0 */
4744 	I915_WRITE(GEN6_RC_STATE, 0);
4745 
4746 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4747 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4748 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4749 
4750 	/* 2a: Disable RC states. */
4751 	I915_WRITE(GEN6_RC_CONTROL, 0);
4752 
4753 	/* Initialize rps frequencies */
4754 	gen6_init_rps_frequencies(dev);
4755 
4756 	/* 2b: Program RC6 thresholds.*/
4757 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4758 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4759 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4760 	for_each_ring(ring, dev_priv, unused)
4761 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4762 	I915_WRITE(GEN6_RC_SLEEP, 0);
4763 	if (IS_BROADWELL(dev))
4764 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4765 	else
4766 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4767 
4768 	/* 3: Enable RC6 */
4769 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4770 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4771 	intel_print_rc6_info(dev, rc6_mask);
4772 	if (IS_BROADWELL(dev))
4773 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4774 				GEN7_RC_CTL_TO_MODE |
4775 				rc6_mask);
4776 	else
4777 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4778 				GEN6_RC_CTL_EI_MODE(1) |
4779 				rc6_mask);
4780 
4781 	/* 4 Program defaults and thresholds for RPS*/
4782 	I915_WRITE(GEN6_RPNSWREQ,
4783 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4784 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4785 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4786 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4787 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4788 
4789 	/* Docs recommend 900MHz, and 300 MHz respectively */
4790 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4791 		   dev_priv->rps.max_freq_softlimit << 24 |
4792 		   dev_priv->rps.min_freq_softlimit << 16);
4793 
4794 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4795 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4796 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4797 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4798 
4799 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4800 
4801 	/* 5: Enable RPS */
4802 	I915_WRITE(GEN6_RP_CONTROL,
4803 		   GEN6_RP_MEDIA_TURBO |
4804 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4805 		   GEN6_RP_MEDIA_IS_GFX |
4806 		   GEN6_RP_ENABLE |
4807 		   GEN6_RP_UP_BUSY_AVG |
4808 		   GEN6_RP_DOWN_IDLE_AVG);
4809 
4810 	/* 6: Ring frequency + overclocking (our driver does this later */
4811 
4812 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4813 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4814 
4815 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4816 }
4817 
4818 static void gen6_enable_rps(struct drm_device *dev)
4819 {
4820 	struct drm_i915_private *dev_priv = dev->dev_private;
4821 	struct intel_engine_cs *ring;
4822 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4823 	u32 gtfifodbg;
4824 	int rc6_mode;
4825 	int i, ret;
4826 
4827 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4828 
4829 	/* Here begins a magic sequence of register writes to enable
4830 	 * auto-downclocking.
4831 	 *
4832 	 * Perhaps there might be some value in exposing these to
4833 	 * userspace...
4834 	 */
4835 	I915_WRITE(GEN6_RC_STATE, 0);
4836 
4837 	/* Clear the DBG now so we don't confuse earlier errors */
4838 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4839 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4840 		I915_WRITE(GTFIFODBG, gtfifodbg);
4841 	}
4842 
4843 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4844 
4845 	/* Initialize rps frequencies */
4846 	gen6_init_rps_frequencies(dev);
4847 
4848 	/* disable the counters and set deterministic thresholds */
4849 	I915_WRITE(GEN6_RC_CONTROL, 0);
4850 
4851 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4852 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4853 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4854 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4855 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4856 
4857 	for_each_ring(ring, dev_priv, i)
4858 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4859 
4860 	I915_WRITE(GEN6_RC_SLEEP, 0);
4861 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4862 	if (IS_IVYBRIDGE(dev))
4863 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4864 	else
4865 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4866 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4867 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4868 
4869 	/* Check if we are enabling RC6 */
4870 	rc6_mode = intel_enable_rc6(dev_priv->dev);
4871 	if (rc6_mode & INTEL_RC6_ENABLE)
4872 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4873 
4874 	/* We don't use those on Haswell */
4875 	if (!IS_HASWELL(dev)) {
4876 		if (rc6_mode & INTEL_RC6p_ENABLE)
4877 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4878 
4879 		if (rc6_mode & INTEL_RC6pp_ENABLE)
4880 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4881 	}
4882 
4883 	intel_print_rc6_info(dev, rc6_mask);
4884 
4885 	I915_WRITE(GEN6_RC_CONTROL,
4886 		   rc6_mask |
4887 		   GEN6_RC_CTL_EI_MODE(1) |
4888 		   GEN6_RC_CTL_HW_ENABLE);
4889 
4890 	/* Power down if completely idle for over 50ms */
4891 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4892 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4893 
4894 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4895 	if (ret)
4896 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4897 
4898 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4899 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4900 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4901 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4902 				 (pcu_mbox & 0xff) * 50);
4903 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4904 	}
4905 
4906 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4907 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4908 
4909 	rc6vids = 0;
4910 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4911 	if (IS_GEN6(dev) && ret) {
4912 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4913 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4914 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4915 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4916 		rc6vids &= 0xffff00;
4917 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
4918 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4919 		if (ret)
4920 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4921 	}
4922 
4923 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4924 }
4925 
4926 static void __gen6_update_ring_freq(struct drm_device *dev)
4927 {
4928 	struct drm_i915_private *dev_priv = dev->dev_private;
4929 	int min_freq = 15;
4930 	unsigned int gpu_freq;
4931 	unsigned int max_ia_freq, min_ring_freq;
4932 	unsigned int max_gpu_freq, min_gpu_freq;
4933 	int scaling_factor = 180;
4934 
4935 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4936 
4937 #if 0
4938 	policy = cpufreq_cpu_get(0);
4939 	if (policy) {
4940 		max_ia_freq = policy->cpuinfo.max_freq;
4941 		cpufreq_cpu_put(policy);
4942 	} else {
4943 		/*
4944 		 * Default to measured freq if none found, PCU will ensure we
4945 		 * don't go over
4946 		 */
4947 		max_ia_freq = tsc_khz;
4948 	}
4949 #else
4950 	max_ia_freq = tsc_frequency / 1000;
4951 #endif
4952 
4953 	/* Convert from kHz to MHz */
4954 	max_ia_freq /= 1000;
4955 
4956 	min_ring_freq = I915_READ(DCLK) & 0xf;
4957 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
4958 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4959 
4960 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4961 		/* Convert GT frequency to 50 HZ units */
4962 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
4963 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
4964 	} else {
4965 		min_gpu_freq = dev_priv->rps.min_freq;
4966 		max_gpu_freq = dev_priv->rps.max_freq;
4967 	}
4968 
4969 	/*
4970 	 * For each potential GPU frequency, load a ring frequency we'd like
4971 	 * to use for memory access.  We do this by specifying the IA frequency
4972 	 * the PCU should use as a reference to determine the ring frequency.
4973 	 */
4974 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
4975 		int diff = max_gpu_freq - gpu_freq;
4976 		unsigned int ia_freq = 0, ring_freq = 0;
4977 
4978 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4979 			/*
4980 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
4981 			 * No floor required for ring frequency on SKL.
4982 			 */
4983 			ring_freq = gpu_freq;
4984 		} else if (INTEL_INFO(dev)->gen >= 8) {
4985 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
4986 			ring_freq = max(min_ring_freq, gpu_freq);
4987 		} else if (IS_HASWELL(dev)) {
4988 			ring_freq = mult_frac(gpu_freq, 5, 4);
4989 			ring_freq = max(min_ring_freq, ring_freq);
4990 			/* leave ia_freq as the default, chosen by cpufreq */
4991 		} else {
4992 			/* On older processors, there is no separate ring
4993 			 * clock domain, so in order to boost the bandwidth
4994 			 * of the ring, we need to upclock the CPU (ia_freq).
4995 			 *
4996 			 * For GPU frequencies less than 750MHz,
4997 			 * just use the lowest ring freq.
4998 			 */
4999 			if (gpu_freq < min_freq)
5000 				ia_freq = 800;
5001 			else
5002 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5003 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5004 		}
5005 
5006 		sandybridge_pcode_write(dev_priv,
5007 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5008 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5009 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5010 					gpu_freq);
5011 	}
5012 }
5013 
5014 void gen6_update_ring_freq(struct drm_device *dev)
5015 {
5016 	struct drm_i915_private *dev_priv = dev->dev_private;
5017 
5018 	if (!HAS_CORE_RING_FREQ(dev))
5019 		return;
5020 
5021 	mutex_lock(&dev_priv->rps.hw_lock);
5022 	__gen6_update_ring_freq(dev);
5023 	mutex_unlock(&dev_priv->rps.hw_lock);
5024 }
5025 
5026 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5027 {
5028 	struct drm_device *dev = dev_priv->dev;
5029 	u32 val, rp0;
5030 
5031 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5032 
5033 	switch (INTEL_INFO(dev)->eu_total) {
5034 	case 8:
5035 		/* (2 * 4) config */
5036 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5037 		break;
5038 	case 12:
5039 		/* (2 * 6) config */
5040 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5041 		break;
5042 	case 16:
5043 		/* (2 * 8) config */
5044 	default:
5045 		/* Setting (2 * 8) Min RP0 for any other combination */
5046 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5047 		break;
5048 	}
5049 
5050 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5051 
5052 	return rp0;
5053 }
5054 
5055 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5056 {
5057 	u32 val, rpe;
5058 
5059 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5060 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5061 
5062 	return rpe;
5063 }
5064 
5065 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5066 {
5067 	u32 val, rp1;
5068 
5069 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5070 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5071 
5072 	return rp1;
5073 }
5074 
5075 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5076 {
5077 	u32 val, rp1;
5078 
5079 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5080 
5081 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5082 
5083 	return rp1;
5084 }
5085 
5086 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5087 {
5088 	u32 val, rp0;
5089 
5090 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5091 
5092 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5093 	/* Clamp to max */
5094 	rp0 = min_t(u32, rp0, 0xea);
5095 
5096 	return rp0;
5097 }
5098 
5099 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5100 {
5101 	u32 val, rpe;
5102 
5103 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5104 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5105 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5106 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5107 
5108 	return rpe;
5109 }
5110 
5111 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5112 {
5113 	u32 val;
5114 
5115 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5116 	/*
5117 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5118 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5119 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5120 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5121 	 * to make sure it matches what Punit accepts.
