xref: /dragonfly/sys/dev/drm/i915/intel_pm.c (revision cfd1aba3)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include "intel_drv.h"
30 #include "i915_drv.h"
31 
32 void i8xx_disable_fbc(struct drm_device *dev)
33 {
34 	struct drm_i915_private *dev_priv = dev->dev_private;
35 	u32 fbc_ctl;
36 
37 	/* Disable compression */
38 	fbc_ctl = I915_READ(FBC_CONTROL);
39 	if ((fbc_ctl & FBC_CTL_EN) == 0)
40 		return;
41 
42 	fbc_ctl &= ~FBC_CTL_EN;
43 	I915_WRITE(FBC_CONTROL, fbc_ctl);
44 
45 	/* Wait for compressing bit to clear */
46 	if (_intel_wait_for(dev,
47 	    (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10,
48 	    1, "915fbd")) {
49 		DRM_DEBUG_KMS("FBC idle timed out\n");
50 		return;
51 	}
52 
53 	DRM_DEBUG_KMS("disabled FBC\n");
54 }
55 
56 void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
57 {
58 	struct drm_device *dev = crtc->dev;
59 	struct drm_i915_private *dev_priv = dev->dev_private;
60 	struct drm_framebuffer *fb = crtc->fb;
61 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
62 	struct drm_i915_gem_object *obj = intel_fb->obj;
63 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
64 	int cfb_pitch;
65 	int plane, i;
66 	u32 fbc_ctl, fbc_ctl2;
67 
68 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
69 	if (fb->pitches[0] < cfb_pitch)
70 		cfb_pitch = fb->pitches[0];
71 
72 	/* FBC_CTL wants 64B units */
73 	cfb_pitch = (cfb_pitch / 64) - 1;
74 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
75 
76 	/* Clear old tags */
77 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
78 		I915_WRITE(FBC_TAG + (i * 4), 0);
79 
80 	/* Set it up... */
81 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
82 	fbc_ctl2 |= plane;
83 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
84 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
85 
86 	/* enable it... */
87 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
88 	if (IS_I945GM(dev))
89 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
90 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
91 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
92 	fbc_ctl |= obj->fence_reg;
93 	I915_WRITE(FBC_CONTROL, fbc_ctl);
94 
95 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
96 		      cfb_pitch, crtc->y, intel_crtc->plane);
97 }
98 
99 bool i8xx_fbc_enabled(struct drm_device *dev)
100 {
101 	struct drm_i915_private *dev_priv = dev->dev_private;
102 
103 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
104 }
105 
106 void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
107 {
108 	struct drm_device *dev = crtc->dev;
109 	struct drm_i915_private *dev_priv = dev->dev_private;
110 	struct drm_framebuffer *fb = crtc->fb;
111 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
112 	struct drm_i915_gem_object *obj = intel_fb->obj;
113 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
114 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
115 	unsigned long stall_watermark = 200;
116 	u32 dpfc_ctl;
117 
118 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
119 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
120 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
121 
122 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
123 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
124 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
125 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
126 
127 	/* enable it... */
128 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
129 
130 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
131 }
132 
133 void g4x_disable_fbc(struct drm_device *dev)
134 {
135 	struct drm_i915_private *dev_priv = dev->dev_private;
136 	u32 dpfc_ctl;
137 
138 	/* Disable compression */
139 	dpfc_ctl = I915_READ(DPFC_CONTROL);
140 	if (dpfc_ctl & DPFC_CTL_EN) {
141 		dpfc_ctl &= ~DPFC_CTL_EN;
142 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
143 
144 		DRM_DEBUG_KMS("disabled FBC\n");
145 	}
146 }
147 
148 bool g4x_fbc_enabled(struct drm_device *dev)
149 {
150 	struct drm_i915_private *dev_priv = dev->dev_private;
151 
152 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
153 }
154 
155 static void sandybridge_blit_fbc_update(struct drm_device *dev)
156 {
157 	struct drm_i915_private *dev_priv = dev->dev_private;
158 	u32 blt_ecoskpd;
159 
160 	/* Make sure blitter notifies FBC of writes */
161 	gen6_gt_force_wake_get(dev_priv);
162 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
163 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
