xref: /dragonfly/sys/dev/drm/i915/intel_pm.c (revision 5f39c7e7)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include "intel_drv.h"
30 #include "i915_drv.h"
31 #include <linux/kernel.h>
32 #include <machine/clock.h>
33 
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35 
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46 
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49 	/* Be paranoid as we can arrive here with only partial
50 	 * state retrieved from the hardware during setup.
51 	 */
52 	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54 
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57 	struct drm_i915_private *dev_priv = dev->dev_private;
58 	u32 fbc_ctl;
59 
60 	/* Disable compression */
61 	fbc_ctl = I915_READ(FBC_CONTROL);
62 	if ((fbc_ctl & FBC_CTL_EN) == 0)
63 		return;
64 
65 	fbc_ctl &= ~FBC_CTL_EN;
66 	I915_WRITE(FBC_CONTROL, fbc_ctl);
67 
68 	/* Wait for compressing bit to clear */
69 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70 		DRM_DEBUG_KMS("FBC idle timed out\n");
71 		return;
72 	}
73 
74 	DRM_DEBUG_KMS("disabled FBC\n");
75 }
76 
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79 	struct drm_device *dev = crtc->dev;
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	struct drm_framebuffer *fb = crtc->fb;
82 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83 	struct drm_i915_gem_object *obj = intel_fb->obj;
84 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85 	int cfb_pitch;
86 	int plane, i;
87 	u32 fbc_ctl, fbc_ctl2;
88 
89 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90 	if (fb->pitches[0] < cfb_pitch)
91 		cfb_pitch = fb->pitches[0];
92 
93 	/* FBC_CTL wants 64B units */
94 	cfb_pitch = (cfb_pitch / 64) - 1;
95 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96 
97 	/* Clear old tags */
98 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99 		I915_WRITE(FBC_TAG + (i * 4), 0);
100 
101 	/* Set it up... */
102 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 	fbc_ctl2 |= plane;
104 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
106 
107 	/* enable it... */
108 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 	if (IS_I945GM(dev))
110 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113 	fbc_ctl |= obj->fence_reg;
114 	I915_WRITE(FBC_CONTROL, fbc_ctl);
115 
116 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
117 		      cfb_pitch, crtc->y, intel_crtc->plane);
118 }
119 
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122 	struct drm_i915_private *dev_priv = dev->dev_private;
123 
124 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126 
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129 	struct drm_device *dev = crtc->dev;
130 	struct drm_i915_private *dev_priv = dev->dev_private;
131 	struct drm_framebuffer *fb = crtc->fb;
132 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133 	struct drm_i915_gem_object *obj = intel_fb->obj;
134 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136 	unsigned long stall_watermark = 200;
137 	u32 dpfc_ctl;
138 
139 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142 
143 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147 
148 	/* enable it... */
149 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150 
151 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
152 }
153 
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156 	struct drm_i915_private *dev_priv = dev->dev_private;
157 	u32 dpfc_ctl;
158 
159 	/* Disable compression */
160 	dpfc_ctl = I915_READ(DPFC_CONTROL);
161 	if (dpfc_ctl & DPFC_CTL_EN) {
162 		dpfc_ctl &= ~DPFC_CTL_EN;
163 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164 
165 		DRM_DEBUG_KMS("disabled FBC\n");
166 	}
167 }
168 
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171 	struct drm_i915_private *dev_priv = dev->dev_private;
172 
173 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175 
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178 	struct drm_i915_private *dev_priv = dev->dev_private;
179 	u32 blt_ecoskpd;
180 
181 	/* Make sure blitter notifies FBC of writes */
182 	gen6_gt_force_wake_get(dev_priv);
183 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185 		GEN6_BLITTER_LOCK_SHIFT;
186 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190 			 GEN6_BLITTER_LOCK_SHIFT);
191 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
193 	gen6_gt_force_wake_put(dev_priv);
194 }
195 
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198 	struct drm_device *dev = crtc->dev;
199 	struct drm_i915_private *dev_priv = dev->dev_private;
200 	struct drm_framebuffer *fb = crtc->fb;
201 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202 	struct drm_i915_gem_object *obj = intel_fb->obj;
203 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205 	unsigned long stall_watermark = 200;
206 	u32 dpfc_ctl;
207 
208 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209 	dpfc_ctl &= DPFC_RESERVED;
210 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211 	/* Set persistent mode for front-buffer rendering, ala X. */
212 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215 
216 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221 	/* enable it... */
222 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223 
224 	if (IS_GEN6(dev)) {
225 		I915_WRITE(SNB_DPFC_CTL_SA,
226 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228 		sandybridge_blit_fbc_update(dev);
229 	}
230 
231 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
232 }
233 
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236 	struct drm_i915_private *dev_priv = dev->dev_private;
237 	u32 dpfc_ctl;
238 
239 	/* Disable compression */
240 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241 	if (dpfc_ctl & DPFC_CTL_EN) {
242 		dpfc_ctl &= ~DPFC_CTL_EN;
243 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244 
245 		DRM_DEBUG_KMS("disabled FBC\n");
246 	}
247 }
248 
249 static bool ironlake_fbc_enabled(struct drm_device *dev)
250 {
251 	struct drm_i915_private *dev_priv = dev->dev_private;
252 
253 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
254 }
255 
256 bool intel_fbc_enabled(struct drm_device *dev)
257 {
258 	struct drm_i915_private *dev_priv = dev->dev_private;
259 
260 	if (!dev_priv->display.fbc_enabled)
261 		return false;
262 
263 	return dev_priv->display.fbc_enabled(dev);
264 }
265 
266 static void intel_fbc_work_fn(struct work_struct *__work)
267 {
268 	struct intel_fbc_work *work =
269 		container_of(to_delayed_work(__work),
270 			     struct intel_fbc_work, work);
271 	struct drm_device *dev = work->crtc->dev;
272 	struct drm_i915_private *dev_priv = dev->dev_private;
273 
274 	DRM_LOCK(dev);
275 	if (work == dev_priv->fbc_work) {
276 		/* Double check that we haven't switched fb without cancelling
277 		 * the prior work.
278 		 */
279 		if (work->crtc->fb == work->fb) {
280 			dev_priv->display.enable_fbc(work->crtc,
281 						     work->interval);
282 
283 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
284 			dev_priv->cfb_fb = work->crtc->fb->base.id;
285 			dev_priv->cfb_y = work->crtc->y;
286 		}
287 
288 		dev_priv->fbc_work = NULL;
289 	}
290 	DRM_UNLOCK(dev);
291 
292 	kfree(work, DRM_MEM_KMS);
293 }
294 
295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
296 {
297 	if (dev_priv->fbc_work == NULL)
298 		return;
299 
300 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
301 
302 	/* Synchronisation is provided by struct_mutex and checking of
303 	 * dev_priv->fbc_work, so we can perform the cancellation
304 	 * entirely asynchronously.
305 	 */
306 	if (cancel_delayed_work(&dev_priv->fbc_work->work))
307 		/* tasklet was killed before being run, clean up */
308 		kfree(dev_priv->fbc_work, DRM_MEM_KMS);
309 
310 	/* Mark the work as no longer wanted so that if it does
311 	 * wake-up (because the work was already running and waiting
312 	 * for our mutex), it will discover that is no longer
313 	 * necessary to run.
314 	 */
315 	dev_priv->fbc_work = NULL;
316 }
317 
318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
319 {
320 	struct intel_fbc_work *work;
321 	struct drm_device *dev = crtc->dev;
322 	struct drm_i915_private *dev_priv = dev->dev_private;
323 
324 	if (!dev_priv->display.enable_fbc)
325 		return;
326 
327 	intel_cancel_fbc_work(dev_priv);
328 
329 	work = kmalloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
330 	if (work == NULL) {
331 		dev_priv->display.enable_fbc(crtc, interval);
332 		return;
333 	}
334 
335 	work->crtc = crtc;
336 	work->fb = crtc->fb;
337 	work->interval = interval;
338 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
339 
340 	dev_priv->fbc_work = work;
341 
342 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
343 
344 	/* Delay the actual enabling to let pageflipping cease and the
345 	 * display to settle before starting the compression. Note that
346 	 * this delay also serves a second purpose: it allows for a
347 	 * vblank to pass after disabling the FBC before we attempt
348 	 * to modify the control registers.
349 	 *
350 	 * A more complicated solution would involve tracking vblanks
351 	 * following the termination of the page-flipping sequence
352 	 * and indeed performing the enable as a co-routine and not
353 	 * waiting synchronously upon the vblank.
354 	 */
355 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
356 }
357 
358 void intel_disable_fbc(struct drm_device *dev)
359 {
360 	struct drm_i915_private *dev_priv = dev->dev_private;
361 
362 	intel_cancel_fbc_work(dev_priv);
363 
364 	if (!dev_priv->display.disable_fbc)
365 		return;
366 
367 	dev_priv->display.disable_fbc(dev);
368 	dev_priv->cfb_plane = -1;
369 }
370 
371 /**
372  * intel_update_fbc - enable/disable FBC as needed
373  * @dev: the drm_device
374  *
375  * Set up the framebuffer compression hardware at mode set time.  We
376  * enable it if possible:
377  *   - plane A only (on pre-965)
378  *   - no pixel mulitply/line duplication
379  *   - no alpha buffer discard
380  *   - no dual wide
381  *   - framebuffer <= 2048 in width, 1536 in height
382  *
383  * We can't assume that any compression will take place (worst case),
384  * so the compressed buffer has to be the same size as the uncompressed
385  * one.  It also must reside (along with the line length buffer) in
386  * stolen memory.
387  *
388  * We need to enable/disable FBC on a global basis.
389  */
390 void intel_update_fbc(struct drm_device *dev)
391 {
392 	struct drm_i915_private *dev_priv = dev->dev_private;
393 	struct drm_crtc *crtc = NULL, *tmp_crtc;
394 	struct intel_crtc *intel_crtc;
395 	struct drm_framebuffer *fb;
396 	struct intel_framebuffer *intel_fb;
397 	struct drm_i915_gem_object *obj;
398 	int enable_fbc;
399 
400 	if (!i915_powersave)
401 		return;
402 
403 	if (!I915_HAS_FBC(dev))
404 		return;
405 
406 	/*
407 	 * If FBC is already on, we just have to verify that we can
408 	 * keep it that way...
409 	 * Need to disable if:
410 	 *   - more than one pipe is active
411 	 *   - changing FBC params (stride, fence, mode)
412 	 *   - new fb is too large to fit in compressed buffer
413 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
414 	 */
415 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
416 		if (intel_crtc_active(tmp_crtc) &&
417 		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
418 			if (crtc) {
419 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
420 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
421 				goto out_disable;
422 			}
423 			crtc = tmp_crtc;
424 		}
425 	}
426 
427 	if (!crtc || crtc->fb == NULL) {
428 		DRM_DEBUG_KMS("no output, disabling\n");
429 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
430 		goto out_disable;
431 	}
432 
433 	intel_crtc = to_intel_crtc(crtc);
434 	fb = crtc->fb;
435 	intel_fb = to_intel_framebuffer(fb);
436 	obj = intel_fb->obj;
437 
438 	enable_fbc = i915_enable_fbc;
439 	if (enable_fbc < 0) {
440 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
441 		enable_fbc = 1;
442 		if (INTEL_INFO(dev)->gen <= 6)
443 			enable_fbc = 0;
444 	}
445 	if (!enable_fbc) {
446 		DRM_DEBUG_KMS("fbc disabled per module param\n");
447 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
448 		goto out_disable;
449 	}
450 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
451 		DRM_DEBUG_KMS("framebuffer too large, disabling "
452 			      "compression\n");
453 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
454 		goto out_disable;
455 	}
456 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
457 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
458 		DRM_DEBUG_KMS("mode incompatible with compression, "
459 			      "disabling\n");
460 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
461 		goto out_disable;
462 	}
463 	if ((crtc->mode.hdisplay > 2048) ||
464 	    (crtc->mode.vdisplay > 1536)) {
465 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
466 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
467 		goto out_disable;
468 	}
469 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
470 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
471 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
472 		goto out_disable;
473 	}
474 
475 	/* The use of a CPU fence is mandatory in order to detect writes
476 	 * by the CPU to the scanout and trigger updates to the FBC.
477 	 */
478 	if (obj->tiling_mode != I915_TILING_X ||
479 	    obj->fence_reg == I915_FENCE_REG_NONE) {
480 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
481 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
482 		goto out_disable;
483 	}
484 
485 #ifdef DDB
486 	/* If the kernel debugger is active, always disable compression */
487 	if (db_active)
488 		goto out_disable;
489 #endif
490 
491 	/* If the scanout has not changed, don't modify the FBC settings.
492 	 * Note that we make the fundamental assumption that the fb->obj
493 	 * cannot be unpinned (and have its GTT offset and fence revoked)
494 	 * without first being decoupled from the scanout and FBC disabled.
495 	 */
496 	if (dev_priv->cfb_plane == intel_crtc->plane &&
497 	    dev_priv->cfb_fb == fb->base.id &&
498 	    dev_priv->cfb_y == crtc->y)
499 		return;
500 
501 	if (intel_fbc_enabled(dev)) {
502 		/* We update FBC along two paths, after changing fb/crtc
503 		 * configuration (modeswitching) and after page-flipping
504 		 * finishes. For the latter, we know that not only did
505 		 * we disable the FBC at the start of the page-flip
506 		 * sequence, but also more than one vblank has passed.
507 		 *
508 		 * For the former case of modeswitching, it is possible
509 		 * to switch between two FBC valid configurations
510 		 * instantaneously so we do need to disable the FBC
511 		 * before we can modify its control registers. We also
512 		 * have to wait for the next vblank for that to take
513 		 * effect. However, since we delay enabling FBC we can
514 		 * assume that a vblank has passed since disabling and
515 		 * that we can safely alter the registers in the deferred
516 		 * callback.
517 		 *
518 		 * In the scenario that we go from a valid to invalid
519 		 * and then back to valid FBC configuration we have
520 		 * no strict enforcement that a vblank occurred since
521 		 * disabling the FBC. However, along all current pipe
522 		 * disabling paths we do need to wait for a vblank at
523 		 * some point. And we wait before enabling FBC anyway.
524 		 */
525 		DRM_DEBUG_KMS("disabling active FBC for update\n");
526 		intel_disable_fbc(dev);
527 	}
528 
529 	intel_enable_fbc(crtc, 500);
530 	return;
531 
532 out_disable:
533 	/* Multiple disables should be harmless */
534 	if (intel_fbc_enabled(dev)) {
535 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
536 		intel_disable_fbc(dev);
537 	}
538 }
539 
540 static void i915_pineview_get_mem_freq(struct drm_device *dev)
541 {
542 	drm_i915_private_t *dev_priv = dev->dev_private;
543 	u32 tmp;
544 
545 	tmp = I915_READ(CLKCFG);
546 
547 	switch (tmp & CLKCFG_FSB_MASK) {
548 	case CLKCFG_FSB_533:
549 		dev_priv->fsb_freq = 533; /* 133*4 */
550 		break;
551 	case CLKCFG_FSB_800:
552 		dev_priv->fsb_freq = 800; /* 200*4 */
553 		break;
554 	case CLKCFG_FSB_667:
555 		dev_priv->fsb_freq =  667; /* 167*4 */
556 		break;
557 	case CLKCFG_FSB_400:
558 		dev_priv->fsb_freq = 400; /* 100*4 */
559 		break;
560 	}
561 
562 	switch (tmp & CLKCFG_MEM_MASK) {
563 	case CLKCFG_MEM_533:
564 		dev_priv->mem_freq = 533;
565 		break;
566 	case CLKCFG_MEM_667:
567 		dev_priv->mem_freq = 667;
568 		break;
569 	case CLKCFG_MEM_800:
570 		dev_priv->mem_freq = 800;
571 		break;
572 	}
573 
574 	/* detect pineview DDR3 setting */
575 	tmp = I915_READ(CSHRDDR3CTL);
576 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
577 }
578 
579 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
580 {
581 	drm_i915_private_t *dev_priv = dev->dev_private;
582 	u16 ddrpll, csipll;
583 
584 	ddrpll = I915_READ16(DDRMPLL1);
585 	csipll = I915_READ16(CSIPLL0);
586 
587 	switch (ddrpll & 0xff) {
588 	case 0xc:
589 		dev_priv->mem_freq = 800;
590 		break;
591 	case 0x10:
592 		dev_priv->mem_freq = 1066;
593 		break;
594 	case 0x14:
595 		dev_priv->mem_freq = 1333;
596 		break;
597 	case 0x18:
598 		dev_priv->mem_freq = 1600;
599 		break;
600 	default:
601 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
602 				 ddrpll & 0xff);
603 		dev_priv->mem_freq = 0;
604 		break;
605 	}
606 
607 	dev_priv->ips.r_t = dev_priv->mem_freq;
608 
609 	switch (csipll & 0x3ff) {
610 	case 0x00c:
611 		dev_priv->fsb_freq = 3200;
612 		break;
613 	case 0x00e:
614 		dev_priv->fsb_freq = 3733;
615 		break;
616 	case 0x010:
617 		dev_priv->fsb_freq = 4266;
618 		break;
619 	case 0x012:
620 		dev_priv->fsb_freq = 4800;
621 		break;
622 	case 0x014:
623 		dev_priv->fsb_freq = 5333;
624 		break;
625 	case 0x016:
626 		dev_priv->fsb_freq = 5866;
627 		break;
628 	case 0x018:
629 		dev_priv->fsb_freq = 6400;
630 		break;
631 	default:
632 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
633 				 csipll & 0x3ff);
634 		dev_priv->fsb_freq = 0;
635 		break;
636 	}
637 
638 	if (dev_priv->fsb_freq == 3200) {
639 		dev_priv->ips.c_m = 0;
640 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
641 		dev_priv->ips.c_m = 1;
642 	} else {
643 		dev_priv->ips.c_m = 2;
644 	}
645 }
646 
647 static const struct cxsr_latency cxsr_latency_table[] = {
648 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
649 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
650 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
651 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
652 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
653 
654 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
655 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
656 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
657 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
658 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
659 
660 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
661 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
662 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
663 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
664 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
665 
666 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
667 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
668 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
669 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
670 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
671 
672 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
673 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
674 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
675 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
676 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
677 
678 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
679 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
680 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
681 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
682 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
683 };
684 
685 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
686 							 int is_ddr3,
687 							 int fsb,
688 							 int mem)
689 {
690 	const struct cxsr_latency *latency;
691 	int i;
692 
693 	if (fsb == 0 || mem == 0)
694 		return NULL;
695 
696 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
697 		latency = &cxsr_latency_table[i];
698 		if (is_desktop == latency->is_desktop &&
699 		    is_ddr3 == latency->is_ddr3 &&
700 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
701 			return latency;
702 	}
703 
704 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
705 
706 	return NULL;
707 }
708 
709 static void pineview_disable_cxsr(struct drm_device *dev)
710 {
711 	struct drm_i915_private *dev_priv = dev->dev_private;
712 
713 	/* deactivate cxsr */
714 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
715 }
716 
717 /*
718  * Latency for FIFO fetches is dependent on several factors:
719  *   - memory configuration (speed, channels)
720  *   - chipset
721  *   - current MCH state
722  * It can be fairly high in some situations, so here we assume a fairly
723  * pessimal value.  It's a tradeoff between extra memory fetches (if we
724  * set this value too high, the FIFO will fetch frequently to stay full)
725  * and power consumption (set it too low to save power and we might see
726  * FIFO underruns and display "flicker").
