xref: /dragonfly/sys/dev/drm/i915/intel_pm.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include <linux/module.h>
33 #include <drm/drm_atomic_helper.h>
34 
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE			(1<<0)
55 #define INTEL_RC6p_ENABLE			(1<<1)
56 #define INTEL_RC6pp_ENABLE			(1<<2)
57 
58 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
59 {
60 	if (HAS_LLC(dev_priv)) {
61 		/*
62 		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
63 		 * Display WA#0390: skl,kbl
64 		 *
65 		 * Must match Sampler, Pixel Back End, and Media. See
66 		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
67 		 */
68 		I915_WRITE(CHICKEN_PAR1_1,
69 			   I915_READ(CHICKEN_PAR1_1) |
70 			   SKL_DE_COMPRESSED_HASH_MODE);
71 	}
72 
73 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
74 	I915_WRITE(CHICKEN_PAR1_1,
75 		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
76 
77 	I915_WRITE(GEN8_CONFIG0,
78 		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
79 
80 	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
81 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
82 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
83 
84 	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
85 	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
86 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
87 		   DISP_FBC_WM_DIS |
88 		   DISP_FBC_MEMORY_WAKE);
89 
90 	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
91 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
92 		   ILK_DPFC_DISABLE_DUMMY0);
93 
94 	if (IS_SKYLAKE(dev_priv)) {
95 		/* WaDisableDopClockGating */
96 		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
97 			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
98 	}
99 }
100 
101 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
102 {
103 	gen9_init_clock_gating(dev_priv);
104 
105 	/* WaDisableSDEUnitClockGating:bxt */
106 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
107 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
108 
109 	/*
110 	 * FIXME:
111 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
112 	 */
113 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115 
116 	/*
117 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
118 	 * to stay fully on.
119 	 */
120 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
121 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
122 }
123 
124 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
125 {
126 	gen9_init_clock_gating(dev_priv);
127 
128 	/*
129 	 * WaDisablePWMClockGating:glk
130 	 * Backlight PWM may stop in the asserted state, causing backlight
131 	 * to stay fully on.
132 	 */
133 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
134 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
135 
136 	/* WaDDIIOTimeout:glk */
137 	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
138 		u32 val = I915_READ(CHICKEN_MISC_2);
139 		val &= ~(GLK_CL0_PWR_DOWN |
140 			 GLK_CL1_PWR_DOWN |
141 			 GLK_CL2_PWR_DOWN);
142 		I915_WRITE(CHICKEN_MISC_2, val);
143 	}
144 
145 }
146 
147 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
148 {
149 	u32 tmp;
150 
151 	tmp = I915_READ(CLKCFG);
152 
153 	switch (tmp & CLKCFG_FSB_MASK) {
154 	case CLKCFG_FSB_533:
155 		dev_priv->fsb_freq = 533; /* 133*4 */
156 		break;
157 	case CLKCFG_FSB_800:
158 		dev_priv->fsb_freq = 800; /* 200*4 */
159 		break;
160 	case CLKCFG_FSB_667:
161 		dev_priv->fsb_freq =  667; /* 167*4 */
162 		break;
163 	case CLKCFG_FSB_400:
164 		dev_priv->fsb_freq = 400; /* 100*4 */
165 		break;
166 	}
167 
168 	switch (tmp & CLKCFG_MEM_MASK) {
169 	case CLKCFG_MEM_533:
170 		dev_priv->mem_freq = 533;
171 		break;
172 	case CLKCFG_MEM_667:
173 		dev_priv->mem_freq = 667;
174 		break;
175 	case CLKCFG_MEM_800:
176 		dev_priv->mem_freq = 800;
177 		break;
178 	}
179 
180 	/* detect pineview DDR3 setting */
181 	tmp = I915_READ(CSHRDDR3CTL);
182 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
183 }
184 
185 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
186 {
187 	u16 ddrpll, csipll;
188 
189 	ddrpll = I915_READ16(DDRMPLL1);
190 	csipll = I915_READ16(CSIPLL0);
191 
192 	switch (ddrpll & 0xff) {
193 	case 0xc:
194 		dev_priv->mem_freq = 800;
195 		break;
196 	case 0x10:
197 		dev_priv->mem_freq = 1066;
198 		break;
199 	case 0x14:
200 		dev_priv->mem_freq = 1333;
201 		break;
202 	case 0x18:
203 		dev_priv->mem_freq = 1600;
204 		break;
205 	default:
206 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
207 				 ddrpll & 0xff);
208 		dev_priv->mem_freq = 0;
209 		break;
210 	}
211 
212 	dev_priv->ips.r_t = dev_priv->mem_freq;
213 
214 	switch (csipll & 0x3ff) {
215 	case 0x00c:
216 		dev_priv->fsb_freq = 3200;
217 		break;
218 	case 0x00e:
219 		dev_priv->fsb_freq = 3733;
220 		break;
221 	case 0x010:
222 		dev_priv->fsb_freq = 4266;
223 		break;
224 	case 0x012:
225 		dev_priv->fsb_freq = 4800;
226 		break;
227 	case 0x014:
228 		dev_priv->fsb_freq = 5333;
229 		break;
230 	case 0x016:
231 		dev_priv->fsb_freq = 5866;
232 		break;
233 	case 0x018:
234 		dev_priv->fsb_freq = 6400;
235 		break;
236 	default:
237 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
238 				 csipll & 0x3ff);
239 		dev_priv->fsb_freq = 0;
240 		break;
241 	}
242 
243 	if (dev_priv->fsb_freq == 3200) {
244 		dev_priv->ips.c_m = 0;
245 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
246 		dev_priv->ips.c_m = 1;
247 	} else {
248 		dev_priv->ips.c_m = 2;
249 	}
250 }
251 
252 static const struct cxsr_latency cxsr_latency_table[] = {
253 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
254 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
255 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
256 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
257 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
258 
259 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
260 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
261 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
262 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
263 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
264 
265 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
266 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
267 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
268 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
269 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
270 
271 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
272 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
273 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
274 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
275 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
276 
277 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
278 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
279 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
280 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
281 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
282 
283 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
284 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
285 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
286 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
287 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
288 };
289 
290 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
291 							 bool is_ddr3,
292 							 int fsb,
293 							 int mem)
294 {
295 	const struct cxsr_latency *latency;
296 	int i;
297 
298 	if (fsb == 0 || mem == 0)
299 		return NULL;
300 
301 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
302 		latency = &cxsr_latency_table[i];
303 		if (is_desktop == latency->is_desktop &&
304 		    is_ddr3 == latency->is_ddr3 &&
305 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
306 			return latency;
307 	}
308 
309 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
310 
311 	return NULL;
312 }
313 
314 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
315 {
316 	u32 val;
317 
318 	mutex_lock(&dev_priv->pcu_lock);
319 
320 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
321 	if (enable)
322 		val &= ~FORCE_DDR_HIGH_FREQ;
323 	else
324 		val |= FORCE_DDR_HIGH_FREQ;
325 	val &= ~FORCE_DDR_LOW_FREQ;
326 	val |= FORCE_DDR_FREQ_REQ_ACK;
327 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
328 
329 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
330 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
331 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
332 
333 	mutex_unlock(&dev_priv->pcu_lock);
334 }
335 
336 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
337 {
338 	u32 val;
339 
340 	mutex_lock(&dev_priv->pcu_lock);
341 
342 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
343 	if (enable)
344 		val |= DSP_MAXFIFO_PM5_ENABLE;
345 	else
346 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
347 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
348 
349 	mutex_unlock(&dev_priv->pcu_lock);
350 }
351 
352 #define FW_WM(value, plane) \
353 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
354 
355 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
356 {
357 	bool was_enabled;
358 	u32 val;
359 
360 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
361 		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
362 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
363 		POSTING_READ(FW_BLC_SELF_VLV);
364 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
365 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
366 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
367 		POSTING_READ(FW_BLC_SELF);
368 	} else if (IS_PINEVIEW(dev_priv)) {
369 		val = I915_READ(DSPFW3);
370 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
371 		if (enable)
372 			val |= PINEVIEW_SELF_REFRESH_EN;
373 		else
374 			val &= ~PINEVIEW_SELF_REFRESH_EN;
375 		I915_WRITE(DSPFW3, val);
376 		POSTING_READ(DSPFW3);
377 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
378 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
379 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
380 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
381 		I915_WRITE(FW_BLC_SELF, val);
382 		POSTING_READ(FW_BLC_SELF);
383 	} else if (IS_I915GM(dev_priv)) {
384 		/*
385 		 * FIXME can't find a bit like this for 915G, and
386 		 * and yet it does have the related watermark in
387 		 * FW_BLC_SELF. What's going on?
388 		 */
389 		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
390 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
391 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
392 		I915_WRITE(INSTPM, val);
393 		POSTING_READ(INSTPM);
394 	} else {
395 		return false;
396 	}
397 
398 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
399 
400 	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
401 		      enableddisabled(enable),
402 		      enableddisabled(was_enabled));
403 
404 	return was_enabled;
405 }
406 
407 /**
408  * intel_set_memory_cxsr - Configure CxSR state
409  * @dev_priv: i915 device
410  * @enable: Allow vs. disallow CxSR
411  *
412  * Allow or disallow the system to enter a special CxSR
413  * (C-state self refresh) state. What typically happens in CxSR mode
414  * is that several display FIFOs may get combined into a single larger
415  * FIFO for a particular plane (so called max FIFO mode) to allow the
416  * system to defer memory fetches longer, and the memory will enter
417  * self refresh.
418  *
419  * Note that enabling CxSR does not guarantee that the system enter
420  * this special mode, nor does it guarantee that the system stays
421  * in that mode once entered. So this just allows/disallows the system
422  * to autonomously utilize the CxSR mode. Other factors such as core
423  * C-states will affect when/if the system actually enters/exits the
424  * CxSR mode.
425  *
426  * Note that on VLV/CHV this actually only controls the max FIFO mode,
427  * and the system is free to enter/exit memory self refresh at any time
428  * even when the use of CxSR has been disallowed.
429  *
430  * While the system is actually in the CxSR/max FIFO mode, some plane
431  * control registers will not get latched on vblank. Thus in order to
432  * guarantee the system will respond to changes in the plane registers
433  * we must always disallow CxSR prior to making changes to those registers.
434  * Unfortunately the system will re-evaluate the CxSR conditions at
435  * frame start which happens after vblank start (which is when the plane
436  * registers would get latched), so we can't proceed with the plane update
437  * during the same frame where we disallowed CxSR.
438  *
439  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
440  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
441  * the hardware w.r.t. HPLL SR when writing to plane registers.
442  * Disallowing just CxSR is sufficient.
443  */
444 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
445 {
446 	bool ret;
447 
448 	mutex_lock(&dev_priv->wm.wm_mutex);
449 	ret = _intel_set_memory_cxsr(dev_priv, enable);
450 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
451 		dev_priv->wm.vlv.cxsr = enable;
452 	else if (IS_G4X(dev_priv))
453 		dev_priv->wm.g4x.cxsr = enable;
454 	mutex_unlock(&dev_priv->wm.wm_mutex);
455 
456 	return ret;
457 }
458 
459 /*
460  * Latency for FIFO fetches is dependent on several factors:
461  *   - memory configuration (speed, channels)
462  *   - chipset
463  *   - current MCH state
464  * It can be fairly high in some situations, so here we assume a fairly
465  * pessimal value.  It's a tradeoff between extra memory fetches (if we
466  * set this value too high, the FIFO will fetch frequently to stay full)
467  * and power consumption (set it too low to save power and we might see
468  * FIFO underruns and display "flicker").
469  *
470  * A value of 5us seems to be a good balance; safe for very low end
471  * platforms but not overly aggressive on lower latency configs.
472  */
473 static const int pessimal_latency_ns = 5000;
474 
475 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
476 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
477 
478 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
479 {
480 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
481 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
482 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
483 	enum i915_pipe pipe = crtc->pipe;
484 	int sprite0_start, sprite1_start;
485 
486 	switch (pipe) {
487 		uint32_t dsparb, dsparb2, dsparb3;
488 	case PIPE_A:
489 		dsparb = I915_READ(DSPARB);
490 		dsparb2 = I915_READ(DSPARB2);
491 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
492 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
493 		break;
494 	case PIPE_B:
495 		dsparb = I915_READ(DSPARB);
496 		dsparb2 = I915_READ(DSPARB2);
497 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
498 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
499 		break;
500 	case PIPE_C:
501 		dsparb2 = I915_READ(DSPARB2);
502 		dsparb3 = I915_READ(DSPARB3);
503 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
504 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
505 		break;
506 	default:
507 		MISSING_CASE(pipe);
508 		return;
509 	}
510 
511 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
512 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
513 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
514 	fifo_state->plane[PLANE_CURSOR] = 63;
515 }
516 
517 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
518 {
519 	uint32_t dsparb = I915_READ(DSPARB);
520 	int size;
521 
522 	size = dsparb & 0x7f;
523 	if (plane)
524 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
525 
526 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
527 		      plane ? "B" : "A", size);
528 
529 	return size;
530 }
531 
532 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
533 {
534 	uint32_t dsparb = I915_READ(DSPARB);
535 	int size;
536 
537 	size = dsparb & 0x1ff;
538 	if (plane)
539 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
540 	size >>= 1; /* Convert to cachelines */
541 
542 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
543 		      plane ? "B" : "A", size);
544 
545 	return size;
546 }
547 
548 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
549 {
550 	uint32_t dsparb = I915_READ(DSPARB);
551 	int size;
552 
553 	size = dsparb & 0x7f;
554 	size >>= 2; /* Convert to cachelines */
555 
556 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
557 		      plane ? "B" : "A",
558 		      size);
559 
560 	return size;
561 }
562 
563 /* Pineview has different values for various configs */
564 static const struct intel_watermark_params pineview_display_wm = {
565 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
566 	.max_wm = PINEVIEW_MAX_WM,
567 	.default_wm = PINEVIEW_DFT_WM,
568 	.guard_size = PINEVIEW_GUARD_WM,
569 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
570 };
571 static const struct intel_watermark_params pineview_display_hplloff_wm = {
572 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
573 	.max_wm = PINEVIEW_MAX_WM,
574 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
575 	.guard_size = PINEVIEW_GUARD_WM,
576 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
577 };
578 static const struct intel_watermark_params pineview_cursor_wm = {
579 	.fifo_size = PINEVIEW_CURSOR_FIFO,
580 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
581 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
582 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
583 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 };
585 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
586 	.fifo_size = PINEVIEW_CURSOR_FIFO,
587 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
588 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
589 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
590 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
591 };
592 static const struct intel_watermark_params i965_cursor_wm_info = {
593 	.fifo_size = I965_CURSOR_FIFO,
594 	.max_wm = I965_CURSOR_MAX_WM,
595 	.default_wm = I965_CURSOR_DFT_WM,
596 	.guard_size = 2,
597 	.cacheline_size = I915_FIFO_LINE_SIZE,
598 };
599 static const struct intel_watermark_params i945_wm_info = {
600 	.fifo_size = I945_FIFO_SIZE,
601 	.max_wm = I915_MAX_WM,
602 	.default_wm = 1,
603 	.guard_size = 2,
604 	.cacheline_size = I915_FIFO_LINE_SIZE,
605 };
606 static const struct intel_watermark_params i915_wm_info = {
607 	.fifo_size = I915_FIFO_SIZE,
608 	.max_wm = I915_MAX_WM,
609 	.default_wm = 1,
610 	.guard_size = 2,
611 	.cacheline_size = I915_FIFO_LINE_SIZE,
612 };
613 static const struct intel_watermark_params i830_a_wm_info = {
614 	.fifo_size = I855GM_FIFO_SIZE,
615 	.max_wm = I915_MAX_WM,
616 	.default_wm = 1,
617 	.guard_size = 2,
618 	.cacheline_size = I830_FIFO_LINE_SIZE,
619 };
620 static const struct intel_watermark_params i830_bc_wm_info = {
621 	.fifo_size = I855GM_FIFO_SIZE,
622 	.max_wm = I915_MAX_WM/2,
623 	.default_wm = 1,
624 	.guard_size = 2,
625 	.cacheline_size = I830_FIFO_LINE_SIZE,
626 };
627 static const struct intel_watermark_params i845_wm_info = {
628 	.fifo_size = I830_FIFO_SIZE,
629 	.max_wm = I915_MAX_WM,
630 	.default_wm = 1,
631 	.guard_size = 2,
632 	.cacheline_size = I830_FIFO_LINE_SIZE,
633 };
634 
635 /**
636  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
637  * @pixel_rate: Pipe pixel rate in kHz
638  * @cpp: Plane bytes per pixel
639  * @latency: Memory wakeup latency in 0.1us units
640  *
641  * Compute the watermark using the method 1 or "small buffer"
642  * formula. The caller may additonally add extra cachelines
643  * to account for TLB misses and clock crossings.
644  *
645  * This method is concerned with the short term drain rate
646  * of the FIFO, ie. it does not account for blanking periods
647  * which would effectively reduce the average drain rate across
648  * a longer period. The name "small" refers to the fact the
649  * FIFO is relatively small compared to the amount of data
650  * fetched.
651  *
652  * The FIFO level vs. time graph might look something like:
653  *
654  *   |\   |\
655  *   | \  | \
656  * __---__---__ (- plane active, _ blanking)
657  * -> time
658  *
659  * or perhaps like this:
660  *
661  *   |\|\  |\|\
662  * __----__----__ (- plane active, _ blanking)
663  * -> time
664  *
665  * Returns:
666  * The watermark in bytes
667  */
668 static unsigned int intel_wm_method1(unsigned int pixel_rate,
669 				     unsigned int cpp,
670 				     unsigned int latency)
671 {
672 	uint64_t ret;
673 
674 	ret = (uint64_t) pixel_rate * cpp * latency;
675 	ret = DIV_ROUND_UP_ULL(ret, 10000);
676 
677 	return ret;
678 }
679 
680 /**
681  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
682  * @pixel_rate: Pipe pixel rate in kHz
683  * @htotal: Pipe horizontal total
684  * @width: Plane width in pixels
685  * @cpp: Plane bytes per pixel
686  * @latency: Memory wakeup latency in 0.1us units
687  *
688  * Compute the watermark using the method 2 or "large buffer"
689  * formula. The caller may additonally add extra cachelines
690  * to account for TLB misses and clock crossings.
691  *
692  * This method is concerned with the long term drain rate
693  * of the FIFO, ie. it does account for blanking periods
694  * which effectively reduce the average drain rate across
695  * a longer period. The name "large" refers to the fact the
696  * FIFO is relatively large compared to the amount of data
697  * fetched.
698  *
699  * The FIFO level vs. time graph might look something like:
700  *
701  *    |\___       |\___
702  *    |    \___   |    \___
703  *    |        \  |        \
704  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
705  * -> time
706  *
707  * Returns:
708  * The watermark in bytes
709  */
710 static unsigned int intel_wm_method2(unsigned int pixel_rate,
711 				     unsigned int htotal,
712 				     unsigned int width,
713 				     unsigned int cpp,
714 				     unsigned int latency)
715 {
716 	unsigned int ret;
717 
718 	/*
719 	 * FIXME remove once all users are computing
720 	 * watermarks in the correct place.
721 	 */
722 	if (WARN_ON_ONCE(htotal == 0))
723 		htotal = 1;
724 
725 	ret = (latency * pixel_rate) / (htotal * 10000);
726 	ret = (ret + 1) * width * cpp;
727 
728 	return ret;
729 }
730 
731 /**
732  * intel_calculate_wm - calculate watermark level
733  * @pixel_rate: pixel clock
734  * @wm: chip FIFO params
735  * @cpp: bytes per pixel
736  * @latency_ns: memory latency for the platform
737  *
738  * Calculate the watermark level (the level at which the display plane will
739  * start fetching from memory again).  Each chip has a different display
740  * FIFO size and allocation, so the caller needs to figure that out and pass
741  * in the correct intel_watermark_params structure.
742  *
743  * As the pixel clock runs, the FIFO will be drained at a rate that depends
744  * on the pixel size.  When it reaches the watermark level, it'll start
745  * fetching FIFO line sized based chunks from memory until the FIFO fills
746  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
747  * will occur, and a display engine hang could result.
748  */
749 static unsigned int intel_calculate_wm(int pixel_rate,
750 				       const struct intel_watermark_params *wm,
751 				       int fifo_size, int cpp,
752 				       unsigned int latency_ns)
753 {
754 	int entries, wm_size;
755 
756 	/*
757 	 * Note: we need to make sure we don't overflow for various clock &
758 	 * latency values.
759 	 * clocks go from a few thousand to several hundred thousand.
760 	 * latency is usually a few thousand
761 	 */
762 	entries = intel_wm_method1(pixel_rate, cpp,
763 				   latency_ns / 100);
764 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
765 		wm->guard_size;
766 	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
767 
768 	wm_size = fifo_size - entries;
769 	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
770 
771 	/* Don't promote wm_size to unsigned... */
772 	if (wm_size > wm->max_wm)
773 		wm_size = wm->max_wm;
774 	if (wm_size <= 0)
775 		wm_size = wm->default_wm;
776 
777 	/*
778 	 * Bspec seems to indicate that the value shouldn't be lower than
779 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
780 	 * Lets go for 8 which is the burst size since certain platforms
781 	 * already use a hardcoded 8 (which is what the spec says should be
782 	 * done).
783 	 */
784 	if (wm_size <= 8)
785 		wm_size = 8;
786 
787 	return wm_size;
788 }
789 
790 static bool is_disabling(int old, int new, int threshold)
791 {
792 	return old >= threshold && new < threshold;
793 }
794 
795 static bool is_enabling(int old, int new, int threshold)
796 {
797 	return old < threshold && new >= threshold;
798 }
799 
800 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
801 {
802 	return dev_priv->wm.max_level + 1;
803 }
804 
805 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
806 				   const struct intel_plane_state *plane_state)
807 {
808 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
809 
810 	/* FIXME check the 'enable' instead */
811 	if (!crtc_state->base.active)
812 		return false;
813 
814 	/*
815 	 * Treat cursor with fb as always visible since cursor updates
816 	 * can happen faster than the vrefresh rate, and the current
817 	 * watermark code doesn't handle that correctly. Cursor updates
818 	 * which set/clear the fb or change the cursor size are going
819 	 * to get throttled by intel_legacy_cursor_update() to work
820 	 * around this problem with the watermark code.
821 	 */
822 	if (plane->id == PLANE_CURSOR)
823 		return plane_state->base.fb != NULL;
824 	else
825 		return plane_state->base.visible;
826 }
827 
828 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
829 {
830 	struct intel_crtc *crtc, *enabled = NULL;
831 
832 	for_each_intel_crtc(&dev_priv->drm, crtc) {
833 		if (intel_crtc_active(crtc)) {
834 			if (enabled)
835 				return NULL;
836 			enabled = crtc;
837 		}
838 	}
839 
840 	return enabled;
841 }
842 
843 static void pineview_update_wm(struct intel_crtc *unused_crtc)
844 {
845 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
846 	struct intel_crtc *crtc;
847 	const struct cxsr_latency *latency;
848 	u32 reg;
849 	unsigned int wm;
850 
851 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
852 					 dev_priv->is_ddr3,
853 					 dev_priv->fsb_freq,
854 					 dev_priv->mem_freq);
855 	if (!latency) {
856 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
857 		intel_set_memory_cxsr(dev_priv, false);
858 		return;
859 	}
860 
861 	crtc = single_enabled_crtc(dev_priv);
862 	if (crtc) {
863 		const struct drm_display_mode *adjusted_mode =
864 			&crtc->config->base.adjusted_mode;
865 		const struct drm_framebuffer *fb =
866 			crtc->base.primary->state->fb;
867 		int cpp = fb->format->cpp[0];
868 		int clock = adjusted_mode->crtc_clock;
869 
870 		/* Display SR */
871 		wm = intel_calculate_wm(clock, &pineview_display_wm,
872 					pineview_display_wm.fifo_size,
873 					cpp, latency->display_sr);
874 		reg = I915_READ(DSPFW1);
875 		reg &= ~DSPFW_SR_MASK;
876 		reg |= FW_WM(wm, SR);
877 		I915_WRITE(DSPFW1, reg);
878 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
879 
880 		/* cursor SR */
881 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
882 					pineview_display_wm.fifo_size,
883 					4, latency->cursor_sr);
884 		reg = I915_READ(DSPFW3);
885 		reg &= ~DSPFW_CURSOR_SR_MASK;
886 		reg |= FW_WM(wm, CURSOR_SR);
887 		I915_WRITE(DSPFW3, reg);
888 
889 		/* Display HPLL off SR */
890 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
891 					pineview_display_hplloff_wm.fifo_size,
892 					cpp, latency->display_hpll_disable);
893 		reg = I915_READ(DSPFW3);
894 		reg &= ~DSPFW_HPLL_SR_MASK;
895 		reg |= FW_WM(wm, HPLL_SR);
896 		I915_WRITE(DSPFW3, reg);
897 
898 		/* cursor HPLL off SR */
899 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
900 					pineview_display_hplloff_wm.fifo_size,
901 					4, latency->cursor_hpll_disable);
902 		reg = I915_READ(DSPFW3);
903 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
904 		reg |= FW_WM(wm, HPLL_CURSOR);
905 		I915_WRITE(DSPFW3, reg);
906 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
907 
908 		intel_set_memory_cxsr(dev_priv, true);
909 	} else {
910 		intel_set_memory_cxsr(dev_priv, false);
911 	}
912 }
913 
914 /*
915  * Documentation says:
916  * "If the line size is small, the TLB fetches can get in the way of the
917  *  data fetches, causing some lag in the pixel data return which is not
918  *  accounted for in the above formulas. The following adjustment only
919  *  needs to be applied if eight whole lines fit in the buffer at once.
920  *  The WM is adjusted upwards by the difference between the FIFO size
921  *  and the size of 8 whole lines. This adjustment is always performed
922  *  in the actual pixel depth regardless of whether FBC is enabled or not."
923  */
924 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
925 {
926 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
927 
928 	return max(0, tlb_miss);
929 }
930 
931 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
932 				const struct g4x_wm_values *wm)
933 {
934 	enum i915_pipe pipe;
935 
936 	for_each_pipe(dev_priv, pipe)
937 		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
938 
939 	I915_WRITE(DSPFW1,
940 		   FW_WM(wm->sr.plane, SR) |
941 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
942 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
943 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
944 	I915_WRITE(DSPFW2,
945 		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
946 		   FW_WM(wm->sr.fbc, FBC_SR) |
947 		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
948 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
949 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
950 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
951 	I915_WRITE(DSPFW3,
952 		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
953 		   FW_WM(wm->sr.cursor, CURSOR_SR) |
954 		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
955 		   FW_WM(wm->hpll.plane, HPLL_SR));
956 
957 	POSTING_READ(DSPFW1);
958 }
959 
960 #define FW_WM_VLV(value, plane) \
961 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
962 
963 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
964 				const struct vlv_wm_values *wm)
965 {
966 	enum i915_pipe pipe;
967 
968 	for_each_pipe(dev_priv, pipe) {
969 		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
970 
971 		I915_WRITE(VLV_DDL(pipe),
972 			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
973 			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
974 			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
975 			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
976 	}
977 
978 	/*
979 	 * Zero the (unused) WM1 watermarks, and also clear all the
980 	 * high order bits so that there are no out of bounds values
981 	 * present in the registers during the reprogramming.
982 	 */
983 	I915_WRITE(DSPHOWM, 0);
984 	I915_WRITE(DSPHOWM1, 0);
985 	I915_WRITE(DSPFW4, 0);
986 	I915_WRITE(DSPFW5, 0);
987 	I915_WRITE(DSPFW6, 0);
988 
989 	I915_WRITE(DSPFW1,
990 		   FW_WM(wm->sr.plane, SR) |
991 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
992 		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
993 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
994 	I915_WRITE(DSPFW2,
995 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
996 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
997 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
998 	I915_WRITE(DSPFW3,
999 		   FW_WM(wm->sr.cursor, CURSOR_SR));
1000 
1001 	if (IS_CHERRYVIEW(dev_priv)) {
1002 		I915_WRITE(DSPFW7_CHV,
1003 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1004 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1005 		I915_WRITE(DSPFW8_CHV,
1006 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1007 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1008 		I915_WRITE(DSPFW9_CHV,
1009 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1010 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1011 		I915_WRITE(DSPHOWM,
1012 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1013 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1014 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1015 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1016 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1017 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1018 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1019 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1020 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1021 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1022 	} else {
1023 		I915_WRITE(DSPFW7,
1024 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1025 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1026 		I915_WRITE(DSPHOWM,
1027 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1028 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1029 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1030 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1031 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1032 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1033 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1034 	}
1035 
1036 	POSTING_READ(DSPFW1);
1037 }
1038 
1039 #undef FW_WM_VLV
1040 
1041 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1042 {
1043 	/* all latencies in usec */
1044 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1045 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1046 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1047 
1048 	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1049 }
1050 
1051 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1052 {
1053 	/*
1054 	 * DSPCNTR[13] supposedly controls whether the
1055 	 * primary plane can use the FIFO space otherwise
1056 	 * reserved for the sprite plane. It's not 100% clear
1057 	 * what the actual FIFO size is, but it looks like we
1058 	 * can happily set both primary and sprite watermarks
1059 	 * up to 127 cachelines. So that would seem to mean
1060 	 * that either DSPCNTR[13] doesn't do anything, or that
1061 	 * the total FIFO is >= 256 cachelines in size. Either
1062 	 * way, we don't seem to have to worry about this
1063 	 * repartitioning as the maximum watermark value the
1064 	 * register can hold for each plane is lower than the
1065 	 * minimum FIFO size.
1066 	 */
1067 	switch (plane_id) {
1068 	case PLANE_CURSOR:
1069 		return 63;
1070 	case PLANE_PRIMARY:
1071 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1072 	case PLANE_SPRITE0:
1073 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1074 	default:
1075 		MISSING_CASE(plane_id);
1076 		return 0;
1077 	}
1078 }
1079 
1080 static int g4x_fbc_fifo_size(int level)
1081 {
1082 	switch (level) {
1083 	case G4X_WM_LEVEL_SR:
1084 		return 7;
1085 	case G4X_WM_LEVEL_HPLL:
1086 		return 15;
1087 	default:
1088 		MISSING_CASE(level);
1089 		return 0;
1090 	}
1091 }
1092 
1093 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1094 			       const struct intel_plane_state *plane_state,
1095 			       int level)
1096 {
1097 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1098 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1099 	const struct drm_display_mode *adjusted_mode =
1100 		&crtc_state->base.adjusted_mode;
1101 	int clock, htotal, cpp, width, wm;
1102 	int latency = dev_priv->wm.pri_latency[level] * 10;
1103 
1104 	if (latency == 0)
1105 		return USHRT_MAX;
1106 
1107 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1108 		return 0;
1109 
1110 	/*
1111 	 * Not 100% sure which way ELK should go here as the
1112 	 * spec only says CL/CTG should assume 32bpp and BW
1113 	 * doesn't need to. But as these things followed the
1114 	 * mobile vs. desktop lines on gen3 as well, let's
1115 	 * assume ELK doesn't need this.
1116 	 *
1117 	 * The spec also fails to list such a restriction for
1118 	 * the HPLL watermark, which seems a little strange.
1119 	 * Let's use 32bpp for the HPLL watermark as well.
1120 	 */
1121 	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1122 	    level != G4X_WM_LEVEL_NORMAL)
1123 		cpp = 4;
1124 	else
1125 		cpp = plane_state->base.fb->format->cpp[0];
1126 
1127 	clock = adjusted_mode->crtc_clock;
1128 	htotal = adjusted_mode->crtc_htotal;
1129 
1130 	if (plane->id == PLANE_CURSOR)
1131 		width = plane_state->base.crtc_w;
1132 	else
1133 		width = drm_rect_width(&plane_state->base.dst);
1134 
1135 	if (plane->id == PLANE_CURSOR) {
1136 		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1137 	} else if (plane->id == PLANE_PRIMARY &&
1138 		   level == G4X_WM_LEVEL_NORMAL) {
1139 		wm = intel_wm_method1(clock, cpp, latency);
1140 	} else {
1141 		int small, large;
1142 
1143 		small = intel_wm_method1(clock, cpp, latency);
1144 		large = intel_wm_method2(clock, htotal, width, cpp, latency);
1145 
1146 		wm = min(small, large);
1147 	}
1148 
1149 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1150 			      width, cpp);
1151 
1152 	wm = DIV_ROUND_UP(wm, 64) + 2;
1153 
1154 	return min_t(int, wm, USHRT_MAX);
1155 }
1156 
1157 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1158 				 int level, enum plane_id plane_id, u16 value)
1159 {
1160 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1161 	bool dirty = false;
1162 
1163 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1164 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1165 
1166 		dirty |= raw->plane[plane_id] != value;
1167 		raw->plane[plane_id] = value;
1168 	}
1169 
1170 	return dirty;
1171 }
1172 
1173 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1174 			       int level, u16 value)
1175 {
1176 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1177 	bool dirty = false;
1178 
1179 	/* NORMAL level doesn't have an FBC watermark */
1180 	level = max(level, G4X_WM_LEVEL_SR);
1181 
1182 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1183 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1184 
1185 		dirty |= raw->fbc != value;
1186 		raw->fbc = value;
1187 	}
1188 
1189 	return dirty;
1190 }
1191 
1192 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1193 				   const struct intel_plane_state *pstate,
1194 				   uint32_t pri_val);
1195 
1196 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1197 				     const struct intel_plane_state *plane_state)
1198 {
1199 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1200 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1201 	enum plane_id plane_id = plane->id;
1202 	bool dirty = false;
1203 	int level;
1204 
1205 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1206 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1207 		if (plane_id == PLANE_PRIMARY)
1208 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1209 		goto out;
1210 	}
1211 
1212 	for (level = 0; level < num_levels; level++) {
1213 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1214 		int wm, max_wm;
1215 
1216 		wm = g4x_compute_wm(crtc_state, plane_state, level);
1217 		max_wm = g4x_plane_fifo_size(plane_id, level);
1218 
1219 		if (wm > max_wm)
1220 			break;
1221 
1222 		dirty |= raw->plane[plane_id] != wm;
1223 		raw->plane[plane_id] = wm;
1224 
1225 		if (plane_id != PLANE_PRIMARY ||
1226 		    level == G4X_WM_LEVEL_NORMAL)
1227 			continue;
1228 
1229 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1230 					raw->plane[plane_id]);
1231 		max_wm = g4x_fbc_fifo_size(level);
1232 
1233 		/*
1234 		 * FBC wm is not mandatory as we
1235 		 * can always just disable its use.