5122 	 */
5123 	return max_t(u32, val, 0xc0);
5124 }
5125 
5126 /* Check that the pctx buffer wasn't move under us. */
5127 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5128 {
5129 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5130 
5131 	/* DragonFly - if EDID fails vlv_pctx can wind up NULL */
5132 	if (WARN_ON(!dev_priv->vlv_pctx))
5133 		return;
5134 
5135 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5136 			     dev_priv->vlv_pctx->stolen->start);
5137 }
5138 
5139 
5140 /* Check that the pcbr address is not empty. */
5141 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5142 {
5143 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5144 
5145 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5146 }
5147 
5148 static void cherryview_setup_pctx(struct drm_device *dev)
5149 {
5150 	struct drm_i915_private *dev_priv = dev->dev_private;
5151 	unsigned long pctx_paddr, paddr;
5152 	struct i915_gtt *gtt = &dev_priv->gtt;
5153 	u32 pcbr;
5154 	int pctx_size = 32*1024;
5155 
5156 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5157 
5158 	pcbr = I915_READ(VLV_PCBR);
5159 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5160 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5161 		paddr = (dev_priv->mm.stolen_base +
5162 			 (gtt->stolen_size - pctx_size));
5163 
5164 		pctx_paddr = (paddr & (~4095));
5165 		I915_WRITE(VLV_PCBR, pctx_paddr);
5166 	}
5167 
5168 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5169 }
5170 
5171 static void valleyview_setup_pctx(struct drm_device *dev)
5172 {
5173 	struct drm_i915_private *dev_priv = dev->dev_private;
5174 	struct drm_i915_gem_object *pctx;
5175 	unsigned long pctx_paddr;
5176 	u32 pcbr;
5177 	int pctx_size = 24*1024;
5178 
5179 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5180 
5181 	pcbr = I915_READ(VLV_PCBR);
5182 	if (pcbr) {
5183 		/* BIOS set it up already, grab the pre-alloc'd space */
5184 		int pcbr_offset;
5185 
5186 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5187 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5188 								      pcbr_offset,
5189 								      I915_GTT_OFFSET_NONE,
5190 								      pctx_size);
5191 		goto out;
5192 	}
5193 
5194 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5195 
5196 	/*
5197 	 * From the Gunit register HAS:
5198 	 * The Gfx driver is expected to program this register and ensure
5199 	 * proper allocation within Gfx stolen memory.  For example, this
5200 	 * register should be programmed such than the PCBR range does not
5201 	 * overlap with other ranges, such as the frame buffer, protected
5202 	 * memory, or any other relevant ranges.
5203 	 */
5204 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5205 	if (!pctx) {
5206 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5207 		return;
5208 	}
5209 
5210 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5211 	I915_WRITE(VLV_PCBR, pctx_paddr);
5212 
5213 out:
5214 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5215 	dev_priv->vlv_pctx = pctx;
5216 }
5217 
5218 static void valleyview_cleanup_pctx(struct drm_device *dev)
5219 {
5220 	struct drm_i915_private *dev_priv = dev->dev_private;
5221 
5222 	if (WARN_ON(!dev_priv->vlv_pctx))
5223 		return;
5224 
5225 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5226 	dev_priv->vlv_pctx = NULL;
5227 }
5228 
5229 static void valleyview_init_gt_powersave(struct drm_device *dev)
5230 {
5231 	struct drm_i915_private *dev_priv = dev->dev_private;
5232 	u32 val;
5233 
5234 	valleyview_setup_pctx(dev);
5235 
5236 	mutex_lock(&dev_priv->rps.hw_lock);
5237 
5238 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5239 	switch ((val >> 6) & 3) {
5240 	case 0:
5241 	case 1:
5242 		dev_priv->mem_freq = 800;
5243 		break;
5244 	case 2:
5245 		dev_priv->mem_freq = 1066;
5246 		break;
5247 	case 3:
5248 		dev_priv->mem_freq = 1333;
5249 		break;
5250 	}
5251 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5252 
5253 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5254 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5255 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5256 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5257 			 dev_priv->rps.max_freq);
5258 
5259 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5260 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5261 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5262 			 dev_priv->rps.efficient_freq);
5263 
5264 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5265 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5266 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5267 			 dev_priv->rps.rp1_freq);
5268 
5269 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5270 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5271 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5272 			 dev_priv->rps.min_freq);
5273 
5274 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5275 
5276 	/* Preserve min/max settings in case of re-init */
5277 	if (dev_priv->rps.max_freq_softlimit == 0)
5278 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5279 
5280 	if (dev_priv->rps.min_freq_softlimit == 0)
5281 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5282 
5283 	mutex_unlock(&dev_priv->rps.hw_lock);
5284 }
5285 
5286 static void cherryview_init_gt_powersave(struct drm_device *dev)
5287 {
5288 	struct drm_i915_private *dev_priv = dev->dev_private;
5289 	u32 val;
5290 
5291 	cherryview_setup_pctx(dev);
5292 
5293 	mutex_lock(&dev_priv->rps.hw_lock);
5294 
5295 	mutex_lock(&dev_priv->sb_lock);
5296 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5297 	mutex_unlock(&dev_priv->sb_lock);
5298 
5299 	switch ((val >> 2) & 0x7) {
5300 	case 3:
5301 		dev_priv->mem_freq = 2000;
5302 		break;
5303 	default:
5304 		dev_priv->mem_freq = 1600;
5305 		break;
5306 	}
5307 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5308 
5309 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5310 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5311 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5312 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5313 			 dev_priv->rps.max_freq);
5314 
5315 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5316 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5317 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5318 			 dev_priv->rps.efficient_freq);
5319 
5320 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5321 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5322 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5323 			 dev_priv->rps.rp1_freq);
5324 
5325 	/* PUnit validated range is only [RPe, RP0] */
5326 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5327 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5328 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5329 			 dev_priv->rps.min_freq);
5330 
5331 	WARN_ONCE((dev_priv->rps.max_freq |
5332 		   dev_priv->rps.efficient_freq |
5333 		   dev_priv->rps.rp1_freq |
5334 		   dev_priv->rps.min_freq) & 1,
5335 		  "Odd GPU freq values\n");
5336 
5337 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5338 
5339 	/* Preserve min/max settings in case of re-init */
5340 	if (dev_priv->rps.max_freq_softlimit == 0)
5341 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5342 
5343 	if (dev_priv->rps.min_freq_softlimit == 0)
5344 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5345 
5346 	mutex_unlock(&dev_priv->rps.hw_lock);
5347 }
5348 
5349 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5350 {
5351 	valleyview_cleanup_pctx(dev);
5352 }
5353 
5354 static void cherryview_enable_rps(struct drm_device *dev)
5355 {
5356 	struct drm_i915_private *dev_priv = dev->dev_private;
5357 	struct intel_engine_cs *ring;
5358 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5359 	int i;
5360 
5361 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5362 
5363 	gtfifodbg = I915_READ(GTFIFODBG);
5364 	if (gtfifodbg) {
5365 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5366 				 gtfifodbg);
5367 		I915_WRITE(GTFIFODBG, gtfifodbg);
5368 	}
5369 
5370 	cherryview_check_pctx(dev_priv);
5371 
5372 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5373 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5374 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5375 
5376 	/*  Disable RC states. */
5377 	I915_WRITE(GEN6_RC_CONTROL, 0);
5378 
5379 	/* 2a: Program RC6 thresholds.*/
5380 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5381 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5382 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5383 
5384 	for_each_ring(ring, dev_priv, i)
5385 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5386 	I915_WRITE(GEN6_RC_SLEEP, 0);
5387 
5388 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5389 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5390 
5391 	/* allows RC6 residency counter to work */
5392 	I915_WRITE(VLV_COUNTER_CONTROL,
5393 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5394 				      VLV_MEDIA_RC6_COUNT_EN |
5395 				      VLV_RENDER_RC6_COUNT_EN));
5396 
5397 	/* For now we assume BIOS is allocating and populating the PCBR  */
5398 	pcbr = I915_READ(VLV_PCBR);
5399 
5400 	/* 3: Enable RC6 */
5401 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5402 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5403 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5404 
5405 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5406 
5407 	/* 4 Program defaults and thresholds for RPS*/
5408 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5409 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5410 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5411 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5412 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5413 
5414 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5415 
5416 	/* 5: Enable RPS */
5417 	I915_WRITE(GEN6_RP_CONTROL,
5418 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5419 		   GEN6_RP_MEDIA_IS_GFX |
5420 		   GEN6_RP_ENABLE |
5421 		   GEN6_RP_UP_BUSY_AVG |
5422 		   GEN6_RP_DOWN_IDLE_AVG);
5423 
5424 	/* Setting Fixed Bias */
5425 	val = VLV_OVERRIDE_EN |
5426 		  VLV_SOC_TDP_EN |