727  *
728  * A value of 5us seems to be a good balance; safe for very low end
729  * platforms but not overly aggressive on lower latency configs.
730  */
731 static const int latency_ns = 5000;
732 
733 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
734 {
735 	struct drm_i915_private *dev_priv = dev->dev_private;
736 	uint32_t dsparb = I915_READ(DSPARB);
737 	int size;
738 
739 	size = dsparb & 0x7f;
740 	if (plane)
741 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
742 
743 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
744 		      plane ? "B" : "A", size);
745 
746 	return size;
747 }
748 
749 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
750 {
751 	struct drm_i915_private *dev_priv = dev->dev_private;
752 	uint32_t dsparb = I915_READ(DSPARB);
753 	int size;
754 
755 	size = dsparb & 0x1ff;
756 	if (plane)
757 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
758 	size >>= 1; /* Convert to cachelines */
759 
760 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
761 		      plane ? "B" : "A", size);
762 
763 	return size;
764 }
765 
766 static int i845_get_fifo_size(struct drm_device *dev, int plane)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	uint32_t dsparb = I915_READ(DSPARB);
770 	int size;
771 
772 	size = dsparb & 0x7f;
773 	size >>= 2; /* Convert to cachelines */
774 
775 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
776 		      plane ? "B" : "A",
777 		      size);
778 
779 	return size;
780 }
781 
782 static int i830_get_fifo_size(struct drm_device *dev, int plane)
783 {
784 	struct drm_i915_private *dev_priv = dev->dev_private;
785 	uint32_t dsparb = I915_READ(DSPARB);
786 	int size;
787 
788 	size = dsparb & 0x7f;
789 	size >>= 1; /* Convert to cachelines */
790 
791 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
792 		      plane ? "B" : "A", size);
793 
794 	return size;
795 }
796 
797 /* Pineview has different values for various configs */
798 static const struct intel_watermark_params pineview_display_wm = {
799 	PINEVIEW_DISPLAY_FIFO,
800 	PINEVIEW_MAX_WM,
801 	PINEVIEW_DFT_WM,
802 	PINEVIEW_GUARD_WM,
803 	PINEVIEW_FIFO_LINE_SIZE
804 };
805 static const struct intel_watermark_params pineview_display_hplloff_wm = {
806 	PINEVIEW_DISPLAY_FIFO,
807 	PINEVIEW_MAX_WM,
808 	PINEVIEW_DFT_HPLLOFF_WM,
809 	PINEVIEW_GUARD_WM,
810 	PINEVIEW_FIFO_LINE_SIZE
811 };
812 static const struct intel_watermark_params pineview_cursor_wm = {
813 	PINEVIEW_CURSOR_FIFO,
814 	PINEVIEW_CURSOR_MAX_WM,
815 	PINEVIEW_CURSOR_DFT_WM,
816 	PINEVIEW_CURSOR_GUARD_WM,
817 	PINEVIEW_FIFO_LINE_SIZE,
818 };
819 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
820 	PINEVIEW_CURSOR_FIFO,
821 	PINEVIEW_CURSOR_MAX_WM,
822 	PINEVIEW_CURSOR_DFT_WM,
823 	PINEVIEW_CURSOR_GUARD_WM,
824 	PINEVIEW_FIFO_LINE_SIZE
825 };
826 static const struct intel_watermark_params g4x_wm_info = {
827 	G4X_FIFO_SIZE,
828 	G4X_MAX_WM,
829 	G4X_MAX_WM,
830 	2,
831 	G4X_FIFO_LINE_SIZE,
832 };
833 static const struct intel_watermark_params g4x_cursor_wm_info = {
834 	I965_CURSOR_FIFO,
835 	I965_CURSOR_MAX_WM,
836 	I965_CURSOR_DFT_WM,
837 	2,
838 	G4X_FIFO_LINE_SIZE,
839 };
840 static const struct intel_watermark_params valleyview_wm_info = {
841 	VALLEYVIEW_FIFO_SIZE,
842 	VALLEYVIEW_MAX_WM,
843 	VALLEYVIEW_MAX_WM,
844 	2,
845 	G4X_FIFO_LINE_SIZE,
846 };
847 static const struct intel_watermark_params valleyview_cursor_wm_info = {
848 	I965_CURSOR_FIFO,
849 	VALLEYVIEW_CURSOR_MAX_WM,
850 	I965_CURSOR_DFT_WM,
851 	2,
852 	G4X_FIFO_LINE_SIZE,
853 };
854 static const struct intel_watermark_params i965_cursor_wm_info = {
855 	I965_CURSOR_FIFO,
856 	I965_CURSOR_MAX_WM,
857 	I965_CURSOR_DFT_WM,
858 	2,
859 	I915_FIFO_LINE_SIZE,
860 };
861 static const struct intel_watermark_params i945_wm_info = {
862 	I945_FIFO_SIZE,
863 	I915_MAX_WM,
864 	1,
865 	2,
866 	I915_FIFO_LINE_SIZE
867 };
868 static const struct intel_watermark_params i915_wm_info = {
869 	I915_FIFO_SIZE,
870 	I915_MAX_WM,
871 	1,
872 	2,
873 	I915_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params i855_wm_info = {
876 	I855GM_FIFO_SIZE,
877 	I915_MAX_WM,
878 	1,
879 	2,
880 	I830_FIFO_LINE_SIZE
881 };
882 static const struct intel_watermark_params i830_wm_info = {
883 	I830_FIFO_SIZE,
884 	I915_MAX_WM,
885 	1,
886 	2,
887 	I830_FIFO_LINE_SIZE
888 };
889 
890 static const struct intel_watermark_params ironlake_display_wm_info = {
891 	ILK_DISPLAY_FIFO,
892 	ILK_DISPLAY_MAXWM,
893 	ILK_DISPLAY_DFTWM,
894 	2,
895 	ILK_FIFO_LINE_SIZE
896 };
897 static const struct intel_watermark_params ironlake_cursor_wm_info = {
898 	ILK_CURSOR_FIFO,
899 	ILK_CURSOR_MAXWM,
900 	ILK_CURSOR_DFTWM,
901 	2,
902 	ILK_FIFO_LINE_SIZE
903 };
904 static const struct intel_watermark_params ironlake_display_srwm_info = {
905 	ILK_DISPLAY_SR_FIFO,
906 	ILK_DISPLAY_MAX_SRWM,
907 	ILK_DISPLAY_DFT_SRWM,
908 	2,
909 	ILK_FIFO_LINE_SIZE
910 };
911 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
912 	ILK_CURSOR_SR_FIFO,
913 	ILK_CURSOR_MAX_SRWM,
914 	ILK_CURSOR_DFT_SRWM,
915 	2,
916 	ILK_FIFO_LINE_SIZE
917 };
918 
919 static const struct intel_watermark_params sandybridge_display_wm_info = {
920 	SNB_DISPLAY_FIFO,
921 	SNB_DISPLAY_MAXWM,
922 	SNB_DISPLAY_DFTWM,
923 	2,
924 	SNB_FIFO_LINE_SIZE
925 };
926 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
927 	SNB_CURSOR_FIFO,
928 	SNB_CURSOR_MAXWM,
929 	SNB_CURSOR_DFTWM,
930 	2,
931 	SNB_FIFO_LINE_SIZE
932 };
933 static const struct intel_watermark_params sandybridge_display_srwm_info = {
934 	SNB_DISPLAY_SR_FIFO,
935 	SNB_DISPLAY_MAX_SRWM,
936 	SNB_DISPLAY_DFT_SRWM,
937 	2,
938 	SNB_FIFO_LINE_SIZE
939 };
940 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
941 	SNB_CURSOR_SR_FIFO,
942 	SNB_CURSOR_MAX_SRWM,
943 	SNB_CURSOR_DFT_SRWM,
944 	2,
945 	SNB_FIFO_LINE_SIZE
946 };
947 
948 
949 /**
950  * intel_calculate_wm - calculate watermark level
951  * @clock_in_khz: pixel clock
952  * @wm: chip FIFO params
953  * @pixel_size: display pixel size
954  * @latency_ns: memory latency for the platform
955  *
956  * Calculate the watermark level (the level at which the display plane will
957  * start fetching from memory again).  Each chip has a different display
958  * FIFO size and allocation, so the caller needs to figure that out and pass
959  * in the correct intel_watermark_params structure.
960  *
961  * As the pixel clock runs, the FIFO will be drained at a rate that depends
962  * on the pixel size.  When it reaches the watermark level, it'll start
963  * fetching FIFO line sized based chunks from memory until the FIFO fills
964  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
965  * will occur, and a display engine hang could result.
966  */
967 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
968 					const struct intel_watermark_params *wm,
969 					int fifo_size,
970 					int pixel_size,
971 					unsigned long latency_ns)
972 {
973 	long entries_required, wm_size;
974 
975 	/*
976 	 * Note: we need to make sure we don't overflow for various clock &
977 	 * latency values.
978 	 * clocks go from a few thousand to several hundred thousand.
979 	 * latency is usually a few thousand
980 	 */
981 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
982 		1000;
983 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
984 
985 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
986 
987 	wm_size = fifo_size - (entries_required + wm->guard_size);
988 
989 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
990 
991 	/* Don't promote wm_size to unsigned... */
992 	if (wm_size > (long)wm->max_wm)
993 		wm_size = wm->max_wm;
994 	if (wm_size <= 0)
995 		wm_size = wm->default_wm;
996 	return wm_size;
997 }
998 
999 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1000 {
1001 	struct drm_crtc *crtc, *enabled = NULL;
1002 
1003 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1004 		if (intel_crtc_active(crtc)) {
1005 			if (enabled)
1006 				return NULL;
1007 			enabled = crtc;
1008 		}
1009 	}
1010 
1011 	return enabled;
1012 }
1013 
1014 static void pineview_update_wm(struct drm_device *dev)
1015 {
1016 	struct drm_i915_private *dev_priv = dev->dev_private;
1017 	struct drm_crtc *crtc;
1018 	const struct cxsr_latency *latency;
1019 	u32 reg;
1020 	unsigned long wm;
1021 
1022 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1023 					 dev_priv->fsb_freq, dev_priv->mem_freq);
1024 	if (!latency) {
1025 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1026 		pineview_disable_cxsr(dev);
1027 		return;
1028 	}
1029 
1030 	crtc = single_enabled_crtc(dev);
1031 	if (crtc) {
1032 		int clock = crtc->mode.clock;
1033 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1034 
1035 		/* Display SR */
1036 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1037 					pineview_display_wm.fifo_size,
1038 					pixel_size, latency->display_sr);
1039 		reg = I915_READ(DSPFW1);
1040 		reg &= ~DSPFW_SR_MASK;
1041 		reg |= wm << DSPFW_SR_SHIFT;
1042 		I915_WRITE(DSPFW1, reg);
1043 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1044 
1045 		/* cursor SR */
1046 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1047 					pineview_display_wm.fifo_size,
1048 					pixel_size, latency->cursor_sr);
1049 		reg = I915_READ(DSPFW3);
1050 		reg &= ~DSPFW_CURSOR_SR_MASK;
1051 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1052 		I915_WRITE(DSPFW3, reg);
1053 
1054 		/* Display HPLL off SR */
1055 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1056 					pineview_display_hplloff_wm.fifo_size,
1057 					pixel_size, latency->display_hpll_disable);
1058 		reg = I915_READ(DSPFW3);
1059 		reg &= ~DSPFW_HPLL_SR_MASK;
1060 		reg |= wm & DSPFW_HPLL_SR_MASK;
1061 		I915_WRITE(DSPFW3, reg);
1062 
1063 		/* cursor HPLL off SR */
1064 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1065 					pineview_display_hplloff_wm.fifo_size,
1066 					pixel_size, latency->cursor_hpll_disable);
1067 		reg = I915_READ(DSPFW3);
1068 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1069 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1070 		I915_WRITE(DSPFW3, reg);
1071 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1072 
1073 		/* activate cxsr */
1074 		I915_WRITE(DSPFW3,
1075 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1076 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1077 	} else {
1078 		pineview_disable_cxsr(dev);
1079 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1080 	}
1081 }
1082 
1083 static bool g4x_compute_wm0(struct drm_device *dev,
1084 			    int plane,
1085 			    const struct intel_watermark_params *display,
1086 			    int display_latency_ns,
1087 			    const struct intel_watermark_params *cursor,
1088 			    int cursor_latency_ns,
1089 			    int *plane_wm,
1090 			    int *cursor_wm)
1091 {
1092 	struct drm_crtc *crtc;
1093 	int htotal, hdisplay, clock, pixel_size;
1094 	int line_time_us, line_count;
1095 	int entries, tlb_miss;
1096 
1097 	crtc = intel_get_crtc_for_plane(dev, plane);
1098 	if (!intel_crtc_active(crtc)) {
1099 		*cursor_wm = cursor->guard_size;
1100 		*plane_wm = display->guard_size;
1101 		return false;
1102 	}
1103 
1104 	htotal = crtc->mode.htotal;
1105 	hdisplay = crtc->mode.hdisplay;
1106 	clock = crtc->mode.clock;
1107 	pixel_size = crtc->fb->bits_per_pixel / 8;
1108 
1109 	/* Use the small buffer method to calculate plane watermark */
1110 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1111 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1112 	if (tlb_miss > 0)
1113 		entries += tlb_miss;
1114 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1115 	*plane_wm = entries + display->guard_size;
1116 	if (*plane_wm > (int)display->max_wm)
1117 		*plane_wm = display->max_wm;
1118 
1119 	/* Use the large buffer method to calculate cursor watermark */
1120 	line_time_us = ((htotal * 1000) / clock);
1121 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1122 	entries = line_count * 64 * pixel_size;
1123 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1124 	if (tlb_miss > 0)
1125 		entries += tlb_miss;
1126 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1127 	*cursor_wm = entries + cursor->guard_size;
1128 	if (*cursor_wm > (int)cursor->max_wm)
1129 		*cursor_wm = (int)cursor->max_wm;
1130 
1131 	return true;
1132 }
1133 
1134 /*
1135  * Check the wm result.
1136  *
1137  * If any calculated watermark values is larger than the maximum value that
1138  * can be programmed into the associated watermark register, that watermark
1139  * must be disabled.
1140  */
1141 static bool g4x_check_srwm(struct drm_device *dev,
1142 			   int display_wm, int cursor_wm,
1143 			   const struct intel_watermark_params *display,
1144 			   const struct intel_watermark_params *cursor)
1145 {
1146 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1147 		      display_wm, cursor_wm);
1148 
1149 	if (display_wm > display->max_wm) {
1150 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1151 			      display_wm, display->max_wm);
1152 		return false;
1153 	}
1154 
1155 	if (cursor_wm > cursor->max_wm) {
1156 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1157 			      cursor_wm, cursor->max_wm);
1158 		return false;
1159 	}
1160 
1161 	if (!(display_wm || cursor_wm)) {
1162 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1163 		return false;
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 static bool g4x_compute_srwm(struct drm_device *dev,
1170 			     int plane,
1171 			     int latency_ns,
1172 			     const struct intel_watermark_params *display,
1173 			     const struct intel_watermark_params *cursor,
1174 			     int *display_wm, int *cursor_wm)
1175 {
1176 	struct drm_crtc *crtc;
1177 	int hdisplay, htotal, pixel_size, clock;
1178 	unsigned long line_time_us;
1179 	int line_count, line_size;
1180 	int small, large;
1181 	int entries;
1182 
1183 	if (!latency_ns) {
1184 		*display_wm = *cursor_wm = 0;
1185 		return false;
1186 	}
1187 
1188 	crtc = intel_get_crtc_for_plane(dev, plane);
1189 	hdisplay = crtc->mode.hdisplay;
1190 	htotal = crtc->mode.htotal;
1191 	clock = crtc->mode.clock;
1192 	pixel_size = crtc->fb->bits_per_pixel / 8;
1193 
1194 	line_time_us = (htotal * 1000) / clock;
1195 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1196 	line_size = hdisplay * pixel_size;
1197 
1198 	/* Use the minimum of the small and large buffer method for primary */
1199 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1200 	large = line_count * line_size;
1201 
1202 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1203 	*display_wm = entries + display->guard_size;
1204 
1205 	/* calculate the self-refresh watermark for display cursor */
1206 	entries = line_count * pixel_size * 64;
1207 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1208 	*cursor_wm = entries + cursor->guard_size;
1209 
1210 	return g4x_check_srwm(dev,
1211 			      *display_wm, *cursor_wm,
1212 			      display, cursor);
1213 }
1214 
1215 static bool vlv_compute_drain_latency(struct drm_device *dev,
1216 				     int plane,
1217 				     int *plane_prec_mult,
1218 				     int *plane_dl,
1219 				     int *cursor_prec_mult,
1220 				     int *cursor_dl)
1221 {
1222 	struct drm_crtc *crtc;
1223 	int clock, pixel_size;
1224 	int entries;
1225 
1226 	crtc = intel_get_crtc_for_plane(dev, plane);
1227 	if (!intel_crtc_active(crtc))
1228 		return false;
1229 
1230 	clock = crtc->mode.clock;	/* VESA DOT Clock */
1231 	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1232 
1233 	entries = (clock / 1000) * pixel_size;
1234 	*plane_prec_mult = (entries > 256) ?