1236 		 */
1237 		if (wm > max_wm)
1238 			wm = USHRT_MAX;
1239 
1240 		dirty |= raw->fbc != wm;
1241 		raw->fbc = wm;
1242 	}
1243 
1244 	/* mark watermarks as invalid */
1245 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1246 
1247 	if (plane_id == PLANE_PRIMARY)
1248 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1249 
1250  out:
1251 	if (dirty) {
1252 		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1253 			      plane->base.name,
1254 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1255 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1256 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1257 
1258 		if (plane_id == PLANE_PRIMARY)
1259 			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1260 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1261 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1262 	}
1263 
1264 	return dirty;
1265 }
1266 
1267 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1268 				      enum plane_id plane_id, int level)
1269 {
1270 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1271 
1272 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1273 }
1274 
1275 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1276 				     int level)
1277 {
1278 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1279 
1280 	if (level > dev_priv->wm.max_level)
1281 		return false;
1282 
1283 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1284 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1285 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1286 }
1287 
1288 /* mark all levels starting from 'level' as invalid */
1289 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1290 			       struct g4x_wm_state *wm_state, int level)
1291 {
1292 	if (level <= G4X_WM_LEVEL_NORMAL) {
1293 		enum plane_id plane_id;
1294 
1295 		for_each_plane_id_on_crtc(crtc, plane_id)
1296 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1297 	}
1298 
1299 	if (level <= G4X_WM_LEVEL_SR) {
1300 		wm_state->cxsr = false;
1301 		wm_state->sr.cursor = USHRT_MAX;
1302 		wm_state->sr.plane = USHRT_MAX;
1303 		wm_state->sr.fbc = USHRT_MAX;
1304 	}
1305 
1306 	if (level <= G4X_WM_LEVEL_HPLL) {
1307 		wm_state->hpll_en = false;
1308 		wm_state->hpll.cursor = USHRT_MAX;
1309 		wm_state->hpll.plane = USHRT_MAX;
1310 		wm_state->hpll.fbc = USHRT_MAX;
1311 	}
1312 }
1313 
1314 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1315 {
1316 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1317 	struct intel_atomic_state *state =
1318 		to_intel_atomic_state(crtc_state->base.state);
1319 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1320 	int num_active_planes = hweight32(crtc_state->active_planes &
1321 					  ~BIT(PLANE_CURSOR));
1322 	const struct g4x_pipe_wm *raw;
1323 	const struct intel_plane_state *old_plane_state;
1324 	const struct intel_plane_state *new_plane_state;
1325 	struct intel_plane *plane;
1326 	enum plane_id plane_id;
1327 	int i, level;
1328 	unsigned int dirty = 0;
1329 
1330 	for_each_oldnew_intel_plane_in_state(state, plane,
1331 					     old_plane_state,
1332 					     new_plane_state, i) {
1333 		if (new_plane_state->base.crtc != &crtc->base &&
1334 		    old_plane_state->base.crtc != &crtc->base)
1335 			continue;
1336 
1337 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1338 			dirty |= BIT(plane->id);
1339 	}
1340 
1341 	if (!dirty)
1342 		return 0;
1343 
1344 	level = G4X_WM_LEVEL_NORMAL;
1345 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1346 		goto out;
1347 
1348 	raw = &crtc_state->wm.g4x.raw[level];
1349 	for_each_plane_id_on_crtc(crtc, plane_id)
1350 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1351 
1352 	level = G4X_WM_LEVEL_SR;
1353 
1354 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1355 		goto out;
1356 
1357 	raw = &crtc_state->wm.g4x.raw[level];
1358 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1359 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1360 	wm_state->sr.fbc = raw->fbc;
1361 
1362 	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1363 
1364 	level = G4X_WM_LEVEL_HPLL;
1365 
1366 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1367 		goto out;
1368 
1369 	raw = &crtc_state->wm.g4x.raw[level];
1370 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1371 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1372 	wm_state->hpll.fbc = raw->fbc;
1373 
1374 	wm_state->hpll_en = wm_state->cxsr;
1375 
1376 	level++;
1377 
1378  out:
1379 	if (level == G4X_WM_LEVEL_NORMAL)
1380 		return -EINVAL;
1381 
1382 	/* invalidate the higher levels */
1383 	g4x_invalidate_wms(crtc, wm_state, level);
1384 
1385 	/*
1386 	 * Determine if the FBC watermark(s) can be used. IF
1387 	 * this isn't the case we prefer to disable the FBC
1388 	 ( watermark(s) rather than disable the SR/HPLL
1389 	 * level(s) entirely.
1390 	 */
1391 	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1392 
1393 	if (level >= G4X_WM_LEVEL_SR &&
1394 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1395 		wm_state->fbc_en = false;
1396 	else if (level >= G4X_WM_LEVEL_HPLL &&
1397 		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1398 		wm_state->fbc_en = false;
1399 
1400 	return 0;
1401 }
1402 
1403 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1404 				       struct intel_crtc *crtc,
1405 				       struct intel_crtc_state *crtc_state)
1406 {
1407 	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1408 	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1409 	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1410 	enum plane_id plane_id;
1411 
1412 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1413 		!crtc_state->disable_cxsr;
1414 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1415 		!crtc_state->disable_cxsr;
1416 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1417 
1418 	for_each_plane_id_on_crtc(crtc, plane_id) {
1419 		intermediate->wm.plane[plane_id] =
1420 			max(optimal->wm.plane[plane_id],
1421 			    active->wm.plane[plane_id]);
1422 
1423 		WARN_ON(intermediate->wm.plane[plane_id] >
1424 			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1425 	}
1426 
1427 	intermediate->sr.plane = max(optimal->sr.plane,
1428 				     active->sr.plane);
1429 	intermediate->sr.cursor = max(optimal->sr.cursor,
1430 				      active->sr.cursor);
1431 	intermediate->sr.fbc = max(optimal->sr.fbc,
1432 				   active->sr.fbc);
1433 
1434 	intermediate->hpll.plane = max(optimal->hpll.plane,
1435 				       active->hpll.plane);
1436 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1437 					active->hpll.cursor);
1438 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1439 				     active->hpll.fbc);
1440 
1441 	WARN_ON((intermediate->sr.plane >
1442 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1443 		 intermediate->sr.cursor >
1444 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1445 		intermediate->cxsr);
1446 	WARN_ON((intermediate->sr.plane >
1447 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1448 		 intermediate->sr.cursor >
1449 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1450 		intermediate->hpll_en);
1451 
1452 	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1453 		intermediate->fbc_en && intermediate->cxsr);
1454 	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1455 		intermediate->fbc_en && intermediate->hpll_en);
1456 
1457 	/*
1458 	 * If our intermediate WM are identical to the final WM, then we can
1459 	 * omit the post-vblank programming; only update if it's different.
1460 	 */
1461 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1462 		crtc_state->wm.need_postvbl_update = true;
1463 
1464 	return 0;
1465 }
1466 
1467 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1468 			 struct g4x_wm_values *wm)
1469 {
1470 	struct intel_crtc *crtc;
1471 	int num_active_crtcs = 0;
1472 
1473 	wm->cxsr = true;
1474 	wm->hpll_en = true;
1475 	wm->fbc_en = true;
1476 
1477 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1478 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1479 
1480 		if (!crtc->active)
1481 			continue;
1482 
1483 		if (!wm_state->cxsr)
1484 			wm->cxsr = false;
1485 		if (!wm_state->hpll_en)
1486 			wm->hpll_en = false;
1487 		if (!wm_state->fbc_en)
1488 			wm->fbc_en = false;
1489 
1490 		num_active_crtcs++;
1491 	}
1492 
1493 	if (num_active_crtcs != 1) {
1494 		wm->cxsr = false;
1495 		wm->hpll_en = false;
1496 		wm->fbc_en = false;
1497 	}
1498 
1499 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1500 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1501 		enum i915_pipe pipe = crtc->pipe;
1502 
1503 		wm->pipe[pipe] = wm_state->wm;
1504 		if (crtc->active && wm->cxsr)
1505 			wm->sr = wm_state->sr;
1506 		if (crtc->active && wm->hpll_en)
1507 			wm->hpll = wm_state->hpll;
1508 	}
1509 }
1510 
1511 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1512 {
1513 	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1514 	struct g4x_wm_values new_wm = {};
1515 
1516 	g4x_merge_wm(dev_priv, &new_wm);
1517 
1518 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1519 		return;
1520 
1521 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1522 		_intel_set_memory_cxsr(dev_priv, false);
1523 
1524 	g4x_write_wm_values(dev_priv, &new_wm);
1525 
1526 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1527 		_intel_set_memory_cxsr(dev_priv, true);
1528 
1529 	*old_wm = new_wm;
1530 }
1531 
1532 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1533 				   struct intel_crtc_state *crtc_state)
1534 {
1535 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1536 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1537 
1538 	mutex_lock(&dev_priv->wm.wm_mutex);
1539 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1540 	g4x_program_watermarks(dev_priv);
1541 	mutex_unlock(&dev_priv->wm.wm_mutex);
1542 }
1543 
1544 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1545 				    struct intel_crtc_state *crtc_state)
1546 {
1547 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1548 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1549 
1550 	if (!crtc_state->wm.need_postvbl_update)
1551 		return;
1552 
1553 	mutex_lock(&dev_priv->wm.wm_mutex);
1554 	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1555 	g4x_program_watermarks(dev_priv);
1556 	mutex_unlock(&dev_priv->wm.wm_mutex);
1557 }
1558 
1559 /* latency must be in 0.1us units. */
1560 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1561 				   unsigned int htotal,
1562 				   unsigned int width,
1563 				   unsigned int cpp,
1564 				   unsigned int latency)
1565 {
1566 	unsigned int ret;
1567 
1568 	ret = intel_wm_method2(pixel_rate, htotal,
1569 			       width, cpp, latency);
1570 	ret = DIV_ROUND_UP(ret, 64);
1571 
1572 	return ret;
1573 }
1574 
1575 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1576 {
1577 	/* all latencies in usec */
1578 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1579 
1580 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1581 
1582 	if (IS_CHERRYVIEW(dev_priv)) {
1583 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1584 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1585 
1586 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1587 	}
1588 }
1589 
1590 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1591 				     const struct intel_plane_state *plane_state,
1592 				     int level)
1593 {
1594 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1595 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1596 	const struct drm_display_mode *adjusted_mode =
1597 		&crtc_state->base.adjusted_mode;
1598 	int clock, htotal, cpp, width, wm;
1599 
1600 	if (dev_priv->wm.pri_latency[level] == 0)
1601 		return USHRT_MAX;
1602 
1603 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1604 		return 0;
1605 
1606 	cpp = plane_state->base.fb->format->cpp[0];
1607 	clock = adjusted_mode->crtc_clock;
1608 	htotal = adjusted_mode->crtc_htotal;
1609 	width = crtc_state->pipe_src_w;
1610 
1611 	if (plane->id == PLANE_CURSOR) {
1612 		/*
1613 		 * FIXME the formula gives values that are
1614 		 * too big for the cursor FIFO, and hence we
1615 		 * would never be able to use cursors. For
1616 		 * now just hardcode the watermark.
1617 		 */
1618 		wm = 63;
1619 	} else {
1620 		wm = vlv_wm_method2(clock, htotal, width, cpp,
1621 				    dev_priv->wm.pri_latency[level] * 10);
1622 	}
1623 
1624 	return min_t(int, wm, USHRT_MAX);
1625 }
1626 
1627 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1628 {
1629 	return (active_planes & (BIT(PLANE_SPRITE0) |
1630 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1631 }
1632 
1633 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1634 {
1635 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1636 	const struct g4x_pipe_wm *raw =
1637 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1638 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1639 	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1640 	int num_active_planes = hweight32(active_planes);
1641 	const int fifo_size = 511;
1642 	int fifo_extra, fifo_left = fifo_size;
1643 	int sprite0_fifo_extra = 0;
1644 	unsigned int total_rate;
1645 	enum plane_id plane_id;
1646 
1647 	/*
1648 	 * When enabling sprite0 after sprite1 has already been enabled
1649 	 * we tend to get an underrun unless sprite0 already has some
1650 	 * FIFO space allcoated. Hence we always allocate at least one
1651 	 * cacheline for sprite0 whenever sprite1 is enabled.
1652 	 *
1653 	 * All other plane enable sequences appear immune to this problem.
1654 	 */
1655 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1656 		sprite0_fifo_extra = 1;
1657 
1658 	total_rate = raw->plane[PLANE_PRIMARY] +
1659 		raw->plane[PLANE_SPRITE0] +
1660 		raw->plane[PLANE_SPRITE1] +
1661 		sprite0_fifo_extra;
1662 
1663 	if (total_rate > fifo_size)
1664 		return -EINVAL;
1665 
1666 	if (total_rate == 0)
1667 		total_rate = 1;
1668 
1669 	for_each_plane_id_on_crtc(crtc, plane_id) {
1670 		unsigned int rate;
1671 
1672 		if ((active_planes & BIT(plane_id)) == 0) {
1673 			fifo_state->plane[plane_id] = 0;
1674 			continue;
1675 		}
1676 
1677 		rate = raw->plane[plane_id];
1678 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1679 		fifo_left -= fifo_state->plane[plane_id];
1680 	}
1681 
1682 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1683 	fifo_left -= sprite0_fifo_extra;
1684 
1685 	fifo_state->plane[PLANE_CURSOR] = 63;
1686 
1687 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1688 
1689 	/* spread the remainder evenly */
1690 	for_each_plane_id_on_crtc(crtc, plane_id) {
1691 		int plane_extra;
1692 
1693 		if (fifo_left == 0)
1694 			break;
1695 
1696 		if ((active_planes & BIT(plane_id)) == 0)
1697 			continue;
1698 
1699 		plane_extra = min(fifo_extra, fifo_left);
1700 		fifo_state->plane[plane_id] += plane_extra;
1701 		fifo_left -= plane_extra;
1702 	}
1703 
1704 	WARN_ON(active_planes != 0 && fifo_left != 0);
1705 
1706 	/* give it all to the first plane if none are active */
1707 	if (active_planes == 0) {
1708 		WARN_ON(fifo_left != fifo_size);
1709 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1710 	}
1711 
1712 	return 0;
1713 }
1714 
1715 /* mark all levels starting from 'level' as invalid */
1716 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1717 			       struct vlv_wm_state *wm_state, int level)
1718 {
1719 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1720 
1721 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1722 		enum plane_id plane_id;
1723 
1724 		for_each_plane_id_on_crtc(crtc, plane_id)
1725 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1726 
1727 		wm_state->sr[level].cursor = USHRT_MAX;
1728 		wm_state->sr[level].plane = USHRT_MAX;
1729 	}
1730 }
1731 
1732 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1733 {
1734 	if (wm > fifo_size)
1735 		return USHRT_MAX;
1736 	else
1737 		return fifo_size - wm;
1738 }
1739 
1740 /*
1741  * Starting from 'level' set all higher
1742  * levels to 'value' in the "raw" watermarks.
1743  */
1744 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1745 				 int level, enum plane_id plane_id, u16 value)
1746 {
1747 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1748 	int num_levels = intel_wm_num_levels(dev_priv);
1749 	bool dirty = false;
1750 
1751 	for (; level < num_levels; level++) {
1752 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1753 
1754 		dirty |= raw->plane[plane_id] != value;
1755 		raw->plane[plane_id] = value;
1756 	}
1757 
1758 	return dirty;
1759 }
1760 
1761 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1762 				     const struct intel_plane_state *plane_state)
1763 {
1764 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1765 	enum plane_id plane_id = plane->id;
1766 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1767 	int level;
1768 	bool dirty = false;
1769 
1770 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1771 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1772 		goto out;
1773 	}
1774 
1775 	for (level = 0; level < num_levels; level++) {
1776 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1777 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1778 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1779 
1780 		if (wm > max_wm)
1781 			break;
1782 
1783 		dirty |= raw->plane[plane_id] != wm;
1784 		raw->plane[plane_id] = wm;
1785 	}
1786 
1787 	/* mark all higher levels as invalid */
1788 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1789 
1790 out:
1791 	if (dirty)
1792 		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1793 			      plane->base.name,
1794 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1795 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1796 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1797 
1798 	return dirty;
1799 }
1800 
1801 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1802 				      enum plane_id plane_id, int level)
1803 {
1804 	const struct g4x_pipe_wm *raw =
1805 		&crtc_state->wm.vlv.raw[level];
1806 	const struct vlv_fifo_state *fifo_state =
1807 		&crtc_state->wm.vlv.fifo_state;
1808 
1809 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1810 }
1811 
1812 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1813 {
1814 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1815 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1816 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1817 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1818 }
1819 
1820 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1821 {
1822 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1823 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1824 	struct intel_atomic_state *state =
1825 		to_intel_atomic_state(crtc_state->base.state);
1826 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1827 	const struct vlv_fifo_state *fifo_state =
1828 		&crtc_state->wm.vlv.fifo_state;
1829 	int num_active_planes = hweight32(crtc_state->active_planes &
1830 					  ~BIT(PLANE_CURSOR));
1831 	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1832 	const struct intel_plane_state *old_plane_state;
1833 	const struct intel_plane_state *new_plane_state;
1834 	struct intel_plane *plane;
1835 	enum plane_id plane_id;
1836 	int level, ret, i;
1837 	unsigned int dirty = 0;
1838 
1839 	for_each_oldnew_intel_plane_in_state(state, plane,
1840 					     old_plane_state,
1841 					     new_plane_state, i) {
1842 		if (new_plane_state->base.crtc != &crtc->base &&
1843 		    old_plane_state->base.crtc != &crtc->base)
1844 			continue;
1845 
1846 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1847 			dirty |= BIT(plane->id);
1848 	}
1849 
1850 	/*
1851 	 * DSPARB registers may have been reset due to the
1852 	 * power well being turned off. Make sure we restore
1853 	 * them to a consistent state even if no primary/sprite
1854 	 * planes are initially active.
1855 	 */
1856 	if (needs_modeset)
1857 		crtc_state->fifo_changed = true;
1858 
1859 	if (!dirty)
1860 		return 0;
1861 
1862 	/* cursor changes don't warrant a FIFO recompute */
1863 	if (dirty & ~BIT(PLANE_CURSOR)) {
1864 		const struct intel_crtc_state *old_crtc_state =
1865 			intel_atomic_get_old_crtc_state(state, crtc);
1866 		const struct vlv_fifo_state *old_fifo_state =
1867 			&old_crtc_state->wm.vlv.fifo_state;
1868 
1869 		ret = vlv_compute_fifo(crtc_state);
1870 		if (ret)
1871 			return ret;
1872 
1873 		if (needs_modeset ||
1874 		    memcmp(old_fifo_state, fifo_state,
1875 			   sizeof(*fifo_state)) != 0)
1876 			crtc_state->fifo_changed = true;
1877 	}
1878 
1879 	/* initially allow all levels */
1880 	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1881 	/*
1882 	 * Note that enabling cxsr with no primary/sprite planes
1883 	 * enabled can wedge the pipe. Hence we only allow cxsr
1884 	 * with exactly one enabled primary/sprite plane.
1885 	 */
1886 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1887 
1888 	for (level = 0; level < wm_state->num_levels; level++) {
1889 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1890 		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1891 
1892 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1893 			break;
1894 
1895 		for_each_plane_id_on_crtc(crtc, plane_id) {
1896 			wm_state->wm[level].plane[plane_id] =
1897 				vlv_invert_wm_value(raw->plane[plane_id],
1898 						    fifo_state->plane[plane_id]);
1899 		}
1900 
1901 		wm_state->sr[level].plane =
1902 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1903 						 raw->plane[PLANE_SPRITE0],
1904 						 raw->plane[PLANE_SPRITE1]),
1905 					    sr_fifo_size);
1906 
1907 		wm_state->sr[level].cursor =
1908 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1909 					    63);
1910 	}
1911 
1912 	if (level == 0)
1913 		return -EINVAL;
1914 
1915 	/* limit to only levels we can actually handle */
1916 	wm_state->num_levels = level;
1917 
1918 	/* invalidate the higher levels */
1919 	vlv_invalidate_wms(crtc, wm_state, level);
1920 
1921 	return 0;
1922 }
1923 
1924 #define VLV_FIFO(plane, value) \
1925 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1926 
1927 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1928 				   struct intel_crtc_state *crtc_state)
1929 {
1930 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1931 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1932 	const struct vlv_fifo_state *fifo_state =
1933 		&crtc_state->wm.vlv.fifo_state;
1934 	int sprite0_start, sprite1_start, fifo_size;
1935 
1936 	if (!crtc_state->fifo_changed)
1937 		return;
1938 
1939 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1940 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1941 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1942 
1943 	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1944 	WARN_ON(fifo_size != 511);
1945 
1946 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1947 
1948 	/*
1949 	 * uncore.lock serves a double purpose here. It allows us to
1950 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1951 	 * it protects the DSPARB registers from getting clobbered by
1952 	 * parallel updates from multiple pipes.
1953 	 *
1954 	 * intel_pipe_update_start() has already disabled interrupts
1955 	 * for us, so a plain spin_lock() is sufficient here.
1956 	 */
1957 	lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
1958 
1959 	switch (crtc->pipe) {
1960 		uint32_t dsparb, dsparb2, dsparb3;
1961 	case PIPE_A:
1962 		dsparb = I915_READ_FW(DSPARB);
1963 		dsparb2 = I915_READ_FW(DSPARB2);
1964 
1965 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1966 			    VLV_FIFO(SPRITEB, 0xff));
1967 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1968 			   VLV_FIFO(SPRITEB, sprite1_start));
1969 
1970 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1971 			     VLV_FIFO(SPRITEB_HI, 0x1));
1972 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1973 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1974 
1975 		I915_WRITE_FW(DSPARB, dsparb);
1976 		I915_WRITE_FW(DSPARB2, dsparb2);
1977 		break;
1978 	case PIPE_B:
1979 		dsparb = I915_READ_FW(DSPARB);
1980 		dsparb2 = I915_READ_FW(DSPARB2);
1981 
1982 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1983 			    VLV_FIFO(SPRITED, 0xff));
1984 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1985 			   VLV_FIFO(SPRITED, sprite1_start));
1986 
1987 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1988 			     VLV_FIFO(SPRITED_HI, 0xff));
1989 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1990 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1991 
1992 		I915_WRITE_FW(DSPARB, dsparb);
1993 		I915_WRITE_FW(DSPARB2, dsparb2);
1994 		break;
1995 	case PIPE_C:
1996 		dsparb3 = I915_READ_FW(DSPARB3);
1997 		dsparb2 = I915_READ_FW(DSPARB2);
1998 
1999 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2000 			     VLV_FIFO(SPRITEF, 0xff));
2001 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2002 			    VLV_FIFO(SPRITEF, sprite1_start));
2003 
2004 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2005 			     VLV_FIFO(SPRITEF_HI, 0xff));
2006 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2007 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2008 
2009 		I915_WRITE_FW(DSPARB3, dsparb3);
2010 		I915_WRITE_FW(DSPARB2, dsparb2);
2011 		break;
2012 	default:
2013 		break;
2014 	}
2015 
2016 	POSTING_READ_FW(DSPARB);
2017 
2018 	lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
2019 }
2020 
2021 #undef VLV_FIFO
2022 
2023 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2024 				       struct intel_crtc *crtc,
2025 				       struct intel_crtc_state *crtc_state)
2026 {
2027 	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2028 	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2029 	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2030 	int level;
2031 
2032 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2033 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2034 		!crtc_state->disable_cxsr;
2035 
2036 	for (level = 0; level < intermediate->num_levels; level++) {
2037 		enum plane_id plane_id;
2038 
2039 		for_each_plane_id_on_crtc(crtc, plane_id) {
2040 			intermediate->wm[level].plane[plane_id] =
2041 				min(optimal->wm[level].plane[plane_id],
2042 				    active->wm[level].plane[plane_id]);
2043 		}
2044 
2045 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
2046 						    active->sr[level].plane);
2047 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2048 						     active->sr[level].cursor);
2049 	}
2050 
2051 	vlv_invalidate_wms(crtc, intermediate, level);
2052 
2053 	/*
2054 	 * If our intermediate WM are identical to the final WM, then we can
2055 	 * omit the post-vblank programming; only update if it's different.
2056 	 */
2057 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2058 		crtc_state->wm.need_postvbl_update = true;
2059 
2060 	return 0;
2061 }
2062 
2063 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2064 			 struct vlv_wm_values *wm)
2065 {
2066 	struct intel_crtc *crtc;
2067 	int num_active_crtcs = 0;
2068 
2069 	wm->level = dev_priv->wm.max_level;
2070 	wm->cxsr = true;
2071 
2072 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2073 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2074 
2075 		if (!crtc->active)
2076 			continue;
2077 
2078 		if (!wm_state->cxsr)
2079 			wm->cxsr = false;
2080 
2081 		num_active_crtcs++;
2082 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2083 	}
2084 
2085 	if (num_active_crtcs != 1)
2086 		wm->cxsr = false;
2087 
2088 	if (num_active_crtcs > 1)
2089 		wm->level = VLV_WM_LEVEL_PM2;
2090 
2091 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2092 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2093 		enum i915_pipe pipe = crtc->pipe;
2094 
2095 		wm->pipe[pipe] = wm_state->wm[wm->level];
2096 		if (crtc->active && wm->cxsr)
2097 			wm->sr = wm_state->sr[wm->level];
2098 
2099 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2100 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2101 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2102 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2103 	}
2104 }
2105 
2106 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2107 {
2108 	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2109 	struct vlv_wm_values new_wm = {};
2110 
2111 	vlv_merge_wm(dev_priv, &new_wm);
2112 
2113 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2114 		return;
2115 
2116 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2117 		chv_set_memory_dvfs(dev_priv, false);
2118 
2119 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2120 		chv_set_memory_pm5(dev_priv, false);
2121 
2122 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2123 		_intel_set_memory_cxsr(dev_priv, false);
2124 
2125 	vlv_write_wm_values(dev_priv, &new_wm);
2126 
2127 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2128 		_intel_set_memory_cxsr(dev_priv, true);
2129 
2130 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2131 		chv_set_memory_pm5(dev_priv, true);
2132 
2133 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2134 		chv_set_memory_dvfs(dev_priv, true);
2135 
2136 	*old_wm = new_wm;
2137 }
2138 
2139 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2140 				   struct intel_crtc_state *crtc_state)
2141 {
2142 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2143 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2144 
2145 	mutex_lock(&dev_priv->wm.wm_mutex);
2146 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2147 	vlv_program_watermarks(dev_priv);
2148 	mutex_unlock(&dev_priv->wm.wm_mutex);
2149 }
2150 
2151 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2152 				    struct intel_crtc_state *crtc_state)
2153 {
2154 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2155 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2156 
2157 	if (!crtc_state->wm.need_postvbl_update)
2158 		return;
2159 
2160 	mutex_lock(&dev_priv->wm.wm_mutex);
2161 	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2162 	vlv_program_watermarks(dev_priv);
2163 	mutex_unlock(&dev_priv->wm.wm_mutex);
2164 }
2165 
2166 static void i965_update_wm(struct intel_crtc *unused_crtc)
2167 {
2168 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2169 	struct intel_crtc *crtc;
2170 	int srwm = 1;
2171 	int cursor_sr = 16;
2172 	bool cxsr_enabled;
2173 
2174 	/* Calc sr entries for one plane configs */
2175 	crtc = single_enabled_crtc(dev_priv);
2176 	if (crtc) {
2177 		/* self-refresh has much higher latency */
2178 		static const int sr_latency_ns = 12000;
2179 		const struct drm_display_mode *adjusted_mode =
2180 			&crtc->config->base.adjusted_mode;
2181 		const struct drm_framebuffer *fb =
2182 			crtc->base.primary->state->fb;
2183 		int clock = adjusted_mode->crtc_clock;
2184 		int htotal = adjusted_mode->crtc_htotal;
2185 		int hdisplay = crtc->config->pipe_src_w;
2186 		int cpp = fb->format->cpp[0];
2187 		int entries;
2188 
2189 		entries = intel_wm_method2(clock, htotal,
2190 					   hdisplay, cpp, sr_latency_ns / 100);
2191 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2192 		srwm = I965_FIFO_SIZE - entries;
2193 		if (srwm < 0)
2194 			srwm = 1;
2195 		srwm &= 0x1ff;
2196 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2197 			      entries, srwm);
2198 
2199 		entries = intel_wm_method2(clock, htotal,
2200 					   crtc->base.cursor->state->crtc_w, 4,
2201 					   sr_latency_ns / 100);
2202 		entries = DIV_ROUND_UP(entries,
2203 				       i965_cursor_wm_info.cacheline_size) +
2204 			i965_cursor_wm_info.guard_size;
2205 
2206 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2207 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2208 			cursor_sr = i965_cursor_wm_info.max_wm;
2209 
2210 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2211 			      "cursor %d\n", srwm, cursor_sr);
2212 
2213 		cxsr_enabled = true;
2214 	} else {
2215 		cxsr_enabled = false;
2216 		/* Turn off self refresh if both pipes are enabled */
2217 		intel_set_memory_cxsr(dev_priv, false);
2218 	}
2219 
2220 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2221 		      srwm);
2222 
2223 	/* 965 has limitations... */
2224 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2225 		   FW_WM(8, CURSORB) |
2226 		   FW_WM(8, PLANEB) |
2227 		   FW_WM(8, PLANEA));
2228 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2229 		   FW_WM(8, PLANEC_OLD));
2230 	/* update cursor SR watermark */
2231 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2232 
2233 	if (cxsr_enabled)
2234 		intel_set_memory_cxsr(dev_priv, true);
2235 }
2236 
2237 #undef FW_WM
2238 
2239 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2240 {
2241 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2242 	const struct intel_watermark_params *wm_info;
2243 	uint32_t fwater_lo;
2244 	uint32_t fwater_hi;
2245 	int cwm, srwm = 1;
2246 	int fifo_size;
2247 	int planea_wm, planeb_wm;
2248 	struct intel_crtc *crtc, *enabled = NULL;
2249 
2250 	if (IS_I945GM(dev_priv))
2251 		wm_info = &i945_wm_info;
2252 	else if (!IS_GEN2(dev_priv))
2253 		wm_info = &i915_wm_info;
2254 	else
2255 		wm_info = &i830_a_wm_info;
2256 
2257 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2258 	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2259 	if (intel_crtc_active(crtc)) {
2260 		const struct drm_display_mode *adjusted_mode =
2261 			&crtc->config->base.adjusted_mode;
2262 		const struct drm_framebuffer *fb =
2263 			crtc->base.primary->state->fb;
2264 		int cpp;
2265 
2266 		if (IS_GEN2(dev_priv))
2267 			cpp = 4;
2268 		else
2269 			cpp = fb->format->cpp[0];
2270 
2271 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2272 					       wm_info, fifo_size, cpp,
2273 					       pessimal_latency_ns);
2274 		enabled = crtc;
2275 	} else {
2276 		planea_wm = fifo_size - wm_info->guard_size;
2277 		if (planea_wm > (long)wm_info->max_wm)
2278 			planea_wm = wm_info->max_wm;
2279 	}
2280 
2281 	if (IS_GEN2(dev_priv))
2282 		wm_info = &i830_bc_wm_info;
2283 
2284 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2285 	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2286 	if (intel_crtc_active(crtc)) {
2287 		const struct drm_display_mode *adjusted_mode =
2288 			&crtc->config->base.adjusted_mode;
2289 		const struct drm_framebuffer *fb =
2290 			crtc->base.primary->state->fb;
2291 		int cpp;
2292 
2293 		if (IS_GEN2(dev_priv))
2294 			cpp = 4;
2295 		else
2296 			cpp = fb->format->cpp[0];
2297 
2298 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2299 					       wm_info, fifo_size, cpp,
2300 					       pessimal_latency_ns);
2301 		if (enabled == NULL)
2302 			enabled = crtc;
2303 		else
2304 			enabled = NULL;
2305 	} else {
2306 		planeb_wm = fifo_size - wm_info->guard_size;
2307 		if (planeb_wm > (long)wm_info->max_wm)
2308 			planeb_wm = wm_info->max_wm;
2309 	}
2310 
2311 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2312 
2313 	if (IS_I915GM(dev_priv) && enabled) {
2314 		struct drm_i915_gem_object *obj;
2315 
2316 		obj = intel_fb_obj(enabled->base.primary->state->fb);
2317 
2318 		/* self-refresh seems busted with untiled */
2319 		if (!i915_gem_object_is_tiled(obj))
2320 			enabled = NULL;
2321 	}
2322 
2323 	/*
2324 	 * Overlay gets an aggressive default since video jitter is bad.
2325 	 */
2326 	cwm = 2;
2327 
2328 	/* Play safe and disable self-refresh before adjusting watermarks. */
2329 	intel_set_memory_cxsr(dev_priv, false);
2330 
2331 	/* Calc sr entries for one plane configs */
2332 	if (HAS_FW_BLC(dev_priv) && enabled) {
2333 		/* self-refresh has much higher latency */
2334 		static const int sr_latency_ns = 6000;
2335 		const struct drm_display_mode *adjusted_mode =
2336 			&enabled->config->base.adjusted_mode;
2337 		const struct drm_framebuffer *fb =
2338 			enabled->base.primary->state->fb;
2339 		int clock = adjusted_mode->crtc_clock;
2340 		int htotal = adjusted_mode->crtc_htotal;
2341 		int hdisplay = enabled->config->pipe_src_w;
2342 		int cpp;
2343 		int entries;
2344 
2345 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2346 			cpp = 4;
2347 		else
2348 			cpp = fb->format->cpp[0];
2349 
2350 		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2351 					   sr_latency_ns / 100);
2352 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2353 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2354 		srwm = wm_info->fifo_size - entries;
2355 		if (srwm < 0)
2356 			srwm = 1;
2357 
2358 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2359 			I915_WRITE(FW_BLC_SELF,
2360 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2361 		else
2362 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2363 	}
2364 
2365 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2366 		      planea_wm, planeb_wm, cwm, srwm);
2367 
2368 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2369 	fwater_hi = (cwm & 0x1f);
2370 
2371 	/* Set request length to 8 cachelines per fetch */
2372 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2373 	fwater_hi = fwater_hi | (1 << 8);
2374 
2375 	I915_WRITE(FW_BLC, fwater_lo);
2376 	I915_WRITE(FW_BLC2, fwater_hi);
2377 
2378 	if (enabled)
2379 		intel_set_memory_cxsr(dev_priv, true);
2380 }
2381 
2382 static void i845_update_wm(struct intel_crtc *unused_crtc)
2383 {
2384 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2385 	struct intel_crtc *crtc;
2386 	const struct drm_display_mode *adjusted_mode;
2387 	uint32_t fwater_lo;
2388 	int planea_wm;
2389 
2390 	crtc = single_enabled_crtc(dev_priv);
2391 	if (crtc == NULL)
2392 		return;
2393 
2394 	adjusted_mode = &crtc->config->base.adjusted_mode;
2395 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2396 				       &i845_wm_info,
2397 				       dev_priv->display.get_fifo_size(dev_priv, 0),
2398 				       4, pessimal_latency_ns);
2399 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2400 	fwater_lo |= (3<<8) | planea_wm;
2401 
2402 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2403 
2404 	I915_WRITE(FW_BLC, fwater_lo);
2405 }
2406 
2407 /* latency must be in 0.1us units. */
2408 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2409 				   unsigned int cpp,
2410 				   unsigned int latency)
2411 {
2412 	unsigned int ret;
2413 
2414 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2415 	ret = DIV_ROUND_UP(ret, 64) + 2;
2416 
2417 	return ret;
2418 }
2419 
2420 /* latency must be in 0.1us units. */
2421 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2422 				   unsigned int htotal,
2423 				   unsigned int width,
2424 				   unsigned int cpp,
2425 				   unsigned int latency)
2426 {
2427 	unsigned int ret;
2428 
2429 	ret = intel_wm_method2(pixel_rate, htotal,
2430 			       width, cpp, latency);
2431 	ret = DIV_ROUND_UP(ret, 64) + 2;
2432 
2433 	return ret;
2434 }
2435 
2436 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2437 			   uint8_t cpp)
2438 {
2439 	/*
2440 	 * Neither of these should be possible since this function shouldn't be
2441 	 * called if the CRTC is off or the plane is invisible.  But let's be
2442 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2443 	 * elsewhere in the driver.