5427 		  CHV_BIAS_CPU_50_SOC_50;
5428 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5429 
5430 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5431 
5432 	/* RPS code assumes GPLL is used */
5433 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5434 
5435 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5436 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5437 
5438 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5439 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5440 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5441 			 dev_priv->rps.cur_freq);
5442 
5443 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5444 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5445 			 dev_priv->rps.efficient_freq);
5446 
5447 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5448 
5449 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5450 }
5451 
5452 static void valleyview_enable_rps(struct drm_device *dev)
5453 {
5454 	struct drm_i915_private *dev_priv = dev->dev_private;
5455 	struct intel_engine_cs *ring;
5456 	u32 gtfifodbg, val, rc6_mode = 0;
5457 	int i;
5458 
5459 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5460 
5461 	valleyview_check_pctx(dev_priv);
5462 
5463 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5464 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5465 				 gtfifodbg);
5466 		I915_WRITE(GTFIFODBG, gtfifodbg);
5467 	}
5468 
5469 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5470 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471 
5472 	/*  Disable RC states. */
5473 	I915_WRITE(GEN6_RC_CONTROL, 0);
5474 
5475 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5476 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5477 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5478 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5479 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5480 
5481 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5482 
5483 	I915_WRITE(GEN6_RP_CONTROL,
5484 		   GEN6_RP_MEDIA_TURBO |
5485 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5486 		   GEN6_RP_MEDIA_IS_GFX |
5487 		   GEN6_RP_ENABLE |
5488 		   GEN6_RP_UP_BUSY_AVG |
5489 		   GEN6_RP_DOWN_IDLE_CONT);
5490 
5491 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5492 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5493 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5494 
5495 	for_each_ring(ring, dev_priv, i)
5496 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5497 
5498 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5499 
5500 	/* allows RC6 residency counter to work */
5501 	I915_WRITE(VLV_COUNTER_CONTROL,
5502 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5503 				      VLV_RENDER_RC0_COUNT_EN |
5504 				      VLV_MEDIA_RC6_COUNT_EN |
5505 				      VLV_RENDER_RC6_COUNT_EN));
5506 
5507 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5508 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5509 
5510 	intel_print_rc6_info(dev, rc6_mode);
5511 
5512 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5513 
5514 	/* Setting Fixed Bias */
5515 	val = VLV_OVERRIDE_EN |
5516 		  VLV_SOC_TDP_EN |
5517 		  VLV_BIAS_CPU_125_SOC_875;
5518 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5519 
5520 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5521 
5522 	/* RPS code assumes GPLL is used */
5523 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5524 
5525 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5526 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5527 
5528 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5529 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5530 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5531 			 dev_priv->rps.cur_freq);
5532 
5533 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5534 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5535 			 dev_priv->rps.efficient_freq);
5536 
5537 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5538 
5539 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5540 }
5541 
5542 static unsigned long intel_pxfreq(u32 vidfreq)
5543 {
5544 	unsigned long freq;
5545 	int div = (vidfreq & 0x3f0000) >> 16;
5546 	int post = (vidfreq & 0x3000) >> 12;
5547 	int pre = (vidfreq & 0x7);
5548 
5549 	if (!pre)
5550 		return 0;
5551 
5552 	freq = ((div * 133333) / ((1<<post) * pre));
5553 
5554 	return freq;
5555 }
5556 
5557 static const struct cparams {
5558 	u16 i;
5559 	u16 t;
5560 	u16 m;
5561 	u16 c;
5562 } cparams[] = {
5563 	{ 1, 1333, 301, 28664 },
5564 	{ 1, 1066, 294, 24460 },
5565 	{ 1, 800, 294, 25192 },
5566 	{ 0, 1333, 276, 27605 },
5567 	{ 0, 1066, 276, 27605 },
5568 	{ 0, 800, 231, 23784 },
5569 };
5570 
5571 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5572 {
5573 	u64 total_count, diff, ret;
5574 	u32 count1, count2, count3, m = 0, c = 0;
5575 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5576 	int i;
5577 
5578 	assert_spin_locked(&mchdev_lock);
5579 
5580 	diff1 = now - dev_priv->ips.last_time1;
5581 
5582 	/* Prevent division-by-zero if we are asking too fast.
5583 	 * Also, we don't get interesting results if we are polling
5584 	 * faster than once in 10ms, so just return the saved value
5585 	 * in such cases.
5586 	 */
5587 	if (diff1 <= 10)
5588 		return dev_priv->ips.chipset_power;
5589 
5590 	count1 = I915_READ(DMIEC);
5591 	count2 = I915_READ(DDREC);
5592 	count3 = I915_READ(CSIEC);
5593 
5594 	total_count = count1 + count2 + count3;
5595 
5596 	/* FIXME: handle per-counter overflow */
5597 	if (total_count < dev_priv->ips.last_count1) {
5598 		diff = ~0UL - dev_priv->ips.last_count1;
5599 		diff += total_count;
5600 	} else {
5601 		diff = total_count - dev_priv->ips.last_count1;
5602 	}
5603 
5604 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5605 		if (cparams[i].i == dev_priv->ips.c_m &&
5606 		    cparams[i].t == dev_priv->ips.r_t) {
5607 			m = cparams[i].m;
5608 			c = cparams[i].c;
5609 			break;
5610 		}
5611 	}
5612 
5613 	diff = div_u64(diff, diff1);
5614 	ret = ((m * diff) + c);
5615 	ret = div_u64(ret, 10);
5616 
5617 	dev_priv->ips.last_count1 = total_count;
5618 	dev_priv->ips.last_time1 = now;
5619 
5620 	dev_priv->ips.chipset_power = ret;
5621 
5622 	return ret;
5623 }
5624 
5625 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5626 {
5627 	struct drm_device *dev = dev_priv->dev;
5628 	unsigned long val;
5629 
5630 	if (INTEL_INFO(dev)->gen != 5)
5631 		return 0;
5632 
5633 	spin_lock_irq(&mchdev_lock);
5634 
5635 	val = __i915_chipset_val(dev_priv);
5636 
5637 	spin_unlock_irq(&mchdev_lock);
5638 
5639 	return val;
5640 }
5641 
5642 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5643 {
5644 	unsigned long m, x, b;
5645 	u32 tsfs;
5646 
5647 	tsfs = I915_READ(TSFS);
5648 
5649 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5650 	x = I915_READ8(TR1);
5651 
5652 	b = tsfs & TSFS_INTR_MASK;
5653 
5654 	return ((m * x) / 127) - b;
5655 }
5656 
5657 static int _pxvid_to_vd(u8 pxvid)
5658 {
5659 	if (pxvid == 0)
5660 		return 0;
5661 
5662 	if (pxvid >= 8 && pxvid < 31)
5663 		pxvid = 31;
5664 
5665 	return (pxvid + 2) * 125;
5666 }
5667 
5668 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5669 {
5670 	struct drm_device *dev = dev_priv->dev;
5671 	const int vd = _pxvid_to_vd(pxvid);
5672 	const int vm = vd - 1125;
5673 
5674 	if (INTEL_INFO(dev)->is_mobile)
5675 		return vm > 0 ? vm : 0;
5676 
5677 	return vd;
5678 }
5679 
5680 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5681 {
5682 	u64 now, diff, diffms;
5683 	u32 count;
5684 
5685 	assert_spin_locked(&mchdev_lock);
5686 
5687 	now = ktime_get_raw_ns();
5688 	diffms = now - dev_priv->ips.last_time2;
5689 	do_div(diffms, NSEC_PER_MSEC);
5690 
5691 	/* Don't divide by 0 */
5692 	if (!diffms)
5693 		return;
5694 
5695 	count = I915_READ(GFXEC);
5696 
5697 	if (count < dev_priv->ips.last_count2) {
5698 		diff = ~0UL - dev_priv->ips.last_count2;
5699 		diff += count;
5700 	} else {
5701 		diff = count - dev_priv->ips.last_count2;
5702 	}
5703 
5704 	dev_priv->ips.last_count2 = count;
5705 	dev_priv->ips.last_time2 = now;
5706 
5707 	/* More magic constants... */
5708 	diff = diff * 1181;
5709 	diff = div_u64(diff, diffms * 10);
5710 	dev_priv->ips.gfx_power = diff;
5711 }
5712 
5713 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5714 {
5715 	struct drm_device *dev = dev_priv->dev;
5716 
5717 	if (INTEL_INFO(dev)->gen != 5)
5718 		return;
5719 
5720 	spin_lock_irq(&mchdev_lock);
5721 
5722 	__i915_update_gfx_val(dev_priv);
5723 
5724 	spin_unlock_irq(&mchdev_lock);
5725 }
5726 
5727 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5728 {
5729 	unsigned long t, corr, state1, corr2, state2;
5730 	u32 pxvid, ext_v;
5731 
5732 	assert_spin_locked(&mchdev_lock);
5733 
5734 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5735 	pxvid = (pxvid >> 24) & 0x7f;
5736 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5737 
5738 	state1 = ext_v;
5739 
5740 	t = i915_mch_val(dev_priv);
5741 
5742 	/* Revel in the empirically derived constants */
5743 
5744 	/* Correction factor in 1/100000 units */
5745 	if (t > 80)
5746 		corr = ((t * 2349) + 135940);
5747 	else if (t >= 50)
5748 		corr = ((t * 964) + 29317);
5749 	else /* < 50 */
5750 		corr = ((t * 301) + 1004);
5751 
5752 	corr = corr * ((150142 * state1) / 10000 - 78642);
5753 	corr /= 100000;
5754 	corr2 = (corr * dev_priv->ips.corr);
5755 
5756 	state2 = (corr2 * state1) / 10000;
5757 	state2 /= 100; /* convert to mW */
5758 
5759 	__i915_update_gfx_val(dev_priv);
5760 
5761 	return dev_priv->ips.gfx_power + state2;
5762 }
5763 
5764 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5765 {
5766 	struct drm_device *dev = dev_priv->dev;
5767 	unsigned long val;
5768 
5769 	if (INTEL_INFO(dev)->gen != 5)
5770 		return 0;
5771 
5772 	spin_lock_irq(&mchdev_lock);
5773 
5774 	val = __i915_gfx_val(dev_priv);
5775 
5776 	spin_unlock_irq(&mchdev_lock);
5777 
5778 	return val;
5779 }
5780 
5781 /**
5782  * i915_read_mch_val - return value for IPS use
5783  *
5784  * Calculate and return a value for the IPS driver to use when deciding whether
5785  * we have thermal and power headroom to increase CPU or GPU power budget.