1235 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1236 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1237 						     pixel_size);
1238 
1239 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1240 	*cursor_prec_mult = (entries > 256) ?
1241 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1242 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1243 
1244 	return true;
1245 }
1246 
1247 /*
1248  * Update drain latency registers of memory arbiter
1249  *
1250  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1251  * to be programmed. Each plane has a drain latency multiplier and a drain
1252  * latency value.
1253  */
1254 
1255 static void vlv_update_drain_latency(struct drm_device *dev)
1256 {
1257 	struct drm_i915_private *dev_priv = dev->dev_private;
1258 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1259 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1260 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1261 							either 16 or 32 */
1262 
1263 	/* For plane A, Cursor A */
1264 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1265 				      &cursor_prec_mult, &cursora_dl)) {
1266 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1267 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1268 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1270 
1271 		I915_WRITE(VLV_DDL1, cursora_prec |
1272 				(cursora_dl << DDL_CURSORA_SHIFT) |
1273 				planea_prec | planea_dl);
1274 	}
1275 
1276 	/* For plane B, Cursor B */
1277 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1278 				      &cursor_prec_mult, &cursorb_dl)) {
1279 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1280 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1281 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1283 
1284 		I915_WRITE(VLV_DDL2, cursorb_prec |
1285 				(cursorb_dl << DDL_CURSORB_SHIFT) |
1286 				planeb_prec | planeb_dl);
1287 	}
1288 }
1289 
1290 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
1291 
1292 static void valleyview_update_wm(struct drm_device *dev)
1293 {
1294 	static const int sr_latency_ns = 12000;
1295 	struct drm_i915_private *dev_priv = dev->dev_private;
1296 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1297 	int plane_sr, cursor_sr;
1298 	int ignore_plane_sr, ignore_cursor_sr;
1299 	unsigned int enabled = 0;
1300 
1301 	vlv_update_drain_latency(dev);
1302 
1303 	if (g4x_compute_wm0(dev, 0,
1304 			    &valleyview_wm_info, latency_ns,
1305 			    &valleyview_cursor_wm_info, latency_ns,
1306 			    &planea_wm, &cursora_wm))
1307 		enabled |= 1;
1308 
1309 	if (g4x_compute_wm0(dev, 1,
1310 			    &valleyview_wm_info, latency_ns,
1311 			    &valleyview_cursor_wm_info, latency_ns,
1312 			    &planeb_wm, &cursorb_wm))
1313 		enabled |= 2;
1314 
1315 	if (single_plane_enabled(enabled) &&
1316 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1317 			     sr_latency_ns,
1318 			     &valleyview_wm_info,
1319 			     &valleyview_cursor_wm_info,
1320 			     &plane_sr, &ignore_cursor_sr) &&
1321 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1322 			     2*sr_latency_ns,
1323 			     &valleyview_wm_info,
1324 			     &valleyview_cursor_wm_info,
1325 			     &ignore_plane_sr, &cursor_sr)) {
1326 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1327 	} else {
1328 		I915_WRITE(FW_BLC_SELF_VLV,
1329 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1330 		plane_sr = cursor_sr = 0;
1331 	}
1332 
1333 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1334 		      planea_wm, cursora_wm,
1335 		      planeb_wm, cursorb_wm,
1336 		      plane_sr, cursor_sr);
1337 
1338 	I915_WRITE(DSPFW1,
1339 		   (plane_sr << DSPFW_SR_SHIFT) |
1340 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1341 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1342 		   planea_wm);
1343 	I915_WRITE(DSPFW2,
1344 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1345 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1346 	I915_WRITE(DSPFW3,
1347 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1348 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1349 }
1350 
1351 static void g4x_update_wm(struct drm_device *dev)
1352 {
1353 	static const int sr_latency_ns = 12000;
1354 	struct drm_i915_private *dev_priv = dev->dev_private;
1355 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1356 	int plane_sr, cursor_sr;
1357 	unsigned int enabled = 0;
1358 
1359 	if (g4x_compute_wm0(dev, 0,
1360 			    &g4x_wm_info, latency_ns,
1361 			    &g4x_cursor_wm_info, latency_ns,
1362 			    &planea_wm, &cursora_wm))
1363 		enabled |= 1;
1364 
1365 	if (g4x_compute_wm0(dev, 1,
1366 			    &g4x_wm_info, latency_ns,
1367 			    &g4x_cursor_wm_info, latency_ns,
1368 			    &planeb_wm, &cursorb_wm))
1369 		enabled |= 2;
1370 
1371 	if (single_plane_enabled(enabled) &&
1372 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1373 			     sr_latency_ns,
1374 			     &g4x_wm_info,
1375 			     &g4x_cursor_wm_info,
1376 			     &plane_sr, &cursor_sr)) {
1377 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1378 	} else {
1379 		I915_WRITE(FW_BLC_SELF,
1380 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1381 		plane_sr = cursor_sr = 0;
1382 	}
1383 
1384 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1385 		      planea_wm, cursora_wm,
1386 		      planeb_wm, cursorb_wm,
1387 		      plane_sr, cursor_sr);
1388 
1389 	I915_WRITE(DSPFW1,
1390 		   (plane_sr << DSPFW_SR_SHIFT) |
1391 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1392 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1393 		   planea_wm);
1394 	I915_WRITE(DSPFW2,
1395 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1396 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1397 	/* HPLL off in SR has some issues on G4x... disable it */
1398 	I915_WRITE(DSPFW3,
1399 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1400 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1401 }
1402 
1403 static void i965_update_wm(struct drm_device *dev)
1404 {
1405 	struct drm_i915_private *dev_priv = dev->dev_private;
1406 	struct drm_crtc *crtc;
1407 	int srwm = 1;
1408 	int cursor_sr = 16;
1409 
1410 	/* Calc sr entries for one plane configs */
1411 	crtc = single_enabled_crtc(dev);
1412 	if (crtc) {
1413 		/* self-refresh has much higher latency */
1414 		static const int sr_latency_ns = 12000;
1415 		int clock = crtc->mode.clock;
1416 		int htotal = crtc->mode.htotal;
1417 		int hdisplay = crtc->mode.hdisplay;
1418 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1419 		unsigned long line_time_us;
1420 		int entries;
1421 
1422 		line_time_us = ((htotal * 1000) / clock);
1423 
1424 		/* Use ns/us then divide to preserve precision */
1425 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1426 			pixel_size * hdisplay;
1427 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1428 		srwm = I965_FIFO_SIZE - entries;
1429 		if (srwm < 0)
1430 			srwm = 1;
1431 		srwm &= 0x1ff;
1432 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1433 			      entries, srwm);
1434 
1435 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1436 			pixel_size * 64;
1437 		entries = DIV_ROUND_UP(entries,
1438 					  i965_cursor_wm_info.cacheline_size);
1439 		cursor_sr = i965_cursor_wm_info.fifo_size -
1440 			(entries + i965_cursor_wm_info.guard_size);
1441 
1442 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1443 			cursor_sr = i965_cursor_wm_info.max_wm;
1444 
1445 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1446 			      "cursor %d\n", srwm, cursor_sr);
1447 
1448 		if (IS_CRESTLINE(dev))
1449 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1450 	} else {
1451 		/* Turn off self refresh if both pipes are enabled */
1452 		if (IS_CRESTLINE(dev))
1453 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1454 				   & ~FW_BLC_SELF_EN);
1455 	}
1456 
1457 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1458 		      srwm);
1459 
1460 	/* 965 has limitations... */
1461 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1462 		   (8 << 16) | (8 << 8) | (8 << 0));
1463 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1464 	/* update cursor SR watermark */
1465 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1466 }
1467 
1468 static void i9xx_update_wm(struct drm_device *dev)
1469 {
1470 	struct drm_i915_private *dev_priv = dev->dev_private;
1471 	const struct intel_watermark_params *wm_info;
1472 	uint32_t fwater_lo;
1473 	uint32_t fwater_hi;
1474 	int cwm, srwm = 1;
1475 	int fifo_size;
1476 	int planea_wm, planeb_wm;
1477 	struct drm_crtc *crtc, *enabled = NULL;
1478 
1479 	if (IS_I945GM(dev))
1480 		wm_info = &i945_wm_info;
1481 	else if (!IS_GEN2(dev))
1482 		wm_info = &i915_wm_info;
1483 	else
1484 		wm_info = &i855_wm_info;
1485 
1486 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1487 	crtc = intel_get_crtc_for_plane(dev, 0);
1488 	if (intel_crtc_active(crtc)) {
1489 		int cpp = crtc->fb->bits_per_pixel / 8;
1490 		if (IS_GEN2(dev))
1491 			cpp = 4;
1492 
1493 		planea_wm = intel_calculate_wm(crtc->mode.clock,
1494 					       wm_info, fifo_size, cpp,
1495 					       latency_ns);
1496 		enabled = crtc;
1497 	} else
1498 		planea_wm = fifo_size - wm_info->guard_size;
1499 
1500 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1501 	crtc = intel_get_crtc_for_plane(dev, 1);
1502 	if (intel_crtc_active(crtc)) {
1503 		int cpp = crtc->fb->bits_per_pixel / 8;
1504 		if (IS_GEN2(dev))
1505 			cpp = 4;
1506 
1507 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1508 					       wm_info, fifo_size, cpp,
1509 					       latency_ns);
1510 		if (enabled == NULL)
1511 			enabled = crtc;
1512 		else
1513 			enabled = NULL;
1514 	} else
1515 		planeb_wm = fifo_size - wm_info->guard_size;
1516 
1517 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1518 
1519 	/*
1520 	 * Overlay gets an aggressive default since video jitter is bad.
1521 	 */
1522 	cwm = 2;
1523 
1524 	/* Play safe and disable self-refresh before adjusting watermarks. */
1525 	if (IS_I945G(dev) || IS_I945GM(dev))
1526 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1527 	else if (IS_I915GM(dev))
1528 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1529 
1530 	/* Calc sr entries for one plane configs */
1531 	if (HAS_FW_BLC(dev) && enabled) {
1532 		/* self-refresh has much higher latency */
1533 		static const int sr_latency_ns = 6000;
1534 		int clock = enabled->mode.clock;
1535 		int htotal = enabled->mode.htotal;
1536 		int hdisplay = enabled->mode.hdisplay;
1537 		int pixel_size = enabled->fb->bits_per_pixel / 8;
1538 		unsigned long line_time_us;
1539 		int entries;
1540 
1541 		line_time_us = (htotal * 1000) / clock;
1542 
1543 		/* Use ns/us then divide to preserve precision */
1544 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1545 			pixel_size * hdisplay;
1546 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1547 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1548 		srwm = wm_info->fifo_size - entries;
1549 		if (srwm < 0)
1550 			srwm = 1;
1551 
1552 		if (IS_I945G(dev) || IS_I945GM(dev))
1553 			I915_WRITE(FW_BLC_SELF,
1554 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1555 		else if (IS_I915GM(dev))
1556 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1557 	}
1558 
1559 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1560 		      planea_wm, planeb_wm, cwm, srwm);
1561 
1562 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1563 	fwater_hi = (cwm & 0x1f);
1564 
1565 	/* Set request length to 8 cachelines per fetch */
1566 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1567 	fwater_hi = fwater_hi | (1 << 8);
1568 
1569 	I915_WRITE(FW_BLC, fwater_lo);
1570 	I915_WRITE(FW_BLC2, fwater_hi);
1571 
1572 	if (HAS_FW_BLC(dev)) {
1573 		if (enabled) {
1574 			if (IS_I945G(dev) || IS_I945GM(dev))
1575 				I915_WRITE(FW_BLC_SELF,
1576 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1577 			else if (IS_I915GM(dev))
1578 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1579 			DRM_DEBUG_KMS("memory self refresh enabled\n");
1580 		} else
1581 			DRM_DEBUG_KMS("memory self refresh disabled\n");
1582 	}
1583 }
1584 
1585 static void i830_update_wm(struct drm_device *dev)
1586 {
1587 	struct drm_i915_private *dev_priv = dev->dev_private;
1588 	struct drm_crtc *crtc;
1589 	uint32_t fwater_lo;
1590 	int planea_wm;
1591 
1592 	crtc = single_enabled_crtc(dev);
1593 	if (crtc == NULL)
1594 		return;
1595 
1596 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1597 				       dev_priv->display.get_fifo_size(dev, 0),
1598 				       4, latency_ns);
1599 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1600 	fwater_lo |= (3<<8) | planea_wm;
1601 
1602 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1603 
1604 	I915_WRITE(FW_BLC, fwater_lo);
1605 }
1606 
1607 #define ILK_LP0_PLANE_LATENCY		700
1608 #define ILK_LP0_CURSOR_LATENCY		1300
1609 
1610 /*
1611  * Check the wm result.
1612  *
1613  * If any calculated watermark values is larger than the maximum value that
1614  * can be programmed into the associated watermark register, that watermark
1615  * must be disabled.
1616  */
1617 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1618 				int fbc_wm, int display_wm, int cursor_wm,
1619 				const struct intel_watermark_params *display,
1620 				const struct intel_watermark_params *cursor)
1621 {
1622 	struct drm_i915_private *dev_priv = dev->dev_private;
1623 
1624 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1625 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1626 
1627 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1628 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1629 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1630 
1631 		/* fbc has it's own way to disable FBC WM */
1632 		I915_WRITE(DISP_ARB_CTL,
1633 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1634 		return false;
1635 	}
1636 
1637 	if (display_wm > display->max_wm) {
1638 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1639 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1640 		return false;
1641 	}
1642 
1643 	if (cursor_wm > cursor->max_wm) {
1644 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1645 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1646 		return false;
1647 	}
1648 
1649 	if (!(fbc_wm || display_wm || cursor_wm)) {
1650 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1651 		return false;
1652 	}
1653 
1654 	return true;
1655 }
1656 
1657 /*
1658  * Compute watermark values of WM[1-3],
1659  */
1660 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1661 				  int latency_ns,
1662 				  const struct intel_watermark_params *display,
1663 				  const struct intel_watermark_params *cursor,
1664 				  int *fbc_wm, int *display_wm, int *cursor_wm)
1665 {
1666 	struct drm_crtc *crtc;
1667 	unsigned long line_time_us;
1668 	int hdisplay, htotal, pixel_size, clock;
1669 	int line_count, line_size;
1670 	int small, large;
1671 	int entries;
1672 
1673 	if (!latency_ns) {
1674 		*fbc_wm = *display_wm = *cursor_wm = 0;
1675 		return false;
1676 	}
1677 
1678 	crtc = intel_get_crtc_for_plane(dev, plane);
1679 	hdisplay = crtc->mode.hdisplay;
1680 	htotal = crtc->mode.htotal;
1681 	clock = crtc->mode.clock;
1682 	pixel_size = crtc->fb->bits_per_pixel / 8;
1683 
1684 	line_time_us = (htotal * 1000) / clock;
1685 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1686 	line_size = hdisplay * pixel_size;
1687 
1688 	/* Use the minimum of the small and large buffer method for primary */
1689 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1690 	large = line_count * line_size;
1691 
1692 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1693 	*display_wm = entries + display->guard_size;
1694 
1695 	/*
1696 	 * Spec says:
1697 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1698 	 */
1699 	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1700 
1701 	/* calculate the self-refresh watermark for display cursor */
1702 	entries = line_count * pixel_size * 64;
1703 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1704 	*cursor_wm = entries + cursor->guard_size;
1705 
1706 	return ironlake_check_srwm(dev, level,
1707 				   *fbc_wm, *display_wm, *cursor_wm,
1708 				   display, cursor);
1709 }
1710 
1711 static void ironlake_update_wm(struct drm_device *dev)
1712 {
1713 	struct drm_i915_private *dev_priv = dev->dev_private;
1714 	int fbc_wm, plane_wm, cursor_wm;
1715 	unsigned int enabled;
1716 
1717 	enabled = 0;
1718 	if (g4x_compute_wm0(dev, 0,
1719 			    &ironlake_display_wm_info,
1720 			    ILK_LP0_PLANE_LATENCY,
1721 			    &ironlake_cursor_wm_info,
1722 			    ILK_LP0_CURSOR_LATENCY,
1723 			    &plane_wm, &cursor_wm)) {
1724 		I915_WRITE(WM0_PIPEA_ILK,
1725 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1726 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1727 			      " plane %d, " "cursor: %d\n",
1728 			      plane_wm, cursor_wm);
1729 		enabled |= 1;
1730 	}
1731 
1732 	if (g4x_compute_wm0(dev, 1,
1733 			    &ironlake_display_wm_info,
1734 			    ILK_LP0_PLANE_LATENCY,
1735 			    &ironlake_cursor_wm_info,
1736 			    ILK_LP0_CURSOR_LATENCY,
1737 			    &plane_wm, &cursor_wm)) {
1738 		I915_WRITE(WM0_PIPEB_ILK,
1739 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1740 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1741 			      " plane %d, cursor: %d\n",
1742 			      plane_wm, cursor_wm);
1743 		enabled |= 2;
1744 	}
1745 
1746 	/*
1747 	 * Calculate and update the self-refresh watermark only when one
1748 	 * display plane is used.