2444 	 */
2445 	if (WARN_ON(!cpp))
2446 		return 0;
2447 	if (WARN_ON(!horiz_pixels))
2448 		return 0;
2449 
2450 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2451 }
2452 
2453 struct ilk_wm_maximums {
2454 	uint16_t pri;
2455 	uint16_t spr;
2456 	uint16_t cur;
2457 	uint16_t fbc;
2458 };
2459 
2460 /*
2461  * For both WM_PIPE and WM_LP.
2462  * mem_value must be in 0.1us units.
2463  */
2464 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2465 				   const struct intel_plane_state *pstate,
2466 				   uint32_t mem_value,
2467 				   bool is_lp)
2468 {
2469 	uint32_t method1, method2;
2470 	int cpp;
2471 
2472 	if (!intel_wm_plane_visible(cstate, pstate))
2473 		return 0;
2474 
2475 	cpp = pstate->base.fb->format->cpp[0];
2476 
2477 	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2478 
2479 	if (!is_lp)
2480 		return method1;
2481 
2482 	method2 = ilk_wm_method2(cstate->pixel_rate,
2483 				 cstate->base.adjusted_mode.crtc_htotal,
2484 				 drm_rect_width(&pstate->base.dst),
2485 				 cpp, mem_value);
2486 
2487 	return min(method1, method2);
2488 }
2489 
2490 /*
2491  * For both WM_PIPE and WM_LP.
2492  * mem_value must be in 0.1us units.
2493  */
2494 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2495 				   const struct intel_plane_state *pstate,
2496 				   uint32_t mem_value)
2497 {
2498 	uint32_t method1, method2;
2499 	int cpp;
2500 
2501 	if (!intel_wm_plane_visible(cstate, pstate))
2502 		return 0;
2503 
2504 	cpp = pstate->base.fb->format->cpp[0];
2505 
2506 	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2507 	method2 = ilk_wm_method2(cstate->pixel_rate,
2508 				 cstate->base.adjusted_mode.crtc_htotal,
2509 				 drm_rect_width(&pstate->base.dst),
2510 				 cpp, mem_value);
2511 	return min(method1, method2);
2512 }
2513 
2514 /*
2515  * For both WM_PIPE and WM_LP.
2516  * mem_value must be in 0.1us units.
2517  */
2518 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2519 				   const struct intel_plane_state *pstate,
2520 				   uint32_t mem_value)
2521 {
2522 	int cpp;
2523 
2524 	if (!intel_wm_plane_visible(cstate, pstate))
2525 		return 0;
2526 
2527 	cpp = pstate->base.fb->format->cpp[0];
2528 
2529 	return ilk_wm_method2(cstate->pixel_rate,
2530 			      cstate->base.adjusted_mode.crtc_htotal,
2531 			      pstate->base.crtc_w, cpp, mem_value);
2532 }
2533 
2534 /* Only for WM_LP. */
2535 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2536 				   const struct intel_plane_state *pstate,
2537 				   uint32_t pri_val)
2538 {
2539 	int cpp;
2540 
2541 	if (!intel_wm_plane_visible(cstate, pstate))
2542 		return 0;
2543 
2544 	cpp = pstate->base.fb->format->cpp[0];
2545 
2546 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2547 }
2548 
2549 static unsigned int
2550 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2551 {
2552 	if (INTEL_GEN(dev_priv) >= 8)
2553 		return 3072;
2554 	else if (INTEL_GEN(dev_priv) >= 7)
2555 		return 768;
2556 	else
2557 		return 512;
2558 }
2559 
2560 static unsigned int
2561 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2562 		     int level, bool is_sprite)
2563 {
2564 	if (INTEL_GEN(dev_priv) >= 8)
2565 		/* BDW primary/sprite plane watermarks */
2566 		return level == 0 ? 255 : 2047;
2567 	else if (INTEL_GEN(dev_priv) >= 7)
2568 		/* IVB/HSW primary/sprite plane watermarks */
2569 		return level == 0 ? 127 : 1023;
2570 	else if (!is_sprite)
2571 		/* ILK/SNB primary plane watermarks */
2572 		return level == 0 ? 127 : 511;
2573 	else
2574 		/* ILK/SNB sprite plane watermarks */
2575 		return level == 0 ? 63 : 255;
2576 }
2577 
2578 static unsigned int
2579 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2580 {
2581 	if (INTEL_GEN(dev_priv) >= 7)
2582 		return level == 0 ? 63 : 255;
2583 	else
2584 		return level == 0 ? 31 : 63;
2585 }
2586 
2587 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2588 {
2589 	if (INTEL_GEN(dev_priv) >= 8)
2590 		return 31;
2591 	else
2592 		return 15;
2593 }
2594 
2595 /* Calculate the maximum primary/sprite plane watermark */
2596 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2597 				     int level,
2598 				     const struct intel_wm_config *config,
2599 				     enum intel_ddb_partitioning ddb_partitioning,
2600 				     bool is_sprite)
2601 {
2602 	struct drm_i915_private *dev_priv = to_i915(dev);
2603 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2604 
2605 	/* if sprites aren't enabled, sprites get nothing */
2606 	if (is_sprite && !config->sprites_enabled)
2607 		return 0;
2608 
2609 	/* HSW allows LP1+ watermarks even with multiple pipes */
2610 	if (level == 0 || config->num_pipes_active > 1) {
2611 		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2612 
2613 		/*
2614 		 * For some reason the non self refresh
2615 		 * FIFO size is only half of the self
2616 		 * refresh FIFO size on ILK/SNB.
2617 		 */
2618 		if (INTEL_GEN(dev_priv) <= 6)
2619 			fifo_size /= 2;
2620 	}
2621 
2622 	if (config->sprites_enabled) {
2623 		/* level 0 is always calculated with 1:1 split */
2624 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2625 			if (is_sprite)
2626 				fifo_size *= 5;
2627 			fifo_size /= 6;
2628 		} else {
2629 			fifo_size /= 2;
2630 		}
2631 	}
2632 
2633 	/* clamp to max that the registers can hold */
2634 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2635 }
2636 
2637 /* Calculate the maximum cursor plane watermark */
2638 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2639 				      int level,
2640 				      const struct intel_wm_config *config)
2641 {
2642 	/* HSW LP1+ watermarks w/ multiple pipes */
2643 	if (level > 0 && config->num_pipes_active > 1)
2644 		return 64;
2645 
2646 	/* otherwise just report max that registers can hold */
2647 	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2648 }
2649 
2650 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2651 				    int level,
2652 				    const struct intel_wm_config *config,
2653 				    enum intel_ddb_partitioning ddb_partitioning,
2654 				    struct ilk_wm_maximums *max)
2655 {
2656 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2657 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2658 	max->cur = ilk_cursor_wm_max(dev, level, config);
2659 	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2660 }
2661 
2662 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2663 					int level,
2664 					struct ilk_wm_maximums *max)
2665 {
2666 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2667 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2668 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2669 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2670 }
2671 
2672 static bool ilk_validate_wm_level(int level,
2673 				  const struct ilk_wm_maximums *max,
2674 				  struct intel_wm_level *result)
2675 {
2676 	bool ret;
2677 
2678 	/* already determined to be invalid? */
2679 	if (!result->enable)
2680 		return false;
2681 
2682 	result->enable = result->pri_val <= max->pri &&
2683 			 result->spr_val <= max->spr &&
2684 			 result->cur_val <= max->cur;
2685 
2686 	ret = result->enable;
2687 
2688 	/*
2689 	 * HACK until we can pre-compute everything,
2690 	 * and thus fail gracefully if LP0 watermarks
2691 	 * are exceeded...
2692 	 */
2693 	if (level == 0 && !result->enable) {
2694 		if (result->pri_val > max->pri)
2695 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2696 				      level, result->pri_val, max->pri);
2697 		if (result->spr_val > max->spr)
2698 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2699 				      level, result->spr_val, max->spr);
2700 		if (result->cur_val > max->cur)
2701 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2702 				      level, result->cur_val, max->cur);
2703 
2704 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2705 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2706 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2707 		result->enable = true;
2708 	}
2709 
2710 	return ret;
2711 }
2712 
2713 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2714 				 const struct intel_crtc *intel_crtc,
2715 				 int level,
2716 				 struct intel_crtc_state *cstate,
2717 				 const struct intel_plane_state *pristate,
2718 				 const struct intel_plane_state *sprstate,
2719 				 const struct intel_plane_state *curstate,
2720 				 struct intel_wm_level *result)
2721 {
2722 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2723 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2724 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2725 
2726 	/* WM1+ latency values stored in 0.5us units */
2727 	if (level > 0) {
2728 		pri_latency *= 5;
2729 		spr_latency *= 5;
2730 		cur_latency *= 5;
2731 	}
2732 
2733 	if (pristate) {
2734 		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2735 						     pri_latency, level);
2736 		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2737 	}
2738 
2739 	if (sprstate)
2740 		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2741 
2742 	if (curstate)
2743 		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2744 
2745 	result->enable = true;
2746 }
2747 
2748 static uint32_t
2749 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2750 {
2751 	const struct intel_atomic_state *intel_state =
2752 		to_intel_atomic_state(cstate->base.state);
2753 	const struct drm_display_mode *adjusted_mode =
2754 		&cstate->base.adjusted_mode;
2755 	u32 linetime, ips_linetime;
2756 
2757 	if (!cstate->base.active)
2758 		return 0;
2759 	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2760 		return 0;
2761 	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2762 		return 0;
2763 
2764 	/* The WM are computed with base on how long it takes to fill a single
2765 	 * row at the given clock rate, multiplied by 8.
2766 	 * */
2767 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2768 				     adjusted_mode->crtc_clock);
2769 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2770 					 intel_state->cdclk.logical.cdclk);
2771 
2772 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2773 	       PIPE_WM_LINETIME_TIME(linetime);
2774 }
2775 
2776 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2777 				  uint16_t wm[8])
2778 {
2779 	if (INTEL_GEN(dev_priv) >= 9) {
2780 		uint32_t val;
2781 		int ret, i;
2782 		int level, max_level = ilk_wm_max_level(dev_priv);
2783 
2784 		/* read the first set of memory latencies[0:3] */
2785 		val = 0; /* data0 to be programmed to 0 for first set */
2786 		mutex_lock(&dev_priv->pcu_lock);
2787 		ret = sandybridge_pcode_read(dev_priv,
2788 					     GEN9_PCODE_READ_MEM_LATENCY,
2789 					     &val);
2790 		mutex_unlock(&dev_priv->pcu_lock);
2791 
2792 		if (ret) {
2793 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2794 			return;
2795 		}
2796 
2797 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2798 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2799 				GEN9_MEM_LATENCY_LEVEL_MASK;
2800 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2801 				GEN9_MEM_LATENCY_LEVEL_MASK;
2802 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2803 				GEN9_MEM_LATENCY_LEVEL_MASK;
2804 
2805 		/* read the second set of memory latencies[4:7] */
2806 		val = 1; /* data0 to be programmed to 1 for second set */
2807 		mutex_lock(&dev_priv->pcu_lock);
2808 		ret = sandybridge_pcode_read(dev_priv,
2809 					     GEN9_PCODE_READ_MEM_LATENCY,
2810 					     &val);
2811 		mutex_unlock(&dev_priv->pcu_lock);
2812 		if (ret) {
2813 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2814 			return;
2815 		}
2816 
2817 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2818 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2819 				GEN9_MEM_LATENCY_LEVEL_MASK;
2820 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2821 				GEN9_MEM_LATENCY_LEVEL_MASK;
2822 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2823 				GEN9_MEM_LATENCY_LEVEL_MASK;
2824 
2825 		/*
2826 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2827 		 * need to be disabled. We make sure to sanitize the values out
2828 		 * of the punit to satisfy this requirement.
2829 		 */
2830 		for (level = 1; level <= max_level; level++) {
2831 			if (wm[level] == 0) {
2832 				for (i = level + 1; i <= max_level; i++)
2833 					wm[i] = 0;
2834 				break;
2835 			}
2836 		}
2837 
2838 		/*
2839 		 * WaWmMemoryReadLatency:skl+,glk
2840 		 *
2841 		 * punit doesn't take into account the read latency so we need
2842 		 * to add 2us to the various latency levels we retrieve from the
2843 		 * punit when level 0 response data us 0us.
2844 		 */
2845 		if (wm[0] == 0) {
2846 			wm[0] += 2;
2847 			for (level = 1; level <= max_level; level++) {
2848 				if (wm[level] == 0)
2849 					break;
2850 				wm[level] += 2;
2851 			}
2852 		}
2853 
2854 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2855 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2856 
2857 		wm[0] = (sskpd >> 56) & 0xFF;
2858 		if (wm[0] == 0)
2859 			wm[0] = sskpd & 0xF;
2860 		wm[1] = (sskpd >> 4) & 0xFF;
2861 		wm[2] = (sskpd >> 12) & 0xFF;
2862 		wm[3] = (sskpd >> 20) & 0x1FF;
2863 		wm[4] = (sskpd >> 32) & 0x1FF;
2864 	} else if (INTEL_GEN(dev_priv) >= 6) {
2865 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2866 
2867 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2868 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2869 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2870 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2871 	} else if (INTEL_GEN(dev_priv) >= 5) {
2872 		uint32_t mltr = I915_READ(MLTR_ILK);
2873 
2874 		/* ILK primary LP0 latency is 700 ns */
2875 		wm[0] = 7;
2876 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2877 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2878 	} else {
2879 		MISSING_CASE(INTEL_DEVID(dev_priv));
2880 	}
2881 }
2882 
2883 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2884 				       uint16_t wm[5])
2885 {
2886 	/* ILK sprite LP0 latency is 1300 ns */
2887 	if (IS_GEN5(dev_priv))
2888 		wm[0] = 13;
2889 }
2890 
2891 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2892 				       uint16_t wm[5])
2893 {
2894 	/* ILK cursor LP0 latency is 1300 ns */
2895 	if (IS_GEN5(dev_priv))
2896 		wm[0] = 13;
2897 
2898 	/* WaDoubleCursorLP3Latency:ivb */
2899 	if (IS_IVYBRIDGE(dev_priv))
2900 		wm[3] *= 2;
2901 }
2902 
2903 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2904 {
2905 	/* how many WM levels are we expecting */
2906 	if (INTEL_GEN(dev_priv) >= 9)
2907 		return 7;
2908 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2909 		return 4;
2910 	else if (INTEL_GEN(dev_priv) >= 6)
2911 		return 3;
2912 	else
2913 		return 2;
2914 }
2915 
2916 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2917 				   const char *name,
2918 				   const uint16_t wm[8])
2919 {
2920 	int level, max_level = ilk_wm_max_level(dev_priv);
2921 
2922 	for (level = 0; level <= max_level; level++) {
2923 		unsigned int latency = wm[level];
2924 
2925 		if (latency == 0) {
2926 			DRM_ERROR("%s WM%d latency not provided\n",
2927 				  name, level);
2928 			continue;
2929 		}
2930 
2931 		/*
2932 		 * - latencies are in us on gen9.
2933 		 * - before then, WM1+ latency values are in 0.5us units
2934 		 */
2935 		if (INTEL_GEN(dev_priv) >= 9)
2936 			latency *= 10;
2937 		else if (level > 0)
2938 			latency *= 5;
2939 
2940 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2941 			      name, level, wm[level],
2942 			      latency / 10, latency % 10);
2943 	}
2944 }
2945 
2946 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2947 				    uint16_t wm[5], uint16_t min)
2948 {
2949 	int level, max_level = ilk_wm_max_level(dev_priv);
2950 
2951 	if (wm[0] >= min)
2952 		return false;
2953 
2954 	wm[0] = max(wm[0], min);
2955 	for (level = 1; level <= max_level; level++)
2956 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2957 
2958 	return true;
2959 }
2960 
2961 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2962 {
2963 	bool changed;
2964 
2965 	/*
2966 	 * The BIOS provided WM memory latency values are often
2967 	 * inadequate for high resolution displays. Adjust them.
2968 	 */
2969 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2970 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2971 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2972 
2973 	if (!changed)
2974 		return;
2975 
2976 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2977 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2978 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2979 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2980 }
2981 
2982 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2983 {
2984 	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2985 
2986 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2987 	       sizeof(dev_priv->wm.pri_latency));
2988 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2989 	       sizeof(dev_priv->wm.pri_latency));
2990 
2991 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2992 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2993 
2994 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2995 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2996 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2997 
2998 	if (IS_GEN6(dev_priv))
2999 		snb_wm_latency_quirk(dev_priv);
3000 }
3001 
3002 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3003 {
3004 	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3005 	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3006 }
3007 
3008 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3009 				 struct intel_pipe_wm *pipe_wm)
3010 {
3011 	/* LP0 watermark maximums depend on this pipe alone */
3012 	const struct intel_wm_config config = {
3013 		.num_pipes_active = 1,
3014 		.sprites_enabled = pipe_wm->sprites_enabled,
3015 		.sprites_scaled = pipe_wm->sprites_scaled,
3016 	};
3017 	struct ilk_wm_maximums max;
3018 
3019 	/* LP0 watermarks always use 1/2 DDB partitioning */
3020 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3021 
3022 	/* At least LP0 must be valid */
3023 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3024 		DRM_DEBUG_KMS("LP0 watermark invalid\n");
3025 		return false;
3026 	}
3027 
3028 	return true;
3029 }
3030 
3031 /* Compute new watermarks for the pipe */
3032 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3033 {
3034 	struct drm_atomic_state *state = cstate->base.state;
3035 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3036 	struct intel_pipe_wm *pipe_wm;
3037 	struct drm_device *dev = state->dev;
3038 	const struct drm_i915_private *dev_priv = to_i915(dev);
3039 	struct drm_plane *plane;
3040 	const struct drm_plane_state *plane_state;
3041 	const struct intel_plane_state *pristate = NULL;
3042 	const struct intel_plane_state *sprstate = NULL;
3043 	const struct intel_plane_state *curstate = NULL;
3044 	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3045 	struct ilk_wm_maximums max;
3046 
3047 	pipe_wm = &cstate->wm.ilk.optimal;
3048 
3049 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3050 		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3051 
3052 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3053 			pristate = ps;
3054 		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3055 			sprstate = ps;
3056 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3057 			curstate = ps;
3058 	}
3059 
3060 	pipe_wm->pipe_enabled = cstate->base.active;
3061 	if (sprstate) {
3062 		pipe_wm->sprites_enabled = sprstate->base.visible;
3063 		pipe_wm->sprites_scaled = sprstate->base.visible &&
3064 			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3065 			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3066 	}
3067 
3068 	usable_level = max_level;
3069 
3070 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3071 	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3072 		usable_level = 1;
3073 
3074 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3075 	if (pipe_wm->sprites_scaled)
3076 		usable_level = 0;
3077 
3078 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3079 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3080 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3081 
3082 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3083 		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3084 
3085 	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3086 		return -EINVAL;
3087 
3088 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3089 
3090 	for (level = 1; level <= usable_level; level++) {
3091 		struct intel_wm_level *wm = &pipe_wm->wm[level];
3092 
3093 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3094 				     pristate, sprstate, curstate, wm);
3095 
3096 		/*
3097 		 * Disable any watermark level that exceeds the
3098 		 * register maximums since such watermarks are
3099 		 * always invalid.
3100 		 */
3101 		if (!ilk_validate_wm_level(level, &max, wm)) {
3102 			memset(wm, 0, sizeof(*wm));
3103 			break;
3104 		}
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 /*
3111  * Build a set of 'intermediate' watermark values that satisfy both the old
3112  * state and the new state.  These can be programmed to the hardware
3113  * immediately.
3114  */
3115 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3116 				       struct intel_crtc *intel_crtc,
3117 				       struct intel_crtc_state *newstate)
3118 {
3119 	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3120 	struct intel_atomic_state *intel_state =
3121 		to_intel_atomic_state(newstate->base.state);
3122 	const struct intel_crtc_state *oldstate =
3123 		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3124 	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3125 	int level, max_level = ilk_wm_max_level(to_i915(dev));
3126 
3127 	/*
3128 	 * Start with the final, target watermarks, then combine with the
3129 	 * currently active watermarks to get values that are safe both before
3130 	 * and after the vblank.
3131 	 */
3132 	*a = newstate->wm.ilk.optimal;
3133 	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3134 		return 0;
3135 
3136 	a->pipe_enabled |= b->pipe_enabled;
3137 	a->sprites_enabled |= b->sprites_enabled;
3138 	a->sprites_scaled |= b->sprites_scaled;
3139 
3140 	for (level = 0; level <= max_level; level++) {
3141 		struct intel_wm_level *a_wm = &a->wm[level];
3142 		const struct intel_wm_level *b_wm = &b->wm[level];
3143 
3144 		a_wm->enable &= b_wm->enable;
3145 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3146 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3147 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3148 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3149 	}
3150 
3151 	/*
3152 	 * We need to make sure that these merged watermark values are
3153 	 * actually a valid configuration themselves.  If they're not,
3154 	 * there's no safe way to transition from the old state to
3155 	 * the new state, so we need to fail the atomic transaction.
3156 	 */
3157 	if (!ilk_validate_pipe_wm(dev, a))
3158 		return -EINVAL;
3159 
3160 	/*
3161 	 * If our intermediate WM are identical to the final WM, then we can
3162 	 * omit the post-vblank programming; only update if it's different.
3163 	 */
3164 	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3165 		newstate->wm.need_postvbl_update = true;
3166 
3167 	return 0;
3168 }
3169 
3170 /*
3171  * Merge the watermarks from all active pipes for a specific level.
3172  */
3173 static void ilk_merge_wm_level(struct drm_device *dev,
3174 			       int level,
3175 			       struct intel_wm_level *ret_wm)
3176 {
3177 	const struct intel_crtc *intel_crtc;
3178 
3179 	ret_wm->enable = true;
3180 
3181 	for_each_intel_crtc(dev, intel_crtc) {
3182 		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3183 		const struct intel_wm_level *wm = &active->wm[level];
3184 
3185 		if (!active->pipe_enabled)
3186 			continue;
3187 
3188 		/*
3189 		 * The watermark values may have been used in the past,
3190 		 * so we must maintain them in the registers for some
3191 		 * time even if the level is now disabled.
3192 		 */
3193 		if (!wm->enable)
3194 			ret_wm->enable = false;
3195 
3196 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3197 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3198 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3199 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3200 	}
3201 }
3202 
3203 /*
3204  * Merge all low power watermarks for all active pipes.
3205  */
3206 static void ilk_wm_merge(struct drm_device *dev,
3207 			 const struct intel_wm_config *config,
3208 			 const struct ilk_wm_maximums *max,
3209 			 struct intel_pipe_wm *merged)
3210 {
3211 	struct drm_i915_private *dev_priv = to_i915(dev);
3212 	int level, max_level = ilk_wm_max_level(dev_priv);
3213 	int last_enabled_level = max_level;
3214 
3215 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3216 	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3217 	    config->num_pipes_active > 1)
3218 		last_enabled_level = 0;
3219 
3220 	/* ILK: FBC WM must be disabled always */
3221 	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3222 
3223 	/* merge each WM1+ level */
3224 	for (level = 1; level <= max_level; level++) {
3225 		struct intel_wm_level *wm = &merged->wm[level];
3226 
3227 		ilk_merge_wm_level(dev, level, wm);
3228 
3229 		if (level > last_enabled_level)
3230 			wm->enable = false;
3231 		else if (!ilk_validate_wm_level(level, max, wm))
3232 			/* make sure all following levels get disabled */
3233 			last_enabled_level = level - 1;
3234 
3235 		/*
3236 		 * The spec says it is preferred to disable
3237 		 * FBC WMs instead of disabling a WM level.
3238 		 */
3239 		if (wm->fbc_val > max->fbc) {
3240 			if (wm->enable)
3241 				merged->fbc_wm_enabled = false;
3242 			wm->fbc_val = 0;
3243 		}
3244 	}
3245 
3246 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3247 	/*
3248 	 * FIXME this is racy. FBC might get enabled later.
3249 	 * What we should check here is whether FBC can be
3250 	 * enabled sometime later.
3251 	 */
3252 	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3253 	    intel_fbc_is_active(dev_priv)) {
3254 		for (level = 2; level <= max_level; level++) {
3255 			struct intel_wm_level *wm = &merged->wm[level];
3256 
3257 			wm->enable = false;
3258 		}
3259 	}
3260 }
3261 
3262 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3263 {
3264 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3265 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3266 }
3267 
3268 /* The value we need to program into the WM_LPx latency field */
3269 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3270 {
3271 	struct drm_i915_private *dev_priv = to_i915(dev);
3272 
3273 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3274 		return 2 * level;
3275 	else
3276 		return dev_priv->wm.pri_latency[level];
3277 }
3278 
3279 static void ilk_compute_wm_results(struct drm_device *dev,
3280 				   const struct intel_pipe_wm *merged,
3281 				   enum intel_ddb_partitioning partitioning,
3282 				   struct ilk_wm_values *results)
3283 {
3284 	struct drm_i915_private *dev_priv = to_i915(dev);
3285 	struct intel_crtc *intel_crtc;
3286 	int level, wm_lp;
3287 
3288 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3289 	results->partitioning = partitioning;
3290 
3291 	/* LP1+ register values */
3292 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3293 		const struct intel_wm_level *r;
3294 
3295 		level = ilk_wm_lp_to_level(wm_lp, merged);
3296 
3297 		r = &merged->wm[level];
3298 
3299 		/*
3300 		 * Maintain the watermark values even if the level is
3301 		 * disabled. Doing otherwise could cause underruns.
3302 		 */
3303 		results->wm_lp[wm_lp - 1] =
3304 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3305 			(r->pri_val << WM1_LP_SR_SHIFT) |
3306 			r->cur_val;
3307 
3308 		if (r->enable)
3309 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3310 
3311 		if (INTEL_GEN(dev_priv) >= 8)
3312 			results->wm_lp[wm_lp - 1] |=
3313 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3314 		else
3315 			results->wm_lp[wm_lp - 1] |=
3316 				r->fbc_val << WM1_LP_FBC_SHIFT;
3317 
3318 		/*
3319 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
3320 		 * level is disabled. Doing otherwise could cause underruns.
3321 		 */
3322 		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3323 			WARN_ON(wm_lp != 1);
3324 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3325 		} else
3326 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3327 	}
3328 
3329 	/* LP0 register values */
3330 	for_each_intel_crtc(dev, intel_crtc) {
3331 		enum i915_pipe pipe = intel_crtc->pipe;
3332 		const struct intel_wm_level *r =
3333 			&intel_crtc->wm.active.ilk.wm[0];
3334 
3335 		if (WARN_ON(!r->enable))
3336 			continue;
3337 
3338 		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3339 
3340 		results->wm_pipe[pipe] =
3341 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3342 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3343 			r->cur_val;
3344 	}
3345 }
3346 
3347 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3348  * case both are at the same level. Prefer r1 in case they're the same. */
3349 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3350 						  struct intel_pipe_wm *r1,
3351 						  struct intel_pipe_wm *r2)
3352 {
3353 	int level, max_level = ilk_wm_max_level(to_i915(dev));
3354 	int level1 = 0, level2 = 0;
3355 
3356 	for (level = 1; level <= max_level; level++) {
3357 		if (r1->wm[level].enable)
3358 			level1 = level;
3359 		if (r2->wm[level].enable)
3360 			level2 = level;
3361 	}
3362 
3363 	if (level1 == level2) {
3364 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3365 			return r2;
3366 		else
3367 			return r1;
3368 	} else if (level1 > level2) {
3369 		return r1;
3370 	} else {
3371 		return r2;
3372 	}
3373 }
3374 
3375 /* dirty bits used to track which watermarks need changes */
3376 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3377 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3378 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3379 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3380 #define WM_DIRTY_FBC (1 << 24)
3381 #define WM_DIRTY_DDB (1 << 25)
3382 
3383 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3384 					 const struct ilk_wm_values *old,
3385 					 const struct ilk_wm_values *new)
3386 {
3387 	unsigned int dirty = 0;
3388 	enum i915_pipe pipe;
3389 	int wm_lp;
3390 
3391 	for_each_pipe(dev_priv, pipe) {
3392 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3393 			dirty |= WM_DIRTY_LINETIME(pipe);
3394 			/* Must disable LP1+ watermarks too */
3395 			dirty |= WM_DIRTY_LP_ALL;
3396 		}
3397 
3398 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3399 			dirty |= WM_DIRTY_PIPE(pipe);
3400 			/* Must disable LP1+ watermarks too */
3401 			dirty |= WM_DIRTY_LP_ALL;
3402 		}
3403 	}
3404 
3405 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3406 		dirty |= WM_DIRTY_FBC;
3407 		/* Must disable LP1+ watermarks too */
3408 		dirty |= WM_DIRTY_LP_ALL;
3409 	}
3410 
3411 	if (old->partitioning != new->partitioning) {
3412 		dirty |= WM_DIRTY_DDB;
3413 		/* Must disable LP1+ watermarks too */
3414 		dirty |= WM_DIRTY_LP_ALL;
3415 	}
3416 
3417 	/* LP1+ watermarks already deemed dirty, no need to continue */
3418 	if (dirty & WM_DIRTY_LP_ALL)
3419 		return dirty;
3420 
3421 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3422 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3423 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3424 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3425 			break;
3426 	}
3427 
3428 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3429 	for (; wm_lp <= 3; wm_lp++)
3430 		dirty |= WM_DIRTY_LP(wm_lp);
3431 
3432 	return dirty;
3433 }
3434 
3435 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3436 			       unsigned int dirty)
3437 {
3438 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3439 	bool changed = false;
3440 
3441 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3442 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3443 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3444 		changed = true;
3445 	}
3446 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3447 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3448 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3449 		changed = true;
3450 	}
3451 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3452 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3453 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3454 		changed = true;
3455 	}
3456 
3457 	/*
3458 	 * Don't touch WM1S_LP_EN here.
3459 	 * Doing so could cause underruns.
3460 	 */
3461 
3462 	return changed;
3463 }
3464 
3465 /*
3466  * The spec says we shouldn't write when we don't need, because every write
3467  * causes WMs to be re-evaluated, expending some power.
3468  */
3469 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3470 				struct ilk_wm_values *results)
3471 {
3472 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3473 	unsigned int dirty;
3474 	uint32_t val;
3475 
3476 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3477 	if (!dirty)
3478 		return;
3479 
3480 	_ilk_disable_lp_wm(dev_priv, dirty);
3481 
3482 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3483 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3484 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3485 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3486 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3487 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3488 
3489 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3490 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3491 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3492 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3493 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3494 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3495 
3496 	if (dirty & WM_DIRTY_DDB) {
3497 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3498 			val = I915_READ(WM_MISC);
3499 			if (results->partitioning == INTEL_DDB_PART_1_2)
3500 				val &= ~WM_MISC_DATA_PARTITION_5_6;
3501 			else
3502 				val |= WM_MISC_DATA_PARTITION_5_6;
3503 			I915_WRITE(WM_MISC, val);
3504 		} else {
3505 			val = I915_READ(DISP_ARB_CTL2);
3506 			if (results->partitioning == INTEL_DDB_PART_1_2)
3507 				val &= ~DISP_DATA_PARTITION_5_6;
3508 			else
3509 				val |= DISP_DATA_PARTITION_5_6;
3510 			I915_WRITE(DISP_ARB_CTL2, val);
3511 		}
3512 	}
3513 
3514 	if (dirty & WM_DIRTY_FBC) {
3515 		val = I915_READ(DISP_ARB_CTL);
3516 		if (results->enable_fbc_wm)
3517 			val &= ~DISP_FBC_WM_DIS;
3518 		else
3519 			val |= DISP_FBC_WM_DIS;
3520 		I915_WRITE(DISP_ARB_CTL, val);
3521 	}
3522 
3523 	if (dirty & WM_DIRTY_LP(1) &&
3524 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3525 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3526 
3527 	if (INTEL_GEN(dev_priv) >= 7) {
3528 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3529 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3530 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3531 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3532 	}
3533 
3534 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3535 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3536 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3537 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3538 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3539 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3540 
3541 	dev_priv->wm.hw = *results;
3542 }
3543 
3544 bool ilk_disable_lp_wm(struct drm_device *dev)
3545 {
3546 	struct drm_i915_private *dev_priv = to_i915(dev);
3547 
3548 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3549 }
3550 
3551 /*
3552  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3553  * so assume we'll always need it in order to avoid underruns.
3554  */
3555 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3556 {
3557 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3558 
3559 	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3560 		return true;
3561 
3562 	return false;
3563 }
3564 
3565 static bool
3566 intel_has_sagv(struct drm_i915_private *dev_priv)
3567 {
3568 	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3569 	    IS_CANNONLAKE(dev_priv))
3570 		return true;
3571 
3572 	if (IS_SKYLAKE(dev_priv) &&
3573 	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3574 		return true;
3575 
3576 	return false;
3577 }
3578 
3579 /*
3580  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3581  * depending on power and performance requirements. The display engine access
3582  * to system memory is blocked during the adjustment time. Because of the
3583  * blocking time, having this enabled can cause full system hangs and/or pipe
3584  * underruns if we don't meet all of the following requirements:
3585  *
3586  *  - <= 1 pipe enabled
3587  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3588  *  - We're not using an interlaced display configuration
3589  */
3590 int
3591 intel_enable_sagv(struct drm_i915_private *dev_priv)
3592 {
3593 	int ret;
3594 
3595 	if (!intel_has_sagv(dev_priv))
3596 		return 0;
3597 
3598 	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3599 		return 0;
3600 
3601 	DRM_DEBUG_KMS("Enabling the SAGV\n");
3602 	mutex_lock(&dev_priv->pcu_lock);
3603 
3604 	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3605 				      GEN9_SAGV_ENABLE);
3606 
3607 	/* We don't need to wait for the SAGV when enabling */
3608 	mutex_unlock(&dev_priv->pcu_lock);
3609 
3610 	/*
3611 	 * Some skl systems, pre-release machines in particular,
3612 	 * don't actually have an SAGV.
3613 	 */
3614 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3615 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3616 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3617 		return 0;
3618 	} else if (ret < 0) {
3619 		DRM_ERROR("Failed to enable the SAGV\n");
3620 		return ret;
3621 	}
3622 
3623 	dev_priv->sagv_status = I915_SAGV_ENABLED;
3624 	return 0;
3625 }
3626 
3627 int
3628 intel_disable_sagv(struct drm_i915_private *dev_priv)
3629 {
3630 	int ret;
3631 
3632 	if (!intel_has_sagv(dev_priv))
3633 		return 0;
3634 
3635 	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3636 		return 0;
3637 
3638 	DRM_DEBUG_KMS("Disabling the SAGV\n");
3639 	mutex_lock(&dev_priv->pcu_lock);
3640 
3641 	/* bspec says to keep retrying for at least 1 ms */
3642 	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3643 				GEN9_SAGV_DISABLE,
3644 				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3645 				1);
3646 	mutex_unlock(&dev_priv->pcu_lock);
3647 
3648 	/*
3649 	 * Some skl systems, pre-release machines in particular,
3650 	 * don't actually have an SAGV.