5786  */
5787 unsigned long i915_read_mch_val(void)
5788 {
5789 	struct drm_i915_private *dev_priv;
5790 	unsigned long chipset_val, graphics_val, ret = 0;
5791 
5792 	spin_lock_irq(&mchdev_lock);
5793 	if (!i915_mch_dev)
5794 		goto out_unlock;
5795 	dev_priv = i915_mch_dev;
5796 
5797 	chipset_val = __i915_chipset_val(dev_priv);
5798 	graphics_val = __i915_gfx_val(dev_priv);
5799 
5800 	ret = chipset_val + graphics_val;
5801 
5802 out_unlock:
5803 	spin_unlock_irq(&mchdev_lock);
5804 
5805 	return ret;
5806 }
5807 
5808 /**
5809  * i915_gpu_raise - raise GPU frequency limit
5810  *
5811  * Raise the limit; IPS indicates we have thermal headroom.
5812  */
5813 bool i915_gpu_raise(void)
5814 {
5815 	struct drm_i915_private *dev_priv;
5816 	bool ret = true;
5817 
5818 	spin_lock_irq(&mchdev_lock);
5819 	if (!i915_mch_dev) {
5820 		ret = false;
5821 		goto out_unlock;
5822 	}
5823 	dev_priv = i915_mch_dev;
5824 
5825 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5826 		dev_priv->ips.max_delay--;
5827 
5828 out_unlock:
5829 	spin_unlock_irq(&mchdev_lock);
5830 
5831 	return ret;
5832 }
5833 
5834 /**
5835  * i915_gpu_lower - lower GPU frequency limit
5836  *
5837  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5838  * frequency maximum.
5839  */
5840 bool i915_gpu_lower(void)
5841 {
5842 	struct drm_i915_private *dev_priv;
5843 	bool ret = true;
5844 
5845 	spin_lock_irq(&mchdev_lock);
5846 	if (!i915_mch_dev) {
5847 		ret = false;
5848 		goto out_unlock;
5849 	}
5850 	dev_priv = i915_mch_dev;
5851 
5852 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5853 		dev_priv->ips.max_delay++;
5854 
5855 out_unlock:
5856 	spin_unlock_irq(&mchdev_lock);
5857 
5858 	return ret;
5859 }
5860 
5861 /**
5862  * i915_gpu_busy - indicate GPU business to IPS
5863  *
5864  * Tell the IPS driver whether or not the GPU is busy.
5865  */
5866 bool i915_gpu_busy(void)
5867 {
5868 	struct drm_i915_private *dev_priv;
5869 	struct intel_engine_cs *ring;
5870 	bool ret = false;
5871 	int i;
5872 
5873 	spin_lock_irq(&mchdev_lock);
5874 	if (!i915_mch_dev)
5875 		goto out_unlock;
5876 	dev_priv = i915_mch_dev;
5877 
5878 	for_each_ring(ring, dev_priv, i)
5879 		ret |= !list_empty(&ring->request_list);
5880 
5881 out_unlock:
5882 	spin_unlock_irq(&mchdev_lock);
5883 
5884 	return ret;
5885 }
5886 
5887 /**
5888  * i915_gpu_turbo_disable - disable graphics turbo
5889  *
5890  * Disable graphics turbo by resetting the max frequency and setting the
5891  * current frequency to the default.
5892  */
5893 bool i915_gpu_turbo_disable(void)
5894 {
5895 	struct drm_i915_private *dev_priv;
5896 	bool ret = true;
5897 
5898 	spin_lock_irq(&mchdev_lock);
5899 	if (!i915_mch_dev) {
5900 		ret = false;
5901 		goto out_unlock;
5902 	}
5903 	dev_priv = i915_mch_dev;
5904 
5905 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5906 
5907 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5908 		ret = false;
5909 
5910 out_unlock:
5911 	spin_unlock_irq(&mchdev_lock);
5912 
5913 	return ret;
5914 }
5915 
5916 #if 0
5917 /**
5918  * Tells the intel_ips driver that the i915 driver is now loaded, if
5919  * IPS got loaded first.
5920  *
5921  * This awkward dance is so that neither module has to depend on the
5922  * other in order for IPS to do the appropriate communication of
5923  * GPU turbo limits to i915.
5924  */
5925 static void
5926 ips_ping_for_i915_load(void)
5927 {
5928 	void (*link)(void);
5929 
5930 	link = symbol_get(ips_link_to_i915_driver);
5931 	if (link) {
5932 		link();
5933 		symbol_put(ips_link_to_i915_driver);
5934 	}
5935 }
5936 #endif
5937 
5938 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5939 {
5940 	/* We only register the i915 ips part with intel-ips once everything is
5941 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5942 	spin_lock_irq(&mchdev_lock);
5943 	i915_mch_dev = dev_priv;
5944 	spin_unlock_irq(&mchdev_lock);
5945 
5946 }
5947 
5948 void intel_gpu_ips_teardown(void)
5949 {
5950 	spin_lock_irq(&mchdev_lock);
5951 	i915_mch_dev = NULL;
5952 	spin_unlock_irq(&mchdev_lock);
5953 }
5954 
5955 static void intel_init_emon(struct drm_device *dev)
5956 {
5957 	struct drm_i915_private *dev_priv = dev->dev_private;
5958 	u32 lcfuse;
5959 	u8 pxw[16];
5960 	int i;
5961 
5962 	/* Disable to program */
5963 	I915_WRITE(ECR, 0);
5964 	POSTING_READ(ECR);
5965 
5966 	/* Program energy weights for various events */
5967 	I915_WRITE(SDEW, 0x15040d00);
5968 	I915_WRITE(CSIEW0, 0x007f0000);
5969 	I915_WRITE(CSIEW1, 0x1e220004);
5970 	I915_WRITE(CSIEW2, 0x04000004);
5971 
5972 	for (i = 0; i < 5; i++)
5973 		I915_WRITE(PEW(i), 0);
5974 	for (i = 0; i < 3; i++)
5975 		I915_WRITE(DEW(i), 0);
5976 
5977 	/* Program P-state weights to account for frequency power adjustment */
5978 	for (i = 0; i < 16; i++) {
5979 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
5980 		unsigned long freq = intel_pxfreq(pxvidfreq);
5981 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5982 			PXVFREQ_PX_SHIFT;
5983 		unsigned long val;
5984 
5985 		val = vid * vid;
5986 		val *= (freq / 1000);
5987 		val *= 255;
5988 		val /= (127*127*900);
5989 		if (val > 0xff)
5990 			DRM_ERROR("bad pxval: %ld\n", val);
5991 		pxw[i] = val;
5992 	}
5993 	/* Render standby states get 0 weight */
5994 	pxw[14] = 0;
5995 	pxw[15] = 0;
5996 
5997 	for (i = 0; i < 4; i++) {
5998 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5999 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6000 		I915_WRITE(PXW(i), val);
6001 	}
6002 
6003 	/* Adjust magic regs to magic values (more experimental results) */
6004 	I915_WRITE(OGW0, 0);
6005 	I915_WRITE(OGW1, 0);
6006 	I915_WRITE(EG0, 0x00007f00);
6007 	I915_WRITE(EG1, 0x0000000e);
6008 	I915_WRITE(EG2, 0x000e0000);
6009 	I915_WRITE(EG3, 0x68000300);
6010 	I915_WRITE(EG4, 0x42000000);
6011 	I915_WRITE(EG5, 0x00140031);
6012 	I915_WRITE(EG6, 0);
6013 	I915_WRITE(EG7, 0);
6014 
6015 	for (i = 0; i < 8; i++)
6016 		I915_WRITE(PXWL(i), 0);
6017 
6018 	/* Enable PMON + select events */
6019 	I915_WRITE(ECR, 0x80000019);
6020 
6021 	lcfuse = I915_READ(LCFUSE02);
6022 
6023 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6024 }
6025 
6026 void intel_init_gt_powersave(struct drm_device *dev)
6027 {
6028 	struct drm_i915_private *dev_priv = dev->dev_private;
6029 
6030 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6031 	/*
6032 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6033 	 * requirement.