1749 	 */
1750 	I915_WRITE(WM3_LP_ILK, 0);
1751 	I915_WRITE(WM2_LP_ILK, 0);
1752 	I915_WRITE(WM1_LP_ILK, 0);
1753 
1754 	if (!single_plane_enabled(enabled))
1755 		return;
1756 	enabled = ffs(enabled) - 1;
1757 
1758 	/* WM1 */
1759 	if (!ironlake_compute_srwm(dev, 1, enabled,
1760 				   ILK_READ_WM1_LATENCY() * 500,
1761 				   &ironlake_display_srwm_info,
1762 				   &ironlake_cursor_srwm_info,
1763 				   &fbc_wm, &plane_wm, &cursor_wm))
1764 		return;
1765 
1766 	I915_WRITE(WM1_LP_ILK,
1767 		   WM1_LP_SR_EN |
1768 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1769 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1770 		   (plane_wm << WM1_LP_SR_SHIFT) |
1771 		   cursor_wm);
1772 
1773 	/* WM2 */
1774 	if (!ironlake_compute_srwm(dev, 2, enabled,
1775 				   ILK_READ_WM2_LATENCY() * 500,
1776 				   &ironlake_display_srwm_info,
1777 				   &ironlake_cursor_srwm_info,
1778 				   &fbc_wm, &plane_wm, &cursor_wm))
1779 		return;
1780 
1781 	I915_WRITE(WM2_LP_ILK,
1782 		   WM2_LP_EN |
1783 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1784 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1785 		   (plane_wm << WM1_LP_SR_SHIFT) |
1786 		   cursor_wm);
1787 
1788 	/*
1789 	 * WM3 is unsupported on ILK, probably because we don't have latency
1790 	 * data for that power state
1791 	 */
1792 }
1793 
1794 static void sandybridge_update_wm(struct drm_device *dev)
1795 {
1796 	struct drm_i915_private *dev_priv = dev->dev_private;
1797 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1798 	u32 val;
1799 	int fbc_wm, plane_wm, cursor_wm;
1800 	unsigned int enabled;
1801 
1802 	enabled = 0;
1803 	if (g4x_compute_wm0(dev, 0,
1804 			    &sandybridge_display_wm_info, latency,
1805 			    &sandybridge_cursor_wm_info, latency,
1806 			    &plane_wm, &cursor_wm)) {
1807 		val = I915_READ(WM0_PIPEA_ILK);
1808 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1809 		I915_WRITE(WM0_PIPEA_ILK, val |
1810 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1811 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1812 			      " plane %d, " "cursor: %d\n",
1813 			      plane_wm, cursor_wm);
1814 		enabled |= 1;
1815 	}
1816 
1817 	if (g4x_compute_wm0(dev, 1,
1818 			    &sandybridge_display_wm_info, latency,
1819 			    &sandybridge_cursor_wm_info, latency,
1820 			    &plane_wm, &cursor_wm)) {
1821 		val = I915_READ(WM0_PIPEB_ILK);
1822 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1823 		I915_WRITE(WM0_PIPEB_ILK, val |
1824 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1825 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1826 			      " plane %d, cursor: %d\n",
1827 			      plane_wm, cursor_wm);
1828 		enabled |= 2;
1829 	}
1830 
1831 	/*
1832 	 * Calculate and update the self-refresh watermark only when one
1833 	 * display plane is used.
1834 	 *
1835 	 * SNB support 3 levels of watermark.
1836 	 *
1837 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1838 	 * and disabled in the descending order
1839 	 *
1840 	 */
1841 	I915_WRITE(WM3_LP_ILK, 0);
1842 	I915_WRITE(WM2_LP_ILK, 0);
1843 	I915_WRITE(WM1_LP_ILK, 0);
1844 
1845 	if (!single_plane_enabled(enabled) ||
1846 	    dev_priv->sprite_scaling_enabled)
1847 		return;
1848 	enabled = ffs(enabled) - 1;
1849 
1850 	/* WM1 */
1851 	if (!ironlake_compute_srwm(dev, 1, enabled,
1852 				   SNB_READ_WM1_LATENCY() * 500,
1853 				   &sandybridge_display_srwm_info,
1854 				   &sandybridge_cursor_srwm_info,
1855 				   &fbc_wm, &plane_wm, &cursor_wm))
1856 		return;
1857 
1858 	I915_WRITE(WM1_LP_ILK,
1859 		   WM1_LP_SR_EN |
1860 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1861 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1862 		   (plane_wm << WM1_LP_SR_SHIFT) |
1863 		   cursor_wm);
1864 
1865 	/* WM2 */
1866 	if (!ironlake_compute_srwm(dev, 2, enabled,
1867 				   SNB_READ_WM2_LATENCY() * 500,
1868 				   &sandybridge_display_srwm_info,
1869 				   &sandybridge_cursor_srwm_info,
1870 				   &fbc_wm, &plane_wm, &cursor_wm))
1871 		return;
1872 
1873 	I915_WRITE(WM2_LP_ILK,
1874 		   WM2_LP_EN |
1875 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1876 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1877 		   (plane_wm << WM1_LP_SR_SHIFT) |
1878 		   cursor_wm);
1879 
1880 	/* WM3 */
1881 	if (!ironlake_compute_srwm(dev, 3, enabled,
1882 				   SNB_READ_WM3_LATENCY() * 500,
1883 				   &sandybridge_display_srwm_info,
1884 				   &sandybridge_cursor_srwm_info,
1885 				   &fbc_wm, &plane_wm, &cursor_wm))
1886 		return;
1887 
1888 	I915_WRITE(WM3_LP_ILK,
1889 		   WM3_LP_EN |
1890 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1891 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1892 		   (plane_wm << WM1_LP_SR_SHIFT) |
1893 		   cursor_wm);
1894 }
1895 
1896 static void ivybridge_update_wm(struct drm_device *dev)
1897 {
1898 	struct drm_i915_private *dev_priv = dev->dev_private;
1899 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1900 	u32 val;
1901 	int fbc_wm, plane_wm, cursor_wm;
1902 	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1903 	unsigned int enabled;
1904 
1905 	enabled = 0;
1906 	if (g4x_compute_wm0(dev, 0,
1907 			    &sandybridge_display_wm_info, latency,
1908 			    &sandybridge_cursor_wm_info, latency,
1909 			    &plane_wm, &cursor_wm)) {
1910 		val = I915_READ(WM0_PIPEA_ILK);
1911 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1912 		I915_WRITE(WM0_PIPEA_ILK, val |
1913 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1914 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1915 			      " plane %d, " "cursor: %d\n",
1916 			      plane_wm, cursor_wm);
1917 		enabled |= 1;
1918 	}
1919 
1920 	if (g4x_compute_wm0(dev, 1,
1921 			    &sandybridge_display_wm_info, latency,
1922 			    &sandybridge_cursor_wm_info, latency,
1923 			    &plane_wm, &cursor_wm)) {
1924 		val = I915_READ(WM0_PIPEB_ILK);
1925 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1926 		I915_WRITE(WM0_PIPEB_ILK, val |
1927 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1928 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1929 			      " plane %d, cursor: %d\n",
1930 			      plane_wm, cursor_wm);
1931 		enabled |= 2;
1932 	}
1933 
1934 	if (g4x_compute_wm0(dev, 2,
1935 			    &sandybridge_display_wm_info, latency,
1936 			    &sandybridge_cursor_wm_info, latency,
1937 			    &plane_wm, &cursor_wm)) {
1938 		val = I915_READ(WM0_PIPEC_IVB);
1939 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1940 		I915_WRITE(WM0_PIPEC_IVB, val |
1941 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1942 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1943 			      " plane %d, cursor: %d\n",
1944 			      plane_wm, cursor_wm);
1945 		enabled |= 3;
1946 	}
1947 
1948 	/*
1949 	 * Calculate and update the self-refresh watermark only when one
1950 	 * display plane is used.
1951 	 *
1952 	 * SNB support 3 levels of watermark.
1953 	 *
1954 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1955 	 * and disabled in the descending order
1956 	 *
1957 	 */
1958 	I915_WRITE(WM3_LP_ILK, 0);
1959 	I915_WRITE(WM2_LP_ILK, 0);
1960 	I915_WRITE(WM1_LP_ILK, 0);
1961 
1962 	if (!single_plane_enabled(enabled) ||
1963 	    dev_priv->sprite_scaling_enabled)
1964 		return;
1965 	enabled = ffs(enabled) - 1;
1966 
1967 	/* WM1 */
1968 	if (!ironlake_compute_srwm(dev, 1, enabled,
1969 				   SNB_READ_WM1_LATENCY() * 500,
1970 				   &sandybridge_display_srwm_info,
1971 				   &sandybridge_cursor_srwm_info,
1972 				   &fbc_wm, &plane_wm, &cursor_wm))
1973 		return;
1974 
1975 	I915_WRITE(WM1_LP_ILK,
1976 		   WM1_LP_SR_EN |
1977 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1978 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1979 		   (plane_wm << WM1_LP_SR_SHIFT) |
1980 		   cursor_wm);
1981 
1982 	/* WM2 */
1983 	if (!ironlake_compute_srwm(dev, 2, enabled,
1984 				   SNB_READ_WM2_LATENCY() * 500,
1985 				   &sandybridge_display_srwm_info,
1986 				   &sandybridge_cursor_srwm_info,
1987 				   &fbc_wm, &plane_wm, &cursor_wm))
1988 		return;
1989 
1990 	I915_WRITE(WM2_LP_ILK,
1991 		   WM2_LP_EN |
1992 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1993 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1994 		   (plane_wm << WM1_LP_SR_SHIFT) |
1995 		   cursor_wm);
1996 
1997 	/* WM3, note we have to correct the cursor latency */
1998 	if (!ironlake_compute_srwm(dev, 3, enabled,
1999 				   SNB_READ_WM3_LATENCY() * 500,
2000 				   &sandybridge_display_srwm_info,
2001 				   &sandybridge_cursor_srwm_info,
2002 				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2003 	    !ironlake_compute_srwm(dev, 3, enabled,
2004 				   2 * SNB_READ_WM3_LATENCY() * 500,
2005 				   &sandybridge_display_srwm_info,
2006 				   &sandybridge_cursor_srwm_info,
2007 				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2008 		return;
2009 
2010 	I915_WRITE(WM3_LP_ILK,
2011 		   WM3_LP_EN |
2012 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2013 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2014 		   (plane_wm << WM1_LP_SR_SHIFT) |
2015 		   cursor_wm);
2016 }
2017 
2018 static void
2019 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2020 				 struct drm_display_mode *mode)
2021 {
2022 	struct drm_i915_private *dev_priv = dev->dev_private;
2023 	u32 temp;
2024 
2025 	temp = I915_READ(PIPE_WM_LINETIME(pipe));
2026 	temp &= ~PIPE_WM_LINETIME_MASK;
2027 
2028 	/* The WM are computed with base on how long it takes to fill a single
2029 	 * row at the given clock rate, multiplied by 8.
2030 	 * */
2031 	temp |= PIPE_WM_LINETIME_TIME(
2032 		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2033 
2034 	/* IPS watermarks are only used by pipe A, and are ignored by
2035 	 * pipes B and C.  They are calculated similarly to the common
2036 	 * linetime values, except that we are using CD clock frequency
2037 	 * in MHz instead of pixel rate for the division.
2038 	 *
2039 	 * This is a placeholder for the IPS watermark calculation code.
2040 	 */
2041 
2042 	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2043 }
2044 
2045 static bool
2046 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2047 			      uint32_t sprite_width, int pixel_size,
2048 			      const struct intel_watermark_params *display,
2049 			      int display_latency_ns, int *sprite_wm)
2050 {
2051 	struct drm_crtc *crtc;
2052 	int clock;
2053 	int entries, tlb_miss;
2054 
2055 	crtc = intel_get_crtc_for_plane(dev, plane);
2056 	if (!intel_crtc_active(crtc)) {
2057 		*sprite_wm = display->guard_size;
2058 		return false;
2059 	}
2060 
2061 	clock = crtc->mode.clock;
2062 
2063 	/* Use the small buffer method to calculate the sprite watermark */
2064 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2065 	tlb_miss = display->fifo_size*display->cacheline_size -
2066 		sprite_width * 8;
2067 	if (tlb_miss > 0)
2068 		entries += tlb_miss;
2069 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
2070 	*sprite_wm = entries + display->guard_size;
2071 	if (*sprite_wm > (int)display->max_wm)
2072 		*sprite_wm = display->max_wm;
2073 
2074 	return true;
2075 }
2076 
2077 static bool
2078 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2079 				uint32_t sprite_width, int pixel_size,
2080 				const struct intel_watermark_params *display,
2081 				int latency_ns, int *sprite_wm)
2082 {
2083 	struct drm_crtc *crtc;
2084 	unsigned long line_time_us;
2085 	int clock;
2086 	int line_count, line_size;
2087 	int small, large;
2088 	int entries;
2089 
2090 	if (!latency_ns) {
2091 		*sprite_wm = 0;
2092 		return false;
2093 	}
2094 
2095 	crtc = intel_get_crtc_for_plane(dev, plane);
2096 	clock = crtc->mode.clock;
2097 	if (!clock) {
2098 		*sprite_wm = 0;
2099 		return false;
2100 	}
2101 
2102 	line_time_us = (sprite_width * 1000) / clock;
2103 	if (!line_time_us) {
2104 		*sprite_wm = 0;
2105 		return false;
2106 	}
2107 
2108 	line_count = (latency_ns / line_time_us + 1000) / 1000;
2109 	line_size = sprite_width * pixel_size;
2110 
2111 	/* Use the minimum of the small and large buffer method for primary */
2112 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2113 	large = line_count * line_size;
2114 
2115 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2116 	*sprite_wm = entries + display->guard_size;
2117 
2118 	return *sprite_wm > 0x3ff ? false : true;
2119 }
2120 
2121 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2122 					 uint32_t sprite_width, int pixel_size)
2123 {
2124 	struct drm_i915_private *dev_priv = dev->dev_private;
2125 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2126 	u32 val;
2127 	int sprite_wm, reg;
2128 	int ret;
2129 
2130 	switch (pipe) {
2131 	case 0:
2132 		reg = WM0_PIPEA_ILK;
2133 		break;
2134 	case 1:
2135 		reg = WM0_PIPEB_ILK;
2136 		break;
2137 	case 2:
2138 		reg = WM0_PIPEC_IVB;
2139 		break;
2140 	default:
2141 		return; /* bad pipe */
2142 	}
2143 
2144 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2145 					    &sandybridge_display_wm_info,
2146 					    latency, &sprite_wm);
2147 	if (!ret) {
2148 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2149 			      pipe);
2150 		return;
2151 	}
2152 
2153 	val = I915_READ(reg);
2154 	val &= ~WM0_PIPE_SPRITE_MASK;
2155 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2156 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2157 
2158 
2159 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2160 					      pixel_size,
2161 					      &sandybridge_display_srwm_info,
2162 					      SNB_READ_WM1_LATENCY() * 500,
2163 					      &sprite_wm);
2164 	if (!ret) {
2165 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2166 			      pipe);
2167 		return;
2168 	}
2169 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2170 
2171 	/* Only IVB has two more LP watermarks for sprite */
2172 	if (!IS_IVYBRIDGE(dev))
2173 		return;
2174 
2175 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2176 					      pixel_size,
2177 					      &sandybridge_display_srwm_info,
2178 					      SNB_READ_WM2_LATENCY() * 500,
2179 					      &sprite_wm);
2180 	if (!ret) {
2181 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2182 			      pipe);
2183 		return;
2184 	}
2185 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2186 
2187 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2188 					      pixel_size,
2189 					      &sandybridge_display_srwm_info,
2190 					      SNB_READ_WM3_LATENCY() * 500,
2191 					      &sprite_wm);
2192 	if (!ret) {
2193 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2194 			      pipe);
2195 		return;
2196 	}
2197 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2198 }
2199 
2200 /**
2201  * intel_update_watermarks - update FIFO watermark values based on current modes
2202  *
2203  * Calculate watermark values for the various WM regs based on current mode
2204  * and plane configuration.
2205  *
2206  * There are several cases to deal with here:
2207  *   - normal (i.e. non-self-refresh)
2208  *   - self-refresh (SR) mode
2209  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2210  *   - lines are small relative to FIFO size (buffer can hold more than 2
2211  *     lines), so need to account for TLB latency
2212  *
2213  *   The normal calculation is:
2214  *     watermark = dotclock * bytes per pixel * latency
2215  *   where latency is platform & configuration dependent (we assume pessimal
2216  *   values here).
2217  *
2218  *   The SR calculation is:
2219  *     watermark = (trunc(latency/line time)+1) * surface width *
2220  *       bytes per pixel
2221  *   where
2222  *     line time = htotal / dotclock
2223  *     surface width = hdisplay for normal plane and 64 for cursor
2224  *   and latency is assumed to be high, as above.