164 		GEN6_BLITTER_LOCK_SHIFT;
165 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
166 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
167 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
168 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
169 			 GEN6_BLITTER_LOCK_SHIFT);
170 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
171 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
172 	gen6_gt_force_wake_put(dev_priv);
173 }
174 
175 void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
176 {
177 	struct drm_device *dev = crtc->dev;
178 	struct drm_i915_private *dev_priv = dev->dev_private;
179 	struct drm_framebuffer *fb = crtc->fb;
180 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
181 	struct drm_i915_gem_object *obj = intel_fb->obj;
182 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
183 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
184 	unsigned long stall_watermark = 200;
185 	u32 dpfc_ctl;
186 
187 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
188 	dpfc_ctl &= DPFC_RESERVED;
189 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
190 	/* Set persistent mode for front-buffer rendering, ala X. */
191 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
192 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
193 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
194 
195 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
196 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
197 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
198 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
199 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
200 	/* enable it... */
201 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
202 
203 	if (IS_GEN6(dev)) {
204 		I915_WRITE(SNB_DPFC_CTL_SA,
205 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
206 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
207 		sandybridge_blit_fbc_update(dev);
208 	}
209 
210 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
211 }
212 
213 void ironlake_disable_fbc(struct drm_device *dev)
214 {
215 	struct drm_i915_private *dev_priv = dev->dev_private;
216 	u32 dpfc_ctl;
217 
218 	/* Disable compression */
219 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
220 	if (dpfc_ctl & DPFC_CTL_EN) {
221 		dpfc_ctl &= ~DPFC_CTL_EN;
222 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
223 
224 		DRM_DEBUG_KMS("disabled FBC\n");
225 	}
226 }
227 
228 bool ironlake_fbc_enabled(struct drm_device *dev)
229 {
230 	struct drm_i915_private *dev_priv = dev->dev_private;
231 
232 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
233 }
234 
235 bool intel_fbc_enabled(struct drm_device *dev)
236 {
237 	struct drm_i915_private *dev_priv = dev->dev_private;
238 
239 	if (!dev_priv->display.fbc_enabled)
240 		return false;
241 
242 	return dev_priv->display.fbc_enabled(dev);
243 }
244 
245 static void intel_fbc_work_fn(void *arg, int pending)
246 {
247 	struct intel_fbc_work *work = arg;
248 	struct drm_device *dev = work->crtc->dev;
249 	struct drm_i915_private *dev_priv = dev->dev_private;
250 
251 	DRM_LOCK(dev);
252 	if (work == dev_priv->fbc_work) {
253 		/* Double check that we haven't switched fb without cancelling
254 		 * the prior work.
255 		 */
256 		if (work->crtc->fb == work->fb) {
257 			dev_priv->display.enable_fbc(work->crtc,
258 						     work->interval);
259 
260 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
261 			dev_priv->cfb_fb = work->crtc->fb->base.id;
262 			dev_priv->cfb_y = work->crtc->y;
263 		}
264 
265 		dev_priv->fbc_work = NULL;
266 	}
267 	DRM_UNLOCK(dev);
268 
269 	drm_free(work, DRM_MEM_KMS);
270 }
271 
272 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
273 {
274 	u_int pending;
275 
276 	if (dev_priv->fbc_work == NULL)
277 		return;
278 
279 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
280 
281 	/* Synchronisation is provided by struct_mutex and checking of
282 	 * dev_priv->fbc_work, so we can perform the cancellation
283 	 * entirely asynchronously.
284 	 */
285 	if (taskqueue_cancel_timeout(dev_priv->tq, &dev_priv->fbc_work->task,
286 	    &pending) == 0)
287 		/* tasklet was killed before being run, clean up */
288 		drm_free(dev_priv->fbc_work, DRM_MEM_KMS);
289 
290 	/* Mark the work as no longer wanted so that if it does
291 	 * wake-up (because the work was already running and waiting
292 	 * for our mutex), it will discover that is no longer
293 	 * necessary to run.