6034 	 */
6035 	if (!i915.enable_rc6) {
6036 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6037 		intel_runtime_pm_get(dev_priv);
6038 	}
6039 
6040 	if (IS_CHERRYVIEW(dev))
6041 		cherryview_init_gt_powersave(dev);
6042 	else if (IS_VALLEYVIEW(dev))
6043 		valleyview_init_gt_powersave(dev);
6044 }
6045 
6046 void intel_cleanup_gt_powersave(struct drm_device *dev)
6047 {
6048 	struct drm_i915_private *dev_priv = dev->dev_private;
6049 
6050 	if (IS_CHERRYVIEW(dev))
6051 		return;
6052 	else if (IS_VALLEYVIEW(dev))
6053 		valleyview_cleanup_gt_powersave(dev);
6054 
6055 	if (!i915.enable_rc6)
6056 		intel_runtime_pm_put(dev_priv);
6057 }
6058 
6059 static void gen6_suspend_rps(struct drm_device *dev)
6060 {
6061 #if 0
6062 	struct drm_i915_private *dev_priv = dev->dev_private;
6063 
6064 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6065 #endif
6066 
6067 	gen6_disable_rps_interrupts(dev);
6068 }
6069 
6070 /**
6071  * intel_suspend_gt_powersave - suspend PM work and helper threads
6072  * @dev: drm device
6073  *
6074  * We don't want to disable RC6 or other features here, we just want
6075  * to make sure any work we've queued has finished and won't bother
6076  * us while we're suspended.
6077  */
6078 void intel_suspend_gt_powersave(struct drm_device *dev)
6079 {
6080 	struct drm_i915_private *dev_priv = dev->dev_private;
6081 
6082 	if (INTEL_INFO(dev)->gen < 6)
6083 		return;
6084 
6085 	gen6_suspend_rps(dev);
6086 
6087 	/* Force GPU to min freq during suspend */
6088 	gen6_rps_idle(dev_priv);
6089 }
6090 
6091 void intel_disable_gt_powersave(struct drm_device *dev)
6092 {
6093 	struct drm_i915_private *dev_priv = dev->dev_private;
6094 
6095 	if (IS_IRONLAKE_M(dev)) {
6096 		ironlake_disable_drps(dev);
6097 	} else if (INTEL_INFO(dev)->gen >= 6) {
6098 		intel_suspend_gt_powersave(dev);
6099 
6100 		mutex_lock(&dev_priv->rps.hw_lock);
6101 		if (INTEL_INFO(dev)->gen >= 9)
6102 			gen9_disable_rps(dev);
6103 		else if (IS_CHERRYVIEW(dev))
6104 			cherryview_disable_rps(dev);
6105 		else if (IS_VALLEYVIEW(dev))
6106 			valleyview_disable_rps(dev);
6107 		else
6108 			gen6_disable_rps(dev);
6109 
6110 		dev_priv->rps.enabled = false;
6111 		mutex_unlock(&dev_priv->rps.hw_lock);
6112 	}
6113 }
6114 
6115 static void intel_gen6_powersave_work(struct work_struct *work)
6116 {
6117 	struct drm_i915_private *dev_priv =
6118 		container_of(work, struct drm_i915_private,
6119 			     rps.delayed_resume_work.work);
6120 	struct drm_device *dev = dev_priv->dev;
6121 
6122 	mutex_lock(&dev_priv->rps.hw_lock);
6123 
6124 	gen6_reset_rps_interrupts(dev);
6125 
6126 	if (IS_CHERRYVIEW(dev)) {
6127 		cherryview_enable_rps(dev);
6128 	} else if (IS_VALLEYVIEW(dev)) {
6129 		valleyview_enable_rps(dev);
6130 	} else if (INTEL_INFO(dev)->gen >= 9) {
6131 		gen9_enable_rc6(dev);
6132 		gen9_enable_rps(dev);
6133 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6134 			__gen6_update_ring_freq(dev);
6135 	} else if (IS_BROADWELL(dev)) {
6136 		gen8_enable_rps(dev);
6137 		__gen6_update_ring_freq(dev);
6138 	} else {
6139 		gen6_enable_rps(dev);
6140 		__gen6_update_ring_freq(dev);
6141 	}
6142 
6143 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6144 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6145 
6146 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6147 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6148 
6149 	dev_priv->rps.enabled = true;
6150 
6151 	gen6_enable_rps_interrupts(dev);
6152 
6153 	mutex_unlock(&dev_priv->rps.hw_lock);
6154 
6155 	intel_runtime_pm_put(dev_priv);
6156 }
6157 
6158 void intel_enable_gt_powersave(struct drm_device *dev)
6159 {
6160 	struct drm_i915_private *dev_priv = dev->dev_private;
6161 
6162 	/* Powersaving is controlled by the host when inside a VM */
6163 	if (intel_vgpu_active(dev))
6164 		return;
6165 
6166 	if (IS_IRONLAKE_M(dev)) {
6167 		mutex_lock(&dev->struct_mutex);
6168 		ironlake_enable_drps(dev);
6169 		intel_init_emon(dev);
6170 		mutex_unlock(&dev->struct_mutex);
6171 	} else if (INTEL_INFO(dev)->gen >= 6) {
6172 		/*
6173 		 * PCU communication is slow and this doesn't need to be
6174 		 * done at any specific time, so do this out of our fast path
6175 		 * to make resume and init faster.
6176 		 *
6177 		 * We depend on the HW RC6 power context save/restore
6178 		 * mechanism when entering D3 through runtime PM suspend. So
6179 		 * disable RPM until RPS/RC6 is properly setup. We can only
6180 		 * get here via the driver load/system resume/runtime resume
6181 		 * paths, so the _noresume version is enough (and in case of
6182 		 * runtime resume it's necessary).
6183 		 */
6184 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6185 					   round_jiffies_up_relative(HZ)))
6186 			intel_runtime_pm_get_noresume(dev_priv);
6187 	}
6188 }
6189 
6190 void intel_reset_gt_powersave(struct drm_device *dev)
6191 {
6192 	struct drm_i915_private *dev_priv = dev->dev_private;
6193 
6194 	if (INTEL_INFO(dev)->gen < 6)
6195 		return;
6196 
6197 	gen6_suspend_rps(dev);
6198 	dev_priv->rps.enabled = false;
6199 }
6200 
6201 static void ibx_init_clock_gating(struct drm_device *dev)
6202 {
6203 	struct drm_i915_private *dev_priv = dev->dev_private;
6204 
6205 	/*
6206 	 * On Ibex Peak and Cougar Point, we need to disable clock
6207 	 * gating for the panel power sequencer or it will fail to
6208 	 * start up when no ports are active.
6209 	 */
6210 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6211 }
6212 
6213 static void g4x_disable_trickle_feed(struct drm_device *dev)
6214 {
6215 	struct drm_i915_private *dev_priv = dev->dev_private;
6216 	enum i915_pipe pipe;
6217 
6218 	for_each_pipe(dev_priv, pipe) {
6219 		I915_WRITE(DSPCNTR(pipe),
6220 			   I915_READ(DSPCNTR(pipe)) |
6221 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6222 
6223 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6224 		POSTING_READ(DSPSURF(pipe));
6225 	}
6226 }
6227 
6228 static void ilk_init_lp_watermarks(struct drm_device *dev)
6229 {
6230 	struct drm_i915_private *dev_priv = dev->dev_private;
6231 
6232 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6233 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6234 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6235 
6236 	/*
6237 	 * Don't touch WM1S_LP_EN here.
6238 	 * Doing so could cause underruns.
6239 	 */
6240 }
6241 
6242 static void ironlake_init_clock_gating(struct drm_device *dev)
6243 {
6244 	struct drm_i915_private *dev_priv = dev->dev_private;
6245 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6246 
6247 	/*
6248 	 * Required for FBC
6249 	 * WaFbcDisableDpfcClockGating:ilk
6250 	 */
6251 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6252 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6253 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6254 
6255 	I915_WRITE(PCH_3DCGDIS0,
6256 		   MARIUNIT_CLOCK_GATE_DISABLE |
6257 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6258 	I915_WRITE(PCH_3DCGDIS1,
6259 		   VFMUNIT_CLOCK_GATE_DISABLE);
6260 
6261 	/*
6262 	 * According to the spec the following bits should be set in
6263 	 * order to enable memory self-refresh
6264 	 * The bit 22/21 of 0x42004
6265 	 * The bit 5 of 0x42020
6266 	 * The bit 15 of 0x45000
6267 	 */
6268 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6269 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6270 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6271 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6272 	I915_WRITE(DISP_ARB_CTL,
6273 		   (I915_READ(DISP_ARB_CTL) |
6274 		    DISP_FBC_WM_DIS));
6275 
6276 	ilk_init_lp_watermarks(dev);
6277 
6278 	/*
6279 	 * Based on the document from hardware guys the following bits
6280 	 * should be set unconditionally in order to enable FBC.
6281 	 * The bit 22 of 0x42000
6282 	 * The bit 22 of 0x42004
6283 	 * The bit 7,8,9 of 0x42020.
6284 	 */
6285 	if (IS_IRONLAKE_M(dev)) {
6286 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6287 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6288 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6289 			   ILK_FBCQ_DIS);
6290 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6291 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6292 			   ILK_DPARB_GATE);
6293 	}
6294 
6295 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6296 
6297 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6298 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6299 		   ILK_ELPIN_409_SELECT);
6300 	I915_WRITE(_3D_CHICKEN2,
6301 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6302 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6303 
6304 	/* WaDisableRenderCachePipelinedFlush:ilk */
6305 	I915_WRITE(CACHE_MODE_0,
6306 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6307 
6308 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6309 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6310 
6311 	g4x_disable_trickle_feed(dev);
6312 
6313 	ibx_init_clock_gating(dev);
6314 }
6315 
6316 static void cpt_init_clock_gating(struct drm_device *dev)
6317 {
6318 	struct drm_i915_private *dev_priv = dev->dev_private;
6319 	int pipe;
6320 	uint32_t val;
6321 
6322 	/*
6323 	 * On Ibex Peak and Cougar Point, we need to disable clock
6324 	 * gating for the panel power sequencer or it will fail to
6325 	 * start up when no ports are active.