2225  *
2226  * The final value programmed to the register should always be rounded up,
2227  * and include an extra 2 entries to account for clock crossings.
2228  *
2229  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2230  * to set the non-SR watermarks to 8.
2231  */
2232 void intel_update_watermarks(struct drm_device *dev)
2233 {
2234 	struct drm_i915_private *dev_priv = dev->dev_private;
2235 
2236 	if (dev_priv->display.update_wm)
2237 		dev_priv->display.update_wm(dev);
2238 }
2239 
2240 void intel_update_linetime_watermarks(struct drm_device *dev,
2241 		int pipe, struct drm_display_mode *mode)
2242 {
2243 	struct drm_i915_private *dev_priv = dev->dev_private;
2244 
2245 	if (dev_priv->display.update_linetime_wm)
2246 		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2247 }
2248 
2249 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2250 				    uint32_t sprite_width, int pixel_size)
2251 {
2252 	struct drm_i915_private *dev_priv = dev->dev_private;
2253 
2254 	if (dev_priv->display.update_sprite_wm)
2255 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2256 						   pixel_size);
2257 }
2258 
2259 static struct drm_i915_gem_object *
2260 intel_alloc_context_page(struct drm_device *dev)
2261 {
2262 	struct drm_i915_gem_object *ctx;
2263 	int ret;
2264 
2265 	DRM_LOCK_ASSERT(dev);
2266 
2267 	ctx = i915_gem_alloc_object(dev, 4096);
2268 	if (!ctx) {
2269 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2270 		return NULL;
2271 	}
2272 
2273 	ret = i915_gem_object_pin(ctx, 4096, true);
2274 	if (ret) {
2275 		DRM_ERROR("failed to pin power context: %d\n", ret);
2276 		goto err_unref;
2277 	}
2278 
2279 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2280 	if (ret) {
2281 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2282 		goto err_unpin;
2283 	}
2284 
2285 	return ctx;
2286 
2287 err_unpin:
2288 	i915_gem_object_unpin(ctx);
2289 err_unref:
2290 	drm_gem_object_unreference(&ctx->base);
2291 	DRM_UNLOCK(dev);
2292 	return NULL;
2293 }
2294 
2295 /**
2296  * Lock protecting IPS related data structures
2297  */
2298 struct lock mchdev_lock;
2299 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
2300 
2301 /* Global for IPS driver to get at the current i915 device. Protected by
2302  * mchdev_lock. */
2303 struct drm_i915_private *i915_mch_dev;
2304 
2305 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2306 {
2307 	struct drm_i915_private *dev_priv = dev->dev_private;
2308 	u16 rgvswctl;
2309 
2310 	rgvswctl = I915_READ16(MEMSWCTL);
2311 	if (rgvswctl & MEMCTL_CMD_STS) {
2312 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2313 		return false; /* still busy with another command */
2314 	}
2315 
2316 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2317 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2318 	I915_WRITE16(MEMSWCTL, rgvswctl);
2319 	POSTING_READ16(MEMSWCTL);
2320 
2321 	rgvswctl |= MEMCTL_CMD_STS;
2322 	I915_WRITE16(MEMSWCTL, rgvswctl);
2323 
2324 	return true;
2325 }
2326 
2327 static void ironlake_enable_drps(struct drm_device *dev)
2328 {
2329 	struct drm_i915_private *dev_priv = dev->dev_private;
2330 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2331 	u8 fmax, fmin, fstart, vstart;
2332 
2333 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2334 
2335 	/* Enable temp reporting */
2336 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2337 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2338 
2339 	/* 100ms RC evaluation intervals */
2340 	I915_WRITE(RCUPEI, 100000);
2341 	I915_WRITE(RCDNEI, 100000);
2342 
2343 	/* Set max/min thresholds to 90ms and 80ms respectively */
2344 	I915_WRITE(RCBMAXAVG, 90000);
2345 	I915_WRITE(RCBMINAVG, 80000);
2346 
2347 	I915_WRITE(MEMIHYST, 1);
2348 
2349 	/* Set up min, max, and cur for interrupt handling */
2350 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2351 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2352 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2353 		MEMMODE_FSTART_SHIFT;
2354 
2355 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2356 		PXVFREQ_PX_SHIFT;
2357 
2358 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2359 	dev_priv->ips.fstart = fstart;
2360 
2361 	dev_priv->ips.max_delay = fstart;
2362 	dev_priv->ips.min_delay = fmin;
2363 	dev_priv->ips.cur_delay = fstart;
2364 
2365 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2366 			 fmax, fmin, fstart);
2367 
2368 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2369 
2370 	/*
2371 	 * Interrupts will be enabled in ironlake_irq_postinstall
2372 	 */
2373 
2374 	I915_WRITE(VIDSTART, vstart);
2375 	POSTING_READ(VIDSTART);
2376 
2377 	rgvmodectl |= MEMMODE_SWMODE_EN;
2378 	I915_WRITE(MEMMODECTL, rgvmodectl);
2379 
2380 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2381 		DRM_ERROR("stuck trying to change perf mode\n");
2382 	DELAY(1000);
2383 
2384 	ironlake_set_drps(dev, fstart);
2385 
2386 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2387 		I915_READ(0x112e0);
2388 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2389 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2390 	nanotime(&dev_priv->ips.last_time2);
2391 
2392 	lockmgr(&mchdev_lock, LK_RELEASE);
2393 }
2394 
2395 static void ironlake_disable_drps(struct drm_device *dev)
2396 {
2397 	struct drm_i915_private *dev_priv = dev->dev_private;
2398 	u16 rgvswctl;
2399 
2400 	lockmgr(&mchdev_lock, LK_RELEASE);
2401 
2402 	rgvswctl = I915_READ16(MEMSWCTL);
2403 
2404 	/* Ack interrupts, disable EFC interrupt */
2405 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2406 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2407 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2408 	I915_WRITE(DEIIR, DE_PCU_EVENT);
2409 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2410 
2411 	/* Go back to the starting frequency */
2412 	ironlake_set_drps(dev, dev_priv->ips.fstart);
2413 	DELAY(1000);
2414 	rgvswctl |= MEMCTL_CMD_STS;
2415 	I915_WRITE(MEMSWCTL, rgvswctl);
2416 	DELAY(1000);
2417 
2418 	lockmgr(&mchdev_lock, LK_RELEASE);
2419 }
2420 
2421 /* There's a funny hw issue where the hw returns all 0 when reading from
2422  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2423  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2424  * all limits and the gpu stuck at whatever frequency it is at atm).
2425  */
2426 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2427 {
2428 	u32 limits;
2429 
2430 	limits = 0;
2431 
2432 	if (*val >= dev_priv->rps.max_delay)
2433 		*val = dev_priv->rps.max_delay;
2434 	limits |= dev_priv->rps.max_delay << 24;
2435 
2436 	/* Only set the down limit when we've reached the lowest level to avoid
2437 	 * getting more interrupts, otherwise leave this clear. This prevents a
2438 	 * race in the hw when coming out of rc6: There's a tiny window where
2439 	 * the hw runs at the minimal clock before selecting the desired
2440 	 * frequency, if the down threshold expires in that window we will not
2441 	 * receive a down interrupt. */
2442 	if (*val <= dev_priv->rps.min_delay) {
2443 		*val = dev_priv->rps.min_delay;
2444 		limits |= dev_priv->rps.min_delay << 16;
2445 	}
2446 
2447 	return limits;
2448 }
2449 
2450 void gen6_set_rps(struct drm_device *dev, u8 val)
2451 {
2452 	struct drm_i915_private *dev_priv = dev->dev_private;
2453 	u32 limits = gen6_rps_limits(dev_priv, &val);
2454 
2455 	WARN_ON(val > dev_priv->rps.max_delay);
2456 	WARN_ON(val < dev_priv->rps.min_delay);
2457 
2458 	if (val == dev_priv->rps.cur_delay)
2459 		return;
2460 
2461 	I915_WRITE(GEN6_RPNSWREQ,
2462 		   GEN6_FREQUENCY(val) |
2463 		   GEN6_OFFSET(0) |
2464 		   GEN6_AGGRESSIVE_TURBO);
2465 
2466 	/* Make sure we continue to get interrupts
2467 	 * until we hit the minimum or maximum frequencies.
2468 	 */
2469 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2470 
2471 	POSTING_READ(GEN6_RPNSWREQ);
2472 
2473 	dev_priv->rps.cur_delay = val;
2474 }
2475 
2476 static void gen6_disable_rps(struct drm_device *dev)
2477 {
2478 	struct drm_i915_private *dev_priv = dev->dev_private;
2479 
2480 	I915_WRITE(GEN6_RC_CONTROL, 0);
2481 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2482 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2483 	I915_WRITE(GEN6_PMIER, 0);
2484 	/* Complete PM interrupt masking here doesn't race with the rps work
2485 	 * item again unmasking PM interrupts because that is using a different
2486 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2487 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2488 
2489 	spin_lock(&dev_priv->rps.lock);
2490 	dev_priv->rps.pm_iir = 0;
2491 	spin_unlock(&dev_priv->rps.lock);
2492 
2493 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2494 }
2495 
2496 int intel_enable_rc6(const struct drm_device *dev)
2497 {
2498 	/* Respect the kernel parameter if it is set */
2499 	if (i915_enable_rc6 >= 0)
2500 		return i915_enable_rc6;
2501 
2502 	/* Disable RC6 on Ironlake */
2503 	if (INTEL_INFO(dev)->gen == 5)
2504 		return 0;
2505 
2506 	if (IS_HASWELL(dev)) {
2507 		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2508 		return INTEL_RC6_ENABLE;
2509 	}
2510 
2511 	/* snb/ivb have more than one rc6 state. */
2512 	if (INTEL_INFO(dev)->gen == 6) {
2513 		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2514 		return INTEL_RC6_ENABLE;
2515 	}
2516 
2517 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2518 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2519 }
2520 
2521 static void gen6_enable_rps(struct drm_device *dev)
2522 {
2523 	struct drm_i915_private *dev_priv = dev->dev_private;
2524 	struct intel_ring_buffer *ring;
2525 	u32 rp_state_cap;
2526 	u32 gt_perf_status;
2527 	u32 rc6vids, pcu_mbox, rc6_mask = 0;
2528 	u32 gtfifodbg;
2529 	int rc6_mode;
2530 	int i, ret;
2531 
2532 	/* Here begins a magic sequence of register writes to enable
2533 	 * auto-downclocking.
2534 	 *
2535 	 * Perhaps there might be some value in exposing these to
2536 	 * userspace...
2537 	 */
2538 	I915_WRITE(GEN6_RC_STATE, 0);
2539 
2540 	/* Clear the DBG now so we don't confuse earlier errors */
2541 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2542 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2543 		I915_WRITE(GTFIFODBG, gtfifodbg);
2544 	}
2545 
2546 	gen6_gt_force_wake_get(dev_priv);
2547 
2548 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2549 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2550 
2551 	/* In units of 100MHz */
2552 	dev_priv->rps.max_delay = rp_state_cap & 0xff;
2553 	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2554 	dev_priv->rps.cur_delay = 0;
2555 
2556 	/* disable the counters and set deterministic thresholds */
2557 	I915_WRITE(GEN6_RC_CONTROL, 0);
2558 
2559 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2560 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2561 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2562 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2563 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2564 
2565 	for_each_ring(ring, dev_priv, i)
2566 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2567 
2568 	I915_WRITE(GEN6_RC_SLEEP, 0);
2569 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2570 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2571 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2572 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2573 
2574 	/* Check if we are enabling RC6 */
2575 	rc6_mode = intel_enable_rc6(dev_priv->dev);
2576 	if (rc6_mode & INTEL_RC6_ENABLE)
2577 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2578 
2579 	/* We don't use those on Haswell */
2580 	if (!IS_HASWELL(dev)) {
2581 		if (rc6_mode & INTEL_RC6p_ENABLE)
2582 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2583 
2584 		if (rc6_mode & INTEL_RC6pp_ENABLE)
2585 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2586 	}
2587 
2588 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2589 			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2590 			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2591 			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2592 
2593 	I915_WRITE(GEN6_RC_CONTROL,
2594 		   rc6_mask |
2595 		   GEN6_RC_CTL_EI_MODE(1) |
2596 		   GEN6_RC_CTL_HW_ENABLE);
2597 
2598 	I915_WRITE(GEN6_RPNSWREQ,
2599 		   GEN6_FREQUENCY(10) |
2600 		   GEN6_OFFSET(0) |
2601 		   GEN6_AGGRESSIVE_TURBO);
2602 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2603 		   GEN6_FREQUENCY(12));
2604 
2605 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2606 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2607 		   dev_priv->rps.max_delay << 24 |
2608 		   dev_priv->rps.min_delay << 16);
2609 
2610 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2611 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2612 	I915_WRITE(GEN6_RP_UP_EI, 66000);
2613 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2614 
2615 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2616 	I915_WRITE(GEN6_RP_CONTROL,
2617 		   GEN6_RP_MEDIA_TURBO |
2618 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2619 		   GEN6_RP_MEDIA_IS_GFX |
2620 		   GEN6_RP_ENABLE |
2621 		   GEN6_RP_UP_BUSY_AVG |
2622 		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2623 
2624 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2625 	if (!ret) {
2626 		pcu_mbox = 0;
2627 		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2628 		if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2629 			dev_priv->rps.max_delay = pcu_mbox & 0xff;
2630 			DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2631 		}
2632 	} else {
2633 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2634 	}
2635 
2636 	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2637 
2638 	/* requires MSI enabled */
2639 	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2640 	spin_lock(&dev_priv->rps.lock);
2641 	WARN_ON(dev_priv->rps.pm_iir != 0);
2642 	I915_WRITE(GEN6_PMIMR, 0);
2643 	spin_unlock(&dev_priv->rps.lock);
2644 	/* enable all PM interrupts */
2645 	I915_WRITE(GEN6_PMINTRMSK, 0);
2646 
2647 	rc6vids = 0;
2648 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2649 	if (IS_GEN6(dev) && ret) {
2650 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2651 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2652 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2653 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2654 		rc6vids &= 0xffff00;
2655 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
2656 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2657 		if (ret)
2658 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2659 	}
2660 
2661 	gen6_gt_force_wake_put(dev_priv);
2662 }
2663 
2664 static void gen6_update_ring_freq(struct drm_device *dev)
2665 {
2666 	struct drm_i915_private *dev_priv = dev->dev_private;
2667 	int min_freq = 15;
2668 	int gpu_freq;
2669 	unsigned int ia_freq, max_ia_freq;
2670 	int scaling_factor = 180;
2671 
2672 #if 0
2673 	max_ia_freq = cpufreq_quick_get_max(0);
2674 	/*
2675 	 * Default to measured freq if none found, PCU will ensure we don't go
2676 	 * over
2677 	 */
2678 	if (!max_ia_freq)
2679 		max_ia_freq = tsc_khz;
2680 #else
2681 	max_ia_freq = tsc_frequency / 1000;
2682 #endif
2683 
2684 	/* Convert from kHz to MHz */
2685 	max_ia_freq /= 1000;
2686 
2687 	/*
2688 	 * For each potential GPU frequency, load a ring frequency we'd like
2689 	 * to use for memory access.  We do this by specifying the IA frequency
2690 	 * the PCU should use as a reference to determine the ring frequency.
2691 	 */
2692 	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2693 	     gpu_freq--) {
2694 		int diff = dev_priv->rps.max_delay - gpu_freq;
2695 
2696 		/*
2697 		 * For GPU frequencies less than 750MHz, just use the lowest
2698 		 * ring freq.
2699 		 */
2700 		if (gpu_freq < min_freq)
2701 			ia_freq = 800;
2702 		else
2703 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2704 #if 0
2705 		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2706 #else
2707 		ia_freq = (ia_freq + 50) / 100;
2708 #endif
2709 		ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2710 
2711 		sandybridge_pcode_write(dev_priv,
2712 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2713 					ia_freq | gpu_freq);
2714 	}
2715 }
2716 
2717 void ironlake_teardown_rc6(struct drm_device *dev)
2718 {
2719 	struct drm_i915_private *dev_priv = dev->dev_private;
2720 
2721 	if (dev_priv->ips.renderctx) {
2722 		i915_gem_object_unpin(dev_priv->ips.renderctx);
2723 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2724 		dev_priv->ips.renderctx = NULL;
2725 	}
2726 
2727 	if (dev_priv->ips.pwrctx) {
2728 		i915_gem_object_unpin(dev_priv->ips.pwrctx);
2729 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2730 		dev_priv->ips.pwrctx = NULL;
2731 	}
2732 }
2733 
2734 static void ironlake_disable_rc6(struct drm_device *dev)
2735 {
2736 	struct drm_i915_private *dev_priv = dev->dev_private;
2737 
2738 	if (I915_READ(PWRCTXA)) {
2739 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2740 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2741 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2742 			 50);
2743 
2744 		I915_WRITE(PWRCTXA, 0);
2745 		POSTING_READ(PWRCTXA);
2746 
2747 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2748 		POSTING_READ(RSTDBYCTL);
2749 	}
2750 }
2751 
2752 static int ironlake_setup_rc6(struct drm_device *dev)
2753 {
2754 	struct drm_i915_private *dev_priv = dev->dev_private;
2755 
2756 	if (dev_priv->ips.renderctx == NULL)
2757 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2758 	if (!dev_priv->ips.renderctx)
2759 		return -ENOMEM;
2760 
2761 	if (dev_priv->ips.pwrctx == NULL)
2762 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2763 	if (!dev_priv->ips.pwrctx) {
2764 		ironlake_teardown_rc6(dev);
2765 		return -ENOMEM;
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 void ironlake_enable_rc6(struct drm_device *dev)
2772 {
2773 	struct drm_i915_private *dev_priv = dev->dev_private;
2774 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2775 	bool was_interruptible;
2776 	int ret;
2777 
2778 	/* rc6 disabled by default due to repeated reports of hanging during
2779 	 * boot and resume.