294 	 */
295 	dev_priv->fbc_work = NULL;
296 }
297 
298 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
299 {
300 	struct intel_fbc_work *work;
301 	struct drm_device *dev = crtc->dev;
302 	struct drm_i915_private *dev_priv = dev->dev_private;
303 
304 	if (!dev_priv->display.enable_fbc)
305 		return;
306 
307 	intel_cancel_fbc_work(dev_priv);
308 
309 	work = kmalloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
310 	work->crtc = crtc;
311 	work->fb = crtc->fb;
312 	work->interval = interval;
313 	TIMEOUT_TASK_INIT(dev_priv->tq, &work->task, 0, intel_fbc_work_fn,
314 	    work);
315 
316 	dev_priv->fbc_work = work;
317 
318 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
319 
320 	/* Delay the actual enabling to let pageflipping cease and the
321 	 * display to settle before starting the compression. Note that
322 	 * this delay also serves a second purpose: it allows for a
323 	 * vblank to pass after disabling the FBC before we attempt
324 	 * to modify the control registers.
325 	 *
326 	 * A more complicated solution would involve tracking vblanks
327 	 * following the termination of the page-flipping sequence
328 	 * and indeed performing the enable as a co-routine and not
329 	 * waiting synchronously upon the vblank.
330 	 */
331 	taskqueue_enqueue_timeout(dev_priv->tq, &work->task,
332 	    msecs_to_jiffies(50));
333 }
334 
335 void intel_disable_fbc(struct drm_device *dev)
336 {
337 	struct drm_i915_private *dev_priv = dev->dev_private;
338 
339 	intel_cancel_fbc_work(dev_priv);
340 
341 	if (!dev_priv->display.disable_fbc)
342 		return;
343 
344 	dev_priv->display.disable_fbc(dev);
345 	dev_priv->cfb_plane = -1;
346 }
347 
348 /**
349  * intel_update_fbc - enable/disable FBC as needed
350  * @dev: the drm_device
351  *
352  * Set up the framebuffer compression hardware at mode set time.  We
353  * enable it if possible:
354  *   - plane A only (on pre-965)
355  *   - no pixel mulitply/line duplication
356  *   - no alpha buffer discard
357  *   - no dual wide
358  *   - framebuffer <= 2048 in width, 1536 in height
359  *
360  * We can't assume that any compression will take place (worst case),
361  * so the compressed buffer has to be the same size as the uncompressed
362  * one.  It also must reside (along with the line length buffer) in
363  * stolen memory.
364  *
365  * We need to enable/disable FBC on a global basis.
366  */
367 void intel_update_fbc(struct drm_device *dev)
368 {
369 	struct drm_i915_private *dev_priv = dev->dev_private;
370 	struct drm_crtc *crtc = NULL, *tmp_crtc;
371 	struct intel_crtc *intel_crtc;
372 	struct drm_framebuffer *fb;
373 	struct intel_framebuffer *intel_fb;
374 	struct drm_i915_gem_object *obj;
375 	int enable_fbc;
376 
377 	DRM_DEBUG_KMS("\n");
378 
379 	if (!i915_powersave)
380 		return;
381 
382 	if (!I915_HAS_FBC(dev))
383 		return;
384 
385 	/*
386 	 * If FBC is already on, we just have to verify that we can
387 	 * keep it that way...
388 	 * Need to disable if:
389 	 *   - more than one pipe is active
390 	 *   - changing FBC params (stride, fence, mode)
391 	 *   - new fb is too large to fit in compressed buffer
392 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
393 	 */
394 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
395 		if (tmp_crtc->enabled && tmp_crtc->fb) {
396 			if (crtc) {
397 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
398 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
399 				goto out_disable;
400 			}
401 			crtc = tmp_crtc;
402 		}
403 	}
404 
405 	if (!crtc || crtc->fb == NULL) {
406 		DRM_DEBUG_KMS("no output, disabling\n");
407 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
408 		goto out_disable;
409 	}
410 
411 	intel_crtc = to_intel_crtc(crtc);
412 	fb = crtc->fb;
413 	intel_fb = to_intel_framebuffer(fb);
414 	obj = intel_fb->obj;
415 
416 	enable_fbc = i915_enable_fbc;
417 	if (enable_fbc < 0) {
418 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
419 		enable_fbc = 1;
420 		if (INTEL_INFO(dev)->gen <= 6)
421 			enable_fbc = 0;
422 	}
423 	if (!enable_fbc) {
424 		DRM_DEBUG_KMS("fbc disabled per module param\n");
425 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
426 		goto out_disable;
427 	}
428 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
429 		DRM_DEBUG_KMS("framebuffer too large, disabling "
430 			      "compression\n");
431 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
432 		goto out_disable;
433 	}
434 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
435 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
436 		DRM_DEBUG_KMS("mode incompatible with compression, "
437 			      "disabling\n");
438 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
439 		goto out_disable;
440 	}
441 	if ((crtc->mode.hdisplay > 2048) ||
442 	    (crtc->mode.vdisplay > 1536)) {
443 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
444 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
445 		goto out_disable;
446 	}
447 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
448 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
449 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
450 		goto out_disable;
451 	}
452 	if (obj->tiling_mode != I915_TILING_X ||
453 	    obj->fence_reg == I915_FENCE_REG_NONE) {
454 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
455 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
456 		goto out_disable;
457 	}
458 
459 #ifdef DDB
460 	/* If the kernel debugger is active, always disable compression */
461 	if (db_active)
462 		goto out_disable;
463 #endif
464 
465 	/* If the scanout has not changed, don't modify the FBC settings.