6326 	 */
6327 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6328 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6329 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6330 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6331 		   DPLS_EDP_PPS_FIX_DIS);
6332 	/* The below fixes the weird display corruption, a few pixels shifted
6333 	 * downward, on (only) LVDS of some HP laptops with IVY.
6334 	 */
6335 	for_each_pipe(dev_priv, pipe) {
6336 		val = I915_READ(TRANS_CHICKEN2(pipe));
6337 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6338 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6339 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6340 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6341 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6342 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6343 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6344 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6345 	}
6346 	/* WADP0ClockGatingDisable */
6347 	for_each_pipe(dev_priv, pipe) {
6348 		I915_WRITE(TRANS_CHICKEN1(pipe),
6349 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6350 	}
6351 }
6352 
6353 static void gen6_check_mch_setup(struct drm_device *dev)
6354 {
6355 	struct drm_i915_private *dev_priv = dev->dev_private;
6356 	uint32_t tmp;
6357 
6358 	tmp = I915_READ(MCH_SSKPD);
6359 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6360 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6361 			      tmp);
6362 }
6363 
6364 static void gen6_init_clock_gating(struct drm_device *dev)
6365 {
6366 	struct drm_i915_private *dev_priv = dev->dev_private;
6367 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6368 
6369 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6370 
6371 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6372 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6373 		   ILK_ELPIN_409_SELECT);
6374 
6375 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6376 	I915_WRITE(_3D_CHICKEN,
6377 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6378 
6379 	/* WaDisable_RenderCache_OperationalFlush:snb */
6380 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6381 
6382 	/*
6383 	 * BSpec recoomends 8x4 when MSAA is used,
6384 	 * however in practice 16x4 seems fastest.
6385 	 *
6386 	 * Note that PS/WM thread counts depend on the WIZ hashing
6387 	 * disable bit, which we don't touch here, but it's good
6388 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6389 	 */
6390 	I915_WRITE(GEN6_GT_MODE,
6391 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6392 
6393 	ilk_init_lp_watermarks(dev);
6394 
6395 	I915_WRITE(CACHE_MODE_0,
6396 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6397 
6398 	I915_WRITE(GEN6_UCGCTL1,
6399 		   I915_READ(GEN6_UCGCTL1) |
6400 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6401 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6402 
6403 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6404 	 * gating disable must be set.  Failure to set it results in
6405 	 * flickering pixels due to Z write ordering failures after
6406 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6407 	 * Sanctuary and Tropics, and apparently anything else with
6408 	 * alpha test or pixel discard.
6409 	 *
6410 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6411 	 * but we didn't debug actual testcases to find it out.
6412 	 *
6413 	 * WaDisableRCCUnitClockGating:snb
6414 	 * WaDisableRCPBUnitClockGating:snb
6415 	 */
6416 	I915_WRITE(GEN6_UCGCTL2,
6417 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6418 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6419 
6420 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6421 	I915_WRITE(_3D_CHICKEN3,
6422 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6423 
6424 	/*
6425 	 * Bspec says:
6426 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6427 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6428 	 */
6429 	I915_WRITE(_3D_CHICKEN3,
6430 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6431 
6432 	/*
6433 	 * According to the spec the following bits should be
6434 	 * set in order to enable memory self-refresh and fbc:
6435 	 * The bit21 and bit22 of 0x42000
6436 	 * The bit21 and bit22 of 0x42004
6437 	 * The bit5 and bit7 of 0x42020
6438 	 * The bit14 of 0x70180
6439 	 * The bit14 of 0x71180
6440 	 *
6441 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6442 	 */
6443 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6444 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6445 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6446 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6447 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6448 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6449 	I915_WRITE(ILK_DSPCLK_GATE_D,
6450 		   I915_READ(ILK_DSPCLK_GATE_D) |
6451 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6452 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6453 
6454 	g4x_disable_trickle_feed(dev);
6455 
6456 	cpt_init_clock_gating(dev);
6457 
6458 	gen6_check_mch_setup(dev);
6459 }
6460 
6461 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6462 {
6463 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6464 
6465 	/*
6466 	 * WaVSThreadDispatchOverride:ivb,vlv
6467 	 *
6468 	 * This actually overrides the dispatch
6469 	 * mode for all thread types.
6470 	 */
6471 	reg &= ~GEN7_FF_SCHED_MASK;
6472 	reg |= GEN7_FF_TS_SCHED_HW;
6473 	reg |= GEN7_FF_VS_SCHED_HW;
6474 	reg |= GEN7_FF_DS_SCHED_HW;
6475 
6476 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6477 }
6478 
6479 static void lpt_init_clock_gating(struct drm_device *dev)
6480 {
6481 	struct drm_i915_private *dev_priv = dev->dev_private;
6482 
6483 	/*
6484 	 * TODO: this bit should only be enabled when really needed, then
6485 	 * disabled when not needed anymore in order to save power.
6486 	 */
6487 	if (HAS_PCH_LPT_LP(dev))
6488 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6489 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6490 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6491 
6492 	/* WADPOClockGatingDisable:hsw */
6493 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6494 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6495 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6496 }
6497 
6498 static void lpt_suspend_hw(struct drm_device *dev)
6499 {
6500 	struct drm_i915_private *dev_priv = dev->dev_private;
6501 
6502 	if (HAS_PCH_LPT_LP(dev)) {
6503 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6504 
6505 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6506 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6507 	}
6508 }
6509 
6510 static void broadwell_init_clock_gating(struct drm_device *dev)
6511 {
6512 	struct drm_i915_private *dev_priv = dev->dev_private;
6513 	enum i915_pipe pipe;
6514 	uint32_t misccpctl;
6515 
6516 	ilk_init_lp_watermarks(dev);
6517 
6518 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6519 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6520 
6521 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6522 	I915_WRITE(CHICKEN_PAR1_1,
6523 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6524 
6525 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6526 	for_each_pipe(dev_priv, pipe) {
6527 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6528 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6529 			   BDW_DPRS_MASK_VBLANK_SRD);
6530 	}
6531 
6532 	/* WaVSRefCountFullforceMissDisable:bdw */
6533 	/* WaDSRefCountFullforceMissDisable:bdw */
6534 	I915_WRITE(GEN7_FF_THREAD_MODE,
6535 		   I915_READ(GEN7_FF_THREAD_MODE) &
6536 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6537 
6538 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6539 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6540 
6541 	/* WaDisableSDEUnitClockGating:bdw */
6542 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6543 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6544 
6545 	/*
6546 	 * WaProgramL3SqcReg1Default:bdw
6547 	 * WaTempDisableDOPClkGating:bdw
6548 	 */
6549 	misccpctl = I915_READ(GEN7_MISCCPCTL);
6550 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6551 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6552 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6553 
6554 	/*
6555 	 * WaGttCachingOffByDefault:bdw
6556 	 * GTT cache may not work with big pages, so if those
6557 	 * are ever enabled GTT cache may need to be disabled.
6558 	 */
6559 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6560 
6561 	lpt_init_clock_gating(dev);
6562 }
6563 
6564 static void haswell_init_clock_gating(struct drm_device *dev)
6565 {
6566 	struct drm_i915_private *dev_priv = dev->dev_private;
6567 
6568 	ilk_init_lp_watermarks(dev);
6569 
6570 	/* L3 caching of data atomics doesn't work -- disable it. */
6571 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6572 	I915_WRITE(HSW_ROW_CHICKEN3,
6573 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6574 
6575 	/* This is required by WaCatErrorRejectionIssue:hsw */
6576 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6577 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6578 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6579 
6580 	/* WaVSRefCountFullforceMissDisable:hsw */
6581 	I915_WRITE(GEN7_FF_THREAD_MODE,
6582 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6583 
6584 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6585 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6586 
6587 	/* enable HiZ Raw Stall Optimization */
6588 	I915_WRITE(CACHE_MODE_0_GEN7,
6589 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6590 
6591 	/* WaDisable4x2SubspanOptimization:hsw */
6592 	I915_WRITE(CACHE_MODE_1,
6593 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6594 
6595 	/*
6596 	 * BSpec recommends 8x4 when MSAA is used,
6597 	 * however in practice 16x4 seems fastest.