2780 	 */
2781 	if (!intel_enable_rc6(dev))
2782 		return;
2783 
2784 	ret = ironlake_setup_rc6(dev);
2785 	if (ret)
2786 		return;
2787 
2788 	was_interruptible = dev_priv->mm.interruptible;
2789 	dev_priv->mm.interruptible = false;
2790 
2791 	/*
2792 	 * GPU can automatically power down the render unit if given a page
2793 	 * to save state.
2794 	 */
2795 	ret = intel_ring_begin(ring, 6);
2796 	if (ret) {
2797 		ironlake_teardown_rc6(dev);
2798 		dev_priv->mm.interruptible = was_interruptible;
2799 		return;
2800 	}
2801 
2802 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2803 	intel_ring_emit(ring, MI_SET_CONTEXT);
2804 	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2805 			MI_MM_SPACE_GTT |
2806 			MI_SAVE_EXT_STATE_EN |
2807 			MI_RESTORE_EXT_STATE_EN |
2808 			MI_RESTORE_INHIBIT);
2809 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2810 	intel_ring_emit(ring, MI_NOOP);
2811 	intel_ring_emit(ring, MI_FLUSH);
2812 	intel_ring_advance(ring);
2813 
2814 	/*
2815 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2816 	 * does an implicit flush, combined with MI_FLUSH above, it should be
2817 	 * safe to assume that renderctx is valid
2818 	 */
2819 	ret = intel_ring_idle(ring);
2820 	dev_priv->mm.interruptible = was_interruptible;
2821 	if (ret) {
2822 		DRM_ERROR("failed to enable ironlake power savings\n");
2823 		ironlake_teardown_rc6(dev);
2824 		return;
2825 	}
2826 
2827 	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2828 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2829 }
2830 
2831 static unsigned long intel_pxfreq(u32 vidfreq)
2832 {
2833 	unsigned long freq;
2834 	int div = (vidfreq & 0x3f0000) >> 16;
2835 	int post = (vidfreq & 0x3000) >> 12;
2836 	int pre = (vidfreq & 0x7);
2837 
2838 	if (!pre)
2839 		return 0;
2840 
2841 	freq = ((div * 133333) / ((1<<post) * pre));
2842 
2843 	return freq;
2844 }
2845 
2846 static const struct cparams {
2847 	u16 i;
2848 	u16 t;
2849 	u16 m;
2850 	u16 c;
2851 } cparams[] = {
2852 	{ 1, 1333, 301, 28664 },
2853 	{ 1, 1066, 294, 24460 },
2854 	{ 1, 800, 294, 25192 },
2855 	{ 0, 1333, 276, 27605 },
2856 	{ 0, 1066, 276, 27605 },
2857 	{ 0, 800, 231, 23784 },
2858 };
2859 
2860 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2861 {
2862 	u64 total_count, diff, ret;
2863 	u32 count1, count2, count3, m = 0, c = 0;
2864 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2865 	int i;
2866 
2867 	diff1 = now - dev_priv->ips.last_time1;
2868 
2869 	/* Prevent division-by-zero if we are asking too fast.
2870 	 * Also, we don't get interesting results if we are polling
2871 	 * faster than once in 10ms, so just return the saved value
2872 	 * in such cases.
2873 	 */
2874 	if (diff1 <= 10)
2875 		return dev_priv->ips.chipset_power;
2876 
2877 	count1 = I915_READ(DMIEC);
2878 	count2 = I915_READ(DDREC);
2879 	count3 = I915_READ(CSIEC);
2880 
2881 	total_count = count1 + count2 + count3;
2882 
2883 	/* FIXME: handle per-counter overflow */
2884 	if (total_count < dev_priv->ips.last_count1) {
2885 		diff = ~0UL - dev_priv->ips.last_count1;
2886 		diff += total_count;
2887 	} else {
2888 		diff = total_count - dev_priv->ips.last_count1;
2889 	}
2890 
2891 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2892 		if (cparams[i].i == dev_priv->ips.c_m &&
2893 		    cparams[i].t == dev_priv->ips.r_t) {
2894 			m = cparams[i].m;
2895 			c = cparams[i].c;
2896 			break;
2897 		}
2898 	}
2899 
2900 	diff = diff / diff1;
2901 	ret = ((m * diff) + c);
2902 	ret = ret / 10;
2903 
2904 	dev_priv->ips.last_count1 = total_count;
2905 	dev_priv->ips.last_time1 = now;
2906 
2907 	dev_priv->ips.chipset_power = ret;
2908 
2909 	return ret;
2910 }
2911 
2912 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2913 {
2914 	unsigned long val;
2915 
2916 	if (dev_priv->info->gen != 5)
2917 		return 0;
2918 
2919 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2920 
2921 	val = __i915_chipset_val(dev_priv);
2922 
2923 	lockmgr(&mchdev_lock, LK_RELEASE);
2924 
2925 	return val;
2926 }
2927 
2928 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2929 {
2930 	unsigned long m, x, b;
2931 	u32 tsfs;
2932 
2933 	tsfs = I915_READ(TSFS);
2934 
2935 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2936 	x = I915_READ8(TR1);
2937 
2938 	b = tsfs & TSFS_INTR_MASK;
2939 
2940 	return ((m * x) / 127) - b;
2941 }
2942 
2943 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2944 {
2945 	static const struct v_table {
2946 		u16 vd; /* in .1 mil */
2947 		u16 vm; /* in .1 mil */
2948 	} v_table[] = {
2949 		{ 0, 0, },
2950 		{ 375, 0, },
2951 		{ 500, 0, },
2952 		{ 625, 0, },
2953 		{ 750, 0, },
2954 		{ 875, 0, },
2955 		{ 1000, 0, },
2956 		{ 1125, 0, },
2957 		{ 4125, 3000, },
2958 		{ 4125, 3000, },
2959 		{ 4125, 3000, },
2960 		{ 4125, 3000, },
2961 		{ 4125, 3000, },
2962 		{ 4125, 3000, },
2963 		{ 4125, 3000, },
2964 		{ 4125, 3000, },
2965 		{ 4125, 3000, },
2966 		{ 4125, 3000, },
2967 		{ 4125, 3000, },
2968 		{ 4125, 3000, },
2969 		{ 4125, 3000, },
2970 		{ 4125, 3000, },
2971 		{ 4125, 3000, },
2972 		{ 4125, 3000, },
2973 		{ 4125, 3000, },
2974 		{ 4125, 3000, },
2975 		{ 4125, 3000, },
2976 		{ 4125, 3000, },
2977 		{ 4125, 3000, },
2978 		{ 4125, 3000, },
2979 		{ 4125, 3000, },
2980 		{ 4125, 3000, },
2981 		{ 4250, 3125, },
2982 		{ 4375, 3250, },
2983 		{ 4500, 3375, },
2984 		{ 4625, 3500, },
2985 		{ 4750, 3625, },
2986 		{ 4875, 3750, },
2987 		{ 5000, 3875, },
2988 		{ 5125, 4000, },
2989 		{ 5250, 4125, },
2990 		{ 5375, 4250, },
2991 		{ 5500, 4375, },
2992 		{ 5625, 4500, },
2993 		{ 5750, 4625, },
2994 		{ 5875, 4750, },
2995 		{ 6000, 4875, },
2996 		{ 6125, 5000, },
2997 		{ 6250, 5125, },
2998 		{ 6375, 5250, },
2999 		{ 6500, 5375, },
3000 		{ 6625, 5500, },
3001 		{ 6750, 5625, },
3002 		{ 6875, 5750, },
3003 		{ 7000, 5875, },
3004 		{ 7125, 6000, },
3005 		{ 7250, 6125, },
3006 		{ 7375, 6250, },
3007 		{ 7500, 6375, },
3008 		{ 7625, 6500, },
3009 		{ 7750, 6625, },
3010 		{ 7875, 6750, },
3011 		{ 8000, 6875, },
3012 		{ 8125, 7000, },
3013 		{ 8250, 7125, },
3014 		{ 8375, 7250, },
3015 		{ 8500, 7375, },
3016 		{ 8625, 7500, },
3017 		{ 8750, 7625, },
3018 		{ 8875, 7750, },
3019 		{ 9000, 7875, },
3020 		{ 9125, 8000, },
3021 		{ 9250, 8125, },
3022 		{ 9375, 8250, },
3023 		{ 9500, 8375, },
3024 		{ 9625, 8500, },
3025 		{ 9750, 8625, },
3026 		{ 9875, 8750, },
3027 		{ 10000, 8875, },
3028 		{ 10125, 9000, },
3029 		{ 10250, 9125, },
3030 		{ 10375, 9250, },
3031 		{ 10500, 9375, },
3032 		{ 10625, 9500, },
3033 		{ 10750, 9625, },
3034 		{ 10875, 9750, },
3035 		{ 11000, 9875, },
3036 		{ 11125, 10000, },
3037 		{ 11250, 10125, },
3038 		{ 11375, 10250, },
3039 		{ 11500, 10375, },
3040 		{ 11625, 10500, },
3041 		{ 11750, 10625, },
3042 		{ 11875, 10750, },
3043 		{ 12000, 10875, },
3044 		{ 12125, 11000, },
3045 		{ 12250, 11125, },
3046 		{ 12375, 11250, },
3047 		{ 12500, 11375, },
3048 		{ 12625, 11500, },
3049 		{ 12750, 11625, },
3050 		{ 12875, 11750, },
3051 		{ 13000, 11875, },
3052 		{ 13125, 12000, },
3053 		{ 13250, 12125, },
3054 		{ 13375, 12250, },
3055 		{ 13500, 12375, },
3056 		{ 13625, 12500, },
3057 		{ 13750, 12625, },
3058 		{ 13875, 12750, },
3059 		{ 14000, 12875, },
3060 		{ 14125, 13000, },
3061 		{ 14250, 13125, },
3062 		{ 14375, 13250, },
3063 		{ 14500, 13375, },
3064 		{ 14625, 13500, },
3065 		{ 14750, 13625, },
3066 		{ 14875, 13750, },
3067 		{ 15000, 13875, },
3068 		{ 15125, 14000, },
3069 		{ 15250, 14125, },
3070 		{ 15375, 14250, },
3071 		{ 15500, 14375, },
3072 		{ 15625, 14500, },
3073 		{ 15750, 14625, },
3074 		{ 15875, 14750, },
3075 		{ 16000, 14875, },
3076 		{ 16125, 15000, },
3077 	};
3078 	if (dev_priv->info->is_mobile)
3079 		return v_table[pxvid].vm;
3080 	else
3081 		return v_table[pxvid].vd;
3082 }
3083 
3084 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3085 {
3086 	struct timespec now, diff1;
3087 	u64 diff;
3088 	unsigned long diffms;
3089 	u32 count;
3090 
3091 	nanotime(&now);
3092 	diff1 = now;
3093 	timespecsub(&diff1, &dev_priv->ips.last_time2);
3094 
3095 	/* Don't divide by 0 */
3096 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3097 	if (!diffms)
3098 		return;
3099 
3100 	count = I915_READ(GFXEC);
3101 
3102 	if (count < dev_priv->ips.last_count2) {
3103 		diff = ~0UL - dev_priv->ips.last_count2;
3104 		diff += count;
3105 	} else {
3106 		diff = count - dev_priv->ips.last_count2;
3107 	}
3108 
3109 	dev_priv->ips.last_count2 = count;
3110 	dev_priv->ips.last_time2 = now;
3111 
3112 	/* More magic constants... */
3113 	diff = diff * 1181;
3114 	diff = diff / (diffms * 10);
3115 	dev_priv->ips.gfx_power = diff;
3116 }
3117 
3118 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3119 {
3120 	if (dev_priv->info->gen != 5)
3121 		return;
3122 
3123 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3124 
3125 	__i915_update_gfx_val(dev_priv);
3126 
3127 	lockmgr(&mchdev_lock, LK_RELEASE);
3128 }
3129 
3130 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3131 {
3132 	unsigned long t, corr, state1, corr2, state2;
3133 	u32 pxvid, ext_v;
3134 
3135 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3136 	pxvid = (pxvid >> 24) & 0x7f;
3137 	ext_v = pvid_to_extvid(dev_priv, pxvid);
3138 
3139 	state1 = ext_v;
3140 
3141 	t = i915_mch_val(dev_priv);
3142 
3143 	/* Revel in the empirically derived constants */
3144 
3145 	/* Correction factor in 1/100000 units */
3146 	if (t > 80)
3147 		corr = ((t * 2349) + 135940);
3148 	else if (t >= 50)
3149 		corr = ((t * 964) + 29317);
3150 	else /* < 50 */
3151 		corr = ((t * 301) + 1004);
3152 
3153 	corr = corr * ((150142 * state1) / 10000 - 78642);
3154 	corr /= 100000;
3155 	corr2 = (corr * dev_priv->ips.corr);
3156 
3157 	state2 = (corr2 * state1) / 10000;
3158 	state2 /= 100; /* convert to mW */
3159 
3160 	__i915_update_gfx_val(dev_priv);
3161 
3162 	return dev_priv->ips.gfx_power + state2;
3163 }
3164 
3165 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3166 {
3167 	unsigned long val;
3168 
3169 	if (dev_priv->info->gen != 5)
3170 		return 0;
3171 
3172 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3173 
3174 	val = __i915_gfx_val(dev_priv);
3175 
3176 	lockmgr(&mchdev_lock, LK_RELEASE);
3177 
3178 	return val;
3179 }
3180 
3181 /**
3182  * i915_read_mch_val - return value for IPS use
3183  *
3184  * Calculate and return a value for the IPS driver to use when deciding whether
3185  * we have thermal and power headroom to increase CPU or GPU power budget.
3186  */
3187 unsigned long i915_read_mch_val(void)
3188 {
3189 	struct drm_i915_private *dev_priv;
3190 	unsigned long chipset_val, graphics_val, ret = 0;
3191 
3192 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3193 	if (!i915_mch_dev)
3194 		goto out_unlock;
3195 	dev_priv = i915_mch_dev;
3196 
3197 	chipset_val = __i915_chipset_val(dev_priv);
3198 	graphics_val = __i915_gfx_val(dev_priv);
3199 
3200 	ret = chipset_val + graphics_val;
3201 
3202 out_unlock:
3203 	lockmgr(&mchdev_lock, LK_RELEASE);
3204 
3205 	return ret;
3206 }
3207 
3208 /**
3209  * i915_gpu_raise - raise GPU frequency limit
3210  *
3211  * Raise the limit; IPS indicates we have thermal headroom.
3212  */
3213 bool i915_gpu_raise(void)
3214 {
3215 	struct drm_i915_private *dev_priv;
3216 	bool ret = true;
3217 
3218 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3219 	if (!i915_mch_dev) {
3220 		ret = false;
3221 		goto out_unlock;
3222 	}
3223 	dev_priv = i915_mch_dev;
3224 
3225 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3226 		dev_priv->ips.max_delay--;
3227 
3228 out_unlock:
3229 	lockmgr(&mchdev_lock, LK_RELEASE);
3230 
3231 	return ret;
3232 }
3233 
3234 /**
3235  * i915_gpu_lower - lower GPU frequency limit
3236  *
3237  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3238  * frequency maximum.
3239  */
3240 bool i915_gpu_lower(void)
3241 {
3242 	struct drm_i915_private *dev_priv;
3243 	bool ret = true;
3244 
3245 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3246 	if (!i915_mch_dev) {
3247 		ret = false;
3248 		goto out_unlock;
3249 	}
3250 	dev_priv = i915_mch_dev;
3251 
3252 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3253 		dev_priv->ips.max_delay++;
3254 
3255 out_unlock:
3256 	lockmgr(&mchdev_lock, LK_RELEASE);
3257 
3258 	return ret;
3259 }
3260 
3261 /**
3262  * i915_gpu_busy - indicate GPU business to IPS
3263  *
3264  * Tell the IPS driver whether or not the GPU is busy.
3265  */
3266 bool i915_gpu_busy(void)
3267 {
3268 	struct drm_i915_private *dev_priv;
3269 	struct intel_ring_buffer *ring;
3270 	bool ret = false;
3271 	int i;
3272 
3273 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3274 	if (!i915_mch_dev)
3275 		goto out_unlock;
3276 	dev_priv = i915_mch_dev;
3277 
3278 	for_each_ring(ring, dev_priv, i)
3279 		ret |= !list_empty(&ring->request_list);
3280 
3281 out_unlock:
3282 	lockmgr(&mchdev_lock, LK_RELEASE);
3283 
3284 	return ret;
3285 }
3286 
3287 /**
3288  * i915_gpu_turbo_disable - disable graphics turbo
3289  *
3290  * Disable graphics turbo by resetting the max frequency and setting the
3291  * current frequency to the default.