3651 	 */
3652 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3653 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3654 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3655 		return 0;
3656 	} else if (ret < 0) {
3657 		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3658 		return ret;
3659 	}
3660 
3661 	dev_priv->sagv_status = I915_SAGV_DISABLED;
3662 	return 0;
3663 }
3664 
3665 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3666 {
3667 	struct drm_device *dev = state->dev;
3668 	struct drm_i915_private *dev_priv = to_i915(dev);
3669 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3670 	struct intel_crtc *crtc;
3671 	struct intel_plane *plane;
3672 	struct intel_crtc_state *cstate;
3673 	enum i915_pipe pipe;
3674 	int level, latency;
3675 	int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3676 
3677 	if (!intel_has_sagv(dev_priv))
3678 		return false;
3679 
3680 	/*
3681 	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3682 	 * more then one pipe enabled
3683 	 *
3684 	 * If there are no active CRTCs, no additional checks need be performed
3685 	 */
3686 	if (hweight32(intel_state->active_crtcs) == 0)
3687 		return true;
3688 	else if (hweight32(intel_state->active_crtcs) > 1)
3689 		return false;
3690 
3691 	/* Since we're now guaranteed to only have one active CRTC... */
3692 	pipe = ffs(intel_state->active_crtcs) - 1;
3693 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3694 	cstate = to_intel_crtc_state(crtc->base.state);
3695 
3696 	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3697 		return false;
3698 
3699 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3700 		struct skl_plane_wm *wm =
3701 			&cstate->wm.skl.optimal.planes[plane->id];
3702 
3703 		/* Skip this plane if it's not enabled */
3704 		if (!wm->wm[0].plane_en)
3705 			continue;
3706 
3707 		/* Find the highest enabled wm level for this plane */
3708 		for (level = ilk_wm_max_level(dev_priv);
3709 		     !wm->wm[level].plane_en; --level)
3710 		     { }
3711 
3712 		latency = dev_priv->wm.skl_latency[level];
3713 
3714 		if (skl_needs_memory_bw_wa(intel_state) &&
3715 		    plane->base.state->fb->modifier ==
3716 		    I915_FORMAT_MOD_X_TILED)
3717 			latency += 15;
3718 
3719 		/*
3720 		 * If any of the planes on this pipe don't enable wm levels that
3721 		 * incur memory latencies higher than sagv_block_time_us we
3722 		 * can't enable the SAGV.
3723 		 */
3724 		if (latency < sagv_block_time_us)
3725 			return false;
3726 	}
3727 
3728 	return true;
3729 }
3730 
3731 static void
3732 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3733 				   const struct intel_crtc_state *cstate,
3734 				   struct skl_ddb_entry *alloc, /* out */
3735 				   int *num_active /* out */)
3736 {
3737 	struct drm_atomic_state *state = cstate->base.state;
3738 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3739 	struct drm_i915_private *dev_priv = to_i915(dev);
3740 	struct drm_crtc *for_crtc = cstate->base.crtc;
3741 	unsigned int pipe_size, ddb_size;
3742 	int nth_active_pipe;
3743 
3744 	if (WARN_ON(!state) || !cstate->base.active) {
3745 		alloc->start = 0;
3746 		alloc->end = 0;
3747 		*num_active = hweight32(dev_priv->active_crtcs);
3748 		return;
3749 	}
3750 
3751 	if (intel_state->active_pipe_changes)
3752 		*num_active = hweight32(intel_state->active_crtcs);
3753 	else
3754 		*num_active = hweight32(dev_priv->active_crtcs);
3755 
3756 	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3757 	WARN_ON(ddb_size == 0);
3758 
3759 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
3760 
3761 	/*
3762 	 * If the state doesn't change the active CRTC's, then there's
3763 	 * no need to recalculate; the existing pipe allocation limits
3764 	 * should remain unchanged.  Note that we're safe from racing
3765 	 * commits since any racing commit that changes the active CRTC
3766 	 * list would need to grab _all_ crtc locks, including the one
3767 	 * we currently hold.
3768 	 */
3769 	if (!intel_state->active_pipe_changes) {
3770 		/*
3771 		 * alloc may be cleared by clear_intel_crtc_state,
3772 		 * copy from old state to be sure
3773 		 */
3774 		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3775 		return;
3776 	}
3777 
3778 	nth_active_pipe = hweight32(intel_state->active_crtcs &
3779 				    (drm_crtc_mask(for_crtc) - 1));
3780 	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3781 	alloc->start = nth_active_pipe * ddb_size / *num_active;
3782 	alloc->end = alloc->start + pipe_size;
3783 }
3784 
3785 static unsigned int skl_cursor_allocation(int num_active)
3786 {
3787 	if (num_active == 1)
3788 		return 32;
3789 
3790 	return 8;
3791 }
3792 
3793 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3794 {
3795 	entry->start = reg & 0x3ff;
3796 	entry->end = (reg >> 16) & 0x3ff;
3797 	if (entry->end)
3798 		entry->end += 1;
3799 }
3800 
3801 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3802 			  struct skl_ddb_allocation *ddb /* out */)
3803 {
3804 	struct intel_crtc *crtc;
3805 
3806 	memset(ddb, 0, sizeof(*ddb));
3807 
3808 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3809 		enum intel_display_power_domain power_domain;
3810 		enum plane_id plane_id;
3811 		enum i915_pipe pipe = crtc->pipe;
3812 
3813 		power_domain = POWER_DOMAIN_PIPE(pipe);
3814 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3815 			continue;
3816 
3817 		for_each_plane_id_on_crtc(crtc, plane_id) {
3818 			u32 val;
3819 
3820 			if (plane_id != PLANE_CURSOR)
3821 				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3822 			else
3823 				val = I915_READ(CUR_BUF_CFG(pipe));
3824 
3825 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3826 		}
3827 
3828 		intel_display_power_put(dev_priv, power_domain);
3829 	}
3830 }
3831 
3832 /*
3833  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3834  * The bspec defines downscale amount as:
3835  *
3836  * """
3837  * Horizontal down scale amount = maximum[1, Horizontal source size /
3838  *                                           Horizontal destination size]
3839  * Vertical down scale amount = maximum[1, Vertical source size /
3840  *                                         Vertical destination size]
3841  * Total down scale amount = Horizontal down scale amount *
3842  *                           Vertical down scale amount
3843  * """
3844  *
3845  * Return value is provided in 16.16 fixed point form to retain fractional part.
3846  * Caller should take care of dividing & rounding off the value.
3847  */
3848 static uint_fixed_16_16_t
3849 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3850 			   const struct intel_plane_state *pstate)
3851 {
3852 	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3853 	uint32_t src_w, src_h, dst_w, dst_h;
3854 	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3855 	uint_fixed_16_16_t downscale_h, downscale_w;
3856 
3857 	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3858 		return u32_to_fixed16(0);
3859 
3860 	/* n.b., src is 16.16 fixed point, dst is whole integer */
3861 	if (plane->id == PLANE_CURSOR) {
3862 		/*
3863 		 * Cursors only support 0/180 degree rotation,
3864 		 * hence no need to account for rotation here.
3865 		 */
3866 		src_w = pstate->base.src_w >> 16;
3867 		src_h = pstate->base.src_h >> 16;
3868 		dst_w = pstate->base.crtc_w;
3869 		dst_h = pstate->base.crtc_h;
3870 	} else {
3871 		/*
3872 		 * Src coordinates are already rotated by 270 degrees for
3873 		 * the 90/270 degree plane rotation cases (to match the
3874 		 * GTT mapping), hence no need to account for rotation here.
3875 		 */
3876 		src_w = drm_rect_width(&pstate->base.src) >> 16;
3877 		src_h = drm_rect_height(&pstate->base.src) >> 16;
3878 		dst_w = drm_rect_width(&pstate->base.dst);
3879 		dst_h = drm_rect_height(&pstate->base.dst);
3880 	}
3881 
3882 	fp_w_ratio = div_fixed16(src_w, dst_w);
3883 	fp_h_ratio = div_fixed16(src_h, dst_h);
3884 	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3885 	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3886 
3887 	return mul_fixed16(downscale_w, downscale_h);
3888 }
3889 
3890 static uint_fixed_16_16_t
3891 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3892 {
3893 	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3894 
3895 	if (!crtc_state->base.enable)
3896 		return pipe_downscale;
3897 
3898 	if (crtc_state->pch_pfit.enabled) {
3899 		uint32_t src_w, src_h, dst_w, dst_h;
3900 		uint32_t pfit_size = crtc_state->pch_pfit.size;
3901 		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3902 		uint_fixed_16_16_t downscale_h, downscale_w;
3903 
3904 		src_w = crtc_state->pipe_src_w;
3905 		src_h = crtc_state->pipe_src_h;
3906 		dst_w = pfit_size >> 16;
3907 		dst_h = pfit_size & 0xffff;
3908 
3909 		if (!dst_w || !dst_h)
3910 			return pipe_downscale;
3911 
3912 		fp_w_ratio = div_fixed16(src_w, dst_w);
3913 		fp_h_ratio = div_fixed16(src_h, dst_h);
3914 		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3915 		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3916 
3917 		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3918 	}
3919 
3920 	return pipe_downscale;
3921 }
3922 
3923 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3924 				  struct intel_crtc_state *cstate)
3925 {
3926 	struct drm_crtc_state *crtc_state = &cstate->base;
3927 	struct drm_atomic_state *state = crtc_state->state;
3928 	struct drm_plane *plane;
3929 	const struct drm_plane_state *pstate;
3930 	struct intel_plane_state *intel_pstate;
3931 	int crtc_clock, dotclk;
3932 	uint32_t pipe_max_pixel_rate;
3933 	uint_fixed_16_16_t pipe_downscale;
3934 	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3935 
3936 	if (!cstate->base.enable)
3937 		return 0;
3938 
3939 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3940 		uint_fixed_16_16_t plane_downscale;
3941 		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3942 		int bpp;
3943 
3944 		if (!intel_wm_plane_visible(cstate,
3945 					    to_intel_plane_state(pstate)))
3946 			continue;
3947 
3948 		if (WARN_ON(!pstate->fb))
3949 			return -EINVAL;
3950 
3951 		intel_pstate = to_intel_plane_state(pstate);
3952 		plane_downscale = skl_plane_downscale_amount(cstate,
3953 							     intel_pstate);
3954 		bpp = pstate->fb->format->cpp[0] * 8;
3955 		if (bpp == 64)
3956 			plane_downscale = mul_fixed16(plane_downscale,
3957 						      fp_9_div_8);
3958 
3959 		max_downscale = max_fixed16(plane_downscale, max_downscale);
3960 	}
3961 	pipe_downscale = skl_pipe_downscale_amount(cstate);
3962 
3963 	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3964 
3965 	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3966 	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3967 
3968 	if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3969 		dotclk *= 2;
3970 
3971 	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3972 
3973 	if (pipe_max_pixel_rate < crtc_clock) {
3974 		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3975 		return -EINVAL;
3976 	}
3977 
3978 	return 0;
3979 }
3980 
3981 static unsigned int
3982 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3983 			     const struct drm_plane_state *pstate,
3984 			     int y)
3985 {
3986 	struct intel_plane *plane = to_intel_plane(pstate->plane);
3987 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3988 	uint32_t data_rate;
3989 	uint32_t width = 0, height = 0;
3990 	struct drm_framebuffer *fb;
3991 	u32 format;
3992 	uint_fixed_16_16_t down_scale_amount;
3993 
3994 	if (!intel_pstate->base.visible)
3995 		return 0;
3996 
3997 	fb = pstate->fb;
3998 	format = fb->format->format;
3999 
4000 	if (plane->id == PLANE_CURSOR)
4001 		return 0;
4002 	if (y && format != DRM_FORMAT_NV12)
4003 		return 0;
4004 
4005 	/*
4006 	 * Src coordinates are already rotated by 270 degrees for
4007 	 * the 90/270 degree plane rotation cases (to match the
4008 	 * GTT mapping), hence no need to account for rotation here.
4009 	 */
4010 	width = drm_rect_width(&intel_pstate->base.src) >> 16;
4011 	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4012 
4013 	/* for planar format */
4014 	if (format == DRM_FORMAT_NV12) {
4015 		if (y)  /* y-plane data rate */
4016 			data_rate = width * height *
4017 				fb->format->cpp[0];
4018 		else    /* uv-plane data rate */
4019 			data_rate = (width / 2) * (height / 2) *
4020 				fb->format->cpp[1];
4021 	} else {
4022 		/* for packed formats */
4023 		data_rate = width * height * fb->format->cpp[0];
4024 	}
4025 
4026 	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4027 
4028 	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4029 }
4030 
4031 /*
4032  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4033  * a 8192x4096@32bpp framebuffer:
4034  *   3 * 4096 * 8192  * 4 < 2^32
4035  */
4036 static unsigned int
4037 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4038 				 unsigned *plane_data_rate,
4039 				 unsigned *plane_y_data_rate)
4040 {
4041 	struct drm_crtc_state *cstate = &intel_cstate->base;
4042 	struct drm_atomic_state *state = cstate->state;
4043 	struct drm_plane *plane;
4044 	const struct drm_plane_state *pstate;
4045 	unsigned int total_data_rate = 0;
4046 
4047 	if (WARN_ON(!state))
4048 		return 0;
4049 
4050 	/* Calculate and cache data rate for each plane */
4051 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4052 		enum plane_id plane_id = to_intel_plane(plane)->id;
4053 		unsigned int rate;
4054 
4055 		/* packed/uv */
4056 		rate = skl_plane_relative_data_rate(intel_cstate,
4057 						    pstate, 0);
4058 		plane_data_rate[plane_id] = rate;
4059 
4060 		total_data_rate += rate;
4061 
4062 		/* y-plane */
4063 		rate = skl_plane_relative_data_rate(intel_cstate,
4064 						    pstate, 1);
4065 		plane_y_data_rate[plane_id] = rate;
4066 
4067 		total_data_rate += rate;
4068 	}
4069 
4070 	return total_data_rate;
4071 }
4072 
4073 static uint16_t
4074 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4075 		  const int y)
4076 {
4077 	struct drm_framebuffer *fb = pstate->fb;
4078 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4079 	uint32_t src_w, src_h;
4080 	uint32_t min_scanlines = 8;
4081 	uint8_t plane_bpp;
4082 
4083 	if (WARN_ON(!fb))
4084 		return 0;
4085 
4086 	/* For packed formats, no y-plane, return 0 */
4087 	if (y && fb->format->format != DRM_FORMAT_NV12)
4088 		return 0;
4089 
4090 	/* For Non Y-tile return 8-blocks */
4091 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4092 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4093 	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4094 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4095 		return 8;
4096 
4097 	/*
4098 	 * Src coordinates are already rotated by 270 degrees for
4099 	 * the 90/270 degree plane rotation cases (to match the
4100 	 * GTT mapping), hence no need to account for rotation here.
4101 	 */
4102 	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4103 	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4104 
4105 	/* Halve UV plane width and height for NV12 */
4106 	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4107 		src_w /= 2;
4108 		src_h /= 2;
4109 	}
4110 
4111 	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4112 		plane_bpp = fb->format->cpp[1];
4113 	else
4114 		plane_bpp = fb->format->cpp[0];
4115 
4116 	if (drm_rotation_90_or_270(pstate->rotation)) {
4117 		switch (plane_bpp) {
4118 		case 1:
4119 			min_scanlines = 32;
4120 			break;
4121 		case 2:
4122 			min_scanlines = 16;
4123 			break;
4124 		case 4:
4125 			min_scanlines = 8;
4126 			break;
4127 		case 8:
4128 			min_scanlines = 4;
4129 			break;
4130 		default:
4131 			WARN(1, "Unsupported pixel depth %u for rotation",
4132 			     plane_bpp);
4133 			min_scanlines = 32;
4134 		}
4135 	}
4136 
4137 	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4138 }
4139 
4140 static void
4141 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4142 		 uint16_t *minimum, uint16_t *y_minimum)
4143 {
4144 	const struct drm_plane_state *pstate;
4145 	struct drm_plane *plane;
4146 
4147 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4148 		enum plane_id plane_id = to_intel_plane(plane)->id;
4149 
4150 		if (plane_id == PLANE_CURSOR)
4151 			continue;
4152 
4153 		if (!pstate->visible)
4154 			continue;
4155 
4156 		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4157 		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4158 	}
4159 
4160 	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4161 }
4162 
4163 static int
4164 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4165 		      struct skl_ddb_allocation *ddb /* out */)
4166 {
4167 	struct drm_atomic_state *state = cstate->base.state;
4168 	struct drm_crtc *crtc = cstate->base.crtc;
4169 	struct drm_device *dev = crtc->dev;
4170 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4171 	enum i915_pipe pipe = intel_crtc->pipe;
4172 	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4173 	uint16_t alloc_size, start;
4174 	uint16_t minimum[I915_MAX_PLANES] = {};
4175 	uint16_t y_minimum[I915_MAX_PLANES] = {};
4176 	unsigned int total_data_rate;
4177 	enum plane_id plane_id;
4178 	int num_active;
4179 	unsigned plane_data_rate[I915_MAX_PLANES] = {};
4180 	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4181 	uint16_t total_min_blocks = 0;
4182 
4183 	/* Clear the partitioning for disabled planes. */
4184 	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4185 	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4186 
4187 	if (WARN_ON(!state))
4188 		return 0;
4189 
4190 	if (!cstate->base.active) {
4191 		alloc->start = alloc->end = 0;
4192 		return 0;
4193 	}
4194 
4195 	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4196 	alloc_size = skl_ddb_entry_size(alloc);
4197 	if (alloc_size == 0)
4198 		return 0;
4199 
4200 	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4201 
4202 	/*
4203 	 * 1. Allocate the mininum required blocks for each active plane
4204 	 * and allocate the cursor, it doesn't require extra allocation
4205 	 * proportional to the data rate.
4206 	 */
4207 
4208 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4209 		total_min_blocks += minimum[plane_id];
4210 		total_min_blocks += y_minimum[plane_id];
4211 	}
4212 
4213 	if (total_min_blocks > alloc_size) {
4214 		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4215 		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4216 							alloc_size);
4217 		return -EINVAL;
4218 	}
4219 
4220 	alloc_size -= total_min_blocks;
4221 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4222 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4223 
4224 	/*
4225 	 * 2. Distribute the remaining space in proportion to the amount of
4226 	 * data each plane needs to fetch from memory.
4227 	 *
4228 	 * FIXME: we may not allocate every single block here.
4229 	 */
4230 	total_data_rate = skl_get_total_relative_data_rate(cstate,
4231 							   plane_data_rate,
4232 							   plane_y_data_rate);
4233 	if (total_data_rate == 0)
4234 		return 0;
4235 
4236 	start = alloc->start;
4237 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4238 		unsigned int data_rate, y_data_rate;
4239 		uint16_t plane_blocks, y_plane_blocks = 0;
4240 
4241 		if (plane_id == PLANE_CURSOR)
4242 			continue;
4243 
4244 		data_rate = plane_data_rate[plane_id];
4245 
4246 		/*
4247 		 * allocation for (packed formats) or (uv-plane part of planar format):
4248 		 * promote the expression to 64 bits to avoid overflowing, the
4249 		 * result is < available as data_rate / total_data_rate < 1
4250 		 */
4251 		plane_blocks = minimum[plane_id];
4252 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4253 					total_data_rate);
4254 
4255 		/* Leave disabled planes at (0,0) */
4256 		if (data_rate) {
4257 			ddb->plane[pipe][plane_id].start = start;
4258 			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4259 		}
4260 
4261 		start += plane_blocks;
4262 
4263 		/*
4264 		 * allocation for y_plane part of planar format:
4265 		 */
4266 		y_data_rate = plane_y_data_rate[plane_id];
4267 
4268 		y_plane_blocks = y_minimum[plane_id];
4269 		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4270 					total_data_rate);
4271 
4272 		if (y_data_rate) {
4273 			ddb->y_plane[pipe][plane_id].start = start;
4274 			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4275 		}
4276 
4277 		start += y_plane_blocks;
4278 	}
4279 
4280 	return 0;
4281 }
4282 
4283 /*
4284  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4285  * for the read latency) and cpp should always be <= 8, so that
4286  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4287  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4288 */
4289 static uint_fixed_16_16_t
4290 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4291 	       uint8_t cpp, uint32_t latency)
4292 {
4293 	uint32_t wm_intermediate_val;
4294 	uint_fixed_16_16_t ret;
4295 
4296 	if (latency == 0)
4297 		return FP_16_16_MAX;
4298 
4299 	wm_intermediate_val = latency * pixel_rate * cpp;
4300 	ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4301 
4302 	if (INTEL_GEN(dev_priv) >= 10)
4303 		ret = add_fixed16_u32(ret, 1);
4304 
4305 	return ret;
4306 }
4307 
4308 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4309 			uint32_t pipe_htotal,
4310 			uint32_t latency,
4311 			uint_fixed_16_16_t plane_blocks_per_line)
4312 {
4313 	uint32_t wm_intermediate_val;
4314 	uint_fixed_16_16_t ret;
4315 
4316 	if (latency == 0)
4317 		return FP_16_16_MAX;
4318 
4319 	wm_intermediate_val = latency * pixel_rate;
4320 	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4321 					   pipe_htotal * 1000);
4322 	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4323 	return ret;
4324 }
4325 
4326 static uint_fixed_16_16_t
4327 intel_get_linetime_us(struct intel_crtc_state *cstate)
4328 {
4329 	uint32_t pixel_rate;
4330 	uint32_t crtc_htotal;
4331 	uint_fixed_16_16_t linetime_us;
4332 
4333 	if (!cstate->base.active)
4334 		return u32_to_fixed16(0);
4335 
4336 	pixel_rate = cstate->pixel_rate;
4337 
4338 	if (WARN_ON(pixel_rate == 0))
4339 		return u32_to_fixed16(0);
4340 
4341 	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4342 	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4343 
4344 	return linetime_us;
4345 }
4346 
4347 static uint32_t
4348 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4349 			      const struct intel_plane_state *pstate)
4350 {
4351 	uint64_t adjusted_pixel_rate;
4352 	uint_fixed_16_16_t downscale_amount;
4353 
4354 	/* Shouldn't reach here on disabled planes... */
4355 	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4356 		return 0;
4357 
4358 	/*
4359 	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4360 	 * with additional adjustments for plane-specific scaling.
4361 	 */
4362 	adjusted_pixel_rate = cstate->pixel_rate;
4363 	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4364 
4365 	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4366 					    downscale_amount);
4367 }
4368 
4369 static int
4370 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4371 			    struct intel_crtc_state *cstate,
4372 			    const struct intel_plane_state *intel_pstate,
4373 			    struct skl_wm_params *wp)
4374 {
4375 	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4376 	const struct drm_plane_state *pstate = &intel_pstate->base;
4377 	const struct drm_framebuffer *fb = pstate->fb;
4378 	uint32_t interm_pbpl;
4379 	struct intel_atomic_state *state =
4380 		to_intel_atomic_state(cstate->base.state);
4381 	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4382 
4383 	if (!intel_wm_plane_visible(cstate, intel_pstate))
4384 		return 0;
4385 
4386 	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4387 		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4388 		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4389 		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4390 	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4391 	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4392 			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4393 
4394 	if (plane->id == PLANE_CURSOR) {
4395 		wp->width = intel_pstate->base.crtc_w;
4396 	} else {
4397 		/*
4398 		 * Src coordinates are already rotated by 270 degrees for
4399 		 * the 90/270 degree plane rotation cases (to match the
4400 		 * GTT mapping), hence no need to account for rotation here.
4401 		 */
4402 		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4403 	}
4404 
4405 	wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4406 							    fb->format->cpp[0];
4407 	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4408 							     intel_pstate);
4409 
4410 	if (drm_rotation_90_or_270(pstate->rotation)) {
4411 
4412 		switch (wp->cpp) {
4413 		case 1:
4414 			wp->y_min_scanlines = 16;
4415 			break;
4416 		case 2:
4417 			wp->y_min_scanlines = 8;
4418 			break;
4419 		case 4:
4420 			wp->y_min_scanlines = 4;
4421 			break;
4422 		default:
4423 			MISSING_CASE(wp->cpp);
4424 			return -EINVAL;
4425 		}
4426 	} else {
4427 		wp->y_min_scanlines = 4;
4428 	}
4429 
4430 	if (apply_memory_bw_wa)
4431 		wp->y_min_scanlines *= 2;
4432 
4433 	wp->plane_bytes_per_line = wp->width * wp->cpp;
4434 	if (wp->y_tiled) {
4435 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4436 					   wp->y_min_scanlines, 512);
4437 
4438 		if (INTEL_GEN(dev_priv) >= 10)
4439 			interm_pbpl++;
4440 
4441 		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4442 							wp->y_min_scanlines);
4443 	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4444 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
4445 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4446 	} else {
4447 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
4448 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4449 	}
4450 
4451 	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4452 					     wp->plane_blocks_per_line);
4453 	wp->linetime_us = fixed16_to_u32_round_up(
4454 					intel_get_linetime_us(cstate));
4455 
4456 	return 0;
4457 }
4458 
4459 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4460 				struct intel_crtc_state *cstate,
4461 				const struct intel_plane_state *intel_pstate,
4462 				uint16_t ddb_allocation,
4463 				int level,
4464 				const struct skl_wm_params *wp,
4465 				uint16_t *out_blocks, /* out */
4466 				uint8_t *out_lines, /* out */
4467 				bool *enabled /* out */)
4468 {
4469 	const struct drm_plane_state *pstate = &intel_pstate->base;
4470 	uint32_t latency = dev_priv->wm.skl_latency[level];
4471 	uint_fixed_16_16_t method1, method2;
4472 	uint_fixed_16_16_t selected_result;
4473 	uint32_t res_blocks, res_lines;
4474 	struct intel_atomic_state *state =
4475 		to_intel_atomic_state(cstate->base.state);
4476 	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4477 
4478 	if (latency == 0 ||
4479 	    !intel_wm_plane_visible(cstate, intel_pstate)) {
4480 		*enabled = false;
4481 		return 0;
4482 	}
4483 
4484 	/* Display WA #1141: kbl,cfl */
4485 	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4486 	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4487 	    dev_priv->ipc_enabled)
4488 		latency += 4;
4489 
4490 	if (apply_memory_bw_wa && wp->x_tiled)
4491 		latency += 15;
4492 
4493 	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4494 				 wp->cpp, latency);
4495 	method2 = skl_wm_method2(wp->plane_pixel_rate,
4496 				 cstate->base.adjusted_mode.crtc_htotal,
4497 				 latency,
4498 				 wp->plane_blocks_per_line);
4499 
4500 	if (wp->y_tiled) {
4501 		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4502 	} else {
4503 		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4504 		     512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
4505 			selected_result = method2;
4506 		else if (ddb_allocation >=
4507 			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4508 			selected_result = min_fixed16(method1, method2);
4509 		else if (latency >= wp->linetime_us)
4510 			selected_result = min_fixed16(method1, method2);
4511 		else
4512 			selected_result = method1;
4513 	}
4514 
4515 	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4516 	res_lines = div_round_up_fixed16(selected_result,
4517 					 wp->plane_blocks_per_line);
4518 
4519 	/* Display WA #1125: skl,bxt,kbl,glk */
4520 	if (level == 0 && wp->rc_surface)
4521 		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4522 
4523 	/* Display WA #1126: skl,bxt,kbl,glk */
4524 	if (level >= 1 && level <= 7) {
4525 		if (wp->y_tiled) {
4526 			res_blocks += fixed16_to_u32_round_up(
4527 							wp->y_tile_minimum);
4528 			res_lines += wp->y_min_scanlines;
4529 		} else {
4530 			res_blocks++;
4531 		}
4532 	}
4533 
4534 	if (res_blocks >= ddb_allocation || res_lines > 31) {
4535 		*enabled = false;
4536 
4537 		/*
4538 		 * If there are no valid level 0 watermarks, then we can't
4539 		 * support this display configuration.
4540 		 */
4541 		if (level) {
4542 			return 0;
4543 		} else {
4544 			struct drm_plane *plane = pstate->plane;
4545 
4546 			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4547 			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4548 				      plane->base.id, plane->name,
4549 				      res_blocks, ddb_allocation, res_lines);
4550 			return -EINVAL;
4551 		}
4552 	}
4553 
4554 	*out_blocks = res_blocks;
4555 	*out_lines = res_lines;
4556 	*enabled = true;
4557 
4558 	return 0;
4559 }
4560 
4561 static int
4562 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4563 		      struct skl_ddb_allocation *ddb,
4564 		      struct intel_crtc_state *cstate,
4565 		      const struct intel_plane_state *intel_pstate,
4566 		      const struct skl_wm_params *wm_params,
4567 		      struct skl_plane_wm *wm)
4568 {
4569 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4570 	struct drm_plane *plane = intel_pstate->base.plane;
4571 	struct intel_plane *intel_plane = to_intel_plane(plane);
4572 	uint16_t ddb_blocks;
4573 	enum i915_pipe pipe = intel_crtc->pipe;
4574 	int level, max_level = ilk_wm_max_level(dev_priv);
4575 	int ret;
4576 
4577 	if (WARN_ON(!intel_pstate->base.fb))
4578 		return -EINVAL;
4579 
4580 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4581 
4582 	for (level = 0; level <= max_level; level++) {
4583 		struct skl_wm_level *result = &wm->wm[level];
4584 
4585 		ret = skl_compute_plane_wm(dev_priv,
4586 					   cstate,
4587 					   intel_pstate,
4588 					   ddb_blocks,
4589 					   level,
4590 					   wm_params,
4591 					   &result->plane_res_b,
4592 					   &result->plane_res_l,
4593 					   &result->plane_en);
4594 		if (ret)
4595 			return ret;
4596 	}
4597 
4598 	return 0;
4599 }
4600 
4601 static uint32_t
4602 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4603 {
4604 	struct drm_atomic_state *state = cstate->base.state;
4605 	struct drm_i915_private *dev_priv = to_i915(state->dev);
4606 	uint_fixed_16_16_t linetime_us;
4607 	uint32_t linetime_wm;
4608 
4609 	linetime_us = intel_get_linetime_us(cstate);
4610 
4611 	if (is_fixed16_zero(linetime_us))
4612 		return 0;
4613 
4614 	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4615 
4616 	/* Display WA #1135: bxt:ALL GLK:ALL */
4617 	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4618 	    dev_priv->ipc_enabled)
4619 		linetime_wm /= 2;
4620 
4621 	return linetime_wm;
4622 }
4623 
4624 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4625 				      struct skl_wm_params *wp,
4626 				      struct skl_wm_level *wm_l0,
4627 				      uint16_t ddb_allocation,
4628 				      struct skl_wm_level *trans_wm /* out */)
4629 {
4630 	struct drm_device *dev = cstate->base.crtc->dev;
4631 	const struct drm_i915_private *dev_priv = to_i915(dev);
4632 	uint16_t trans_min, trans_y_tile_min;
4633 	const uint16_t trans_amount = 10; /* This is configurable amount */
4634 	uint16_t trans_offset_b, res_blocks;
4635 
4636 	if (!cstate->base.active)
4637 		goto exit;
4638 
4639 	/* Transition WM are not recommended by HW team for GEN9 */
4640 	if (INTEL_GEN(dev_priv) <= 9)
4641 		goto exit;
4642 
4643 	/* Transition WM don't make any sense if ipc is disabled */
4644 	if (!dev_priv->ipc_enabled)
4645 		goto exit;
4646 
4647 	if (INTEL_GEN(dev_priv) >= 10)
4648 		trans_min = 4;
4649 
4650 	trans_offset_b = trans_min + trans_amount;
4651 
4652 	if (wp->y_tiled) {
4653 		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4654 							wp->y_tile_minimum);
4655 		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4656 				trans_offset_b;
4657 	} else {
4658 		res_blocks = wm_l0->plane_res_b + trans_offset_b;
4659 
4660 		/* WA BUG:1938466 add one block for non y-tile planes */
4661 		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4662 			res_blocks += 1;
4663 
4664 	}
4665 
4666 	res_blocks += 1;
4667 
4668 	if (res_blocks < ddb_allocation) {
4669 		trans_wm->plane_res_b = res_blocks;
4670 		trans_wm->plane_en = true;
4671 		return;
4672 	}
4673 
4674 exit:
4675 	trans_wm->plane_en = false;
4676 }
4677 
4678 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4679 			     struct skl_ddb_allocation *ddb,
4680 			     struct skl_pipe_wm *pipe_wm)
4681 {
4682 	struct drm_device *dev = cstate->base.crtc->dev;
4683 	struct drm_crtc_state *crtc_state = &cstate->base;
4684 	const struct drm_i915_private *dev_priv = to_i915(dev);
4685 	struct drm_plane *plane;
4686 	const struct drm_plane_state *pstate;
4687 	struct skl_plane_wm *wm;
4688 	int ret;
4689 
4690 	/*
4691 	 * We'll only calculate watermarks for planes that are actually
4692 	 * enabled, so make sure all other planes are set as disabled.