6598 	 *
6599 	 * Note that PS/WM thread counts depend on the WIZ hashing
6600 	 * disable bit, which we don't touch here, but it's good
6601 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6602 	 */
6603 	I915_WRITE(GEN7_GT_MODE,
6604 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6605 
6606 	/* WaSampleCChickenBitEnable:hsw */
6607 	I915_WRITE(HALF_SLICE_CHICKEN3,
6608 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6609 
6610 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6611 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6612 
6613 	/* WaRsPkgCStateDisplayPMReq:hsw */
6614 	I915_WRITE(CHICKEN_PAR1_1,
6615 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6616 
6617 	lpt_init_clock_gating(dev);
6618 }
6619 
6620 static void ivybridge_init_clock_gating(struct drm_device *dev)
6621 {
6622 	struct drm_i915_private *dev_priv = dev->dev_private;
6623 	uint32_t snpcr;
6624 
6625 	ilk_init_lp_watermarks(dev);
6626 
6627 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6628 
6629 	/* WaDisableEarlyCull:ivb */
6630 	I915_WRITE(_3D_CHICKEN3,
6631 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6632 
6633 	/* WaDisableBackToBackFlipFix:ivb */
6634 	I915_WRITE(IVB_CHICKEN3,
6635 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6636 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6637 
6638 	/* WaDisablePSDDualDispatchEnable:ivb */
6639 	if (IS_IVB_GT1(dev))
6640 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6641 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6642 
6643 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6644 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6645 
6646 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6647 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6648 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6649 
6650 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6651 	I915_WRITE(GEN7_L3CNTLREG1,
6652 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6653 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6654 		   GEN7_WA_L3_CHICKEN_MODE);
6655 	if (IS_IVB_GT1(dev))
6656 		I915_WRITE(GEN7_ROW_CHICKEN2,
6657 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6658 	else {
6659 		/* must write both registers */
6660 		I915_WRITE(GEN7_ROW_CHICKEN2,
6661 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6662 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6663 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6664 	}
6665 
6666 	/* WaForceL3Serialization:ivb */
6667 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6668 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6669 
6670 	/*
6671 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6672 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6673 	 */
6674 	I915_WRITE(GEN6_UCGCTL2,
6675 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6676 
6677 	/* This is required by WaCatErrorRejectionIssue:ivb */
6678 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6679 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6680 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6681 
6682 	g4x_disable_trickle_feed(dev);
6683 
6684 	gen7_setup_fixed_func_scheduler(dev_priv);
6685 
6686 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6687 		/* enable HiZ Raw Stall Optimization */
6688 		I915_WRITE(CACHE_MODE_0_GEN7,
6689 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6690 	}
6691 
6692 	/* WaDisable4x2SubspanOptimization:ivb */
6693 	I915_WRITE(CACHE_MODE_1,
6694 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6695 
6696 	/*
6697 	 * BSpec recommends 8x4 when MSAA is used,
6698 	 * however in practice 16x4 seems fastest.
6699 	 *
6700 	 * Note that PS/WM thread counts depend on the WIZ hashing
6701 	 * disable bit, which we don't touch here, but it's good
6702 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6703 	 */
6704 	I915_WRITE(GEN7_GT_MODE,
6705 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6706 
6707 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6708 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6709 	snpcr |= GEN6_MBC_SNPCR_MED;
6710 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6711 
6712 	if (!HAS_PCH_NOP(dev))
6713 		cpt_init_clock_gating(dev);
6714 
6715 	gen6_check_mch_setup(dev);
6716 }
6717 
6718 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6719 {
6720 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6721 
6722 	/*
6723 	 * Disable trickle feed and enable pnd deadline calculation
6724 	 */
6725 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6726 	I915_WRITE(CBR1_VLV, 0);
6727 }
6728 
6729 static void valleyview_init_clock_gating(struct drm_device *dev)
6730 {
6731 	struct drm_i915_private *dev_priv = dev->dev_private;
6732 
6733 	vlv_init_display_clock_gating(dev_priv);
6734 
6735 	/* WaDisableEarlyCull:vlv */
6736 	I915_WRITE(_3D_CHICKEN3,
6737 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6738 
6739 	/* WaDisableBackToBackFlipFix:vlv */
6740 	I915_WRITE(IVB_CHICKEN3,
6741 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6742 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6743 
6744 	/* WaPsdDispatchEnable:vlv */
6745 	/* WaDisablePSDDualDispatchEnable:vlv */
6746 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6747 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6748 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6749 
6750 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6751 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6752 
6753 	/* WaForceL3Serialization:vlv */
6754 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6755 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6756 
6757 	/* WaDisableDopClockGating:vlv */
6758 	I915_WRITE(GEN7_ROW_CHICKEN2,
6759 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6760 
6761 	/* This is required by WaCatErrorRejectionIssue:vlv */
6762 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6763 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6764 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6765 
6766 	gen7_setup_fixed_func_scheduler(dev_priv);
6767 
6768 	/*
6769 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6770 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6771 	 */
6772 	I915_WRITE(GEN6_UCGCTL2,
6773 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6774 
6775 	/* WaDisableL3Bank2xClockGate:vlv
6776 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6777 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6778 	I915_WRITE(GEN7_UCGCTL4,
6779 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6780 
6781 	/*
6782 	 * BSpec says this must be set, even though
6783 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6784 	 */
6785 	I915_WRITE(CACHE_MODE_1,
6786 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6787 
6788 	/*
6789 	 * BSpec recommends 8x4 when MSAA is used,
6790 	 * however in practice 16x4 seems fastest.
6791 	 *
6792 	 * Note that PS/WM thread counts depend on the WIZ hashing
6793 	 * disable bit, which we don't touch here, but it's good
6794 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6795 	 */
6796 	I915_WRITE(GEN7_GT_MODE,
6797 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6798 
6799 	/*
6800 	 * WaIncreaseL3CreditsForVLVB0:vlv
6801 	 * This is the hardware default actually.
6802 	 */
6803 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6804 
6805 	/*
6806 	 * WaDisableVLVClockGating_VBIIssue:vlv
6807 	 * Disable clock gating on th GCFG unit to prevent a delay
6808 	 * in the reporting of vblank events.
6809 	 */
6810 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6811 }
6812 
6813 static void cherryview_init_clock_gating(struct drm_device *dev)
6814 {
6815 	struct drm_i915_private *dev_priv = dev->dev_private;
6816 
6817 	vlv_init_display_clock_gating(dev_priv);
6818 
6819 	/* WaVSRefCountFullforceMissDisable:chv */
6820 	/* WaDSRefCountFullforceMissDisable:chv */
6821 	I915_WRITE(GEN7_FF_THREAD_MODE,
6822 		   I915_READ(GEN7_FF_THREAD_MODE) &
6823 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6824 
6825 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6826 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6827 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6828 
6829 	/* WaDisableCSUnitClockGating:chv */
6830 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6831 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6832 
6833 	/* WaDisableSDEUnitClockGating:chv */
6834 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6835 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6836 
6837 	/*
6838 	 * GTT cache may not work with big pages, so if those
6839 	 * are ever enabled GTT cache may need to be disabled.
6840 	 */
6841 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6842 }
6843 
6844 static void g4x_init_clock_gating(struct drm_device *dev)
6845 {
6846 	struct drm_i915_private *dev_priv = dev->dev_private;
6847 	uint32_t dspclk_gate;
6848 
6849 	I915_WRITE(RENCLK_GATE_D1, 0);
6850 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6851 		   GS_UNIT_CLOCK_GATE_DISABLE |
6852 		   CL_UNIT_CLOCK_GATE_DISABLE);
6853 	I915_WRITE(RAMCLK_GATE_D, 0);
6854 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6855 		OVRUNIT_CLOCK_GATE_DISABLE |
6856 		OVCUNIT_CLOCK_GATE_DISABLE;
6857 	if (IS_GM45(dev))
6858 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6859 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6860 
6861 	/* WaDisableRenderCachePipelinedFlush */
6862 	I915_WRITE(CACHE_MODE_0,
6863 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6864 
6865 	/* WaDisable_RenderCache_OperationalFlush:g4x */
6866 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6867 
6868 	g4x_disable_trickle_feed(dev);
6869 }
6870 
6871 static void crestline_init_clock_gating(struct drm_device *dev)
6872 {
6873 	struct drm_i915_private *dev_priv = dev->dev_private;
6874 
6875 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6876 	I915_WRITE(RENCLK_GATE_D2, 0);
6877 	I915_WRITE(DSPCLK_GATE_D, 0);
6878 	I915_WRITE(RAMCLK_GATE_D, 0);
6879 	I915_WRITE16(DEUC, 0);
6880 	I915_WRITE(MI_ARB_STATE,
6881 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6882 
6883 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6884 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6885 }
6886 
6887 static void broadwater_init_clock_gating(struct drm_device *dev)
6888 {
6889 	struct drm_i915_private *dev_priv = dev->dev_private;
6890 
6891 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6892 		   I965_RCC_CLOCK_GATE_DISABLE |
6893 		   I965_RCPB_CLOCK_GATE_DISABLE |
6894 		   I965_ISC_CLOCK_GATE_DISABLE |
6895 		   I965_FBC_CLOCK_GATE_DISABLE);
6896 	I915_WRITE(RENCLK_GATE_D2, 0);
6897 	I915_WRITE(MI_ARB_STATE,
6898 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6899 
6900 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6901 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6902 }
6903 
6904 static void gen3_init_clock_gating(struct drm_device *dev)
6905 {
6906 	struct drm_i915_private *dev_priv = dev->dev_private;
6907 	u32 dstate = I915_READ(D_STATE);
6908 
6909 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6910 		DSTATE_DOT_CLOCK_GATING;
6911 	I915_WRITE(D_STATE, dstate);
6912 
6913 	if (IS_PINEVIEW(dev))