3292  */
3293 bool i915_gpu_turbo_disable(void)
3294 {
3295 	struct drm_i915_private *dev_priv;
3296 	bool ret = true;
3297 
3298 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3299 	if (!i915_mch_dev) {
3300 		ret = false;
3301 		goto out_unlock;
3302 	}
3303 	dev_priv = i915_mch_dev;
3304 
3305 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3306 
3307 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3308 		ret = false;
3309 
3310 out_unlock:
3311 	lockmgr(&mchdev_lock, LK_RELEASE);
3312 
3313 	return ret;
3314 }
3315 
3316 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3317 {
3318 	/* We only register the i915 ips part with intel-ips once everything is
3319 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3320 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3321 	i915_mch_dev = dev_priv;
3322 	lockmgr(&mchdev_lock, LK_RELEASE);
3323 }
3324 
3325 void intel_gpu_ips_teardown(void)
3326 {
3327 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3328 	i915_mch_dev = NULL;
3329 	lockmgr(&mchdev_lock, LK_RELEASE);
3330 }
3331 
3332 static void intel_init_emon(struct drm_device *dev)
3333 {
3334 	struct drm_i915_private *dev_priv = dev->dev_private;
3335 	u32 lcfuse;
3336 	u8 pxw[16];
3337 	int i;
3338 
3339 	/* Disable to program */
3340 	I915_WRITE(ECR, 0);
3341 	POSTING_READ(ECR);
3342 
3343 	/* Program energy weights for various events */
3344 	I915_WRITE(SDEW, 0x15040d00);
3345 	I915_WRITE(CSIEW0, 0x007f0000);
3346 	I915_WRITE(CSIEW1, 0x1e220004);
3347 	I915_WRITE(CSIEW2, 0x04000004);
3348 
3349 	for (i = 0; i < 5; i++)
3350 		I915_WRITE(PEW + (i * 4), 0);
3351 	for (i = 0; i < 3; i++)
3352 		I915_WRITE(DEW + (i * 4), 0);
3353 
3354 	/* Program P-state weights to account for frequency power adjustment */
3355 	for (i = 0; i < 16; i++) {
3356 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3357 		unsigned long freq = intel_pxfreq(pxvidfreq);
3358 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3359 			PXVFREQ_PX_SHIFT;
3360 		unsigned long val;
3361 
3362 		val = vid * vid;
3363 		val *= (freq / 1000);
3364 		val *= 255;
3365 		val /= (127*127*900);
3366 		if (val > 0xff)
3367 			DRM_ERROR("bad pxval: %ld\n", val);
3368 		pxw[i] = val;
3369 	}
3370 	/* Render standby states get 0 weight */
3371 	pxw[14] = 0;
3372 	pxw[15] = 0;
3373 
3374 	for (i = 0; i < 4; i++) {
3375 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3376 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3377 		I915_WRITE(PXW + (i * 4), val);
3378 	}
3379 
3380 	/* Adjust magic regs to magic values (more experimental results) */
3381 	I915_WRITE(OGW0, 0);
3382 	I915_WRITE(OGW1, 0);
3383 	I915_WRITE(EG0, 0x00007f00);
3384 	I915_WRITE(EG1, 0x0000000e);
3385 	I915_WRITE(EG2, 0x000e0000);
3386 	I915_WRITE(EG3, 0x68000300);
3387 	I915_WRITE(EG4, 0x42000000);
3388 	I915_WRITE(EG5, 0x00140031);
3389 	I915_WRITE(EG6, 0);
3390 	I915_WRITE(EG7, 0);
3391 
3392 	for (i = 0; i < 8; i++)
3393 		I915_WRITE(PXWL + (i * 4), 0);
3394 
3395 	/* Enable PMON + select events */
3396 	I915_WRITE(ECR, 0x80000019);
3397 
3398 	lcfuse = I915_READ(LCFUSE02);
3399 
3400 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3401 }
3402 
3403 void intel_disable_gt_powersave(struct drm_device *dev)
3404 {
3405 	struct drm_i915_private *dev_priv = dev->dev_private;
3406 
3407 	if (IS_IRONLAKE_M(dev)) {
3408 		ironlake_disable_drps(dev);
3409 		ironlake_disable_rc6(dev);
3410 	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3411 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3412 		lockmgr(&dev_priv->rps.hw_lock, LK_EXCLUSIVE);
3413 		gen6_disable_rps(dev);
3414 		lockmgr(&dev_priv->rps.hw_lock, LK_RELEASE);
3415 	}
3416 }
3417 
3418 static void intel_gen6_powersave_work(struct work_struct *work)
3419 {
3420 	struct drm_i915_private *dev_priv =
3421 		container_of(work, struct drm_i915_private,
3422 			     rps.delayed_resume_work.work);
3423 	struct drm_device *dev = dev_priv->dev;
3424 
3425 	lockmgr(&dev_priv->rps.hw_lock, LK_EXCLUSIVE);
3426 	gen6_enable_rps(dev);
3427 	gen6_update_ring_freq(dev);
3428 	lockmgr(&dev_priv->rps.hw_lock, LK_RELEASE);
3429 }
3430 
3431 void intel_enable_gt_powersave(struct drm_device *dev)
3432 {
3433 	struct drm_i915_private *dev_priv = dev->dev_private;
3434 
3435 	if (IS_IRONLAKE_M(dev)) {
3436 		ironlake_enable_drps(dev);
3437 		ironlake_enable_rc6(dev);
3438 		intel_init_emon(dev);
3439 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3440 		/*
3441 		 * PCU communication is slow and this doesn't need to be
3442 		 * done at any specific time, so do this out of our fast path
3443 		 * to make resume and init faster.
3444 		 */
3445 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3446 				      round_jiffies_up_relative(hz));
3447 	}
3448 }
3449 
3450 static void ibx_init_clock_gating(struct drm_device *dev)
3451 {
3452 	struct drm_i915_private *dev_priv = dev->dev_private;
3453 
3454 	/*
3455 	 * On Ibex Peak and Cougar Point, we need to disable clock
3456 	 * gating for the panel power sequencer or it will fail to
3457 	 * start up when no ports are active.
3458 	 */
3459 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3460 }
3461 
3462 static void ironlake_init_clock_gating(struct drm_device *dev)
3463 {
3464 	struct drm_i915_private *dev_priv = dev->dev_private;
3465 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3466 
3467 	/* Required for FBC */
3468 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3469 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3470 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3471 
3472 	I915_WRITE(PCH_3DCGDIS0,
3473 		   MARIUNIT_CLOCK_GATE_DISABLE |
3474 		   SVSMUNIT_CLOCK_GATE_DISABLE);
3475 	I915_WRITE(PCH_3DCGDIS1,
3476 		   VFMUNIT_CLOCK_GATE_DISABLE);
3477 
3478 	/*
3479 	 * According to the spec the following bits should be set in
3480 	 * order to enable memory self-refresh
3481 	 * The bit 22/21 of 0x42004
3482 	 * The bit 5 of 0x42020
3483 	 * The bit 15 of 0x45000
3484 	 */
3485 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3486 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3487 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3488 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3489 	I915_WRITE(DISP_ARB_CTL,
3490 		   (I915_READ(DISP_ARB_CTL) |
3491 		    DISP_FBC_WM_DIS));
3492 	I915_WRITE(WM3_LP_ILK, 0);
3493 	I915_WRITE(WM2_LP_ILK, 0);
3494 	I915_WRITE(WM1_LP_ILK, 0);
3495 
3496 	/*
3497 	 * Based on the document from hardware guys the following bits
3498 	 * should be set unconditionally in order to enable FBC.
3499 	 * The bit 22 of 0x42000
3500 	 * The bit 22 of 0x42004
3501 	 * The bit 7,8,9 of 0x42020.
3502 	 */
3503 	if (IS_IRONLAKE_M(dev)) {
3504 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3505 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3506 			   ILK_FBCQ_DIS);
3507 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3508 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3509 			   ILK_DPARB_GATE);
3510 	}
3511 
3512 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3513 
3514 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3515 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3516 		   ILK_ELPIN_409_SELECT);
3517 	I915_WRITE(_3D_CHICKEN2,
3518 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3519 		   _3D_CHICKEN2_WM_READ_PIPELINED);
3520 
3521 	/* WaDisableRenderCachePipelinedFlush */
3522 	I915_WRITE(CACHE_MODE_0,
3523 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3524 
3525 	ibx_init_clock_gating(dev);
3526 }
3527 
3528 static void cpt_init_clock_gating(struct drm_device *dev)
3529 {
3530 	struct drm_i915_private *dev_priv = dev->dev_private;
3531 	int pipe;
3532 	uint32_t val;
3533 
3534 	/*
3535 	 * On Ibex Peak and Cougar Point, we need to disable clock
3536 	 * gating for the panel power sequencer or it will fail to
3537 	 * start up when no ports are active.
3538 	 */
3539 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3540 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3541 		   DPLS_EDP_PPS_FIX_DIS);
3542 	/* The below fixes the weird display corruption, a few pixels shifted
3543 	 * downward, on (only) LVDS of some HP laptops with IVY.
3544 	 */
3545 	for_each_pipe(pipe) {
3546 		val = TRANS_CHICKEN2_TIMING_OVERRIDE;
3547 		if (dev_priv->fdi_rx_polarity_inverted)
3548 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3549 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
3550 	}
3551 	/* WADP0ClockGatingDisable */
3552 	for_each_pipe(pipe) {
3553 		I915_WRITE(TRANS_CHICKEN1(pipe),
3554 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3555 	}
3556 }
3557 
3558 static void gen6_init_clock_gating(struct drm_device *dev)
3559 {
3560 	struct drm_i915_private *dev_priv = dev->dev_private;
3561 	int pipe;
3562 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3563 
3564 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3565 
3566 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3567 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3568 		   ILK_ELPIN_409_SELECT);
3569 
3570 	/* WaDisableHiZPlanesWhenMSAAEnabled */
3571 	I915_WRITE(_3D_CHICKEN,
3572 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3573 
3574 	/* WaSetupGtModeTdRowDispatch */
3575 	if (IS_SNB_GT1(dev))
3576 		I915_WRITE(GEN6_GT_MODE,
3577 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3578 
3579 	I915_WRITE(WM3_LP_ILK, 0);
3580 	I915_WRITE(WM2_LP_ILK, 0);
3581 	I915_WRITE(WM1_LP_ILK, 0);
3582 
3583 	I915_WRITE(CACHE_MODE_0,
3584 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3585 
3586 	I915_WRITE(GEN6_UCGCTL1,
3587 		   I915_READ(GEN6_UCGCTL1) |
3588 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3589 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3590 
3591 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3592 	 * gating disable must be set.  Failure to set it results in
3593 	 * flickering pixels due to Z write ordering failures after
3594 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3595 	 * Sanctuary and Tropics, and apparently anything else with
3596 	 * alpha test or pixel discard.
3597 	 *
3598 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3599 	 * but we didn't debug actual testcases to find it out.
3600 	 *
3601 	 * Also apply WaDisableVDSUnitClockGating and
3602 	 * WaDisableRCPBUnitClockGating.
3603 	 */
3604 	I915_WRITE(GEN6_UCGCTL2,
3605 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3606 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3607 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3608 
3609 	/* Bspec says we need to always set all mask bits. */
3610 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3611 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3612 
3613 	/*
3614 	 * According to the spec the following bits should be
3615 	 * set in order to enable memory self-refresh and fbc:
3616 	 * The bit21 and bit22 of 0x42000
3617 	 * The bit21 and bit22 of 0x42004
3618 	 * The bit5 and bit7 of 0x42020
3619 	 * The bit14 of 0x70180
3620 	 * The bit14 of 0x71180
3621 	 */
3622 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3623 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3624 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3625 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3626 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3627 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3628 	I915_WRITE(ILK_DSPCLK_GATE_D,
3629 		   I915_READ(ILK_DSPCLK_GATE_D) |
3630 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3631 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3632 
3633 	/* WaMbcDriverBootEnable */
3634 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3635 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3636 
3637 	for_each_pipe(pipe) {
3638 		I915_WRITE(DSPCNTR(pipe),
3639 			   I915_READ(DSPCNTR(pipe)) |
3640 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3641 		intel_flush_display_plane(dev_priv, pipe);
3642 	}
3643 
3644 	/* The default value should be 0x200 according to docs, but the two
3645 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3646 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3647 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3648 
3649 	cpt_init_clock_gating(dev);
3650 }
3651 
3652 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3653 {
3654 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3655 
3656 	reg &= ~GEN7_FF_SCHED_MASK;
3657 	reg |= GEN7_FF_TS_SCHED_HW;
3658 	reg |= GEN7_FF_VS_SCHED_HW;
3659 	reg |= GEN7_FF_DS_SCHED_HW;
3660 
3661 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3662 }
3663 
3664 static void lpt_init_clock_gating(struct drm_device *dev)
3665 {
3666 	struct drm_i915_private *dev_priv = dev->dev_private;
3667 
3668 	/*
3669 	 * TODO: this bit should only be enabled when really needed, then
3670 	 * disabled when not needed anymore in order to save power.
3671 	 */
3672 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3673 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
3674 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
3675 			   PCH_LP_PARTITION_LEVEL_DISABLE);
3676 }
3677 
3678 static void haswell_init_clock_gating(struct drm_device *dev)
3679 {
3680 	struct drm_i915_private *dev_priv = dev->dev_private;
3681 	int pipe;
3682 
3683 	I915_WRITE(WM3_LP_ILK, 0);
3684 	I915_WRITE(WM2_LP_ILK, 0);
3685 	I915_WRITE(WM1_LP_ILK, 0);
3686 
3687 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3688 	 * This implements the WaDisableRCZUnitClockGating workaround.
3689 	 */
3690 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3691 
3692 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3693 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3694 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3695 
3696 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3697 	I915_WRITE(GEN7_L3CNTLREG1,
3698 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3699 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3700 			GEN7_WA_L3_CHICKEN_MODE);
3701 
3702 	/* This is required by WaCatErrorRejectionIssue */
3703 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3704 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3705 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3706 
3707 	for_each_pipe(pipe) {
3708 		I915_WRITE(DSPCNTR(pipe),
3709 			   I915_READ(DSPCNTR(pipe)) |
3710 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3711 		intel_flush_display_plane(dev_priv, pipe);
3712 	}
3713 
3714 	gen7_setup_fixed_func_scheduler(dev_priv);
3715 
3716 	/* WaDisable4x2SubspanOptimization */
3717 	I915_WRITE(CACHE_MODE_1,
3718 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3719 
3720 	/* WaMbcDriverBootEnable */
3721 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3722 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3723 
3724 	/* XXX: This is a workaround for early silicon revisions and should be
3725 	 * removed later.
3726 	 */
3727 	I915_WRITE(WM_DBG,
3728 			I915_READ(WM_DBG) |
3729 			WM_DBG_DISALLOW_MULTIPLE_LP |
3730 			WM_DBG_DISALLOW_SPRITE |
3731 			WM_DBG_DISALLOW_MAXFIFO);
3732 
3733 	lpt_init_clock_gating(dev);
3734 }
3735 
3736 static void ivybridge_init_clock_gating(struct drm_device *dev)
3737 {
3738 	struct drm_i915_private *dev_priv = dev->dev_private;
3739 	int pipe;
3740 	uint32_t snpcr;
3741 
3742 	I915_WRITE(WM3_LP_ILK, 0);
3743 	I915_WRITE(WM2_LP_ILK, 0);
3744 	I915_WRITE(WM1_LP_ILK, 0);
3745 
3746 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3747 
3748 	/* WaDisableEarlyCull */
3749 	I915_WRITE(_3D_CHICKEN3,
3750 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3751 
3752 	/* WaDisableBackToBackFlipFix */
3753 	I915_WRITE(IVB_CHICKEN3,
3754 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3755 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3756 
3757 	/* WaDisablePSDDualDispatchEnable */
3758 	if (IS_IVB_GT1(dev))
3759 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3760 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3761 	else
3762 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3763 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3764 
3765 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3766 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3767 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3768 
3769 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3770 	I915_WRITE(GEN7_L3CNTLREG1,
3771 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3772 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3773 		   GEN7_WA_L3_CHICKEN_MODE);
3774 	if (IS_IVB_GT1(dev))
3775 		I915_WRITE(GEN7_ROW_CHICKEN2,
3776 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3777 	else
3778 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3779 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3780 
3781 
3782 	/* WaForceL3Serialization */
3783 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3784 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3785 
3786 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3787 	 * gating disable must be set.  Failure to set it results in
3788 	 * flickering pixels due to Z write ordering failures after
3789 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3790 	 * Sanctuary and Tropics, and apparently anything else with
3791 	 * alpha test or pixel discard.
3792 	 *
3793 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3794 	 * but we didn't debug actual testcases to find it out.
3795 	 *
3796 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3797 	 * This implements the WaDisableRCZUnitClockGating workaround.
3798 	 */
3799 	I915_WRITE(GEN6_UCGCTL2,
3800 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3801 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3802 
3803 	/* This is required by WaCatErrorRejectionIssue */
3804 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3805 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3806 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3807 
3808 	for_each_pipe(pipe) {
3809 		I915_WRITE(DSPCNTR(pipe),
3810 			   I915_READ(DSPCNTR(pipe)) |
3811 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3812 		intel_flush_display_plane(dev_priv, pipe);
3813 	}
3814 
3815 	/* WaMbcDriverBootEnable */
3816 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3817 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3818 
3819 	gen7_setup_fixed_func_scheduler(dev_priv);
3820 
3821 	/* WaDisable4x2SubspanOptimization */
3822 	I915_WRITE(CACHE_MODE_1,
3823 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3824 
3825 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3826 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3827 	snpcr |= GEN6_MBC_SNPCR_MED;
3828 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3829 
3830 	cpt_init_clock_gating(dev);
3831 }
3832 
3833 static void valleyview_init_clock_gating(struct drm_device *dev)
3834 {
3835 	struct drm_i915_private *dev_priv = dev->dev_private;
3836 	int pipe;
3837 
3838 	I915_WRITE(WM3_LP_ILK, 0);
3839 	I915_WRITE(WM2_LP_ILK, 0);
3840 	I915_WRITE(WM1_LP_ILK, 0);
3841 
3842 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3843 
3844 	/* WaDisableEarlyCull */
3845 	I915_WRITE(_3D_CHICKEN3,
3846 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3847 
3848 	/* WaDisableBackToBackFlipFix */
3849 	I915_WRITE(IVB_CHICKEN3,
3850 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3851 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3852 
3853 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3854 		   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3855 
3856 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3857 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3858 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3859 
3860 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3861 	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3862 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3863 
3864 	/* WaForceL3Serialization */
3865 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3866 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3867 
3868 	/* WaDisableDopClockGating */
3869 	I915_WRITE(GEN7_ROW_CHICKEN2,
3870 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3871 
3872 	/* WaForceL3Serialization */
3873 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3874 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3875 
3876 	/* This is required by WaCatErrorRejectionIssue */
3877 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3878 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3879 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3880 
3881 	/* WaMbcDriverBootEnable */
3882 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3883 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3884 
3885 
3886 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3887 	 * gating disable must be set.  Failure to set it results in
3888 	 * flickering pixels due to Z write ordering failures after
3889 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3890 	 * Sanctuary and Tropics, and apparently anything else with
3891 	 * alpha test or pixel discard.