466 	 * Note that we make the fundamental assumption that the fb->obj
467 	 * cannot be unpinned (and have its GTT offset and fence revoked)
468 	 * without first being decoupled from the scanout and FBC disabled.
469 	 */
470 	if (dev_priv->cfb_plane == intel_crtc->plane &&
471 	    dev_priv->cfb_fb == fb->base.id &&
472 	    dev_priv->cfb_y == crtc->y)
473 		return;
474 
475 	if (intel_fbc_enabled(dev)) {
476 		/* We update FBC along two paths, after changing fb/crtc
477 		 * configuration (modeswitching) and after page-flipping
478 		 * finishes. For the latter, we know that not only did
479 		 * we disable the FBC at the start of the page-flip
480 		 * sequence, but also more than one vblank has passed.
481 		 *
482 		 * For the former case of modeswitching, it is possible
483 		 * to switch between two FBC valid configurations
484 		 * instantaneously so we do need to disable the FBC
485 		 * before we can modify its control registers. We also
486 		 * have to wait for the next vblank for that to take
487 		 * effect. However, since we delay enabling FBC we can
488 		 * assume that a vblank has passed since disabling and
489 		 * that we can safely alter the registers in the deferred
490 		 * callback.
491 		 *
492 		 * In the scenario that we go from a valid to invalid
493 		 * and then back to valid FBC configuration we have
494 		 * no strict enforcement that a vblank occurred since
495 		 * disabling the FBC. However, along all current pipe
496 		 * disabling paths we do need to wait for a vblank at
497 		 * some point. And we wait before enabling FBC anyway.
498 		 */
499 		DRM_DEBUG_KMS("disabling active FBC for update\n");
500 		intel_disable_fbc(dev);
501 	}
502 
503 	intel_enable_fbc(crtc, 500);
504 	return;
505 
506 out_disable:
507 	/* Multiple disables should be harmless */
508 	if (intel_fbc_enabled(dev)) {
509 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
510 		intel_disable_fbc(dev);
511 	}
512 }
513 
514 void i915_ironlake_get_mem_freq(struct drm_device *dev);
515 void i915_pineview_get_mem_freq(struct drm_device *dev);
516 
517 void i915_pineview_get_mem_freq(struct drm_device *dev)
518 {
519 	drm_i915_private_t *dev_priv = dev->dev_private;
520 	u32 tmp;
521 
522 	tmp = I915_READ(CLKCFG);
523 
524 	switch (tmp & CLKCFG_FSB_MASK) {
525 	case CLKCFG_FSB_533:
526 		dev_priv->fsb_freq = 533; /* 133*4 */
527 		break;
528 	case CLKCFG_FSB_800:
529 		dev_priv->fsb_freq = 800; /* 200*4 */
530 		break;
531 	case CLKCFG_FSB_667:
532 		dev_priv->fsb_freq =  667; /* 167*4 */
533 		break;
534 	case CLKCFG_FSB_400:
535 		dev_priv->fsb_freq = 400; /* 100*4 */
536 		break;
537 	}
538 
539 	switch (tmp & CLKCFG_MEM_MASK) {
540 	case CLKCFG_MEM_533:
541 		dev_priv->mem_freq = 533;
542 		break;
543 	case CLKCFG_MEM_667:
544 		dev_priv->mem_freq = 667;
545 		break;
546 	case CLKCFG_MEM_800:
547 		dev_priv->mem_freq = 800;
548 		break;
549 	}
550 
551 	/* detect pineview DDR3 setting */
552 	tmp = I915_READ(CSHRDDR3CTL);