4693 	 */
4694 	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4695 
4696 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4697 		const struct intel_plane_state *intel_pstate =
4698 						to_intel_plane_state(pstate);
4699 		enum plane_id plane_id = to_intel_plane(plane)->id;
4700 		struct skl_wm_params wm_params;
4701 		enum i915_pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4702 		uint16_t ddb_blocks;
4703 
4704 		wm = &pipe_wm->planes[plane_id];
4705 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4706 		memset(&wm_params, 0, sizeof(struct skl_wm_params));
4707 
4708 		ret = skl_compute_plane_wm_params(dev_priv, cstate,
4709 						  intel_pstate, &wm_params);
4710 		if (ret)
4711 			return ret;
4712 
4713 		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4714 					    intel_pstate, &wm_params, wm);
4715 		if (ret)
4716 			return ret;
4717 		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4718 					  ddb_blocks, &wm->trans_wm);
4719 	}
4720 	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4721 
4722 	return 0;
4723 }
4724 
4725 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4726 				i915_reg_t reg,
4727 				const struct skl_ddb_entry *entry)
4728 {
4729 	if (entry->end)
4730 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4731 	else
4732 		I915_WRITE(reg, 0);
4733 }
4734 
4735 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4736 			       i915_reg_t reg,
4737 			       const struct skl_wm_level *level)
4738 {
4739 	uint32_t val = 0;
4740 
4741 	if (level->plane_en) {
4742 		val |= PLANE_WM_EN;
4743 		val |= level->plane_res_b;
4744 		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4745 	}
4746 
4747 	I915_WRITE(reg, val);
4748 }
4749 
4750 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4751 			       const struct skl_plane_wm *wm,
4752 			       const struct skl_ddb_allocation *ddb,
4753 			       enum plane_id plane_id)
4754 {
4755 	struct drm_crtc *crtc = &intel_crtc->base;
4756 	struct drm_device *dev = crtc->dev;
4757 	struct drm_i915_private *dev_priv = to_i915(dev);
4758 	int level, max_level = ilk_wm_max_level(dev_priv);
4759 	enum i915_pipe pipe = intel_crtc->pipe;
4760 
4761 	for (level = 0; level <= max_level; level++) {
4762 		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4763 				   &wm->wm[level]);
4764 	}
4765 	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4766 			   &wm->trans_wm);
4767 
4768 	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4769 			    &ddb->plane[pipe][plane_id]);
4770 	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4771 			    &ddb->y_plane[pipe][plane_id]);
4772 }
4773 
4774 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4775 				const struct skl_plane_wm *wm,
4776 				const struct skl_ddb_allocation *ddb)
4777 {
4778 	struct drm_crtc *crtc = &intel_crtc->base;
4779 	struct drm_device *dev = crtc->dev;
4780 	struct drm_i915_private *dev_priv = to_i915(dev);
4781 	int level, max_level = ilk_wm_max_level(dev_priv);
4782 	enum i915_pipe pipe = intel_crtc->pipe;
4783 
4784 	for (level = 0; level <= max_level; level++) {
4785 		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4786 				   &wm->wm[level]);
4787 	}
4788 	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4789 
4790 	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4791 			    &ddb->plane[pipe][PLANE_CURSOR]);
4792 }
4793 
4794 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4795 			 const struct skl_wm_level *l2)
4796 {
4797 	if (l1->plane_en != l2->plane_en)
4798 		return false;
4799 
4800 	/* If both planes aren't enabled, the rest shouldn't matter */
4801 	if (!l1->plane_en)
4802 		return true;
4803 
4804 	return (l1->plane_res_l == l2->plane_res_l &&
4805 		l1->plane_res_b == l2->plane_res_b);
4806 }
4807 
4808 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4809 					   const struct skl_ddb_entry *b)
4810 {
4811 	return a->start < b->end && b->start < a->end;
4812 }
4813 
4814 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
4815 				 const struct skl_ddb_entry **entries,
4816 				 const struct skl_ddb_entry *ddb,
4817 				 int ignore)
4818 {
4819 	enum i915_pipe pipe;
4820 
4821 	for_each_pipe(dev_priv, pipe) {
4822 		if (pipe != ignore && entries[pipe] &&
4823 		    skl_ddb_entries_overlap(ddb, entries[pipe]))
4824 			return true;
4825 	}
4826 
4827 	return false;
4828 }
4829 
4830 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4831 			      const struct skl_pipe_wm *old_pipe_wm,
4832 			      struct skl_pipe_wm *pipe_wm, /* out */
4833 			      struct skl_ddb_allocation *ddb, /* out */
4834 			      bool *changed /* out */)
4835 {
4836 	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4837 	int ret;
4838 
4839 	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4840 	if (ret)
4841 		return ret;
4842 
4843 	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4844 		*changed = false;
4845 	else
4846 		*changed = true;
4847 
4848 	return 0;
4849 }
4850 
4851 static uint32_t
4852 pipes_modified(struct drm_atomic_state *state)
4853 {
4854 	struct drm_crtc *crtc;
4855 	struct drm_crtc_state *cstate;
4856 	uint32_t i, ret = 0;
4857 
4858 	for_each_new_crtc_in_state(state, crtc, cstate, i)
4859 		ret |= drm_crtc_mask(crtc);
4860 
4861 	return ret;
4862 }
4863 
4864 static int
4865 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4866 {
4867 	struct drm_atomic_state *state = cstate->base.state;
4868 	struct drm_device *dev = state->dev;
4869 	struct drm_crtc *crtc = cstate->base.crtc;
4870 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4871 	struct drm_i915_private *dev_priv = to_i915(dev);
4872 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4873 	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4874 	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4875 	struct drm_plane_state *plane_state;
4876 	struct drm_plane *plane;
4877 	enum i915_pipe pipe = intel_crtc->pipe;
4878 
4879 	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4880 
4881 	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4882 		enum plane_id plane_id = to_intel_plane(plane)->id;
4883 
4884 		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4885 					&new_ddb->plane[pipe][plane_id]) &&
4886 		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4887 					&new_ddb->y_plane[pipe][plane_id]))
4888 			continue;
4889 
4890 		plane_state = drm_atomic_get_plane_state(state, plane);
4891 		if (IS_ERR(plane_state))
4892 			return PTR_ERR(plane_state);
4893 	}
4894 
4895 	return 0;
4896 }
4897 
4898 static int
4899 skl_compute_ddb(struct drm_atomic_state *state)
4900 {
4901 	struct drm_device *dev = state->dev;
4902 	struct drm_i915_private *dev_priv = to_i915(dev);
4903 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4904 	struct intel_crtc *intel_crtc;
4905 	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4906 	uint32_t realloc_pipes = pipes_modified(state);
4907 	int ret;
4908 
4909 	/*
4910 	 * If this is our first atomic update following hardware readout,
4911 	 * we can't trust the DDB that the BIOS programmed for us.  Let's
4912 	 * pretend that all pipes switched active status so that we'll
4913 	 * ensure a full DDB recompute.
4914 	 */
4915 	if (dev_priv->wm.distrust_bios_wm) {
4916 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4917 				       state->acquire_ctx);
4918 		if (ret)
4919 			return ret;
4920 
4921 		intel_state->active_pipe_changes = ~0;
4922 
4923 		/*
4924 		 * We usually only initialize intel_state->active_crtcs if we
4925 		 * we're doing a modeset; make sure this field is always
4926 		 * initialized during the sanitization process that happens
4927 		 * on the first commit too.
4928 		 */
4929 		if (!intel_state->modeset)
4930 			intel_state->active_crtcs = dev_priv->active_crtcs;
4931 	}
4932 
4933 	/*
4934 	 * If the modeset changes which CRTC's are active, we need to
4935 	 * recompute the DDB allocation for *all* active pipes, even
4936 	 * those that weren't otherwise being modified in any way by this
4937 	 * atomic commit.  Due to the shrinking of the per-pipe allocations
4938 	 * when new active CRTC's are added, it's possible for a pipe that
4939 	 * we were already using and aren't changing at all here to suddenly
4940 	 * become invalid if its DDB needs exceeds its new allocation.
4941 	 *
4942 	 * Note that if we wind up doing a full DDB recompute, we can't let
4943 	 * any other display updates race with this transaction, so we need
4944 	 * to grab the lock on *all* CRTC's.
4945 	 */
4946 	if (intel_state->active_pipe_changes) {
4947 		realloc_pipes = ~0;
4948 		intel_state->wm_results.dirty_pipes = ~0;
4949 	}
4950 
4951 	/*
4952 	 * We're not recomputing for the pipes not included in the commit, so
4953 	 * make sure we start with the current state.
4954 	 */
4955 	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4956 
4957 	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4958 		struct intel_crtc_state *cstate;
4959 
4960 		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4961 		if (IS_ERR(cstate))
4962 			return PTR_ERR(cstate);
4963 
4964 		ret = skl_allocate_pipe_ddb(cstate, ddb);
4965 		if (ret)
4966 			return ret;
4967 
4968 		ret = skl_ddb_add_affected_planes(cstate);
4969 		if (ret)
4970 			return ret;
4971 	}
4972 
4973 	return 0;
4974 }
4975 
4976 static void
4977 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4978 		     struct skl_wm_values *src,
4979 		     enum i915_pipe pipe)
4980 {
4981 	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4982 	       sizeof(dst->ddb.y_plane[pipe]));
4983 	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4984 	       sizeof(dst->ddb.plane[pipe]));
4985 }
4986 
4987 static void
4988 skl_print_wm_changes(const struct drm_atomic_state *state)
4989 {
4990 	const struct drm_device *dev = state->dev;
4991 	const struct drm_i915_private *dev_priv = to_i915(dev);
4992 	const struct intel_atomic_state *intel_state =
4993 		to_intel_atomic_state(state);
4994 	const struct drm_crtc *crtc;
4995 	const struct drm_crtc_state *cstate;
4996 	const struct intel_plane *intel_plane;
4997 	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4998 	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4999 	int i;
5000 
5001 	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5002 		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5003 		enum i915_pipe pipe = intel_crtc->pipe;
5004 
5005 		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5006 			enum plane_id plane_id = intel_plane->id;
5007 			const struct skl_ddb_entry *old, *new;
5008 
5009 			old = &old_ddb->plane[pipe][plane_id];
5010 			new = &new_ddb->plane[pipe][plane_id];
5011 
5012 			if (skl_ddb_entry_equal(old, new))
5013 				continue;
5014 
5015 			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5016 					 intel_plane->base.base.id,
5017 					 intel_plane->base.name,
5018 					 old->start, old->end,
5019 					 new->start, new->end);
5020 		}
5021 	}
5022 }
5023 
5024 static int
5025 skl_compute_wm(struct drm_atomic_state *state)
5026 {
5027 	struct drm_crtc *crtc;
5028 	struct drm_crtc_state *cstate;
5029 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5030 	struct skl_wm_values *results = &intel_state->wm_results;
5031 	struct drm_device *dev = state->dev;
5032 	struct skl_pipe_wm *pipe_wm;
5033 	bool changed = false;
5034 	int ret, i;
5035 
5036 	/*
5037 	 * When we distrust bios wm we always need to recompute to set the
5038 	 * expected DDB allocations for each CRTC.
5039 	 */
5040 	if (to_i915(dev)->wm.distrust_bios_wm)
5041 		changed = true;
5042 
5043 	/*
5044 	 * If this transaction isn't actually touching any CRTC's, don't
5045 	 * bother with watermark calculation.  Note that if we pass this
5046 	 * test, we're guaranteed to hold at least one CRTC state mutex,
5047 	 * which means we can safely use values like dev_priv->active_crtcs
5048 	 * since any racing commits that want to update them would need to
5049 	 * hold _all_ CRTC state mutexes.
5050 	 */
5051 	for_each_new_crtc_in_state(state, crtc, cstate, i)
5052 		changed = true;
5053 
5054 	if (!changed)
5055 		return 0;
5056 
5057 	/* Clear all dirty flags */
5058 	results->dirty_pipes = 0;
5059 
5060 	ret = skl_compute_ddb(state);
5061 	if (ret)
5062 		return ret;
5063 
5064 	/*
5065 	 * Calculate WM's for all pipes that are part of this transaction.
5066 	 * Note that the DDB allocation above may have added more CRTC's that
5067 	 * weren't otherwise being modified (and set bits in dirty_pipes) if
5068 	 * pipe allocations had to change.
5069 	 *
5070 	 * FIXME:  Now that we're doing this in the atomic check phase, we
5071 	 * should allow skl_update_pipe_wm() to return failure in cases where
5072 	 * no suitable watermark values can be found.
5073 	 */
5074 	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5075 		struct intel_crtc_state *intel_cstate =
5076 			to_intel_crtc_state(cstate);
5077 		const struct skl_pipe_wm *old_pipe_wm =
5078 			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5079 
5080 		pipe_wm = &intel_cstate->wm.skl.optimal;
5081 		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5082 					 &results->ddb, &changed);
5083 		if (ret)
5084 			return ret;
5085 
5086 		if (changed)
5087 			results->dirty_pipes |= drm_crtc_mask(crtc);
5088 
5089 		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5090 			/* This pipe's WM's did not change */
5091 			continue;
5092 
5093 		intel_cstate->update_wm_pre = true;
5094 	}
5095 
5096 	skl_print_wm_changes(state);
5097 
5098 	return 0;
5099 }
5100 
5101 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5102 				      struct intel_crtc_state *cstate)
5103 {
5104 	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5105 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5106 	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5107 	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5108 	enum i915_pipe pipe = crtc->pipe;
5109 	enum plane_id plane_id;
5110 
5111 	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5112 		return;
5113 
5114 	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5115 
5116 	for_each_plane_id_on_crtc(crtc, plane_id) {
5117 		if (plane_id != PLANE_CURSOR)
5118 			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5119 					   ddb, plane_id);
5120 		else
5121 			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5122 					    ddb);
5123 	}
5124 }
5125 
5126 static void skl_initial_wm(struct intel_atomic_state *state,
5127 			   struct intel_crtc_state *cstate)
5128 {
5129 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5130 	struct drm_device *dev = intel_crtc->base.dev;
5131 	struct drm_i915_private *dev_priv = to_i915(dev);
5132 	struct skl_wm_values *results = &state->wm_results;
5133 	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5134 	enum i915_pipe pipe = intel_crtc->pipe;
5135 
5136 	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5137 		return;
5138 
5139 	mutex_lock(&dev_priv->wm.wm_mutex);
5140 
5141 	if (cstate->base.active_changed)
5142 		skl_atomic_update_crtc_wm(state, cstate);
5143 
5144 	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5145 
5146 	mutex_unlock(&dev_priv->wm.wm_mutex);
5147 }
5148 
5149 static void ilk_compute_wm_config(struct drm_device *dev,
5150 				  struct intel_wm_config *config)
5151 {
5152 	struct intel_crtc *crtc;
5153 
5154 	/* Compute the currently _active_ config */
5155 	for_each_intel_crtc(dev, crtc) {
5156 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5157 
5158 		if (!wm->pipe_enabled)
5159 			continue;
5160 
5161 		config->sprites_enabled |= wm->sprites_enabled;
5162 		config->sprites_scaled |= wm->sprites_scaled;
5163 		config->num_pipes_active++;
5164 	}
5165 }
5166 
5167 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5168 {
5169 	struct drm_device *dev = &dev_priv->drm;
5170 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5171 	struct ilk_wm_maximums max;
5172 	struct intel_wm_config config = {};
5173 	struct ilk_wm_values results = {};
5174 	enum intel_ddb_partitioning partitioning;
5175 
5176 	ilk_compute_wm_config(dev, &config);
5177 
5178 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5179 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5180 
5181 	/* 5/6 split only in single pipe config on IVB+ */
5182 	if (INTEL_GEN(dev_priv) >= 7 &&
5183 	    config.num_pipes_active == 1 && config.sprites_enabled) {
5184 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5185 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5186 
5187 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5188 	} else {
5189 		best_lp_wm = &lp_wm_1_2;
5190 	}
5191 
5192 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5193 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5194 
5195 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5196 
5197 	ilk_write_wm_values(dev_priv, &results);
5198 }
5199 
5200 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5201 				   struct intel_crtc_state *cstate)
5202 {
5203 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5204 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5205 
5206 	mutex_lock(&dev_priv->wm.wm_mutex);
5207 	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5208 	ilk_program_watermarks(dev_priv);
5209 	mutex_unlock(&dev_priv->wm.wm_mutex);
5210 }
5211 
5212 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5213 				    struct intel_crtc_state *cstate)
5214 {
5215 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5216 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5217 
5218 	mutex_lock(&dev_priv->wm.wm_mutex);
5219 	if (cstate->wm.need_postvbl_update) {
5220 		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5221 		ilk_program_watermarks(dev_priv);
5222 	}
5223 	mutex_unlock(&dev_priv->wm.wm_mutex);
5224 }
5225 
5226 static inline void skl_wm_level_from_reg_val(uint32_t val,
5227 					     struct skl_wm_level *level)
5228 {
5229 	level->plane_en = val & PLANE_WM_EN;
5230 	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5231 	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5232 		PLANE_WM_LINES_MASK;
5233 }
5234 
5235 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5236 			      struct skl_pipe_wm *out)
5237 {
5238 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5239 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240 	enum i915_pipe pipe = intel_crtc->pipe;
5241 	int level, max_level;
5242 	enum plane_id plane_id;
5243 	uint32_t val;
5244 
5245 	max_level = ilk_wm_max_level(dev_priv);
5246 
5247 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5248 		struct skl_plane_wm *wm = &out->planes[plane_id];
5249 
5250 		for (level = 0; level <= max_level; level++) {
5251 			if (plane_id != PLANE_CURSOR)
5252 				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5253 			else
5254 				val = I915_READ(CUR_WM(pipe, level));
5255 
5256 			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5257 		}
5258 
5259 		if (plane_id != PLANE_CURSOR)
5260 			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5261 		else
5262 			val = I915_READ(CUR_WM_TRANS(pipe));
5263 
5264 		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5265 	}
5266 
5267 	if (!intel_crtc->active)
5268 		return;
5269 
5270 	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5271 }
5272 
5273 void skl_wm_get_hw_state(struct drm_device *dev)
5274 {
5275 	struct drm_i915_private *dev_priv = to_i915(dev);
5276 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5277 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5278 	struct drm_crtc *crtc;
5279 	struct intel_crtc *intel_crtc;
5280 	struct intel_crtc_state *cstate;
5281 
5282 	skl_ddb_get_hw_state(dev_priv, ddb);
5283 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5284 		intel_crtc = to_intel_crtc(crtc);
5285 		cstate = to_intel_crtc_state(crtc->state);
5286 
5287 		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5288 
5289 		if (intel_crtc->active)
5290 			hw->dirty_pipes |= drm_crtc_mask(crtc);
5291 	}
5292 
5293 	if (dev_priv->active_crtcs) {
5294 		/* Fully recompute DDB on first atomic commit */
5295 		dev_priv->wm.distrust_bios_wm = true;
5296 	} else {
5297 		/* Easy/common case; just sanitize DDB now if everything off */
5298 		memset(ddb, 0, sizeof(*ddb));
5299 	}
5300 }
5301 
5302 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5303 {
5304 	struct drm_device *dev = crtc->dev;
5305 	struct drm_i915_private *dev_priv = to_i915(dev);
5306 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5307 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5308 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5309 	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5310 	enum i915_pipe pipe = intel_crtc->pipe;
5311 	static const i915_reg_t wm0_pipe_reg[] = {
5312 		[PIPE_A] = WM0_PIPEA_ILK,
5313 		[PIPE_B] = WM0_PIPEB_ILK,
5314 		[PIPE_C] = WM0_PIPEC_IVB,
5315 	};
5316 
5317 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5318 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5319 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5320 
5321 	memset(active, 0, sizeof(*active));
5322 
5323 	active->pipe_enabled = intel_crtc->active;
5324 
5325 	if (active->pipe_enabled) {
5326 		u32 tmp = hw->wm_pipe[pipe];
5327 
5328 		/*
5329 		 * For active pipes LP0 watermark is marked as
5330 		 * enabled, and LP1+ watermaks as disabled since
5331 		 * we can't really reverse compute them in case
5332 		 * multiple pipes are active.
5333 		 */
5334 		active->wm[0].enable = true;
5335 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5336 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5337 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5338 		active->linetime = hw->wm_linetime[pipe];
5339 	} else {
5340 		int level, max_level = ilk_wm_max_level(dev_priv);
5341 
5342 		/*
5343 		 * For inactive pipes, all watermark levels
5344 		 * should be marked as enabled but zeroed,
5345 		 * which is what we'd compute them to.
5346 		 */
5347 		for (level = 0; level <= max_level; level++)
5348 			active->wm[level].enable = true;
5349 	}
5350 
5351 	intel_crtc->wm.active.ilk = *active;
5352 }
5353 
5354 #define _FW_WM(value, plane) \
5355 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5356 #define _FW_WM_VLV(value, plane) \
5357 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5358 
5359 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5360 			       struct g4x_wm_values *wm)
5361 {
5362 	uint32_t tmp;
5363 
5364 	tmp = I915_READ(DSPFW1);
5365 	wm->sr.plane = _FW_WM(tmp, SR);
5366 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5367 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5368 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5369 
5370 	tmp = I915_READ(DSPFW2);
5371 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5372 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5373 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5374 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5375 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5376 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5377 
5378 	tmp = I915_READ(DSPFW3);
5379 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5380 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5381 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5382 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5383 }
5384 
5385 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5386 			       struct vlv_wm_values *wm)
5387 {
5388 	enum i915_pipe pipe;
5389 	uint32_t tmp;
5390 
5391 	for_each_pipe(dev_priv, pipe) {
5392 		tmp = I915_READ(VLV_DDL(pipe));
5393 
5394 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5395 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5396 		wm->ddl[pipe].plane[PLANE_CURSOR] =
5397 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5398 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5399 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5400 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5401 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5402 	}
5403 
5404 	tmp = I915_READ(DSPFW1);
5405 	wm->sr.plane = _FW_WM(tmp, SR);
5406 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5407 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5408 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5409 
5410 	tmp = I915_READ(DSPFW2);
5411 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5412 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5413 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5414 
5415 	tmp = I915_READ(DSPFW3);
5416 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5417 
5418 	if (IS_CHERRYVIEW(dev_priv)) {
5419 		tmp = I915_READ(DSPFW7_CHV);
5420 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5421 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5422 
5423 		tmp = I915_READ(DSPFW8_CHV);
5424 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5425 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5426 
5427 		tmp = I915_READ(DSPFW9_CHV);
5428 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5429 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5430 
5431 		tmp = I915_READ(DSPHOWM);
5432 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5433 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5434 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5435 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5436 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5437 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5438 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5439 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5440 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5441 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5442 	} else {
5443 		tmp = I915_READ(DSPFW7);
5444 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5445 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5446 
5447 		tmp = I915_READ(DSPHOWM);
5448 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5449 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5450 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5451 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5452 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5453 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5454 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5455 	}
5456 }
5457 
5458 #undef _FW_WM
5459 #undef _FW_WM_VLV
5460 
5461 void g4x_wm_get_hw_state(struct drm_device *dev)
5462 {
5463 	struct drm_i915_private *dev_priv = to_i915(dev);
5464 	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5465 	struct intel_crtc *crtc;
5466 
5467 	g4x_read_wm_values(dev_priv, wm);
5468 
5469 	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5470 
5471 	for_each_intel_crtc(dev, crtc) {
5472 		struct intel_crtc_state *crtc_state =
5473 			to_intel_crtc_state(crtc->base.state);
5474 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
5475 		struct g4x_pipe_wm *raw;
5476 		enum i915_pipe pipe = crtc->pipe;
5477 		enum plane_id plane_id;
5478 		int level, max_level;
5479 
5480 		active->cxsr = wm->cxsr;
5481 		active->hpll_en = wm->hpll_en;
5482 		active->fbc_en = wm->fbc_en;
5483 
5484 		active->sr = wm->sr;
5485 		active->hpll = wm->hpll;
5486 
5487 		for_each_plane_id_on_crtc(crtc, plane_id) {
5488 			active->wm.plane[plane_id] =
5489 				wm->pipe[pipe].plane[plane_id];
5490 		}
5491 
5492 		if (wm->cxsr && wm->hpll_en)
5493 			max_level = G4X_WM_LEVEL_HPLL;
5494 		else if (wm->cxsr)
5495 			max_level = G4X_WM_LEVEL_SR;
5496 		else
5497 			max_level = G4X_WM_LEVEL_NORMAL;
5498 
5499 		level = G4X_WM_LEVEL_NORMAL;
5500 		raw = &crtc_state->wm.g4x.raw[level];
5501 		for_each_plane_id_on_crtc(crtc, plane_id)
5502 			raw->plane[plane_id] = active->wm.plane[plane_id];
5503 
5504 		if (++level > max_level)
5505 			goto out;
5506 
5507 		raw = &crtc_state->wm.g4x.raw[level];
5508 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
5509 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
5510 		raw->plane[PLANE_SPRITE0] = 0;
5511 		raw->fbc = active->sr.fbc;
5512 
5513 		if (++level > max_level)
5514 			goto out;
5515 
5516 		raw = &crtc_state->wm.g4x.raw[level];
5517 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5518 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5519 		raw->plane[PLANE_SPRITE0] = 0;
5520 		raw->fbc = active->hpll.fbc;
5521 
5522 	out:
5523 		for_each_plane_id_on_crtc(crtc, plane_id)
5524 			g4x_raw_plane_wm_set(crtc_state, level,
5525 					     plane_id, USHRT_MAX);
5526 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5527 
5528 		crtc_state->wm.g4x.optimal = *active;
5529 		crtc_state->wm.g4x.intermediate = *active;
5530 
5531 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5532 			      pipe_name(pipe),
5533 			      wm->pipe[pipe].plane[PLANE_PRIMARY],
5534 			      wm->pipe[pipe].plane[PLANE_CURSOR],
5535 			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
5536 	}
5537 
5538 	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5539 		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5540 	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5541 		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5542 	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5543 		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5544 }
5545 
5546 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5547 {
5548 	struct intel_plane *plane;
5549 	struct intel_crtc *crtc;
5550 
5551 	mutex_lock(&dev_priv->wm.wm_mutex);
5552 
5553 	for_each_intel_plane(&dev_priv->drm, plane) {
5554 		struct intel_crtc *crtc =
5555 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5556 		struct intel_crtc_state *crtc_state =
5557 			to_intel_crtc_state(crtc->base.state);
5558 		struct intel_plane_state *plane_state =
5559 			to_intel_plane_state(plane->base.state);
5560 		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5561 		enum plane_id plane_id = plane->id;
5562 		int level;
5563 
5564 		if (plane_state->base.visible)
5565 			continue;
5566 
5567 		for (level = 0; level < 3; level++) {
5568 			struct g4x_pipe_wm *raw =
5569 				&crtc_state->wm.g4x.raw[level];
5570 
5571 			raw->plane[plane_id] = 0;
5572 			wm_state->wm.plane[plane_id] = 0;
5573 		}
5574 
5575 		if (plane_id == PLANE_PRIMARY) {
5576 			for (level = 0; level < 3; level++) {
5577 				struct g4x_pipe_wm *raw =
5578 					&crtc_state->wm.g4x.raw[level];
5579 				raw->fbc = 0;
5580 			}
5581 
5582 			wm_state->sr.fbc = 0;
5583 			wm_state->hpll.fbc = 0;
5584 			wm_state->fbc_en = false;
5585 		}
5586 	}
5587 
5588 	for_each_intel_crtc(&dev_priv->drm, crtc) {
5589 		struct intel_crtc_state *crtc_state =
5590 			to_intel_crtc_state(crtc->base.state);
5591 
5592 		crtc_state->wm.g4x.intermediate =
5593 			crtc_state->wm.g4x.optimal;
5594 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5595 	}
5596 
5597 	g4x_program_watermarks(dev_priv);
5598 
5599 	mutex_unlock(&dev_priv->wm.wm_mutex);
5600 }
5601 
5602 void vlv_wm_get_hw_state(struct drm_device *dev)
5603 {
5604 	struct drm_i915_private *dev_priv = to_i915(dev);
5605 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5606 	struct intel_crtc *crtc;
5607 	u32 val;
5608 
5609 	vlv_read_wm_values(dev_priv, wm);
5610 
5611 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5612 	wm->level = VLV_WM_LEVEL_PM2;
5613 
5614 	if (IS_CHERRYVIEW(dev_priv)) {
5615 		mutex_lock(&dev_priv->pcu_lock);
5616 
5617 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5618 		if (val & DSP_MAXFIFO_PM5_ENABLE)
5619 			wm->level = VLV_WM_LEVEL_PM5;
5620 
5621 		/*
5622 		 * If DDR DVFS is disabled in the BIOS, Punit
5623 		 * will never ack the request. So if that happens
5624 		 * assume we don't have to enable/disable DDR DVFS
5625 		 * dynamically. To test that just set the REQ_ACK
5626 		 * bit to poke the Punit, but don't change the
5627 		 * HIGH/LOW bits so that we don't actually change
5628 		 * the current state.
5629 		 */
5630 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5631 		val |= FORCE_DDR_FREQ_REQ_ACK;
5632 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5633 
5634 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5635 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5636 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5637 				      "assuming DDR DVFS is disabled\n");
5638 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5639 		} else {
5640 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5641 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5642 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
5643 		}
5644 
5645 		mutex_unlock(&dev_priv->pcu_lock);
5646 	}
5647 
5648 	for_each_intel_crtc(dev, crtc) {
5649 		struct intel_crtc_state *crtc_state =
5650 			to_intel_crtc_state(crtc->base.state);
5651 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
5652 		const struct vlv_fifo_state *fifo_state =
5653 			&crtc_state->wm.vlv.fifo_state;
5654 		enum i915_pipe pipe = crtc->pipe;
5655 		enum plane_id plane_id;
5656 		int level;
5657 
5658 		vlv_get_fifo_size(crtc_state);
5659 
5660 		active->num_levels = wm->level + 1;
5661 		active->cxsr = wm->cxsr;
5662 
5663 		for (level = 0; level < active->num_levels; level++) {
5664 			struct g4x_pipe_wm *raw =
5665 				&crtc_state->wm.vlv.raw[level];
5666 
5667 			active->sr[level].plane = wm->sr.plane;
5668 			active->sr[level].cursor = wm->sr.cursor;
5669 
5670 			for_each_plane_id_on_crtc(crtc, plane_id) {
5671 				active->wm[level].plane[plane_id] =
5672 					wm->pipe[pipe].plane[plane_id];
5673 
5674 				raw->plane[plane_id] =
5675 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
5676 							    fifo_state->plane[plane_id]);
5677 			}
5678 		}
5679 
5680 		for_each_plane_id_on_crtc(crtc, plane_id)
5681 			vlv_raw_plane_wm_set(crtc_state, level,
5682 					     plane_id, USHRT_MAX);
5683 		vlv_invalidate_wms(crtc, active, level);
5684 
5685 		crtc_state->wm.vlv.optimal = *active;
5686 		crtc_state->wm.vlv.intermediate = *active;
5687 
5688 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5689 			      pipe_name(pipe),
5690 			      wm->pipe[pipe].plane[PLANE_PRIMARY],
5691 			      wm->pipe[pipe].plane[PLANE_CURSOR],
5692 			      wm->pipe[pipe].plane[PLANE_SPRITE0],
5693 			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5694 	}
5695 
5696 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5697 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5698 }
5699 
5700 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5701 {
5702 	struct intel_plane *plane;
5703 	struct intel_crtc *crtc;
5704 
5705 	mutex_lock(&dev_priv->wm.wm_mutex);
5706 
5707 	for_each_intel_plane(&dev_priv->drm, plane) {
5708 		struct intel_crtc *crtc =
5709 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5710 		struct intel_crtc_state *crtc_state =
5711 			to_intel_crtc_state(crtc->base.state);
5712 		struct intel_plane_state *plane_state =
5713 			to_intel_plane_state(plane->base.state);
5714 		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5715 		const struct vlv_fifo_state *fifo_state =
5716 			&crtc_state->wm.vlv.fifo_state;
5717 		enum plane_id plane_id = plane->id;
5718 		int level;
5719 
5720 		if (plane_state->base.visible)
5721 			continue;
5722 
5723 		for (level = 0; level < wm_state->num_levels; level++) {
5724 			struct g4x_pipe_wm *raw =
5725 				&crtc_state->wm.vlv.raw[level];
5726 
5727 			raw->plane[plane_id] = 0;
5728 
5729 			wm_state->wm[level].plane[plane_id] =
5730 				vlv_invert_wm_value(raw->plane[plane_id],
5731 						    fifo_state->plane[plane_id]);
5732 		}
5733 	}
5734 
5735 	for_each_intel_crtc(&dev_priv->drm, crtc) {
5736 		struct intel_crtc_state *crtc_state =
5737 			to_intel_crtc_state(crtc->base.state);
5738 
5739 		crtc_state->wm.vlv.intermediate =
5740 			crtc_state->wm.vlv.optimal;
5741 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5742 	}
5743 
5744 	vlv_program_watermarks(dev_priv);
5745 
5746 	mutex_unlock(&dev_priv->wm.wm_mutex);
5747 }
5748 
5749 /*
5750  * FIXME should probably kill this and improve
5751  * the real watermark readout/sanitation instead
5752  */
5753 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5754 {
5755 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5756 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5757 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5758 
5759 	/*
5760 	 * Don't touch WM1S_LP_EN here.
5761 	 * Doing so could cause underruns.
5762 	 */
5763 }
5764 
5765 void ilk_wm_get_hw_state(struct drm_device *dev)
5766 {
5767 	struct drm_i915_private *dev_priv = to_i915(dev);
5768 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5769 	struct drm_crtc *crtc;
5770 
5771 	ilk_init_lp_watermarks(dev_priv);
5772 
5773 	for_each_crtc(dev, crtc)
5774 		ilk_pipe_wm_get_hw_state(crtc);
5775 
5776 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5777 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5778 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5779 
5780 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5781 	if (INTEL_GEN(dev_priv) >= 7) {
5782 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5783 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5784 	}
5785 
5786 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5787 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5788 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5789 	else if (IS_IVYBRIDGE(dev_priv))
5790 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5791 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5792 
5793 	hw->enable_fbc_wm =
5794 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5795 }
5796 
5797 /**
5798  * intel_update_watermarks - update FIFO watermark values based on current modes
5799  *
5800  * Calculate watermark values for the various WM regs based on current mode
5801  * and plane configuration.
5802  *
5803  * There are several cases to deal with here:
5804  *   - normal (i.e. non-self-refresh)
5805  *   - self-refresh (SR) mode
5806  *   - lines are large relative to FIFO size (buffer can hold up to 2)
5807  *   - lines are small relative to FIFO size (buffer can hold more than 2
5808  *     lines), so need to account for TLB latency
5809  *
5810  *   The normal calculation is:
5811  *     watermark = dotclock * bytes per pixel * latency
5812  *   where latency is platform & configuration dependent (we assume pessimal
5813  *   values here).
5814  *
5815  *   The SR calculation is:
5816  *     watermark = (trunc(latency/line time)+1) * surface width *
5817  *       bytes per pixel
5818  *   where
5819  *     line time = htotal / dotclock
5820  *     surface width = hdisplay for normal plane and 64 for cursor
5821  *   and latency is assumed to be high, as above.
5822  *
5823  * The final value programmed to the register should always be rounded up,
5824  * and include an extra 2 entries to account for clock crossings.
5825  *
5826  * We don't use the sprite, so we can ignore that.  And on Crestline we have
5827  * to set the non-SR watermarks to 8.
5828  */
5829 void intel_update_watermarks(struct intel_crtc *crtc)
5830 {
5831 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5832 
5833 	if (dev_priv->display.update_wm)
5834 		dev_priv->display.update_wm(crtc);
5835 }
5836 
5837 void intel_enable_ipc(struct drm_i915_private *dev_priv)
5838 {
5839 	u32 val;
5840 
5841 	/* Display WA #0477 WaDisableIPC: skl */
5842 	if (IS_SKYLAKE(dev_priv)) {
5843 		dev_priv->ipc_enabled = false;
5844 		return;
5845 	}
5846 
5847 	val = I915_READ(DISP_ARB_CTL2);
5848 
5849 	if (dev_priv->ipc_enabled)
5850 		val |= DISP_IPC_ENABLE;
5851 	else
5852 		val &= ~DISP_IPC_ENABLE;
5853 
5854 	I915_WRITE(DISP_ARB_CTL2, val);
5855 }
5856 
5857 void intel_init_ipc(struct drm_i915_private *dev_priv)
5858 {
5859 	dev_priv->ipc_enabled = false;
5860 	if (!HAS_IPC(dev_priv))
5861 		return;
5862 
5863 	dev_priv->ipc_enabled = true;
5864 	intel_enable_ipc(dev_priv);
5865 }
5866 
5867 /*
5868  * Lock protecting IPS related data structures
5869  */
5870 DEFINE_SPINLOCK(mchdev_lock);
5871 
5872 /* Global for IPS driver to get at the current i915 device. Protected by
5873  * mchdev_lock. */
5874 static struct drm_i915_private *i915_mch_dev;
5875 
5876 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5877 {
5878 	u16 rgvswctl;
5879 
5880 	lockdep_assert_held(&mchdev_lock);
5881 
5882 	rgvswctl = I915_READ16(MEMSWCTL);
5883 	if (rgvswctl & MEMCTL_CMD_STS) {
5884 		DRM_DEBUG("gpu busy, RCS change rejected\n");
5885 		return false; /* still busy with another command */
5886 	}
5887 
5888 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5889 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5890 	I915_WRITE16(MEMSWCTL, rgvswctl);
5891 	POSTING_READ16(MEMSWCTL);
5892 
5893 	rgvswctl |= MEMCTL_CMD_STS;
5894 	I915_WRITE16(MEMSWCTL, rgvswctl);
5895 
5896 	return true;
5897 }
5898 
5899 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5900 {
5901 	u32 rgvmodectl;
5902 	u8 fmax, fmin, fstart, vstart;
5903 
5904 	spin_lock_irq(&mchdev_lock);
5905 
5906 	rgvmodectl = I915_READ(MEMMODECTL);
5907 
5908 	/* Enable temp reporting */
5909 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5910 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5911 
5912 	/* 100ms RC evaluation intervals */
5913 	I915_WRITE(RCUPEI, 100000);
5914 	I915_WRITE(RCDNEI, 100000);
5915 
5916 	/* Set max/min thresholds to 90ms and 80ms respectively */
5917 	I915_WRITE(RCBMAXAVG, 90000);
5918 	I915_WRITE(RCBMINAVG, 80000);
5919 
5920 	I915_WRITE(MEMIHYST, 1);
5921 
5922 	/* Set up min, max, and cur for interrupt handling */
5923 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5924 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5925 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5926 		MEMMODE_FSTART_SHIFT;
5927 
5928 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5929 		PXVFREQ_PX_SHIFT;
5930 
5931 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5932 	dev_priv->ips.fstart = fstart;
5933 
5934 	dev_priv->ips.max_delay = fstart;
5935 	dev_priv->ips.min_delay = fmin;
5936 	dev_priv->ips.cur_delay = fstart;
5937 
5938 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5939 			 fmax, fmin, fstart);
5940 
5941 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5942 
5943 	/*
5944 	 * Interrupts will be enabled in ironlake_irq_postinstall
5945 	 */
5946 
5947 	I915_WRITE(VIDSTART, vstart);
5948 	POSTING_READ(VIDSTART);
5949 
5950 	rgvmodectl |= MEMMODE_SWMODE_EN;
5951 	I915_WRITE(MEMMODECTL, rgvmodectl);
5952 
5953 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5954 		DRM_ERROR("stuck trying to change perf mode\n");
5955 	mdelay(1);
5956 
5957 	ironlake_set_drps(dev_priv, fstart);
5958 
5959 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5960 		I915_READ(DDREC) + I915_READ(CSIEC);
5961 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5962 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5963 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5964 
5965 	spin_unlock_irq(&mchdev_lock);
5966 }
5967 
5968 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5969 {
5970 	u16 rgvswctl;
5971 
5972 	spin_lock_irq(&mchdev_lock);
5973 
5974 	rgvswctl = I915_READ16(MEMSWCTL);
5975 
5976 	/* Ack interrupts, disable EFC interrupt */
5977 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5978 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5979 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5980 	I915_WRITE(DEIIR, DE_PCU_EVENT);
5981 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5982 
5983 	/* Go back to the starting frequency */
5984 	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5985 	mdelay(1);
5986 	rgvswctl |= MEMCTL_CMD_STS;
5987 	I915_WRITE(MEMSWCTL, rgvswctl);
5988 	mdelay(1);
5989 
5990 	spin_unlock_irq(&mchdev_lock);
5991 }
5992 
5993 /* There's a funny hw issue where the hw returns all 0 when reading from
5994  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5995  * ourselves, instead of doing a rmw cycle (which might result in us clearing
5996  * all limits and the gpu stuck at whatever frequency it is at atm).