3892 	 *
3893 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3894 	 * but we didn't debug actual testcases to find it out.
3895 	 *
3896 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3897 	 * This implements the WaDisableRCZUnitClockGating workaround.
3898 	 *
3899 	 * Also apply WaDisableVDSUnitClockGating and
3900 	 * WaDisableRCPBUnitClockGating.
3901 	 */
3902 	I915_WRITE(GEN6_UCGCTL2,
3903 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3904 		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3905 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3906 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3907 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3908 
3909 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3910 
3911 	for_each_pipe(pipe) {
3912 		I915_WRITE(DSPCNTR(pipe),
3913 			   I915_READ(DSPCNTR(pipe)) |
3914 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3915 		intel_flush_display_plane(dev_priv, pipe);
3916 	}
3917 
3918 	I915_WRITE(CACHE_MODE_1,
3919 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3920 
3921 	/*
3922 	 * On ValleyView, the GUnit needs to signal the GT
3923 	 * when flip and other events complete.  So enable
3924 	 * all the GUnit->GT interrupts here
3925 	 */
3926 	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3927 		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3928 		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3929 		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3930 		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3931 		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3932 		   PLANEA_FLIPDONE_INT_EN);
3933 
3934 	/*
3935 	 * WaDisableVLVClockGating_VBIIssue
3936 	 * Disable clock gating on th GCFG unit to prevent a delay
3937 	 * in the reporting of vblank events.
3938 	 */
3939 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3940 }
3941 
3942 static void g4x_init_clock_gating(struct drm_device *dev)
3943 {
3944 	struct drm_i915_private *dev_priv = dev->dev_private;
3945 	uint32_t dspclk_gate;
3946 
3947 	I915_WRITE(RENCLK_GATE_D1, 0);
3948 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3949 		   GS_UNIT_CLOCK_GATE_DISABLE |
3950 		   CL_UNIT_CLOCK_GATE_DISABLE);
3951 	I915_WRITE(RAMCLK_GATE_D, 0);
3952 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3953 		OVRUNIT_CLOCK_GATE_DISABLE |
3954 		OVCUNIT_CLOCK_GATE_DISABLE;
3955 	if (IS_GM45(dev))
3956 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3957 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3958 
3959 	/* WaDisableRenderCachePipelinedFlush */
3960 	I915_WRITE(CACHE_MODE_0,
3961 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3962 }
3963 
3964 static void crestline_init_clock_gating(struct drm_device *dev)
3965 {
3966 	struct drm_i915_private *dev_priv = dev->dev_private;
3967 
3968 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3969 	I915_WRITE(RENCLK_GATE_D2, 0);
3970 	I915_WRITE(DSPCLK_GATE_D, 0);
3971 	I915_WRITE(RAMCLK_GATE_D, 0);
3972 	I915_WRITE16(DEUC, 0);
3973 }
3974 
3975 static void broadwater_init_clock_gating(struct drm_device *dev)
3976 {
3977 	struct drm_i915_private *dev_priv = dev->dev_private;
3978 
3979 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3980 		   I965_RCC_CLOCK_GATE_DISABLE |
3981 		   I965_RCPB_CLOCK_GATE_DISABLE |
3982 		   I965_ISC_CLOCK_GATE_DISABLE |
3983 		   I965_FBC_CLOCK_GATE_DISABLE);
3984 	I915_WRITE(RENCLK_GATE_D2, 0);
3985 }
3986 
3987 static void gen3_init_clock_gating(struct drm_device *dev)
3988 {
3989 	struct drm_i915_private *dev_priv = dev->dev_private;
3990 	u32 dstate = I915_READ(D_STATE);
3991 
3992 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3993 		DSTATE_DOT_CLOCK_GATING;
3994 	I915_WRITE(D_STATE, dstate);
3995 
3996 	if (IS_PINEVIEW(dev))
3997 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3998 
3999 	/* IIR "flip pending" means done if this bit is set */
4000 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4001 }
4002 
4003 static void i85x_init_clock_gating(struct drm_device *dev)
4004 {
4005 	struct drm_i915_private *dev_priv = dev->dev_private;
4006 
4007 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4008 }
4009 
4010 static void i830_init_clock_gating(struct drm_device *dev)
4011 {
4012 	struct drm_i915_private *dev_priv = dev->dev_private;
4013 
4014 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4015 }
4016 
4017 void intel_init_clock_gating(struct drm_device *dev)
4018 {
4019 	struct drm_i915_private *dev_priv = dev->dev_private;
4020 
4021 	dev_priv->display.init_clock_gating(dev);
4022 }
4023 
4024 /* Starting with Haswell, we have different power wells for
4025  * different parts of the GPU. This attempts to enable them all.
4026  */
4027 void intel_init_power_wells(struct drm_device *dev)
4028 {
4029 	struct drm_i915_private *dev_priv = dev->dev_private;
4030 	unsigned long power_wells[] = {
4031 		HSW_PWR_WELL_CTL1,
4032 		HSW_PWR_WELL_CTL2,
4033 		HSW_PWR_WELL_CTL4
4034 	};
4035 	int i;
4036 
4037 	if (!IS_HASWELL(dev))
4038 		return;
4039 
4040 	DRM_LOCK(dev);
4041 
4042 	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4043 		int well = I915_READ(power_wells[i]);
4044 
4045 		if ((well & HSW_PWR_WELL_STATE) == 0) {
4046 			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4047 			if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4048 				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4049 		}
4050 	}
4051 
4052 	DRM_UNLOCK(dev);
4053 }
4054 
4055 /* Set up chip specific power management-related functions */
4056 void intel_init_pm(struct drm_device *dev)
4057 {
4058 	struct drm_i915_private *dev_priv = dev->dev_private;
4059 
4060 	if (I915_HAS_FBC(dev)) {
4061 		if (HAS_PCH_SPLIT(dev)) {
4062 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4063 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
4064 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
4065 		} else if (IS_GM45(dev)) {
4066 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4067 			dev_priv->display.enable_fbc = g4x_enable_fbc;
4068 			dev_priv->display.disable_fbc = g4x_disable_fbc;
4069 		} else if (IS_CRESTLINE(dev)) {
4070 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4071 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
4072 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
4073 		}
4074 		/* 855GM needs testing */
4075 	}
4076 
4077 	/* For cxsr */
4078 	if (IS_PINEVIEW(dev))
4079 		i915_pineview_get_mem_freq(dev);
4080 	else if (IS_GEN5(dev))
4081 		i915_ironlake_get_mem_freq(dev);
4082 
4083 	/* For FIFO watermark updates */
4084 	if (HAS_PCH_SPLIT(dev)) {
4085 		if (IS_GEN5(dev)) {
4086 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4087 				dev_priv->display.update_wm = ironlake_update_wm;
4088 			else {
4089 				DRM_DEBUG_KMS("Failed to get proper latency. "
4090 					      "Disable CxSR\n");
4091 				dev_priv->display.update_wm = NULL;
4092 			}
4093 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4094 		} else if (IS_GEN6(dev)) {
4095 			if (SNB_READ_WM0_LATENCY()) {
4096 				dev_priv->display.update_wm = sandybridge_update_wm;
4097 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4098 			} else {
4099 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4100 					      "Disable CxSR\n");
4101 				dev_priv->display.update_wm = NULL;
4102 			}
4103 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4104 		} else if (IS_IVYBRIDGE(dev)) {
4105 			/* FIXME: detect B0+ stepping and use auto training */
4106 			if (SNB_READ_WM0_LATENCY()) {
4107 				dev_priv->display.update_wm = ivybridge_update_wm;
4108 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4109 			} else {
4110 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4111 					      "Disable CxSR\n");
4112 				dev_priv->display.update_wm = NULL;
4113 			}
4114 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4115 		} else if (IS_HASWELL(dev)) {
4116 			if (SNB_READ_WM0_LATENCY()) {
4117 				dev_priv->display.update_wm = sandybridge_update_wm;
4118 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4119 				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4120 			} else {
4121 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4122 					      "Disable CxSR\n");
4123 				dev_priv->display.update_wm = NULL;
4124 			}
4125 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4126 		} else
4127 			dev_priv->display.update_wm = NULL;
4128 	} else if (IS_VALLEYVIEW(dev)) {
4129 		dev_priv->display.update_wm = valleyview_update_wm;
4130 		dev_priv->display.init_clock_gating =
4131 			valleyview_init_clock_gating;
4132 	} else if (IS_PINEVIEW(dev)) {
4133 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4134 					    dev_priv->is_ddr3,
4135 					    dev_priv->fsb_freq,
4136 					    dev_priv->mem_freq)) {
4137 			DRM_INFO("failed to find known CxSR latency "
4138 				 "(found ddr%s fsb freq %d, mem freq %d), "
4139 				 "disabling CxSR\n",
4140 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4141 				 dev_priv->fsb_freq, dev_priv->mem_freq);
4142 			/* Disable CxSR and never update its watermark again */
4143 			pineview_disable_cxsr(dev);
4144 			dev_priv->display.update_wm = NULL;
4145 		} else
4146 			dev_priv->display.update_wm = pineview_update_wm;
4147 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4148 	} else if (IS_G4X(dev)) {
4149 		dev_priv->display.update_wm = g4x_update_wm;
4150 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4151 	} else if (IS_GEN4(dev)) {
4152 		dev_priv->display.update_wm = i965_update_wm;
4153 		if (IS_CRESTLINE(dev))
4154 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4155 		else if (IS_BROADWATER(dev))
4156 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4157 	} else if (IS_GEN3(dev)) {
4158 		dev_priv->display.update_wm = i9xx_update_wm;
4159 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4160 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4161 	} else if (IS_I865G(dev)) {
4162 		dev_priv->display.update_wm = i830_update_wm;
4163 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4164 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4165 	} else if (IS_I85X(dev)) {
4166 		dev_priv->display.update_wm = i9xx_update_wm;
4167 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4168 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4169 	} else {
4170 		dev_priv->display.update_wm = i830_update_wm;
4171 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4172 		if (IS_845G(dev))
4173 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4174 		else
4175 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4176 	}
4177 }
4178 
4179 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4180 {
4181 	u32 gt_thread_status_mask;
4182 
4183 	if (IS_HASWELL(dev_priv->dev))
4184 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4185 	else
4186 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4187 
4188 	/* w/a for a sporadic read returning 0 by waiting for the GT
4189 	 * thread to wake up.
4190 	 */
4191 	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4192 		DRM_ERROR("GT thread status wait timed out\n");
4193 }
4194 
4195 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4196 {
4197 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4198 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4199 }
4200 
4201 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4202 {
4203 	u32 forcewake_ack;
4204 
4205 	if (IS_HASWELL(dev_priv->dev))
4206 		forcewake_ack = FORCEWAKE_ACK_HSW;
4207 	else
4208 		forcewake_ack = FORCEWAKE_ACK;
4209 
4210 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4211 			    FORCEWAKE_ACK_TIMEOUT_MS))
4212 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4213 
4214 	I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4215 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4216 
4217 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4218 			    FORCEWAKE_ACK_TIMEOUT_MS))
4219 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4220 
4221 	__gen6_gt_wait_for_thread_c0(dev_priv);
4222 }
4223 
4224 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4225 {
4226 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4227 	/* something from same cacheline, but !FORCEWAKE_MT */
4228 	POSTING_READ(ECOBUS);
4229 }
4230 
4231 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4232 {
4233 	u32 forcewake_ack;
4234 
4235 	if (IS_HASWELL(dev_priv->dev))
4236 		forcewake_ack = FORCEWAKE_ACK_HSW;
4237 	else
4238 		forcewake_ack = FORCEWAKE_MT_ACK;
4239 
4240 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4241 			    FORCEWAKE_ACK_TIMEOUT_MS))
4242 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4243 
4244 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4245 	/* something from same cacheline, but !FORCEWAKE_MT */
4246 	POSTING_READ(ECOBUS);
4247 
4248 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4249 			    FORCEWAKE_ACK_TIMEOUT_MS))
4250 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4251 
4252 	__gen6_gt_wait_for_thread_c0(dev_priv);
4253 }
4254 
4255 /*
4256  * Generally this is called implicitly by the register read function. However,
4257  * if some sequence requires the GT to not power down then this function should
4258  * be called at the beginning of the sequence followed by a call to
4259  * gen6_gt_force_wake_put() at the end of the sequence.
4260  */
4261 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4262 {
4263 
4264 	lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4265 	if (dev_priv->forcewake_count++ == 0)
4266 		dev_priv->gt.force_wake_get(dev_priv);
4267 	lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4268 }
4269 
4270 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4271 {
4272 	u32 gtfifodbg;
4273 	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4274 	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4275 	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4276 		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4277 }
4278 
4279 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4280 {
4281 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4282 	/* something from same cacheline, but !FORCEWAKE */
4283 	POSTING_READ(ECOBUS);
4284 	gen6_gt_check_fifodbg(dev_priv);
4285 }
4286 
4287 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4288 {
4289 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4290 	/* something from same cacheline, but !FORCEWAKE_MT */
4291 	POSTING_READ(ECOBUS);
4292 	gen6_gt_check_fifodbg(dev_priv);
4293 }
4294 
4295 /*
4296  * see gen6_gt_force_wake_get()
4297  */
4298 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4299 {
4300 	lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4301 	if (--dev_priv->forcewake_count == 0)
4302 		dev_priv->gt.force_wake_put(dev_priv);
4303 	lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4304 }
4305 
4306 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4307 {
4308 	int ret = 0;
4309 
4310 	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4311 		int loop = 500;
4312 		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4313 		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4314 			udelay(10);
4315 			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4316 		}
4317 		if (loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES) {
4318 			kprintf("%s loop\n", __func__);
4319 			++ret;
4320 		}
4321 		dev_priv->gt_fifo_count = fifo;
4322 	}
4323 	dev_priv->gt_fifo_count--;
4324 
4325 	return ret;
4326 }
4327 
4328 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4329 {
4330 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4331 	/* something from same cacheline, but !FORCEWAKE_VLV */
4332 	POSTING_READ(FORCEWAKE_ACK_VLV);
4333 }
4334 
4335 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4336 {
4337 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4338 			    FORCEWAKE_ACK_TIMEOUT_MS))
4339 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4340 
4341 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4342 
4343 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4344 			    FORCEWAKE_ACK_TIMEOUT_MS))
4345 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4346 
4347 	__gen6_gt_wait_for_thread_c0(dev_priv);
4348 }
4349 
4350 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4351 {
4352 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4353 	/* something from same cacheline, but !FORCEWAKE_VLV */
4354 	POSTING_READ(FORCEWAKE_ACK_VLV);
4355 	gen6_gt_check_fifodbg(dev_priv);
4356 }
4357 
4358 void intel_gt_reset(struct drm_device *dev)
4359 {
4360 	struct drm_i915_private *dev_priv = dev->dev_private;
4361 
4362 	if (IS_VALLEYVIEW(dev)) {
4363 		vlv_force_wake_reset(dev_priv);
4364 	} else if (INTEL_INFO(dev)->gen >= 6) {
4365 		__gen6_gt_force_wake_reset(dev_priv);
4366 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4367 			__gen6_gt_force_wake_mt_reset(dev_priv);
4368 	}
4369 }
4370 
4371 void intel_gt_init(struct drm_device *dev)
4372 {
4373 	struct drm_i915_private *dev_priv = dev->dev_private;
4374 
4375 	lockinit(&dev_priv->gt_lock, "915gt", 0, LK_CANRECURSE);
4376 
4377 	intel_gt_reset(dev);
4378 
4379 	if (IS_VALLEYVIEW(dev)) {
4380 		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4381 		dev_priv->gt.force_wake_put = vlv_force_wake_put;
4382 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4383 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4384 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4385 	} else if (IS_GEN6(dev)) {
4386 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4387 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4388 	}
4389 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4390 			  intel_gen6_powersave_work);
4391 }
4392 
4393 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4394 {
4395 
4396 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4397 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4398 		return -EAGAIN;
4399 	}
4400 
4401 	I915_WRITE(GEN6_PCODE_DATA, *val);
4402 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4403 
4404 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4405 		     500)) {
4406 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4407 		return -ETIMEDOUT;
4408 	}
4409 
4410 	*val = I915_READ(GEN6_PCODE_DATA);
4411 	I915_WRITE(GEN6_PCODE_DATA, 0);
4412 
4413 	return 0;
4414 }
4415 
4416 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4417 {
4418 
4419 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4420 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4421 		return -EAGAIN;
4422 	}
4423 
4424 	I915_WRITE(GEN6_PCODE_DATA, val);
4425 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4426 
4427 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4428 		     500)) {
4429 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4430 		return -ETIMEDOUT;
4431 	}
4432 
4433 	I915_WRITE(GEN6_PCODE_DATA, 0);
4434 
4435 	return 0;
4436 }
4437