553 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
554 }
555 
556 void i915_ironlake_get_mem_freq(struct drm_device *dev)
557 {
558 	drm_i915_private_t *dev_priv = dev->dev_private;
559 	u16 ddrpll, csipll;
560 
561 	ddrpll = I915_READ16(DDRMPLL1);
562 	csipll = I915_READ16(CSIPLL0);
563 
564 	switch (ddrpll & 0xff) {
565 	case 0xc:
566 		dev_priv->mem_freq = 800;
567 		break;
568 	case 0x10:
569 		dev_priv->mem_freq = 1066;
570 		break;
571 	case 0x14:
572 		dev_priv->mem_freq = 1333;
573 		break;
574 	case 0x18:
575 		dev_priv->mem_freq = 1600;
576 		break;
577 	default:
578 		DRM_DEBUG("unknown memory frequency 0x%02x\n",
579 				 ddrpll & 0xff);
580 		dev_priv->mem_freq = 0;
581 		break;
582 	}
583 
584 	dev_priv->r_t = dev_priv->mem_freq;
585 
586 	switch (csipll & 0x3ff) {
587 	case 0x00c:
588 		dev_priv->fsb_freq = 3200;
589 		break;
590 	case 0x00e:
591 		dev_priv->fsb_freq = 3733;
592 		break;
593 	case 0x010:
594 		dev_priv->fsb_freq = 4266;
595 		break;
596 	case 0x012:
597 		dev_priv->fsb_freq = 4800;
598 		break;
599 	case 0x014:
600 		dev_priv->fsb_freq = 5333;
601 		break;
602 	case 0x016:
603 		dev_priv->fsb_freq = 5866;
604 		break;
605 	case 0x018:
606 		dev_priv->fsb_freq = 6400;
607 		break;
608 	default:
609 		DRM_DEBUG("unknown fsb frequency 0x%04x\n",
610 				 csipll & 0x3ff);
611 		dev_priv->fsb_freq = 0;
612 		break;
613 	}
614 
615 	if (dev_priv->fsb_freq == 3200) {
616 		dev_priv->c_m = 0;
617 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
618 		dev_priv->c_m = 1;
619 	} else {
620 		dev_priv->c_m = 2;
621 	}
622 }
623 
624 /* Pineview has different values for various configs */
625 static const struct intel_watermark_params pineview_display_wm = {
626 	PINEVIEW_DISPLAY_FIFO,
627 	PINEVIEW_MAX_WM,
628 	PINEVIEW_DFT_WM,
629 	PINEVIEW_GUARD_WM,
630 	PINEVIEW_FIFO_LINE_SIZE
631 };
632 static const struct intel_watermark_params pineview_display_hplloff_wm = {
633 	PINEVIEW_DISPLAY_FIFO,
634 	PINEVIEW_MAX_WM,
635 	PINEVIEW_DFT_HPLLOFF_WM,
636 	PINEVIEW_GUARD_WM,
637 	PINEVIEW_FIFO_LINE_SIZE
638 };
639 static const struct intel_watermark_params pineview_cursor_wm = {
640 	PINEVIEW_CURSOR_FIFO,
641 	PINEVIEW_CURSOR_MAX_WM,
642 	PINEVIEW_CURSOR_DFT_WM,
643 	PINEVIEW_CURSOR_GUARD_WM,
644 	PINEVIEW_FIFO_LINE_SIZE,
645 };
646 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
647 	PINEVIEW_CURSOR_FIFO,
648 	PINEVIEW_CURSOR_MAX_WM,
649 	PINEVIEW_CURSOR_DFT_WM,
650 	PINEVIEW_CURSOR_GUARD_WM,
651 	PINEVIEW_FIFO_LINE_SIZE
652 };
653 static const struct intel_watermark_params g4x_wm_info = {
654 	G4X_FIFO_SIZE,
655 	G4X_MAX_WM,
656 	G4X_MAX_WM,
657 	2,
658 	G4X_FIFO_LINE_SIZE,
659 };
660 static const struct intel_watermark_params g4x_cursor_wm_info = {
661 	I965_CURSOR_FIFO,
662 	I965_CURSOR_MAX_WM,
663 	I965_CURSOR_DFT_WM,
664 	2,
665 	G4X_FIFO_LINE_SIZE,
666 };
667 static const struct intel_watermark_params i965_cursor_wm_info = {
668 	I965_CURSOR_FIFO,
669 	I965_CURSOR_MAX_WM,