5997  */
5998 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5999 {
6000 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6001 	u32 limits;
6002 
6003 	/* Only set the down limit when we've reached the lowest level to avoid
6004 	 * getting more interrupts, otherwise leave this clear. This prevents a
6005 	 * race in the hw when coming out of rc6: There's a tiny window where
6006 	 * the hw runs at the minimal clock before selecting the desired
6007 	 * frequency, if the down threshold expires in that window we will not
6008 	 * receive a down interrupt. */
6009 	if (INTEL_GEN(dev_priv) >= 9) {
6010 		limits = (rps->max_freq_softlimit) << 23;
6011 		if (val <= rps->min_freq_softlimit)
6012 			limits |= (rps->min_freq_softlimit) << 14;
6013 	} else {
6014 		limits = rps->max_freq_softlimit << 24;
6015 		if (val <= rps->min_freq_softlimit)
6016 			limits |= rps->min_freq_softlimit << 16;
6017 	}
6018 
6019 	return limits;
6020 }
6021 
6022 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6023 {
6024 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6025 	int new_power;
6026 	u32 threshold_up = 0, threshold_down = 0; /* in % */
6027 	u32 ei_up = 0, ei_down = 0;
6028 
6029 	new_power = rps->power;
6030 	switch (rps->power) {
6031 	case LOW_POWER:
6032 		if (val > rps->efficient_freq + 1 &&
6033 		    val > rps->cur_freq)
6034 			new_power = BETWEEN;
6035 		break;
6036 
6037 	case BETWEEN:
6038 		if (val <= rps->efficient_freq &&
6039 		    val < rps->cur_freq)
6040 			new_power = LOW_POWER;
6041 		else if (val >= rps->rp0_freq &&
6042 			 val > rps->cur_freq)
6043 			new_power = HIGH_POWER;
6044 		break;
6045 
6046 	case HIGH_POWER:
6047 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6048 		    val < rps->cur_freq)
6049 			new_power = BETWEEN;
6050 		break;
6051 	}
6052 	/* Max/min bins are special */
6053 	if (val <= rps->min_freq_softlimit)
6054 		new_power = LOW_POWER;
6055 	if (val >= rps->max_freq_softlimit)
6056 		new_power = HIGH_POWER;
6057 	if (new_power == rps->power)
6058 		return;
6059 
6060 	/* Note the units here are not exactly 1us, but 1280ns. */
6061 	switch (new_power) {
6062 	case LOW_POWER:
6063 		/* Upclock if more than 95% busy over 16ms */
6064 		ei_up = 16000;
6065 		threshold_up = 95;
6066 
6067 		/* Downclock if less than 85% busy over 32ms */
6068 		ei_down = 32000;
6069 		threshold_down = 85;
6070 		break;
6071 
6072 	case BETWEEN:
6073 		/* Upclock if more than 90% busy over 13ms */
6074 		ei_up = 13000;
6075 		threshold_up = 90;
6076 
6077 		/* Downclock if less than 75% busy over 32ms */
6078 		ei_down = 32000;
6079 		threshold_down = 75;
6080 		break;
6081 
6082 	case HIGH_POWER:
6083 		/* Upclock if more than 85% busy over 10ms */
6084 		ei_up = 10000;
6085 		threshold_up = 85;
6086 
6087 		/* Downclock if less than 60% busy over 32ms */
6088 		ei_down = 32000;
6089 		threshold_down = 60;
6090 		break;
6091 	}
6092 
6093 	/* When byt can survive without system hang with dynamic
6094 	 * sw freq adjustments, this restriction can be lifted.
6095 	 */
6096 	if (IS_VALLEYVIEW(dev_priv))
6097 		goto skip_hw_write;
6098 
6099 	I915_WRITE(GEN6_RP_UP_EI,
6100 		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6101 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6102 		   GT_INTERVAL_FROM_US(dev_priv,
6103 				       ei_up * threshold_up / 100));
6104 
6105 	I915_WRITE(GEN6_RP_DOWN_EI,
6106 		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6107 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6108 		   GT_INTERVAL_FROM_US(dev_priv,
6109 				       ei_down * threshold_down / 100));
6110 
6111 	I915_WRITE(GEN6_RP_CONTROL,
6112 		   GEN6_RP_MEDIA_TURBO |
6113 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6114 		   GEN6_RP_MEDIA_IS_GFX |
6115 		   GEN6_RP_ENABLE |
6116 		   GEN6_RP_UP_BUSY_AVG |
6117 		   GEN6_RP_DOWN_IDLE_AVG);
6118 
6119 skip_hw_write:
6120 	rps->power = new_power;
6121 	rps->up_threshold = threshold_up;
6122 	rps->down_threshold = threshold_down;
6123 	rps->last_adj = 0;
6124 }
6125 
6126 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6127 {
6128 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6129 	u32 mask = 0;
6130 
6131 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6132 	if (val > rps->min_freq_softlimit)
6133 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6134 	if (val < rps->max_freq_softlimit)
6135 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6136 
6137 	mask &= dev_priv->pm_rps_events;
6138 
6139 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6140 }
6141 
6142 /* gen6_set_rps is called to update the frequency request, but should also be
6143  * called when the range (min_delay and max_delay) is modified so that we can
6144  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6145 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6146 {
6147 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6148 
6149 	/* min/max delay may still have been modified so be sure to
6150 	 * write the limits value.
6151 	 */
6152 	if (val != rps->cur_freq) {
6153 		gen6_set_rps_thresholds(dev_priv, val);
6154 
6155 		if (INTEL_GEN(dev_priv) >= 9)
6156 			I915_WRITE(GEN6_RPNSWREQ,
6157 				   GEN9_FREQUENCY(val));
6158 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6159 			I915_WRITE(GEN6_RPNSWREQ,
6160 				   HSW_FREQUENCY(val));
6161 		else
6162 			I915_WRITE(GEN6_RPNSWREQ,
6163 				   GEN6_FREQUENCY(val) |
6164 				   GEN6_OFFSET(0) |
6165 				   GEN6_AGGRESSIVE_TURBO);
6166 	}
6167 
6168 	/* Make sure we continue to get interrupts
6169 	 * until we hit the minimum or maximum frequencies.
6170 	 */
6171 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6172 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6173 
6174 	rps->cur_freq = val;
6175 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6176 
6177 	return 0;
6178 }
6179 
6180 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6181 {
6182 	int err;
6183 
6184 	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6185 		      "Odd GPU freq value\n"))
6186 		val &= ~1;
6187 
6188 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6189 
6190 	if (val != dev_priv->gt_pm.rps.cur_freq) {
6191 		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6192 		if (err)
6193 			return err;
6194 
6195 		gen6_set_rps_thresholds(dev_priv, val);
6196 	}
6197 
6198 	dev_priv->gt_pm.rps.cur_freq = val;
6199 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6200 
6201 	return 0;
6202 }
6203 
6204 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6205  *
6206  * * If Gfx is Idle, then
6207  * 1. Forcewake Media well.
6208  * 2. Request idle freq.
6209  * 3. Release Forcewake of Media well.
6210 */
6211 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6212 {
6213 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6214 	u32 val = rps->idle_freq;
6215 	int err;
6216 
6217 	if (rps->cur_freq <= val)
6218 		return;
6219 
6220 	/* The punit delays the write of the frequency and voltage until it
6221 	 * determines the GPU is awake. During normal usage we don't want to
6222 	 * waste power changing the frequency if the GPU is sleeping (rc6).
6223 	 * However, the GPU and driver is now idle and we do not want to delay
6224 	 * switching to minimum voltage (reducing power whilst idle) as we do
6225 	 * not expect to be woken in the near future and so must flush the
6226 	 * change by waking the device.
6227 	 *
6228 	 * We choose to take the media powerwell (either would do to trick the
6229 	 * punit into committing the voltage change) as that takes a lot less
6230 	 * power than the render powerwell.
6231 	 */
6232 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6233 	err = valleyview_set_rps(dev_priv, val);
6234 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6235 
6236 	if (err)
6237 		DRM_ERROR("Failed to set RPS for idle\n");
6238 }
6239 
6240 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6241 {
6242 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6243 
6244 	mutex_lock(&dev_priv->pcu_lock);
6245 	if (rps->enabled) {
6246 		u8 freq;
6247 
6248 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6249 			gen6_rps_reset_ei(dev_priv);
6250 		I915_WRITE(GEN6_PMINTRMSK,
6251 			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6252 
6253 		gen6_enable_rps_interrupts(dev_priv);
6254 
6255 		/* Use the user's desired frequency as a guide, but for better
6256 		 * performance, jump directly to RPe as our starting frequency.
6257 		 */
6258 		freq = max(rps->cur_freq,
6259 			   rps->efficient_freq);
6260 
6261 		if (intel_set_rps(dev_priv,
6262 				  clamp(freq,
6263 					rps->min_freq_softlimit,
6264 					rps->max_freq_softlimit)))
6265 			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6266 	}
6267 	mutex_unlock(&dev_priv->pcu_lock);
6268 }
6269 
6270 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6271 {
6272 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6273 
6274 	/* Flush our bottom-half so that it does not race with us
6275 	 * setting the idle frequency and so that it is bounded by
6276 	 * our rpm wakeref. And then disable the interrupts to stop any
6277 	 * futher RPS reclocking whilst we are asleep.
6278 	 */
6279 	gen6_disable_rps_interrupts(dev_priv);
6280 
6281 	mutex_lock(&dev_priv->pcu_lock);
6282 	if (rps->enabled) {
6283 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6284 			vlv_set_rps_idle(dev_priv);
6285 		else
6286 			gen6_set_rps(dev_priv, rps->idle_freq);
6287 		rps->last_adj = 0;
6288 		I915_WRITE(GEN6_PMINTRMSK,
6289 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6290 	}
6291 	mutex_unlock(&dev_priv->pcu_lock);
6292 }
6293 
6294 void gen6_rps_boost(struct drm_i915_gem_request *rq,
6295 		    struct intel_rps_client *rps_client)
6296 {
6297 	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6298 	unsigned long flags;
6299 	bool boost;
6300 
6301 	/* This is intentionally racy! We peek at the state here, then
6302 	 * validate inside the RPS worker.
6303 	 */
6304 	if (!rps->enabled)
6305 		return;
6306 
6307 	boost = false;
6308 	spin_lock_irqsave(&rq->lock, flags);
6309 	if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6310 		atomic_inc(&rps->num_waiters);
6311 		rq->waitboost = true;
6312 		boost = true;
6313 	}
6314 	spin_unlock_irqrestore(&rq->lock, flags);
6315 	if (!boost)
6316 		return;
6317 
6318 	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6319 		schedule_work(&rps->work);
6320 
6321 	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6322 }
6323 
6324 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6325 {
6326 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6327 	int err;
6328 
6329 	lockdep_assert_held(&dev_priv->pcu_lock);
6330 	GEM_BUG_ON(val > rps->max_freq);
6331 	GEM_BUG_ON(val < rps->min_freq);
6332 
6333 	if (!rps->enabled) {
6334 		rps->cur_freq = val;
6335 		return 0;
6336 	}
6337 
6338 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6339 		err = valleyview_set_rps(dev_priv, val);
6340 	else
6341 		err = gen6_set_rps(dev_priv, val);
6342 
6343 	return err;
6344 }
6345 
6346 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6347 {
6348 	I915_WRITE(GEN6_RC_CONTROL, 0);
6349 	I915_WRITE(GEN9_PG_ENABLE, 0);
6350 }
6351 
6352 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6353 {
6354 	I915_WRITE(GEN6_RP_CONTROL, 0);
6355 }
6356 
6357 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6358 {
6359 	I915_WRITE(GEN6_RC_CONTROL, 0);
6360 }
6361 
6362 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6363 {
6364 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6365 	I915_WRITE(GEN6_RP_CONTROL, 0);
6366 }
6367 
6368 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6369 {
6370 	I915_WRITE(GEN6_RC_CONTROL, 0);
6371 }
6372 
6373 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6374 {
6375 	I915_WRITE(GEN6_RP_CONTROL, 0);
6376 }
6377 
6378 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6379 {
6380 	/* We're doing forcewake before Disabling RC6,
6381 	 * This what the BIOS expects when going into suspend */
6382 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6383 
6384 	I915_WRITE(GEN6_RC_CONTROL, 0);
6385 
6386 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6387 }
6388 
6389 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6390 {
6391 	I915_WRITE(GEN6_RP_CONTROL, 0);
6392 }
6393 
6394 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6395 {
6396 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6397 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6398 			mode = GEN6_RC_CTL_RC6_ENABLE;
6399 		else
6400 			mode = 0;
6401 	}
6402 	if (HAS_RC6p(dev_priv))
6403 		DRM_DEBUG_DRIVER("Enabling RC6 states: "
6404 				 "RC6 %s RC6p %s RC6pp %s\n",
6405 				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6406 				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6407 				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6408 
6409 	else
6410 		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6411 				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6412 }
6413 
6414 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6415 {
6416 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6417 	bool enable_rc6 = true;
6418 	unsigned long rc6_ctx_base;
6419 	u32 rc_ctl;
6420 	int rc_sw_target;
6421 
6422 	rc_ctl = I915_READ(GEN6_RC_CONTROL);
6423 	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6424 		       RC_SW_TARGET_STATE_SHIFT;
6425 	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6426 			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6427 			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6428 			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6429 			 rc_sw_target);
6430 
6431 	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6432 		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6433 		enable_rc6 = false;
6434 	}
6435 
6436 	/*
6437 	 * The exact context size is not known for BXT, so assume a page size
6438 	 * for this check.
6439 	 */
6440 	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6441 	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6442 	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6443 					ggtt->stolen_reserved_size))) {
6444 		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6445 		enable_rc6 = false;
6446 	}
6447 
6448 	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6449 	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6450 	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6451 	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6452 		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6453 		enable_rc6 = false;
6454 	}
6455 
6456 	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6457 	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6458 	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6459 		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6460 		enable_rc6 = false;
6461 	}
6462 
6463 	if (!I915_READ(GEN6_GFXPAUSE)) {
6464 		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6465 		enable_rc6 = false;
6466 	}
6467 
6468 	if (!I915_READ(GEN8_MISC_CTRL0)) {
6469 		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6470 		enable_rc6 = false;
6471 	}
6472 
6473 	return enable_rc6;
6474 }
6475 
6476 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6477 {
6478 	/* No RC6 before Ironlake and code is gone for ilk. */
6479 	if (INTEL_INFO(dev_priv)->gen < 6)
6480 		return 0;
6481 
6482 	if (!enable_rc6)
6483 		return 0;
6484 
6485 	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6486 		DRM_INFO("RC6 disabled by BIOS\n");
6487 		return 0;
6488 	}
6489 
6490 	/* Respect the kernel parameter if it is set */
6491 	if (enable_rc6 >= 0) {
6492 		int mask;
6493 
6494 		if (HAS_RC6p(dev_priv))
6495 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6496 			       INTEL_RC6pp_ENABLE;
6497 		else
6498 			mask = INTEL_RC6_ENABLE;
6499 
6500 		if ((enable_rc6 & mask) != enable_rc6)
6501 			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6502 					 "(requested %d, valid %d)\n",
6503 					 enable_rc6 & mask, enable_rc6, mask);
6504 
6505 		return enable_rc6 & mask;
6506 	}
6507 
6508 	if (IS_IVYBRIDGE(dev_priv))
6509 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6510 
6511 	return INTEL_RC6_ENABLE;
6512 }
6513 
6514 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6515 {
6516 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6517 
6518 	/* All of these values are in units of 50MHz */
6519 
6520 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6521 	if (IS_GEN9_LP(dev_priv)) {
6522 		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6523 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6524 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6525 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6526 	} else {
6527 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6528 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
6529 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6530 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6531 	}
6532 	/* hw_max = RP0 until we check for overclocking */
6533 	rps->max_freq = rps->rp0_freq;
6534 
6535 	rps->efficient_freq = rps->rp1_freq;
6536 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6537 	    IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6538 		u32 ddcc_status = 0;
6539 
6540 		if (sandybridge_pcode_read(dev_priv,
6541 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6542 					   &ddcc_status) == 0)
6543 			rps->efficient_freq =
6544 				clamp_t(u8,
6545 					((ddcc_status >> 8) & 0xff),
6546 					rps->min_freq,
6547 					rps->max_freq);
6548 	}
6549 
6550 	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6551 		/* Store the frequency values in 16.66 MHZ units, which is
6552 		 * the natural hardware unit for SKL
6553 		 */
6554 		rps->rp0_freq *= GEN9_FREQ_SCALER;
6555 		rps->rp1_freq *= GEN9_FREQ_SCALER;
6556 		rps->min_freq *= GEN9_FREQ_SCALER;
6557 		rps->max_freq *= GEN9_FREQ_SCALER;
6558 		rps->efficient_freq *= GEN9_FREQ_SCALER;
6559 	}
6560 }
6561 
6562 static void reset_rps(struct drm_i915_private *dev_priv,
6563 		      int (*set)(struct drm_i915_private *, u8))
6564 {
6565 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6566 	u8 freq = rps->cur_freq;
6567 
6568 	/* force a reset */
6569 	rps->power = -1;
6570 	rps->cur_freq = -1;
6571 
6572 	if (set(dev_priv, freq))
6573 		DRM_ERROR("Failed to reset RPS to initial values\n");
6574 }
6575 
6576 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6577 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6578 {
6579 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6580 
6581 	/* Program defaults and thresholds for RPS*/
6582 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6583 		GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6584 
6585 	/* 1 second timeout*/
6586 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6587 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
6588 
6589 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6590 
6591 	/* Leaning on the below call to gen6_set_rps to program/setup the
6592 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6593 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6594 	reset_rps(dev_priv, gen6_set_rps);
6595 
6596 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6597 }
6598 
6599 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6600 {
6601 	struct intel_engine_cs *engine;
6602 	enum intel_engine_id id;
6603 	u32 rc6_mode, rc6_mask = 0;
6604 
6605 	/* 1a: Software RC state - RC0 */
6606 	I915_WRITE(GEN6_RC_STATE, 0);
6607 
6608 	/* 1b: Get forcewake during program sequence. Although the driver
6609 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6610 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6611 
6612 	/* 2a: Disable RC states. */
6613 	I915_WRITE(GEN6_RC_CONTROL, 0);
6614 
6615 	/* 2b: Program RC6 thresholds.*/
6616 
6617 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6618 	if (IS_SKYLAKE(dev_priv))
6619 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6620 	else
6621 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6622 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6623 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6624 	for_each_engine(engine, dev_priv, id)
6625 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6626 
6627 	if (HAS_GUC(dev_priv))
6628 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6629 
6630 	I915_WRITE(GEN6_RC_SLEEP, 0);
6631 
6632 	/* 2c: Program Coarse Power Gating Policies. */
6633 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6634 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6635 
6636 	/* 3a: Enable RC6 */
6637 	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6638 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6639 	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6640 	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6641 
6642 	/* WaRsUseTimeoutMode:cnl (pre-prod) */
6643 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6644 		rc6_mode = GEN7_RC_CTL_TO_MODE;
6645 	else
6646 		rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6647 
6648 	I915_WRITE(GEN6_RC_CONTROL,
6649 		   GEN6_RC_CTL_HW_ENABLE | rc6_mode | rc6_mask);
6650 
6651 	/*
6652 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6653 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6654 	 */
6655 	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6656 		I915_WRITE(GEN9_PG_ENABLE, 0);
6657 	else
6658 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6659 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6660 
6661 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6662 }
6663 
6664 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6665 {
6666 	struct intel_engine_cs *engine;
6667 	enum intel_engine_id id;
6668 	uint32_t rc6_mask = 0;
6669 
6670 	/* 1a: Software RC state - RC0 */
6671 	I915_WRITE(GEN6_RC_STATE, 0);
6672 
6673 	/* 1b: Get forcewake during program sequence. Although the driver
6674 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6675 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6676 
6677 	/* 2a: Disable RC states. */
6678 	I915_WRITE(GEN6_RC_CONTROL, 0);
6679 
6680 	/* 2b: Program RC6 thresholds.*/
6681 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6682 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6683 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6684 	for_each_engine(engine, dev_priv, id)
6685 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6686 	I915_WRITE(GEN6_RC_SLEEP, 0);
6687 	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6688 
6689 	/* 3: Enable RC6 */
6690 	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6691 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6692 	intel_print_rc6_info(dev_priv, rc6_mask);
6693 
6694 	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6695 			GEN7_RC_CTL_TO_MODE |
6696 			rc6_mask);
6697 
6698 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6699 }
6700 
6701 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6702 {
6703 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6704 
6705 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6706 
6707 	/* 1 Program defaults and thresholds for RPS*/
6708 	I915_WRITE(GEN6_RPNSWREQ,
6709 		   HSW_FREQUENCY(rps->rp1_freq));
6710 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6711 		   HSW_FREQUENCY(rps->rp1_freq));
6712 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6713 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6714 
6715 	/* Docs recommend 900MHz, and 300 MHz respectively */
6716 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6717 		   rps->max_freq_softlimit << 24 |
6718 		   rps->min_freq_softlimit << 16);
6719 
6720 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6721 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6722 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6723 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6724 
6725 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6726 
6727 	/* 2: Enable RPS */
6728 	I915_WRITE(GEN6_RP_CONTROL,
6729 		   GEN6_RP_MEDIA_TURBO |
6730 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6731 		   GEN6_RP_MEDIA_IS_GFX |
6732 		   GEN6_RP_ENABLE |
6733 		   GEN6_RP_UP_BUSY_AVG |
6734 		   GEN6_RP_DOWN_IDLE_AVG);
6735 
6736 	reset_rps(dev_priv, gen6_set_rps);
6737 
6738 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6739 }
6740 
6741 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6742 {
6743 	struct intel_engine_cs *engine;
6744 	enum intel_engine_id id;
6745 	u32 rc6vids, rc6_mask = 0;
6746 	u32 gtfifodbg;
6747 	int rc6_mode;
6748 	int ret;
6749 
6750 	I915_WRITE(GEN6_RC_STATE, 0);
6751 
6752 	/* Clear the DBG now so we don't confuse earlier errors */
6753 	gtfifodbg = I915_READ(GTFIFODBG);
6754 	if (gtfifodbg) {
6755 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6756 		I915_WRITE(GTFIFODBG, gtfifodbg);
6757 	}
6758 
6759 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6760 
6761 	/* disable the counters and set deterministic thresholds */
6762 	I915_WRITE(GEN6_RC_CONTROL, 0);
6763 
6764 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6765 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6766 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6767 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6768 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6769 
6770 	for_each_engine(engine, dev_priv, id)
6771 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6772 
6773 	I915_WRITE(GEN6_RC_SLEEP, 0);
6774 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6775 	if (IS_IVYBRIDGE(dev_priv))
6776 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6777 	else
6778 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6779 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6780 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6781 
6782 	/* Check if we are enabling RC6 */
6783 	rc6_mode = intel_rc6_enabled();
6784 	if (rc6_mode & INTEL_RC6_ENABLE)
6785 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6786 
6787 	/* We don't use those on Haswell */
6788 	if (!IS_HASWELL(dev_priv)) {
6789 		if (rc6_mode & INTEL_RC6p_ENABLE)
6790 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6791 
6792 		if (rc6_mode & INTEL_RC6pp_ENABLE)
6793 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6794 	}
6795 
6796 	intel_print_rc6_info(dev_priv, rc6_mask);
6797 
6798 	I915_WRITE(GEN6_RC_CONTROL,
6799 		   rc6_mask |
6800 		   GEN6_RC_CTL_EI_MODE(1) |
6801 		   GEN6_RC_CTL_HW_ENABLE);
6802 
6803 	rc6vids = 0;
6804 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6805 	if (IS_GEN6(dev_priv) && ret) {
6806 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6807 	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6808 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6809 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6810 		rc6vids &= 0xffff00;
6811 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
6812 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6813 		if (ret)
6814 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6815 	}
6816 
6817 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6818 }
6819 
6820 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6821 {
6822 	/* Here begins a magic sequence of register writes to enable
6823 	 * auto-downclocking.
6824 	 *
6825 	 * Perhaps there might be some value in exposing these to
6826 	 * userspace...
6827 	 */
6828 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6829 
6830 	/* Power down if completely idle for over 50ms */
6831 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6832 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6833 
6834 	reset_rps(dev_priv, gen6_set_rps);
6835 
6836 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6837 }
6838 
6839 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6840 {
6841 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6842 	int min_freq = 15;
6843 	unsigned int gpu_freq;
6844 	unsigned int max_ia_freq, min_ring_freq;
6845 	unsigned int max_gpu_freq, min_gpu_freq;
6846 	int scaling_factor = 180;
6847 
6848 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6849 
6850 #if 0
6851 	policy = cpufreq_cpu_get(0);
6852 	if (policy) {
6853 		max_ia_freq = policy->cpuinfo.max_freq;
6854 		cpufreq_cpu_put(policy);
6855 	} else {
6856 		/*
6857 		 * Default to measured freq if none found, PCU will ensure we
6858 		 * don't go over
6859 		 */
6860 		max_ia_freq = tsc_khz;
6861 	}
6862 #else
6863 	max_ia_freq = tsc_frequency / 1000;
6864 #endif
6865 
6866 	/* Convert from kHz to MHz */
6867 	max_ia_freq /= 1000;
6868 
6869 	min_ring_freq = I915_READ(DCLK) & 0xf;
6870 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
6871 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6872 
6873 	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6874 		/* Convert GT frequency to 50 HZ units */
6875 		min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
6876 		max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6877 	} else {
6878 		min_gpu_freq = rps->min_freq;
6879 		max_gpu_freq = rps->max_freq;
6880 	}
6881 
6882 	/*
6883 	 * For each potential GPU frequency, load a ring frequency we'd like
6884 	 * to use for memory access.  We do this by specifying the IA frequency
6885 	 * the PCU should use as a reference to determine the ring frequency.
6886 	 */
6887 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6888 		int diff = max_gpu_freq - gpu_freq;
6889 		unsigned int ia_freq = 0, ring_freq = 0;
6890 
6891 		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6892 			/*
6893 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
6894 			 * No floor required for ring frequency on SKL.
6895 			 */
6896 			ring_freq = gpu_freq;
6897 		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6898 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
6899 			ring_freq = max(min_ring_freq, gpu_freq);
6900 		} else if (IS_HASWELL(dev_priv)) {
6901 			ring_freq = mult_frac(gpu_freq, 5, 4);
6902 			ring_freq = max(min_ring_freq, ring_freq);
6903 			/* leave ia_freq as the default, chosen by cpufreq */
6904 		} else {
6905 			/* On older processors, there is no separate ring
6906 			 * clock domain, so in order to boost the bandwidth
6907 			 * of the ring, we need to upclock the CPU (ia_freq).
6908 			 *
6909 			 * For GPU frequencies less than 750MHz,
6910 			 * just use the lowest ring freq.
6911 			 */
6912 			if (gpu_freq < min_freq)
6913 				ia_freq = 800;
6914 			else
6915 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6916 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6917 		}
6918 
6919 		sandybridge_pcode_write(dev_priv,
6920 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6921 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6922 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6923 					gpu_freq);
6924 	}
6925 }
6926 
6927 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6928 {
6929 	u32 val, rp0;
6930 
6931 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6932 
6933 	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6934 	case 8:
6935 		/* (2 * 4) config */
6936 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6937 		break;
6938 	case 12:
6939 		/* (2 * 6) config */
6940 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6941 		break;
6942 	case 16:
6943 		/* (2 * 8) config */
6944 	default:
6945 		/* Setting (2 * 8) Min RP0 for any other combination */
6946 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6947 		break;
6948 	}
6949 
6950 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6951 
6952 	return rp0;
6953 }
6954 
6955 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6956 {
6957 	u32 val, rpe;
6958 
6959 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6960 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6961 
6962 	return rpe;
6963 }
6964 
6965 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6966 {
6967 	u32 val, rp1;
6968 
6969 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6970 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6971 
6972 	return rp1;
6973 }
6974 
6975 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6976 {
6977 	u32 val, rpn;
6978 
6979 	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6980 	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6981 		       FB_GFX_FREQ_FUSE_MASK);
6982 
6983 	return rpn;
6984 }
6985 
6986 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6987 {
6988 	u32 val, rp1;
6989 
6990 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6991 
6992 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6993 
6994 	return rp1;
6995 }
6996 
6997 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6998 {
6999 	u32 val, rp0;
7000 
7001 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7002 
7003 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7004 	/* Clamp to max */
7005 	rp0 = min_t(u32, rp0, 0xea);
7006 
7007 	return rp0;
7008 }
7009 
7010 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7011 {
7012 	u32 val, rpe;
7013 
7014 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7015 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7016 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7017 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7018 
7019 	return rpe;
7020 }
7021 
7022 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7023 {
7024 	u32 val;
7025 
7026 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7027 	/*
7028 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7029 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7030 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7031 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7032 	 * to make sure it matches what Punit accepts.
7033 	 */
7034 	return max_t(u32, val, 0xc0);
7035 }
7036 
7037 /* Check that the pctx buffer wasn't move under us. */
7038 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7039 {
7040 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7041 
7042 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
7043 			     dev_priv->vlv_pctx->stolen->start);
7044 }
7045 
7046 
7047 /* Check that the pcbr address is not empty. */
7048 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7049 {
7050 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7051 
7052 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7053 }
7054 
7055 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7056 {
7057 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
7058 	unsigned long pctx_paddr, paddr;
7059 	u32 pcbr;
7060 	int pctx_size = 32*1024;
7061 
7062 	pcbr = I915_READ(VLV_PCBR);
7063 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7064 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7065 		paddr = (dev_priv->mm.stolen_base +
7066 			 (ggtt->stolen_size - pctx_size));
7067 
7068 		pctx_paddr = (paddr & (~4095));
7069 		I915_WRITE(VLV_PCBR, pctx_paddr);
7070 	}
7071 
7072 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7073 }
7074 
7075 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7076 {
7077 	struct drm_i915_gem_object *pctx;
7078 	unsigned long pctx_paddr;
7079 	u32 pcbr;
7080 	int pctx_size = 24*1024;
7081 
7082 	pcbr = I915_READ(VLV_PCBR);
7083 	if (pcbr) {
7084 		/* BIOS set it up already, grab the pre-alloc'd space */
7085 		int pcbr_offset;
7086 
7087 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
7088 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7089 								      pcbr_offset,
7090 								      I915_GTT_OFFSET_NONE,
7091 								      pctx_size);
7092 		goto out;
7093 	}
7094 
7095 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7096 
7097 	/*
7098 	 * From the Gunit register HAS:
7099 	 * The Gfx driver is expected to program this register and ensure
7100 	 * proper allocation within Gfx stolen memory.  For example, this
7101 	 * register should be programmed such than the PCBR range does not
7102 	 * overlap with other ranges, such as the frame buffer, protected
7103 	 * memory, or any other relevant ranges.