6914 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6915 
6916 	/* IIR "flip pending" means done if this bit is set */
6917 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6918 
6919 	/* interrupts should cause a wake up from C3 */
6920 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6921 
6922 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6923 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6924 
6925 	I915_WRITE(MI_ARB_STATE,
6926 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6927 }
6928 
6929 static void i85x_init_clock_gating(struct drm_device *dev)
6930 {
6931 	struct drm_i915_private *dev_priv = dev->dev_private;
6932 
6933 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6934 
6935 	/* interrupts should cause a wake up from C3 */
6936 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6937 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6938 
6939 	I915_WRITE(MEM_MODE,
6940 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6941 }
6942 
6943 static void i830_init_clock_gating(struct drm_device *dev)
6944 {
6945 	struct drm_i915_private *dev_priv = dev->dev_private;
6946 
6947 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6948 
6949 	I915_WRITE(MEM_MODE,
6950 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6951 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6952 }
6953 
6954 void intel_init_clock_gating(struct drm_device *dev)
6955 {
6956 	struct drm_i915_private *dev_priv = dev->dev_private;
6957 
6958 	if (dev_priv->display.init_clock_gating)
6959 		dev_priv->display.init_clock_gating(dev);
6960 }
6961 
6962 void intel_suspend_hw(struct drm_device *dev)
6963 {
6964 	if (HAS_PCH_LPT(dev))
6965 		lpt_suspend_hw(dev);
6966 }
6967 
6968 /* Set up chip specific power management-related functions */
6969 void intel_init_pm(struct drm_device *dev)
6970 {
6971 	struct drm_i915_private *dev_priv = dev->dev_private;
6972 
6973 	intel_fbc_init(dev_priv);
6974 
6975 	/* For cxsr */
6976 	if (IS_PINEVIEW(dev))
6977 		i915_pineview_get_mem_freq(dev);
6978 	else if (IS_GEN5(dev))
6979 		i915_ironlake_get_mem_freq(dev);
6980 
6981 	/* For FIFO watermark updates */
6982 	if (INTEL_INFO(dev)->gen >= 9) {
6983 		skl_setup_wm_latency(dev);
6984 
6985 		if (IS_BROXTON(dev))
6986 			dev_priv->display.init_clock_gating =
6987 				bxt_init_clock_gating;
6988 		dev_priv->display.update_wm = skl_update_wm;
6989 	} else if (HAS_PCH_SPLIT(dev)) {
6990 		ilk_setup_wm_latency(dev);
6991 
6992 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6993 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6994 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6995 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6996 			dev_priv->display.update_wm = ilk_update_wm;
6997 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6998 		} else {
6999 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7000 				      "Disable CxSR\n");
7001 		}
7002 
7003 		if (IS_GEN5(dev))
7004 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7005 		else if (IS_GEN6(dev))
7006 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7007 		else if (IS_IVYBRIDGE(dev))
7008 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7009 		else if (IS_HASWELL(dev))
7010 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7011 		else if (INTEL_INFO(dev)->gen == 8)
7012 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7013 	} else if (IS_CHERRYVIEW(dev)) {
7014 		vlv_setup_wm_latency(dev);
7015 
7016 		dev_priv->display.update_wm = vlv_update_wm;
7017 		dev_priv->display.init_clock_gating =
7018 			cherryview_init_clock_gating;
7019 	} else if (IS_VALLEYVIEW(dev)) {
7020 		vlv_setup_wm_latency(dev);
7021 
7022 		dev_priv->display.update_wm = vlv_update_wm;
7023 		dev_priv->display.init_clock_gating =
7024 			valleyview_init_clock_gating;
7025 	} else if (IS_PINEVIEW(dev)) {
7026 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7027 					    dev_priv->is_ddr3,
7028 					    dev_priv->fsb_freq,
7029 					    dev_priv->mem_freq)) {
7030 			DRM_INFO("failed to find known CxSR latency "
7031 				 "(found ddr%s fsb freq %d, mem freq %d), "
7032 				 "disabling CxSR\n",
7033 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7034 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7035 			/* Disable CxSR and never update its watermark again */
7036 			intel_set_memory_cxsr(dev_priv, false);
7037 			dev_priv->display.update_wm = NULL;
7038 		} else
7039 			dev_priv->display.update_wm = pineview_update_wm;
7040 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7041 	} else if (IS_G4X(dev)) {
7042 		dev_priv->display.update_wm = g4x_update_wm;
7043 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7044 	} else if (IS_GEN4(dev)) {
7045 		dev_priv->display.update_wm = i965_update_wm;
7046 		if (IS_CRESTLINE(dev))
7047 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7048 		else if (IS_BROADWATER(dev))
7049 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7050 	} else if (IS_GEN3(dev)) {
7051 		dev_priv->display.update_wm = i9xx_update_wm;
7052 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7053 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7054 	} else if (IS_GEN2(dev)) {
7055 		if (INTEL_INFO(dev)->num_pipes == 1) {
7056 			dev_priv->display.update_wm = i845_update_wm;
7057 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7058 		} else {
7059 			dev_priv->display.update_wm = i9xx_update_wm;
7060 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7061 		}
7062 
7063 		if (IS_I85X(dev) || IS_I865G(dev))
7064 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7065 		else
7066 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7067 	} else {
7068 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7069 	}
7070 }
7071 
7072 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7073 {
7074 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7075 
7076 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7077 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7078 		return -EAGAIN;
7079 	}
7080 
7081 	I915_WRITE(GEN6_PCODE_DATA, *val);
7082 	I915_WRITE(GEN6_PCODE_DATA1, 0);
7083 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7084 
7085 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7086 		     500)) {
7087 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7088 		return -ETIMEDOUT;
7089 	}
7090 
7091 	*val = I915_READ(GEN6_PCODE_DATA);
7092 	I915_WRITE(GEN6_PCODE_DATA, 0);
7093 
7094 	return 0;
7095 }
7096 
7097 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7098 {
7099 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7100 
7101 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7102 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7103 		return -EAGAIN;
7104 	}
7105 
7106 	I915_WRITE(GEN6_PCODE_DATA, val);
7107 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7108 
7109 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7110 		     500)) {
7111 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7112 		return -ETIMEDOUT;
7113 	}
7114 
7115 	I915_WRITE(GEN6_PCODE_DATA, 0);
7116 
7117 	return 0;
7118 }
7119 
7120 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7121 {
7122 	switch (czclk_freq) {
7123 	case 200:
7124 		return 10;
7125 	case 267:
7126 		return 12;
7127 	case 320:
7128 	case 333:
7129 		return 16;
7130 	case 400:
7131 		return 20;
7132 	default:
7133 		return -1;
7134 	}
7135 }
7136 
7137 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7138 {
7139 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7140 
7141 	div = vlv_gpu_freq_div(czclk_freq);
7142 	if (div < 0)
7143 		return div;
7144 
7145 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7146 }
7147 
7148 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7149 {
7150 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7151 
7152 	mul = vlv_gpu_freq_div(czclk_freq);
7153 	if (mul < 0)
7154 		return mul;
7155 
7156 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7157 }
7158 
7159 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7160 {
7161 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7162 
7163 	div = vlv_gpu_freq_div(czclk_freq) / 2;
7164 	if (div < 0)
7165 		return div;
7166 
7167 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7168 }
7169 
7170 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7171 {
7172 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7173 
7174 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7175 	if (mul < 0)
7176 		return mul;
7177 
7178 	/* CHV needs even values */
7179 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7180 }
7181 
7182 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7183 {
7184 	if (IS_GEN9(dev_priv->dev))
7185 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7186 					 GEN9_FREQ_SCALER);
7187 	else if (IS_CHERRYVIEW(dev_priv->dev))
7188 		return chv_gpu_freq(dev_priv, val);
7189 	else if (IS_VALLEYVIEW(dev_priv->dev))
7190 		return byt_gpu_freq(dev_priv, val);
7191 	else
7192 		return val * GT_FREQUENCY_MULTIPLIER;
7193 }
7194 
7195 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7196 {
7197 	if (IS_GEN9(dev_priv->dev))
7198 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7199 					 GT_FREQUENCY_MULTIPLIER);
7200 	else if (IS_CHERRYVIEW(dev_priv->dev))
7201 		return chv_freq_opcode(dev_priv, val);
7202 	else if (IS_VALLEYVIEW(dev_priv->dev))
7203 		return byt_freq_opcode(dev_priv, val);
7204 	else
7205 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7206 }
7207 
7208 struct request_boost {
7209 	struct work_struct work;
7210 	struct drm_i915_gem_request *req;
7211 };
7212 
7213 static void __intel_rps_boost_work(struct work_struct *work)
7214 {
7215 	struct request_boost *boost = container_of(work, struct request_boost, work);
7216 	struct drm_i915_gem_request *req = boost->req;
7217 
7218 	if (!i915_gem_request_completed(req, true))
7219 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7220 			       req->emitted_jiffies);
7221 
7222 	i915_gem_request_unreference__unlocked(req);
7223 	kfree(boost);
7224 }
7225 
7226 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7227 				       struct drm_i915_gem_request *req)
7228 {
7229 	struct request_boost *boost;
7230 
7231 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7232 		return;
7233 
7234 	if (i915_gem_request_completed(req, true))
7235 		return;
7236 
7237 	boost = kmalloc(sizeof(*boost), M_DRM, M_NOWAIT);
7238 	if (boost == NULL)
7239 		return;
7240 
7241 	i915_gem_request_reference(req);
7242 	boost->req = req;
7243 
7244 	INIT_WORK(&boost->work, __intel_rps_boost_work);
7245 	queue_work(to_i915(dev)->wq, &boost->work);
7246 }
7247 
7248 void intel_pm_setup(struct drm_device *dev)
7249 {
7250 	struct drm_i915_private *dev_priv = dev->dev_private;
7251 
7252 	lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7253 	lockinit(&dev_priv->rps.client_lock, "i915rcl", 0, LK_CANRECURSE);
7254 
7255 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7256 			  intel_gen6_powersave_work);
7257 	INIT_LIST_HEAD(&dev_priv->rps.clients);
7258 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7259 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7260 
7261 	dev_priv->pm.suspended = false;
7262 	atomic_set(&dev_priv->pm.wakeref_count, 0);
7263 	atomic_set(&dev_priv->pm.atomic_seq, 0);
7264 }
7265