7104 	 */
7105 	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7106 	if (!pctx) {
7107 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7108 		goto out;
7109 	}
7110 
7111 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
7112 	I915_WRITE(VLV_PCBR, pctx_paddr);
7113 
7114 out:
7115 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7116 	dev_priv->vlv_pctx = pctx;
7117 }
7118 
7119 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7120 {
7121 	if (WARN_ON(!dev_priv->vlv_pctx))
7122 		return;
7123 
7124 	i915_gem_object_put(dev_priv->vlv_pctx);
7125 	dev_priv->vlv_pctx = NULL;
7126 }
7127 
7128 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7129 {
7130 	dev_priv->gt_pm.rps.gpll_ref_freq =
7131 		vlv_get_cck_clock(dev_priv, "GPLL ref",
7132 				  CCK_GPLL_CLOCK_CONTROL,
7133 				  dev_priv->czclk_freq);
7134 
7135 	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7136 			 dev_priv->gt_pm.rps.gpll_ref_freq);
7137 }
7138 
7139 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7140 {
7141 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7142 	u32 val;
7143 
7144 	valleyview_setup_pctx(dev_priv);
7145 
7146 	vlv_init_gpll_ref_freq(dev_priv);
7147 
7148 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7149 	switch ((val >> 6) & 3) {
7150 	case 0:
7151 	case 1:
7152 		dev_priv->mem_freq = 800;
7153 		break;
7154 	case 2:
7155 		dev_priv->mem_freq = 1066;
7156 		break;
7157 	case 3:
7158 		dev_priv->mem_freq = 1333;
7159 		break;
7160 	}
7161 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7162 
7163 	rps->max_freq = valleyview_rps_max_freq(dev_priv);
7164 	rps->rp0_freq = rps->max_freq;
7165 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7166 			 intel_gpu_freq(dev_priv, rps->max_freq),
7167 			 rps->max_freq);
7168 
7169 	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7170 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7171 			 intel_gpu_freq(dev_priv, rps->efficient_freq),
7172 			 rps->efficient_freq);
7173 
7174 	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7175 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7176 			 intel_gpu_freq(dev_priv, rps->rp1_freq),
7177 			 rps->rp1_freq);
7178 
7179 	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7180 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7181 			 intel_gpu_freq(dev_priv, rps->min_freq),
7182 			 rps->min_freq);
7183 }
7184 
7185 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7186 {
7187 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7188 	u32 val;
7189 
7190 	cherryview_setup_pctx(dev_priv);
7191 
7192 	vlv_init_gpll_ref_freq(dev_priv);
7193 
7194 	mutex_lock(&dev_priv->sb_lock);
7195 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7196 	mutex_unlock(&dev_priv->sb_lock);
7197 
7198 	switch ((val >> 2) & 0x7) {
7199 	case 3:
7200 		dev_priv->mem_freq = 2000;
7201 		break;
7202 	default:
7203 		dev_priv->mem_freq = 1600;
7204 		break;
7205 	}
7206 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7207 
7208 	rps->max_freq = cherryview_rps_max_freq(dev_priv);
7209 	rps->rp0_freq = rps->max_freq;
7210 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7211 			 intel_gpu_freq(dev_priv, rps->max_freq),
7212 			 rps->max_freq);
7213 
7214 	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7215 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7216 			 intel_gpu_freq(dev_priv, rps->efficient_freq),
7217 			 rps->efficient_freq);
7218 
7219 	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7220 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7221 			 intel_gpu_freq(dev_priv, rps->rp1_freq),
7222 			 rps->rp1_freq);
7223 
7224 	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7225 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7226 			 intel_gpu_freq(dev_priv, rps->min_freq),
7227 			 rps->min_freq);
7228 
7229 	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7230 		   rps->min_freq) & 1,
7231 		  "Odd GPU freq values\n");
7232 }
7233 
7234 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7235 {
7236 	valleyview_cleanup_pctx(dev_priv);
7237 }
7238 
7239 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7240 {
7241 	struct intel_engine_cs *engine;
7242 	enum intel_engine_id id;
7243 	u32 gtfifodbg, rc6_mode = 0, pcbr;
7244 
7245 	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7246 					     GT_FIFO_FREE_ENTRIES_CHV);
7247 	if (gtfifodbg) {
7248 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7249 				 gtfifodbg);
7250 		I915_WRITE(GTFIFODBG, gtfifodbg);
7251 	}
7252 
7253 	cherryview_check_pctx(dev_priv);
7254 
7255 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
7256 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7257 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7258 
7259 	/*  Disable RC states. */
7260 	I915_WRITE(GEN6_RC_CONTROL, 0);
7261 
7262 	/* 2a: Program RC6 thresholds.*/
7263 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7264 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7265 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7266 
7267 	for_each_engine(engine, dev_priv, id)
7268 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7269 	I915_WRITE(GEN6_RC_SLEEP, 0);
7270 
7271 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7272 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7273 
7274 	/* Allows RC6 residency counter to work */
7275 	I915_WRITE(VLV_COUNTER_CONTROL,
7276 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7277 				      VLV_MEDIA_RC6_COUNT_EN |
7278 				      VLV_RENDER_RC6_COUNT_EN));
7279 
7280 	/* For now we assume BIOS is allocating and populating the PCBR  */
7281 	pcbr = I915_READ(VLV_PCBR);
7282 
7283 	/* 3: Enable RC6 */
7284 	if ((intel_rc6_enabled() & INTEL_RC6_ENABLE) &&
7285 	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
7286 		rc6_mode = GEN7_RC_CTL_TO_MODE;
7287 
7288 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7289 
7290 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7291 }
7292 
7293 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7294 {
7295 	u32 val;
7296 
7297 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7298 
7299 	/* 1: Program defaults and thresholds for RPS*/
7300 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7301 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7302 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7303 	I915_WRITE(GEN6_RP_UP_EI, 66000);
7304 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7305 
7306 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7307 
7308 	/* 2: Enable RPS */
7309 	I915_WRITE(GEN6_RP_CONTROL,
7310 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7311 		   GEN6_RP_MEDIA_IS_GFX |
7312 		   GEN6_RP_ENABLE |
7313 		   GEN6_RP_UP_BUSY_AVG |
7314 		   GEN6_RP_DOWN_IDLE_AVG);
7315 
7316 	/* Setting Fixed Bias */
7317 	val = VLV_OVERRIDE_EN |
7318 		  VLV_SOC_TDP_EN |
7319 		  CHV_BIAS_CPU_50_SOC_50;
7320 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7321 
7322 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7323 
7324 	/* RPS code assumes GPLL is used */
7325 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7326 
7327 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7328 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7329 
7330 	reset_rps(dev_priv, valleyview_set_rps);
7331 
7332 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7333 }
7334 
7335 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7336 {
7337 	struct intel_engine_cs *engine;
7338 	enum intel_engine_id id;
7339 	u32 gtfifodbg, rc6_mode = 0;
7340 
7341 	valleyview_check_pctx(dev_priv);
7342 
7343 	gtfifodbg = I915_READ(GTFIFODBG);
7344 	if (gtfifodbg) {
7345 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7346 				 gtfifodbg);
7347 		I915_WRITE(GTFIFODBG, gtfifodbg);
7348 	}
7349 
7350 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7351 
7352 	/*  Disable RC states. */
7353 	I915_WRITE(GEN6_RC_CONTROL, 0);
7354 
7355 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7356 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7357 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7358 
7359 	for_each_engine(engine, dev_priv, id)
7360 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7361 
7362 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7363 
7364 	/* Allows RC6 residency counter to work */
7365 	I915_WRITE(VLV_COUNTER_CONTROL,
7366 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7367 				      VLV_MEDIA_RC0_COUNT_EN |
7368 				      VLV_RENDER_RC0_COUNT_EN |
7369 				      VLV_MEDIA_RC6_COUNT_EN |
7370 				      VLV_RENDER_RC6_COUNT_EN));
7371 
7372 	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
7373 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7374 
7375 	intel_print_rc6_info(dev_priv, rc6_mode);
7376 
7377 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7378 
7379 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7380 }
7381 
7382 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7383 {
7384 	u32 val;
7385 
7386 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7387 
7388 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7389 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7390 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7391 	I915_WRITE(GEN6_RP_UP_EI, 66000);
7392 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7393 
7394 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7395 
7396 	I915_WRITE(GEN6_RP_CONTROL,
7397 		   GEN6_RP_MEDIA_TURBO |
7398 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7399 		   GEN6_RP_MEDIA_IS_GFX |
7400 		   GEN6_RP_ENABLE |
7401 		   GEN6_RP_UP_BUSY_AVG |
7402 		   GEN6_RP_DOWN_IDLE_CONT);
7403 
7404 	/* Setting Fixed Bias */
7405 	val = VLV_OVERRIDE_EN |
7406 		  VLV_SOC_TDP_EN |
7407 		  VLV_BIAS_CPU_125_SOC_875;
7408 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7409 
7410 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7411 
7412 	/* RPS code assumes GPLL is used */
7413 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7414 
7415 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7416 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7417 
7418 	reset_rps(dev_priv, valleyview_set_rps);
7419 
7420 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7421 }
7422 
7423 static unsigned long intel_pxfreq(u32 vidfreq)
7424 {
7425 	unsigned long freq;
7426 	int div = (vidfreq & 0x3f0000) >> 16;
7427 	int post = (vidfreq & 0x3000) >> 12;
7428 	int pre = (vidfreq & 0x7);
7429 
7430 	if (!pre)
7431 		return 0;
7432 
7433 	freq = ((div * 133333) / ((1<<post) * pre));
7434 
7435 	return freq;
7436 }
7437 
7438 static const struct cparams {
7439 	u16 i;
7440 	u16 t;
7441 	u16 m;
7442 	u16 c;
7443 } cparams[] = {
7444 	{ 1, 1333, 301, 28664 },
7445 	{ 1, 1066, 294, 24460 },
7446 	{ 1, 800, 294, 25192 },
7447 	{ 0, 1333, 276, 27605 },
7448 	{ 0, 1066, 276, 27605 },
7449 	{ 0, 800, 231, 23784 },
7450 };
7451 
7452 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7453 {
7454 	u64 total_count, diff, ret;
7455 	u32 count1, count2, count3, m = 0, c = 0;
7456 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
7457 	int i;
7458 
7459 	lockdep_assert_held(&mchdev_lock);
7460 
7461 	diff1 = now - dev_priv->ips.last_time1;
7462 
7463 	/* Prevent division-by-zero if we are asking too fast.
7464 	 * Also, we don't get interesting results if we are polling
7465 	 * faster than once in 10ms, so just return the saved value
7466 	 * in such cases.
7467 	 */
7468 	if (diff1 <= 10)
7469 		return dev_priv->ips.chipset_power;
7470 
7471 	count1 = I915_READ(DMIEC);
7472 	count2 = I915_READ(DDREC);
7473 	count3 = I915_READ(CSIEC);
7474 
7475 	total_count = count1 + count2 + count3;
7476 
7477 	/* FIXME: handle per-counter overflow */
7478 	if (total_count < dev_priv->ips.last_count1) {
7479 		diff = ~0UL - dev_priv->ips.last_count1;
7480 		diff += total_count;
7481 	} else {
7482 		diff = total_count - dev_priv->ips.last_count1;
7483 	}
7484 
7485 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7486 		if (cparams[i].i == dev_priv->ips.c_m &&
7487 		    cparams[i].t == dev_priv->ips.r_t) {
7488 			m = cparams[i].m;
7489 			c = cparams[i].c;
7490 			break;
7491 		}
7492 	}
7493 
7494 	diff = div_u64(diff, diff1);
7495 	ret = ((m * diff) + c);
7496 	ret = div_u64(ret, 10);
7497 
7498 	dev_priv->ips.last_count1 = total_count;
7499 	dev_priv->ips.last_time1 = now;
7500 
7501 	dev_priv->ips.chipset_power = ret;
7502 
7503 	return ret;
7504 }
7505 
7506 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7507 {
7508 	unsigned long val;
7509 
7510 	if (INTEL_INFO(dev_priv)->gen != 5)
7511 		return 0;
7512 
7513 	spin_lock_irq(&mchdev_lock);
7514 
7515 	val = __i915_chipset_val(dev_priv);
7516 
7517 	spin_unlock_irq(&mchdev_lock);
7518 
7519 	return val;
7520 }
7521 
7522 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7523 {
7524 	unsigned long m, x, b;
7525 	u32 tsfs;
7526 
7527 	tsfs = I915_READ(TSFS);
7528 
7529 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7530 	x = I915_READ8(TR1);
7531 
7532 	b = tsfs & TSFS_INTR_MASK;
7533 
7534 	return ((m * x) / 127) - b;
7535 }
7536 
7537 static int _pxvid_to_vd(u8 pxvid)
7538 {
7539 	if (pxvid == 0)
7540 		return 0;
7541 
7542 	if (pxvid >= 8 && pxvid < 31)
7543 		pxvid = 31;
7544 
7545 	return (pxvid + 2) * 125;
7546 }
7547 
7548 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7549 {
7550 	const int vd = _pxvid_to_vd(pxvid);
7551 	const int vm = vd - 1125;
7552 
7553 	if (INTEL_INFO(dev_priv)->is_mobile)
7554 		return vm > 0 ? vm : 0;
7555 
7556 	return vd;
7557 }
7558 
7559 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7560 {
7561 	u64 now, diff, diffms;
7562 	u32 count;
7563 
7564 	lockdep_assert_held(&mchdev_lock);
7565 
7566 	now = ktime_get_raw_ns();
7567 	diffms = now - dev_priv->ips.last_time2;
7568 	do_div(diffms, NSEC_PER_MSEC);
7569 
7570 	/* Don't divide by 0 */
7571 	if (!diffms)
7572 		return;
7573 
7574 	count = I915_READ(GFXEC);
7575 
7576 	if (count < dev_priv->ips.last_count2) {
7577 		diff = ~0UL - dev_priv->ips.last_count2;
7578 		diff += count;
7579 	} else {
7580 		diff = count - dev_priv->ips.last_count2;
7581 	}
7582 
7583 	dev_priv->ips.last_count2 = count;
7584 	dev_priv->ips.last_time2 = now;
7585 
7586 	/* More magic constants... */
7587 	diff = diff * 1181;
7588 	diff = div_u64(diff, diffms * 10);
7589 	dev_priv->ips.gfx_power = diff;
7590 }
7591 
7592 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7593 {
7594 	if (INTEL_INFO(dev_priv)->gen != 5)
7595 		return;
7596 
7597 	spin_lock_irq(&mchdev_lock);
7598 
7599 	__i915_update_gfx_val(dev_priv);
7600 
7601 	spin_unlock_irq(&mchdev_lock);
7602 }
7603 
7604 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7605 {
7606 	unsigned long t, corr, state1, corr2, state2;
7607 	u32 pxvid, ext_v;
7608 
7609 	lockdep_assert_held(&mchdev_lock);
7610 
7611 	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7612 	pxvid = (pxvid >> 24) & 0x7f;
7613 	ext_v = pvid_to_extvid(dev_priv, pxvid);
7614 
7615 	state1 = ext_v;
7616 
7617 	t = i915_mch_val(dev_priv);
7618 
7619 	/* Revel in the empirically derived constants */
7620 
7621 	/* Correction factor in 1/100000 units */
7622 	if (t > 80)
7623 		corr = ((t * 2349) + 135940);
7624 	else if (t >= 50)
7625 		corr = ((t * 964) + 29317);
7626 	else /* < 50 */
7627 		corr = ((t * 301) + 1004);
7628 
7629 	corr = corr * ((150142 * state1) / 10000 - 78642);
7630 	corr /= 100000;
7631 	corr2 = (corr * dev_priv->ips.corr);
7632 
7633 	state2 = (corr2 * state1) / 10000;
7634 	state2 /= 100; /* convert to mW */
7635 
7636 	__i915_update_gfx_val(dev_priv);
7637 
7638 	return dev_priv->ips.gfx_power + state2;
7639 }
7640 
7641 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7642 {
7643 	unsigned long val;
7644 
7645 	if (INTEL_INFO(dev_priv)->gen != 5)
7646 		return 0;
7647 
7648 	spin_lock_irq(&mchdev_lock);
7649 
7650 	val = __i915_gfx_val(dev_priv);
7651 
7652 	spin_unlock_irq(&mchdev_lock);
7653 
7654 	return val;
7655 }
7656 
7657 /**
7658  * i915_read_mch_val - return value for IPS use
7659  *
7660  * Calculate and return a value for the IPS driver to use when deciding whether
7661  * we have thermal and power headroom to increase CPU or GPU power budget.
7662  */
7663 unsigned long i915_read_mch_val(void)
7664 {
7665 	struct drm_i915_private *dev_priv;
7666 	unsigned long chipset_val, graphics_val, ret = 0;
7667 
7668 	spin_lock_irq(&mchdev_lock);
7669 	if (!i915_mch_dev)
7670 		goto out_unlock;
7671 	dev_priv = i915_mch_dev;
7672 
7673 	chipset_val = __i915_chipset_val(dev_priv);
7674 	graphics_val = __i915_gfx_val(dev_priv);
7675 
7676 	ret = chipset_val + graphics_val;
7677 
7678 out_unlock:
7679 	spin_unlock_irq(&mchdev_lock);
7680 
7681 	return ret;
7682 }
7683 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7684 
7685 /**
7686  * i915_gpu_raise - raise GPU frequency limit
7687  *
7688  * Raise the limit; IPS indicates we have thermal headroom.
7689  */
7690 bool i915_gpu_raise(void)
7691 {
7692 	struct drm_i915_private *dev_priv;
7693 	bool ret = true;
7694 
7695 	spin_lock_irq(&mchdev_lock);
7696 	if (!i915_mch_dev) {
7697 		ret = false;
7698 		goto out_unlock;
7699 	}
7700 	dev_priv = i915_mch_dev;
7701 
7702 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7703 		dev_priv->ips.max_delay--;
7704 
7705 out_unlock:
7706 	spin_unlock_irq(&mchdev_lock);
7707 
7708 	return ret;
7709 }
7710 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7711 
7712 /**
7713  * i915_gpu_lower - lower GPU frequency limit
7714  *
7715  * IPS indicates we're close to a thermal limit, so throttle back the GPU
7716  * frequency maximum.
7717  */
7718 bool i915_gpu_lower(void)
7719 {
7720 	struct drm_i915_private *dev_priv;
7721 	bool ret = true;
7722 
7723 	spin_lock_irq(&mchdev_lock);
7724 	if (!i915_mch_dev) {
7725 		ret = false;
7726 		goto out_unlock;
7727 	}
7728 	dev_priv = i915_mch_dev;
7729 
7730 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7731 		dev_priv->ips.max_delay++;
7732 
7733 out_unlock:
7734 	spin_unlock_irq(&mchdev_lock);
7735 
7736 	return ret;
7737 }
7738 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7739 
7740 /**
7741  * i915_gpu_busy - indicate GPU business to IPS
7742  *
7743  * Tell the IPS driver whether or not the GPU is busy.
7744  */
7745 bool i915_gpu_busy(void)
7746 {
7747 	bool ret = false;
7748 
7749 	spin_lock_irq(&mchdev_lock);
7750 	if (i915_mch_dev)
7751 		ret = i915_mch_dev->gt.awake;
7752 	spin_unlock_irq(&mchdev_lock);
7753 
7754 	return ret;
7755 }
7756 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7757 
7758 /**
7759  * i915_gpu_turbo_disable - disable graphics turbo
7760  *
7761  * Disable graphics turbo by resetting the max frequency and setting the
7762  * current frequency to the default.
7763  */
7764 bool i915_gpu_turbo_disable(void)
7765 {
7766 	struct drm_i915_private *dev_priv;
7767 	bool ret = true;
7768 
7769 	spin_lock_irq(&mchdev_lock);
7770 	if (!i915_mch_dev) {
7771 		ret = false;
7772 		goto out_unlock;
7773 	}
7774 	dev_priv = i915_mch_dev;
7775 
7776 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7777 
7778 	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7779 		ret = false;
7780 
7781 out_unlock:
7782 	spin_unlock_irq(&mchdev_lock);
7783 
7784 	return ret;
7785 }
7786 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7787 
7788 /**
7789  * Tells the intel_ips driver that the i915 driver is now loaded, if
7790  * IPS got loaded first.
7791  *
7792  * This awkward dance is so that neither module has to depend on the
7793  * other in order for IPS to do the appropriate communication of
7794  * GPU turbo limits to i915.
7795  */
7796 static void
7797 ips_ping_for_i915_load(void)
7798 {
7799 #if 0
7800 	void (*link)(void);
7801 
7802 	link = symbol_get(ips_link_to_i915_driver);
7803 	if (link) {
7804 		link();
7805 		symbol_put(ips_link_to_i915_driver);
7806 	}
7807 #endif
7808 }
7809 
7810 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7811 {
7812 	/* We only register the i915 ips part with intel-ips once everything is
7813 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7814 	spin_lock_irq(&mchdev_lock);
7815 	i915_mch_dev = dev_priv;
7816 	spin_unlock_irq(&mchdev_lock);
7817 
7818 	ips_ping_for_i915_load();
7819 }
7820 
7821 void intel_gpu_ips_teardown(void)
7822 {
7823 	spin_lock_irq(&mchdev_lock);
7824 	i915_mch_dev = NULL;
7825 	spin_unlock_irq(&mchdev_lock);
7826 }
7827 
7828 static void intel_init_emon(struct drm_i915_private *dev_priv)
7829 {
7830 	u32 lcfuse;
7831 	u8 pxw[16];
7832 	int i;
7833 
7834 	/* Disable to program */
7835 	I915_WRITE(ECR, 0);
7836 	POSTING_READ(ECR);
7837 
7838 	/* Program energy weights for various events */
7839 	I915_WRITE(SDEW, 0x15040d00);
7840 	I915_WRITE(CSIEW0, 0x007f0000);
7841 	I915_WRITE(CSIEW1, 0x1e220004);
7842 	I915_WRITE(CSIEW2, 0x04000004);
7843 
7844 	for (i = 0; i < 5; i++)
7845 		I915_WRITE(PEW(i), 0);
7846 	for (i = 0; i < 3; i++)
7847 		I915_WRITE(DEW(i), 0);
7848 
7849 	/* Program P-state weights to account for frequency power adjustment */
7850 	for (i = 0; i < 16; i++) {
7851 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7852 		unsigned long freq = intel_pxfreq(pxvidfreq);
7853 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7854 			PXVFREQ_PX_SHIFT;
7855 		unsigned long val;
7856 
7857 		val = vid * vid;
7858 		val *= (freq / 1000);
7859 		val *= 255;
7860 		val /= (127*127*900);
7861 		if (val > 0xff)
7862 			DRM_ERROR("bad pxval: %ld\n", val);
7863 		pxw[i] = val;
7864 	}
7865 	/* Render standby states get 0 weight */
7866 	pxw[14] = 0;
7867 	pxw[15] = 0;
7868 
7869 	for (i = 0; i < 4; i++) {
7870 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7871 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7872 		I915_WRITE(PXW(i), val);
7873 	}
7874 
7875 	/* Adjust magic regs to magic values (more experimental results) */
7876 	I915_WRITE(OGW0, 0);
7877 	I915_WRITE(OGW1, 0);
7878 	I915_WRITE(EG0, 0x00007f00);
7879 	I915_WRITE(EG1, 0x0000000e);
7880 	I915_WRITE(EG2, 0x000e0000);
7881 	I915_WRITE(EG3, 0x68000300);
7882 	I915_WRITE(EG4, 0x42000000);
7883 	I915_WRITE(EG5, 0x00140031);
7884 	I915_WRITE(EG6, 0);
7885 	I915_WRITE(EG7, 0);
7886 
7887 	for (i = 0; i < 8; i++)
7888 		I915_WRITE(PXWL(i), 0);
7889 
7890 	/* Enable PMON + select events */
7891 	I915_WRITE(ECR, 0x80000019);
7892 
7893 	lcfuse = I915_READ(LCFUSE02);
7894 
7895 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7896 }
7897 
7898 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7899 {
7900 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7901 
7902 	/*
7903 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7904 	 * requirement.
7905 	 */
7906 	if (!i915_modparams.enable_rc6) {
7907 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7908 		intel_runtime_pm_get(dev_priv);
7909 	}
7910 
7911 	mutex_lock(&dev_priv->drm.struct_mutex);
7912 	mutex_lock(&dev_priv->pcu_lock);
7913 
7914 	/* Initialize RPS limits (for userspace) */
7915 	if (IS_CHERRYVIEW(dev_priv))
7916 		cherryview_init_gt_powersave(dev_priv);
7917 	else if (IS_VALLEYVIEW(dev_priv))
7918 		valleyview_init_gt_powersave(dev_priv);
7919 	else if (INTEL_GEN(dev_priv) >= 6)
7920 		gen6_init_rps_frequencies(dev_priv);
7921 
7922 	/* Derive initial user preferences/limits from the hardware limits */
7923 	rps->idle_freq = rps->min_freq;
7924 	rps->cur_freq = rps->idle_freq;
7925 
7926 	rps->max_freq_softlimit = rps->max_freq;
7927 	rps->min_freq_softlimit = rps->min_freq;
7928 
7929 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7930 		rps->min_freq_softlimit =
7931 			max_t(int,
7932 			      rps->efficient_freq,
7933 			      intel_freq_opcode(dev_priv, 450));
7934 
7935 	/* After setting max-softlimit, find the overclock max freq */
7936 	if (IS_GEN6(dev_priv) ||
7937 	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7938 		u32 params = 0;
7939 
7940 		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7941 		if (params & BIT(31)) { /* OC supported */
7942 			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7943 					 (rps->max_freq & 0xff) * 50,
7944 					 (params & 0xff) * 50);
7945 			rps->max_freq = params & 0xff;
7946 		}
7947 	}
7948 
7949 	/* Finally allow us to boost to max by default */
7950 	rps->boost_freq = rps->max_freq;
7951 
7952 	mutex_unlock(&dev_priv->pcu_lock);
7953 	mutex_unlock(&dev_priv->drm.struct_mutex);
7954 
7955 	intel_autoenable_gt_powersave(dev_priv);
7956 }
7957 
7958 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7959 {
7960 	if (IS_VALLEYVIEW(dev_priv))
7961 		valleyview_cleanup_gt_powersave(dev_priv);
7962 
7963 	if (!i915_modparams.enable_rc6)
7964 		intel_runtime_pm_put(dev_priv);
7965 }
7966 
7967 /**
7968  * intel_suspend_gt_powersave - suspend PM work and helper threads
7969  * @dev_priv: i915 device
7970  *
7971  * We don't want to disable RC6 or other features here, we just want
7972  * to make sure any work we've queued has finished and won't bother
7973  * us while we're suspended.
7974  */
7975 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7976 {
7977 	if (INTEL_GEN(dev_priv) < 6)
7978 		return;
7979 
7980 	if (cancel_delayed_work_sync(&dev_priv->gt_pm.autoenable_work))
7981 		intel_runtime_pm_put(dev_priv);
7982 
7983 	/* gen6_rps_idle() will be called later to disable interrupts */
7984 }
7985 
7986 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7987 {
7988 	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
7989 	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
7990 	intel_disable_gt_powersave(dev_priv);
7991 
7992 	gen6_reset_rps_interrupts(dev_priv);
7993 }
7994 
7995 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
7996 {
7997 	lockdep_assert_held(&i915->pcu_lock);
7998 
7999 	if (!i915->gt_pm.llc_pstate.enabled)
8000 		return;
8001 
8002 	/* Currently there is no HW configuration to be done to disable. */
8003 
8004 	i915->gt_pm.llc_pstate.enabled = false;
8005 }
8006 
8007 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8008 {
8009 	lockdep_assert_held(&dev_priv->pcu_lock);
8010 
8011 	if (!dev_priv->gt_pm.rc6.enabled)
8012 		return;
8013 
8014 	if (INTEL_GEN(dev_priv) >= 9)
8015 		gen9_disable_rc6(dev_priv);
8016 	else if (IS_CHERRYVIEW(dev_priv))
8017 		cherryview_disable_rc6(dev_priv);
8018 	else if (IS_VALLEYVIEW(dev_priv))
8019 		valleyview_disable_rc6(dev_priv);
8020 	else if (INTEL_GEN(dev_priv) >= 6)
8021 		gen6_disable_rc6(dev_priv);
8022 
8023 	dev_priv->gt_pm.rc6.enabled = false;
8024 }
8025 
8026 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8027 {
8028 	lockdep_assert_held(&dev_priv->pcu_lock);
8029 
8030 	if (!dev_priv->gt_pm.rps.enabled)
8031 		return;
8032 
8033 	if (INTEL_GEN(dev_priv) >= 9)
8034 		gen9_disable_rps(dev_priv);
8035 	else if (IS_CHERRYVIEW(dev_priv))
8036 		cherryview_disable_rps(dev_priv);
8037 	else if (IS_VALLEYVIEW(dev_priv))
8038 		valleyview_disable_rps(dev_priv);
8039 	else if (INTEL_GEN(dev_priv) >= 6)
8040 		gen6_disable_rps(dev_priv);
8041 	else if (IS_IRONLAKE_M(dev_priv))
8042 		ironlake_disable_drps(dev_priv);
8043 
8044 	dev_priv->gt_pm.rps.enabled = false;
8045 }
8046 
8047 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8048 {
8049 	mutex_lock(&dev_priv->pcu_lock);
8050 
8051 	intel_disable_rc6(dev_priv);
8052 	intel_disable_rps(dev_priv);
8053 	if (HAS_LLC(dev_priv))
8054 		intel_disable_llc_pstate(dev_priv);
8055 
8056 	mutex_unlock(&dev_priv->pcu_lock);
8057 }
8058 
8059 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8060 {
8061 	lockdep_assert_held(&i915->pcu_lock);
8062 
8063 	if (i915->gt_pm.llc_pstate.enabled)
8064 		return;
8065 
8066 	gen6_update_ring_freq(i915);
8067 
8068 	i915->gt_pm.llc_pstate.enabled = true;
8069 }
8070 
8071 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8072 {
8073 	lockdep_assert_held(&dev_priv->pcu_lock);
8074 
8075 	if (dev_priv->gt_pm.rc6.enabled)
8076 		return;
8077 
8078 	if (IS_CHERRYVIEW(dev_priv))
8079 		cherryview_enable_rc6(dev_priv);
8080 	else if (IS_VALLEYVIEW(dev_priv))
8081 		valleyview_enable_rc6(dev_priv);
8082 	else if (INTEL_GEN(dev_priv) >= 9)
8083 		gen9_enable_rc6(dev_priv);
8084 	else if (IS_BROADWELL(dev_priv))
8085 		gen8_enable_rc6(dev_priv);
8086 	else if (INTEL_GEN(dev_priv) >= 6)
8087 		gen6_enable_rc6(dev_priv);
8088 
8089 	dev_priv->gt_pm.rc6.enabled = true;
8090 }
8091 
8092 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8093 {
8094 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8095 
8096 	lockdep_assert_held(&dev_priv->pcu_lock);
8097 
8098 	if (rps->enabled)
8099 		return;
8100 
8101 	if (IS_CHERRYVIEW(dev_priv)) {
8102 		cherryview_enable_rps(dev_priv);
8103 	} else if (IS_VALLEYVIEW(dev_priv)) {
8104 		valleyview_enable_rps(dev_priv);
8105 	} else if (INTEL_GEN(dev_priv) >= 9) {
8106 		gen9_enable_rps(dev_priv);
8107 	} else if (IS_BROADWELL(dev_priv)) {
8108 		gen8_enable_rps(dev_priv);
8109 	} else if (INTEL_GEN(dev_priv) >= 6) {
8110 		gen6_enable_rps(dev_priv);
8111 	} else if (IS_IRONLAKE_M(dev_priv)) {
8112 		ironlake_enable_drps(dev_priv);
8113 		intel_init_emon(dev_priv);
8114 	}
8115 
8116 	WARN_ON(rps->max_freq < rps->min_freq);
8117 	WARN_ON(rps->idle_freq > rps->max_freq);
8118 
8119 	WARN_ON(rps->efficient_freq < rps->min_freq);
8120 	WARN_ON(rps->efficient_freq > rps->max_freq);
8121 
8122 	rps->enabled = true;
8123 }
8124 
8125 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8126 {
8127 	/* Powersaving is controlled by the host when inside a VM */
8128 	if (intel_vgpu_active(dev_priv))
8129 		return;
8130 
8131 	mutex_lock(&dev_priv->pcu_lock);
8132 
8133 	intel_enable_rc6(dev_priv);
8134 	intel_enable_rps(dev_priv);
8135 	if (HAS_LLC(dev_priv))
8136 		intel_enable_llc_pstate(dev_priv);
8137 
8138 	mutex_unlock(&dev_priv->pcu_lock);
8139 }
8140 
8141 static void __intel_autoenable_gt_powersave(struct work_struct *work)
8142 {
8143 	struct drm_i915_private *dev_priv =
8144 		container_of(work,
8145 			     typeof(*dev_priv),
8146 			     gt_pm.autoenable_work.work);
8147 	struct intel_engine_cs *rcs;
8148 	struct drm_i915_gem_request *req;
8149 
8150 	rcs = dev_priv->engine[RCS];
8151 	if (rcs->last_retired_context)
8152 		goto out;
8153 
8154 	if (!rcs->init_context)
8155 		goto out;
8156 
8157 	mutex_lock(&dev_priv->drm.struct_mutex);
8158 
8159 	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
8160 	if (IS_ERR(req))
8161 		goto unlock;
8162 
8163 	if (!i915_modparams.enable_execlists && i915_switch_context(req) == 0)
8164 		rcs->init_context(req);
8165 
8166 	/* Mark the device busy, calling intel_enable_gt_powersave() */
8167 	i915_add_request(req);
8168 
8169 unlock:
8170 	mutex_unlock(&dev_priv->drm.struct_mutex);
8171 out:
8172 	intel_runtime_pm_put(dev_priv);
8173 }
8174 
8175 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
8176 {
8177 	if (IS_IRONLAKE_M(dev_priv)) {
8178 		ironlake_enable_drps(dev_priv);
8179 		intel_init_emon(dev_priv);
8180 	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
8181 		/*
8182 		 * PCU communication is slow and this doesn't need to be
8183 		 * done at any specific time, so do this out of our fast path
8184 		 * to make resume and init faster.
8185 		 *
8186 		 * We depend on the HW RC6 power context save/restore
8187 		 * mechanism when entering D3 through runtime PM suspend. So
8188 		 * disable RPM until RPS/RC6 is properly setup. We can only
8189 		 * get here via the driver load/system resume/runtime resume
8190 		 * paths, so the _noresume version is enough (and in case of
8191 		 * runtime resume it's necessary).
8192 		 */
8193 		if (queue_delayed_work(dev_priv->wq,
8194 				       &dev_priv->gt_pm.autoenable_work,
8195 				       round_jiffies_up_relative(HZ)))
8196 			intel_runtime_pm_get_noresume(dev_priv);
8197 	}
8198 }
8199 
8200 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8201 {
8202 	/*
8203 	 * On Ibex Peak and Cougar Point, we need to disable clock
8204 	 * gating for the panel power sequencer or it will fail to
8205 	 * start up when no ports are active.
8206 	 */
8207 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8208 }
8209 
8210 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8211 {
8212 	enum i915_pipe pipe;
8213 
8214 	for_each_pipe(dev_priv, pipe) {
8215 		I915_WRITE(DSPCNTR(pipe),
8216 			   I915_READ(DSPCNTR(pipe)) |
8217 			   DISPPLANE_TRICKLE_FEED_DISABLE);
8218 
8219 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8220 		POSTING_READ(DSPSURF(pipe));
8221 	}
8222 }
8223 
8224 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8225 {
8226 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8227 
8228 	/*
8229 	 * Required for FBC
8230 	 * WaFbcDisableDpfcClockGating:ilk
8231 	 */
8232 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8233 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8234 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8235 
8236 	I915_WRITE(PCH_3DCGDIS0,
8237 		   MARIUNIT_CLOCK_GATE_DISABLE |
8238 		   SVSMUNIT_CLOCK_GATE_DISABLE);
8239 	I915_WRITE(PCH_3DCGDIS1,
8240 		   VFMUNIT_CLOCK_GATE_DISABLE);
8241 
8242 	/*
8243 	 * According to the spec the following bits should be set in
8244 	 * order to enable memory self-refresh
8245 	 * The bit 22/21 of 0x42004
8246 	 * The bit 5 of 0x42020
8247 	 * The bit 15 of 0x45000
8248 	 */
8249 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8250 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8251 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8252 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8253 	I915_WRITE(DISP_ARB_CTL,
8254 		   (I915_READ(DISP_ARB_CTL) |
8255 		    DISP_FBC_WM_DIS));
8256 
8257 	/*
8258 	 * Based on the document from hardware guys the following bits
8259 	 * should be set unconditionally in order to enable FBC.
8260 	 * The bit 22 of 0x42000
8261 	 * The bit 22 of 0x42004
8262 	 * The bit 7,8,9 of 0x42020.
8263 	 */
8264 	if (IS_IRONLAKE_M(dev_priv)) {
8265 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8266 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
8267 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
8268 			   ILK_FBCQ_DIS);
8269 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
8270 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
8271 			   ILK_DPARB_GATE);
8272 	}
8273 
8274 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8275 
8276 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8277 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8278 		   ILK_ELPIN_409_SELECT);
8279 	I915_WRITE(_3D_CHICKEN2,
8280 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8281 		   _3D_CHICKEN2_WM_READ_PIPELINED);
8282 
8283 	/* WaDisableRenderCachePipelinedFlush:ilk */
8284 	I915_WRITE(CACHE_MODE_0,
8285 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8286 
8287 	/* WaDisable_RenderCache_OperationalFlush:ilk */
8288 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8289 
8290 	g4x_disable_trickle_feed(dev_priv);
8291 
8292 	ibx_init_clock_gating(dev_priv);
8293 }
8294 
8295 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8296 {
8297 	int pipe;
8298 	uint32_t val;
8299 
8300 	/*
8301 	 * On Ibex Peak and Cougar Point, we need to disable clock
8302 	 * gating for the panel power sequencer or it will fail to
8303 	 * start up when no ports are active.
8304 	 */
8305 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8306 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8307 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8308 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8309 		   DPLS_EDP_PPS_FIX_DIS);
8310 	/* The below fixes the weird display corruption, a few pixels shifted
8311 	 * downward, on (only) LVDS of some HP laptops with IVY.
8312 	 */
8313 	for_each_pipe(dev_priv, pipe) {
8314 		val = I915_READ(TRANS_CHICKEN2(pipe));
8315 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8316 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8317 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8318 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8319 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8320 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8321 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8322 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
8323 	}
8324 	/* WADP0ClockGatingDisable */
8325 	for_each_pipe(dev_priv, pipe) {
8326 		I915_WRITE(TRANS_CHICKEN1(pipe),
8327 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8328 	}
8329 }
8330 
8331 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8332 {
8333 	uint32_t tmp;
8334 
8335 	tmp = I915_READ(MCH_SSKPD);
8336 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8337 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8338 			      tmp);
8339 }
8340 
8341 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8342 {
8343 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8344 
8345 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8346 
8347 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8348 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8349 		   ILK_ELPIN_409_SELECT);
8350 
8351 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8352 	I915_WRITE(_3D_CHICKEN,
8353 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8354 
8355 	/* WaDisable_RenderCache_OperationalFlush:snb */
8356 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8357 
8358 	/*
8359 	 * BSpec recoomends 8x4 when MSAA is used,
8360 	 * however in practice 16x4 seems fastest.
8361 	 *
8362 	 * Note that PS/WM thread counts depend on the WIZ hashing
8363 	 * disable bit, which we don't touch here, but it's good
8364 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8365 	 */
8366 	I915_WRITE(GEN6_GT_MODE,
8367 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8368 
8369 	I915_WRITE(CACHE_MODE_0,
8370 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8371 
8372 	I915_WRITE(GEN6_UCGCTL1,
8373 		   I915_READ(GEN6_UCGCTL1) |
8374 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8375 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8376 
8377 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8378 	 * gating disable must be set.  Failure to set it results in
8379 	 * flickering pixels due to Z write ordering failures after
8380 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
8381 	 * Sanctuary and Tropics, and apparently anything else with
8382 	 * alpha test or pixel discard.
8383 	 *
8384 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
8385 	 * but we didn't debug actual testcases to find it out.
8386 	 *
8387 	 * WaDisableRCCUnitClockGating:snb
8388 	 * WaDisableRCPBUnitClockGating:snb
8389 	 */
8390 	I915_WRITE(GEN6_UCGCTL2,
8391 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8392 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8393 
8394 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8395 	I915_WRITE(_3D_CHICKEN3,
8396 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8397 
8398 	/*
8399 	 * Bspec says:
8400 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8401 	 * 3DSTATE_SF number of SF output attributes is more than 16."
8402 	 */
8403 	I915_WRITE(_3D_CHICKEN3,
8404 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8405 
8406 	/*
8407 	 * According to the spec the following bits should be
8408 	 * set in order to enable memory self-refresh and fbc:
8409 	 * The bit21 and bit22 of 0x42000
8410 	 * The bit21 and bit22 of 0x42004
8411 	 * The bit5 and bit7 of 0x42020
8412 	 * The bit14 of 0x70180
8413 	 * The bit14 of 0x71180
8414 	 *
8415 	 * WaFbcAsynchFlipDisableFbcQueue:snb
8416 	 */
8417 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
8418 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
8419 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8420 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8421 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8422 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8423 	I915_WRITE(ILK_DSPCLK_GATE_D,
8424 		   I915_READ(ILK_DSPCLK_GATE_D) |
8425 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8426 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8427 
8428 	g4x_disable_trickle_feed(dev_priv);
8429 
8430 	cpt_init_clock_gating(dev_priv);
8431 
8432 	gen6_check_mch_setup(dev_priv);
8433 }
8434 
8435 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8436 {
8437 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8438 
8439 	/*
8440 	 * WaVSThreadDispatchOverride:ivb,vlv
8441 	 *
8442 	 * This actually overrides the dispatch
8443 	 * mode for all thread types.
8444 	 */
8445 	reg &= ~GEN7_FF_SCHED_MASK;
8446 	reg |= GEN7_FF_TS_SCHED_HW;
8447 	reg |= GEN7_FF_VS_SCHED_HW;
8448 	reg |= GEN7_FF_DS_SCHED_HW;
8449 
8450 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8451 }
8452 
8453 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8454 {
8455 	/*
8456 	 * TODO: this bit should only be enabled when really needed, then
8457 	 * disabled when not needed anymore in order to save power.
8458 	 */
8459 	if (HAS_PCH_LPT_LP(dev_priv))
8460 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
8461 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
8462 			   PCH_LP_PARTITION_LEVEL_DISABLE);
8463 
8464 	/* WADPOClockGatingDisable:hsw */
8465 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8466 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8467 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8468 }
8469 
8470 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8471 {
8472 	if (HAS_PCH_LPT_LP(dev_priv)) {
8473 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8474 
8475 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8476 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8477 	}
8478 }
8479 
8480 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8481 				   int general_prio_credits,
8482 				   int high_prio_credits)
8483 {
8484 	u32 misccpctl;
8485 	u32 val;
8486 
8487 	/* WaTempDisableDOPClkGating:bdw */
8488 	misccpctl = I915_READ(GEN7_MISCCPCTL);
8489 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8490 
8491 	val = I915_READ(GEN8_L3SQCREG1);
8492 	val &= ~L3_PRIO_CREDITS_MASK;
8493 	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8494 	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8495 	I915_WRITE(GEN8_L3SQCREG1, val);
8496 
8497 	/*
8498 	 * Wait at least 100 clocks before re-enabling clock gating.
8499 	 * See the definition of L3SQCREG1 in BSpec.
8500 	 */
8501 	POSTING_READ(GEN8_L3SQCREG1);
8502 	udelay(1);
8503 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8504 }
8505 
8506 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8507 {
8508 	if (!HAS_PCH_CNP(dev_priv))
8509 		return;
8510 
8511 	/* Wa #1181 */
8512 	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8513 		   CNP_PWM_CGE_GATING_DISABLE);
8514 }
8515 
8516 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8517 {
8518 	cnp_init_clock_gating(dev_priv);
8519 
8520 	/* This is not an Wa. Enable for better image quality */
8521 	I915_WRITE(_3D_CHICKEN3,
8522 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8523 
8524 	/* WaEnableChickenDCPR:cnl */
8525 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
8526 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8527 
8528 	/* WaFbcWakeMemOn:cnl */
8529 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8530 		   DISP_FBC_MEMORY_WAKE);
8531 
8532 	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8533 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8534 		I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
8535 			   I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
8536 			   SARBUNIT_CLKGATE_DIS);
8537 }
8538 
8539 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8540 {
8541 	cnp_init_clock_gating(dev_priv);
8542 	gen9_init_clock_gating(dev_priv);
8543 
8544 	/* WaFbcNukeOnHostModify:cfl */
8545 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8546 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8547 }
8548 
8549 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8550 {
8551 	gen9_init_clock_gating(dev_priv);
8552 
8553 	/* WaDisableSDEUnitClockGating:kbl */
8554 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8555 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8556 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8557 
8558 	/* WaDisableGamClockGating:kbl */
8559 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8560 		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8561 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8562 
8563 	/* WaFbcNukeOnHostModify:kbl */
8564 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8565 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8566 }
8567 
8568 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8569 {
8570 	gen9_init_clock_gating(dev_priv);
8571 
8572 	/* WAC6entrylatency:skl */
8573 	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8574 		   FBC_LLC_FULLY_OPEN);
8575 
8576 	/* WaFbcNukeOnHostModify:skl */
8577 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8578 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8579 }
8580 
8581 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8582 {
8583 	/* The GTT cache must be disabled if the system is using 2M pages. */
8584 	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8585 						 I915_GTT_PAGE_SIZE_2M);
8586 	enum i915_pipe pipe;
8587 
8588 	/* WaSwitchSolVfFArbitrationPriority:bdw */
8589 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8590 
8591 	/* WaPsrDPAMaskVBlankInSRD:bdw */
8592 	I915_WRITE(CHICKEN_PAR1_1,
8593 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8594 
8595 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8596 	for_each_pipe(dev_priv, pipe) {
8597 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8598 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8599 			   BDW_DPRS_MASK_VBLANK_SRD);
8600 	}
8601 
8602 	/* WaVSRefCountFullforceMissDisable:bdw */
8603 	/* WaDSRefCountFullforceMissDisable:bdw */
8604 	I915_WRITE(GEN7_FF_THREAD_MODE,
8605 		   I915_READ(GEN7_FF_THREAD_MODE) &
8606 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8607 
8608 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8609 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8610 
8611 	/* WaDisableSDEUnitClockGating:bdw */
8612 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8613 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8614 
8615 	/* WaProgramL3SqcReg1Default:bdw */
8616 	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8617 
8618 	/* WaGttCachingOffByDefault:bdw */
8619 	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8620 
8621 	/* WaKVMNotificationOnConfigChange:bdw */
8622 	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8623 		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8624 
8625 	lpt_init_clock_gating(dev_priv);
8626 
8627 	/* WaDisableDopClockGating:bdw
8628 	 *
8629 	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8630 	 * clock gating.
8631 	 */
8632 	I915_WRITE(GEN6_UCGCTL1,
8633 		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8634 }
8635 
8636 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8637 {
8638 	/* L3 caching of data atomics doesn't work -- disable it. */
8639 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8640 	I915_WRITE(HSW_ROW_CHICKEN3,
8641 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8642 
8643 	/* This is required by WaCatErrorRejectionIssue:hsw */
8644 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8645 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8646 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8647 
8648 	/* WaVSRefCountFullforceMissDisable:hsw */
8649 	I915_WRITE(GEN7_FF_THREAD_MODE,
8650 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8651 
8652 	/* WaDisable_RenderCache_OperationalFlush:hsw */
8653 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8654 
8655 	/* enable HiZ Raw Stall Optimization */
8656 	I915_WRITE(CACHE_MODE_0_GEN7,
8657 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8658 
8659 	/* WaDisable4x2SubspanOptimization:hsw */
8660 	I915_WRITE(CACHE_MODE_1,
8661 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8662 
8663 	/*
8664 	 * BSpec recommends 8x4 when MSAA is used,
8665 	 * however in practice 16x4 seems fastest.
8666 	 *
8667 	 * Note that PS/WM thread counts depend on the WIZ hashing
8668 	 * disable bit, which we don't touch here, but it's good
8669 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8670 	 */
8671 	I915_WRITE(GEN7_GT_MODE,
8672 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8673 
8674 	/* WaSampleCChickenBitEnable:hsw */
8675 	I915_WRITE(HALF_SLICE_CHICKEN3,
8676 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8677 
8678 	/* WaSwitchSolVfFArbitrationPriority:hsw */
8679 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8680 
8681 	lpt_init_clock_gating(dev_priv);
8682 }
8683 
8684 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8685 {
8686 	uint32_t snpcr;
8687 
8688 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8689 
8690 	/* WaDisableEarlyCull:ivb */
8691 	I915_WRITE(_3D_CHICKEN3,
8692 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8693 
8694 	/* WaDisableBackToBackFlipFix:ivb */
8695 	I915_WRITE(IVB_CHICKEN3,
8696 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8697 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8698 
8699 	/* WaDisablePSDDualDispatchEnable:ivb */
8700 	if (IS_IVB_GT1(dev_priv))
8701 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8702 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8703 
8704 	/* WaDisable_RenderCache_OperationalFlush:ivb */
8705 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8706 
8707 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8708 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8709 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8710 
8711 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8712 	I915_WRITE(GEN7_L3CNTLREG1,
8713 			GEN7_WA_FOR_GEN7_L3_CONTROL);
8714 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8715 		   GEN7_WA_L3_CHICKEN_MODE);
8716 	if (IS_IVB_GT1(dev_priv))
8717 		I915_WRITE(GEN7_ROW_CHICKEN2,
8718 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8719 	else {
8720 		/* must write both registers */
8721 		I915_WRITE(GEN7_ROW_CHICKEN2,
8722 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8723 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8724 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8725 	}
8726 
8727 	/* WaForceL3Serialization:ivb */
8728 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8729 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8730 
8731 	/*
8732 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8733 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8734 	 */
8735 	I915_WRITE(GEN6_UCGCTL2,
8736 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8737 
8738 	/* This is required by WaCatErrorRejectionIssue:ivb */
8739 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8740 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8741 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8742 
8743 	g4x_disable_trickle_feed(dev_priv);
8744 
8745 	gen7_setup_fixed_func_scheduler(dev_priv);
8746 
8747 	if (0) { /* causes HiZ corruption on ivb:gt1 */
8748 		/* enable HiZ Raw Stall Optimization */
8749 		I915_WRITE(CACHE_MODE_0_GEN7,
8750 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8751 	}
8752 
8753 	/* WaDisable4x2SubspanOptimization:ivb */
8754 	I915_WRITE(CACHE_MODE_1,
8755 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8756 
8757 	/*
8758 	 * BSpec recommends 8x4 when MSAA is used,
8759 	 * however in practice 16x4 seems fastest.
8760 	 *
8761 	 * Note that PS/WM thread counts depend on the WIZ hashing
8762 	 * disable bit, which we don't touch here, but it's good
8763 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8764 	 */
8765 	I915_WRITE(GEN7_GT_MODE,
8766 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8767 
8768 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8769 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
8770 	snpcr |= GEN6_MBC_SNPCR_MED;
8771 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8772 
8773 	if (!HAS_PCH_NOP(dev_priv))
8774 		cpt_init_clock_gating(dev_priv);
8775 
8776 	gen6_check_mch_setup(dev_priv);
8777 }
8778 
8779 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8780 {
8781 	/* WaDisableEarlyCull:vlv */
8782 	I915_WRITE(_3D_CHICKEN3,
8783 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8784 
8785 	/* WaDisableBackToBackFlipFix:vlv */
8786 	I915_WRITE(IVB_CHICKEN3,
8787 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8788 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8789 
8790 	/* WaPsdDispatchEnable:vlv */
8791 	/* WaDisablePSDDualDispatchEnable:vlv */
8792 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8793 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8794 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8795 
8796 	/* WaDisable_RenderCache_OperationalFlush:vlv */
8797 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8798 
8799 	/* WaForceL3Serialization:vlv */
8800 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8801 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8802 
8803 	/* WaDisableDopClockGating:vlv */
8804 	I915_WRITE(GEN7_ROW_CHICKEN2,
8805 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8806 
8807 	/* This is required by WaCatErrorRejectionIssue:vlv */
8808 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8809 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8810 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8811 
8812 	gen7_setup_fixed_func_scheduler(dev_priv);
8813 
8814 	/*
8815 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8816 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8817 	 */
8818 	I915_WRITE(GEN6_UCGCTL2,
8819 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8820 
8821 	/* WaDisableL3Bank2xClockGate:vlv
8822 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
8823 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8824 	I915_WRITE(GEN7_UCGCTL4,
8825 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8826 
8827 	/*
8828 	 * BSpec says this must be set, even though
8829 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
8830 	 */
8831 	I915_WRITE(CACHE_MODE_1,
8832 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8833 
8834 	/*
8835 	 * BSpec recommends 8x4 when MSAA is used,
8836 	 * however in practice 16x4 seems fastest.
8837 	 *
8838 	 * Note that PS/WM thread counts depend on the WIZ hashing
8839 	 * disable bit, which we don't touch here, but it's good
8840 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8841 	 */
8842 	I915_WRITE(GEN7_GT_MODE,
8843 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8844 
8845 	/*
8846 	 * WaIncreaseL3CreditsForVLVB0:vlv
8847 	 * This is the hardware default actually.
8848 	 */
8849 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8850 
8851 	/*
8852 	 * WaDisableVLVClockGating_VBIIssue:vlv
8853 	 * Disable clock gating on th GCFG unit to prevent a delay
8854 	 * in the reporting of vblank events.
8855 	 */
8856 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8857 }
8858 
8859 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8860 {
8861 	/* WaVSRefCountFullforceMissDisable:chv */
8862 	/* WaDSRefCountFullforceMissDisable:chv */
8863 	I915_WRITE(GEN7_FF_THREAD_MODE,
8864 		   I915_READ(GEN7_FF_THREAD_MODE) &
8865 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8866 
8867 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
8868 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8869 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8870 
8871 	/* WaDisableCSUnitClockGating:chv */
8872 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8873 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8874 
8875 	/* WaDisableSDEUnitClockGating:chv */
8876 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8877 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8878 
8879 	/*
8880 	 * WaProgramL3SqcReg1Default:chv
8881 	 * See gfxspecs/Related Documents/Performance Guide/
8882 	 * LSQC Setting Recommendations.
8883 	 */
8884 	gen8_set_l3sqc_credits(dev_priv, 38, 2);
8885 
8886 	/*
8887 	 * GTT cache may not work with big pages, so if those
8888 	 * are ever enabled GTT cache may need to be disabled.
8889 	 */
8890 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8891 }
8892 
8893 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8894 {
8895 	uint32_t dspclk_gate;
8896 
8897 	I915_WRITE(RENCLK_GATE_D1, 0);
8898 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8899 		   GS_UNIT_CLOCK_GATE_DISABLE |
8900 		   CL_UNIT_CLOCK_GATE_DISABLE);
8901 	I915_WRITE(RAMCLK_GATE_D, 0);
8902 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8903 		OVRUNIT_CLOCK_GATE_DISABLE |
8904 		OVCUNIT_CLOCK_GATE_DISABLE;
8905 	if (IS_GM45(dev_priv))
8906 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8907 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8908 
8909 	/* WaDisableRenderCachePipelinedFlush */
8910 	I915_WRITE(CACHE_MODE_0,
8911 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8912 
8913 	/* WaDisable_RenderCache_OperationalFlush:g4x */
8914 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8915 
8916 	g4x_disable_trickle_feed(dev_priv);
8917 }
8918 
8919 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8920 {
8921 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8922 	I915_WRITE(RENCLK_GATE_D2, 0);
8923 	I915_WRITE(DSPCLK_GATE_D, 0);
8924 	I915_WRITE(RAMCLK_GATE_D, 0);
8925 	I915_WRITE16(DEUC, 0);
8926 	I915_WRITE(MI_ARB_STATE,
8927 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8928 
8929 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
8930 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8931 }
8932 
8933 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8934 {
8935 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8936 		   I965_RCC_CLOCK_GATE_DISABLE |
8937 		   I965_RCPB_CLOCK_GATE_DISABLE |
8938 		   I965_ISC_CLOCK_GATE_DISABLE |
8939 		   I965_FBC_CLOCK_GATE_DISABLE);
8940 	I915_WRITE(RENCLK_GATE_D2, 0);
8941 	I915_WRITE(MI_ARB_STATE,
8942 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8943 
8944 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
8945 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8946 }
8947 
8948 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8949 {
8950 	u32 dstate = I915_READ(D_STATE);
8951 
8952 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8953 		DSTATE_DOT_CLOCK_GATING;
8954 	I915_WRITE(D_STATE, dstate);
8955 
8956 	if (IS_PINEVIEW(dev_priv))
8957 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8958 
8959 	/* IIR "flip pending" means done if this bit is set */
8960 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8961 
8962 	/* interrupts should cause a wake up from C3 */
8963 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8964 
8965 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8966 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8967 
8968 	I915_WRITE(MI_ARB_STATE,
8969 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8970 }
8971 
8972 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8973 {
8974 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8975 
8976 	/* interrupts should cause a wake up from C3 */
8977 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8978 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8979 
8980 	I915_WRITE(MEM_MODE,
8981 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8982 }
8983 
8984 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8985 {
8986 	I915_WRITE(MEM_MODE,
8987 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8988 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8989 }
8990 
8991 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8992 {
8993 	dev_priv->display.init_clock_gating(dev_priv);
8994 }
8995 
8996 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8997 {
8998 	if (HAS_PCH_LPT(dev_priv))
8999 		lpt_suspend_hw(dev_priv);
9000 }
9001 
9002 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9003 {
9004 	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9005 }
9006 
9007 /**
9008  * intel_init_clock_gating_hooks - setup the clock gating hooks
9009  * @dev_priv: device private
9010  *
9011  * Setup the hooks that configure which clocks of a given platform can be
9012  * gated and also apply various GT and display specific workarounds for these
9013  * platforms. Note that some GT specific workarounds are applied separately
9014  * when GPU contexts or batchbuffers start their execution.
9015  */
9016 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9017 {
9018 	if (IS_CANNONLAKE(dev_priv))
9019 		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9020 	else if (IS_COFFEELAKE(dev_priv))
9021 		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9022 	else if (IS_SKYLAKE(dev_priv))
9023 		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9024 	else if (IS_KABYLAKE(dev_priv))
9025 		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9026 	else if (IS_BROXTON(dev_priv))
9027 		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9028 	else if (IS_GEMINILAKE(dev_priv))
9029 		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9030 	else if (IS_BROADWELL(dev_priv))
9031 		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9032 	else if (IS_CHERRYVIEW(dev_priv))
9033 		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9034 	else if (IS_HASWELL(dev_priv))
9035 		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9036 	else if (IS_IVYBRIDGE(dev_priv))
9037 		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9038 	else if (IS_VALLEYVIEW(dev_priv))
9039 		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9040 	else if (IS_GEN6(dev_priv))
9041 		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9042 	else if (IS_GEN5(dev_priv))
9043 		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9044 	else if (IS_G4X(dev_priv))
9045 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9046 	else if (IS_I965GM(dev_priv))
9047 		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9048 	else if (IS_I965G(dev_priv))
9049 		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9050 	else if (IS_GEN3(dev_priv))
9051 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9052 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9053 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9054 	else if (IS_GEN2(dev_priv))
9055 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
9056 	else {
9057 		MISSING_CASE(INTEL_DEVID(dev_priv));
9058 		dev_priv->display.init_clock_gating = nop_init_clock_gating;
9059 	}
9060 }
9061 
9062 /* Set up chip specific power management-related functions */
9063 void intel_init_pm(struct drm_i915_private *dev_priv)
9064 {
9065 	intel_fbc_init(dev_priv);
9066 
9067 	/* For cxsr */
9068 	if (IS_PINEVIEW(dev_priv))
9069 		i915_pineview_get_mem_freq(dev_priv);
9070 	else if (IS_GEN5(dev_priv))
9071 		i915_ironlake_get_mem_freq(dev_priv);
9072 
9073 	/* For FIFO watermark updates */
9074 	if (INTEL_GEN(dev_priv) >= 9) {
9075 		skl_setup_wm_latency(dev_priv);
9076 		dev_priv->display.initial_watermarks = skl_initial_wm;
9077 		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9078 		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9079 	} else if (HAS_PCH_SPLIT(dev_priv)) {
9080 		ilk_setup_wm_latency(dev_priv);
9081 
9082 		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9083 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9084 		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9085 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9086 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9087 			dev_priv->display.compute_intermediate_wm =
9088 				ilk_compute_intermediate_wm;
9089 			dev_priv->display.initial_watermarks =
9090 				ilk_initial_watermarks;
9091 			dev_priv->display.optimize_watermarks =
9092 				ilk_optimize_watermarks;
9093 		} else {
9094 			DRM_DEBUG_KMS("Failed to read display plane latency. "
9095 				      "Disable CxSR\n");
9096 		}
9097 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9098 		vlv_setup_wm_latency(dev_priv);
9099 		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9100 		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9101 		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9102 		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9103 		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9104 	} else if (IS_G4X(dev_priv)) {
9105 		g4x_setup_wm_latency(dev_priv);
9106 		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9107 		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9108 		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9109 		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9110 	} else if (IS_PINEVIEW(dev_priv)) {
9111 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9112 					    dev_priv->is_ddr3,
9113 					    dev_priv->fsb_freq,
9114 					    dev_priv->mem_freq)) {
9115 			DRM_INFO("failed to find known CxSR latency "
9116 				 "(found ddr%s fsb freq %d, mem freq %d), "
9117 				 "disabling CxSR\n",
9118 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9119 				 dev_priv->fsb_freq, dev_priv->mem_freq);
9120 			/* Disable CxSR and never update its watermark again */
9121 			intel_set_memory_cxsr(dev_priv, false);
9122 			dev_priv->display.update_wm = NULL;
9123 		} else
9124 			dev_priv->display.update_wm = pineview_update_wm;
9125 	} else if (IS_GEN4(dev_priv)) {
9126 		dev_priv->display.update_wm = i965_update_wm;
9127 	} else if (IS_GEN3(dev_priv)) {
9128 		dev_priv->display.update_wm = i9xx_update_wm;
9129 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9130 	} else if (IS_GEN2(dev_priv)) {
9131 		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9132 			dev_priv->display.update_wm = i845_update_wm;
9133 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9134 		} else {
9135 			dev_priv->display.update_wm = i9xx_update_wm;
9136 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9137 		}
9138 	} else {
9139 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9140 	}
9141 }
9142 
9143 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9144 {
9145 	uint32_t flags =
9146 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9147 
9148 	switch (flags) {
9149 	case GEN6_PCODE_SUCCESS:
9150 		return 0;
9151 	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9152 		return -ENODEV;
9153 	case GEN6_PCODE_ILLEGAL_CMD:
9154 		return -ENXIO;
9155 	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9156 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9157 		return -EOVERFLOW;
9158 	case GEN6_PCODE_TIMEOUT:
9159 		return -ETIMEDOUT;
9160 	default:
9161 		MISSING_CASE(flags);
9162 		return 0;
9163 	}
9164 }
9165 
9166 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9167 {
9168 	uint32_t flags =
9169 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9170 
9171 	switch (flags) {
9172 	case GEN6_PCODE_SUCCESS:
9173 		return 0;
9174 	case GEN6_PCODE_ILLEGAL_CMD:
9175 		return -ENXIO;
9176 	case GEN7_PCODE_TIMEOUT:
9177 		return -ETIMEDOUT;
9178 	case GEN7_PCODE_ILLEGAL_DATA:
9179 		return -EINVAL;
9180 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9181 		return -EOVERFLOW;
9182 	default:
9183 		MISSING_CASE(flags);
9184 		return 0;
9185 	}
9186 }
9187 
9188 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9189 {
9190 	int status;
9191 
9192 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9193 
9194 	/* GEN6_PCODE_* are outside of the forcewake domain, we can
9195 	 * use te fw I915_READ variants to reduce the amount of work
9196 	 * required when reading/writing.
9197 	 */
9198 
9199 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9200 		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9201 				 mbox, __builtin_return_address(0));
9202 		return -EAGAIN;
9203 	}
9204 
9205 	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9206 	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9207 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9208 
9209 	if (__intel_wait_for_register_fw(dev_priv,
9210 					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9211 					 500, 0, NULL)) {
9212 		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9213 			  mbox, __builtin_return_address(0));
9214 		return -ETIMEDOUT;
9215 	}
9216 
9217 	*val = I915_READ_FW(GEN6_PCODE_DATA);
9218 	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9219 
9220 	if (INTEL_GEN(dev_priv) > 6)
9221 		status = gen7_check_mailbox_status(dev_priv);
9222 	else
9223 		status = gen6_check_mailbox_status(dev_priv);
9224 
9225 	if (status) {
9226 		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9227 				 mbox, __builtin_return_address(0), status);
9228 		return status;
9229 	}
9230 
9231 	return 0;
9232 }
9233 
9234 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
9235 			    u32 mbox, u32 val)
9236 {
9237 	int status;
9238 
9239 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9240 
9241 	/* GEN6_PCODE_* are outside of the forcewake domain, we can
9242 	 * use te fw I915_READ variants to reduce the amount of work
9243 	 * required when reading/writing.
9244 	 */
9245 
9246 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9247 		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9248 				 val, mbox, __builtin_return_address(0));
9249 		return -EAGAIN;
9250 	}
9251 
9252 	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9253 	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9254 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9255 
9256 	if (__intel_wait_for_register_fw(dev_priv,
9257 					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9258 					 500, 0, NULL)) {
9259 		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9260 			  val, mbox, __builtin_return_address(0));
9261 		return -ETIMEDOUT;
9262 	}
9263 
9264 	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9265 
9266 	if (INTEL_GEN(dev_priv) > 6)
9267 		status = gen7_check_mailbox_status(dev_priv);
9268 	else
9269 		status = gen6_check_mailbox_status(dev_priv);
9270 
9271 	if (status) {
9272 		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9273 				 val, mbox, __builtin_return_address(0), status);
9274 		return status;
9275 	}
9276 
9277 	return 0;
9278 }
9279 
9280 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9281 				  u32 request, u32 reply_mask, u32 reply,
9282 				  u32 *status)
9283 {
9284 	u32 val = request;
9285 
9286 	*status = sandybridge_pcode_read(dev_priv, mbox, &val);
9287 
9288 	return *status || ((val & reply_mask) == reply);
9289 }
9290 
9291 /**
9292  * skl_pcode_request - send PCODE request until acknowledgment
9293  * @dev_priv: device private
9294  * @mbox: PCODE mailbox ID the request is targeted for
9295  * @request: request ID
9296  * @reply_mask: mask used to check for request acknowledgment
9297  * @reply: value used to check for request acknowledgment
9298  * @timeout_base_ms: timeout for polling with preemption enabled
9299  *
9300  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9301  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9302  * The request is acknowledged once the PCODE reply dword equals @reply after
9303  * applying @reply_mask. Polling is first attempted with preemption enabled
9304  * for @timeout_base_ms and if this times out for another 50 ms with
9305  * preemption disabled.
9306  *
9307  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9308  * other error as reported by PCODE.
9309  */
9310 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9311 		      u32 reply_mask, u32 reply, int timeout_base_ms)
9312 {
9313 	u32 status;
9314 	int ret;
9315 
9316 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9317 
9318 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9319 				   &status)
9320 
9321 	/*
9322 	 * Prime the PCODE by doing a request first. Normally it guarantees
9323 	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9324 	 * _wait_for() doesn't guarantee when its passed condition is evaluated
9325 	 * first, so send the first request explicitly.
9326 	 */
9327 	if (COND) {
9328 		ret = 0;
9329 		goto out;
9330 	}
9331 	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9332 	if (!ret)
9333 		goto out;
9334 
9335 	/*
9336 	 * The above can time out if the number of requests was low (2 in the
9337 	 * worst case) _and_ PCODE was busy for some reason even after a
9338 	 * (queued) request and @timeout_base_ms delay. As a workaround retry
9339 	 * the poll with preemption disabled to maximize the number of
9340 	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9341 	 * account for interrupts that could reduce the number of these
9342 	 * requests, and for any quirks of the PCODE firmware that delays
9343 	 * the request completion.
9344 	 */
9345 	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9346 	WARN_ON_ONCE(timeout_base_ms > 3);
9347 	preempt_disable();
9348 	ret = wait_for_atomic(COND, 50);
9349 	preempt_enable();
9350 
9351 out:
9352 	return ret ? ret : status;
9353 #undef COND
9354 }
9355 
9356 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9357 {
9358 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9359 
9360 	/*
9361 	 * N = val - 0xb7
9362 	 * Slow = Fast = GPLL ref * N
9363 	 */
9364 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9365 }
9366 
9367 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9368 {
9369 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9370 
9371 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9372 }
9373 
9374 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9375 {
9376 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9377 
9378 	/*
9379 	 * N = val / 2
9380 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9381 	 */
9382 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9383 }
9384 
9385 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9386 {
9387 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9388 
9389 	/* CHV needs even values */
9390 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9391 }
9392 
9393 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9394 {
9395 	if (INTEL_GEN(dev_priv) >= 9)
9396 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9397 					 GEN9_FREQ_SCALER);
9398 	else if (IS_CHERRYVIEW(dev_priv))
9399 		return chv_gpu_freq(dev_priv, val);
9400 	else if (IS_VALLEYVIEW(dev_priv))
9401 		return byt_gpu_freq(dev_priv, val);
9402 	else
9403 		return val * GT_FREQUENCY_MULTIPLIER;
9404 }
9405 
9406 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9407 {
9408 	if (INTEL_GEN(dev_priv) >= 9)
9409 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9410 					 GT_FREQUENCY_MULTIPLIER);
9411 	else if (IS_CHERRYVIEW(dev_priv))
9412 		return chv_freq_opcode(dev_priv, val);
9413 	else if (IS_VALLEYVIEW(dev_priv))
9414 		return byt_freq_opcode(dev_priv, val);
9415 	else
9416 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9417 }
9418 
9419 void intel_pm_setup(struct drm_i915_private *dev_priv)
9420 {
9421 	lockinit(&dev_priv->pcu_lock, "i9pcul", 0, LK_CANRECURSE);
9422 
9423 	INIT_DELAYED_WORK(&dev_priv->gt_pm.autoenable_work,
9424 			  __intel_autoenable_gt_powersave);
9425 	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9426 
9427 	dev_priv->runtime_pm.suspended = false;
9428 	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9429 }
9430 
9431 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9432 			     const i915_reg_t reg)
9433 {
9434 	u32 lower, upper, tmp;
9435 	int loop = 2;
9436 
9437 	/* The register accessed do not need forcewake. We borrow
9438 	 * uncore lock to prevent concurrent access to range reg.
9439 	 */
9440 	spin_lock_irq(&dev_priv->uncore.lock);
9441 
9442 	/* vlv and chv residency counters are 40 bits in width.
9443 	 * With a control bit, we can choose between upper or lower
9444 	 * 32bit window into this counter.
9445 	 *
9446 	 * Although we always use the counter in high-range mode elsewhere,
9447 	 * userspace may attempt to read the value before rc6 is initialised,
9448 	 * before we have set the default VLV_COUNTER_CONTROL value. So always
9449 	 * set the high bit to be safe.
9450 	 */
9451 	I915_WRITE_FW(VLV_COUNTER_CONTROL,
9452 		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9453 	upper = I915_READ_FW(reg);
9454 	do {
9455 		tmp = upper;
9456 
9457 		I915_WRITE_FW(VLV_COUNTER_CONTROL,
9458 			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9459 		lower = I915_READ_FW(reg);
9460 
9461 		I915_WRITE_FW(VLV_COUNTER_CONTROL,
9462 			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9463 		upper = I915_READ_FW(reg);
9464 	} while (upper != tmp && --loop);
9465 
9466 	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
9467 	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9468 	 * now.
9469 	 */
9470 
9471 	spin_unlock_irq(&dev_priv->uncore.lock);
9472 
9473 	return lower | (u64)upper << 8;
9474 }
9475 
9476 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9477 			   const i915_reg_t reg)
9478 {
9479 	u64 time_hw, units, div;
9480 
9481 	if (!intel_rc6_enabled())
9482 		return 0;
9483 
9484 	intel_runtime_pm_get(dev_priv);
9485 
9486 	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9487 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9488 		units = 1000;
9489 		div = dev_priv->czclk_freq;
9490 
9491 		time_hw = vlv_residency_raw(dev_priv, reg);
9492 	} else if (IS_GEN9_LP(dev_priv)) {
9493 		units = 1000;
9494 		div = 1200;		/* 833.33ns */
9495 
9496 		time_hw = I915_READ(reg);
9497 	} else {
9498 		units = 128000; /* 1.28us */
9499 		div = 100000;
9500 
9501 		time_hw = I915_READ(reg);
9502 	}
9503 
9504 	intel_runtime_pm_put(dev_priv);
9505 	return DIV_ROUND_UP_ULL(time_hw * units, div);
9506 }
9507