670 	I965_CURSOR_DFT_WM,
671 	2,
672 	I915_FIFO_LINE_SIZE,
673 };
674 static const struct intel_watermark_params i945_wm_info = {
675 	I945_FIFO_SIZE,
676 	I915_MAX_WM,
677 	1,
678 	2,
679 	I915_FIFO_LINE_SIZE
680 };
681 static const struct intel_watermark_params i915_wm_info = {
682 	I915_FIFO_SIZE,
683 	I915_MAX_WM,
684 	1,
685 	2,
686 	I915_FIFO_LINE_SIZE
687 };
688 static const struct intel_watermark_params i855_wm_info = {
689 	I855GM_FIFO_SIZE,
690 	I915_MAX_WM,
691 	1,
692 	2,
693 	I830_FIFO_LINE_SIZE
694 };
695 static const struct intel_watermark_params i830_wm_info = {
696 	I830_FIFO_SIZE,
697 	I915_MAX_WM,
698 	1,
699 	2,
700 	I830_FIFO_LINE_SIZE
701 };
702 
703 static const struct intel_watermark_params ironlake_display_wm_info = {
704 	ILK_DISPLAY_FIFO,
705 	ILK_DISPLAY_MAXWM,
706 	ILK_DISPLAY_DFTWM,
707 	2,
708 	ILK_FIFO_LINE_SIZE
709 };
710 static const struct intel_watermark_params ironlake_cursor_wm_info = {
711 	ILK_CURSOR_FIFO,
712 	ILK_CURSOR_MAXWM,
713 	ILK_CURSOR_DFTWM,
714 	2,
715 	ILK_FIFO_LINE_SIZE
716 };
717 static const struct intel_watermark_params ironlake_display_srwm_info = {
718 	ILK_DISPLAY_SR_FIFO,
719 	ILK_DISPLAY_MAX_SRWM,
720 	ILK_DISPLAY_DFT_SRWM,
721 	2,
722 	ILK_FIFO_LINE_SIZE
723 };
724 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
725 	ILK_CURSOR_SR_FIFO,
726 	ILK_CURSOR_MAX_SRWM,
727 	ILK_CURSOR_DFT_SRWM,
728 	2,
729 	ILK_FIFO_LINE_SIZE
730 };
731 
732 static const struct intel_watermark_params sandybridge_display_wm_info = {
733 	SNB_DISPLAY_FIFO,
734 	SNB_DISPLAY_MAXWM,
735 	SNB_DISPLAY_DFTWM,
736 	2,
737 	SNB_FIFO_LINE_SIZE
738 };
739 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
740 	SNB_CURSOR_FIFO,
741 	SNB_CURSOR_MAXWM,
742 	SNB_CURSOR_DFTWM,
743 	2,
744 	SNB_FIFO_LINE_SIZE
745 };
746 static const struct intel_watermark_params sandybridge_display_srwm_info = {
747 	SNB_DISPLAY_SR_FIFO,
748 	SNB_DISPLAY_MAX_SRWM,
749 	SNB_DISPLAY_DFT_SRWM,
750 	2,
751 	SNB_FIFO_LINE_SIZE
752 };
753 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
754 	SNB_CURSOR_SR_FIFO,
755 	SNB_CURSOR_MAX_SRWM,
756 	SNB_CURSOR_DFT_SRWM,
757 	2,
758 	SNB_FIFO_LINE_SIZE
759 };
760 
761 
762 /**
763  * intel_calculate_wm - calculate watermark level
764  * @clock_in_khz: pixel clock
765  * @wm: chip FIFO params
766  * @pixel_size: display pixel size
767  * @latency_ns: memory latency for the platform
768  *
769  * Calculate the watermark level (the level at which the display plane will
770  * start fetching from memory again).  Each chip has a different display
771  * FIFO size and allocation, so the caller needs to figure that out and pass
772  * in the correct intel_watermark_params structure.
773  *
774  * As the pixel clock runs, the FIFO will be drained at a rate that depends
775  * on the pixel size.  When it reaches the watermark level, it'll start
776  * fetching FIFO line sized based chunks from memory until the FIFO fills
777  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
778  * will occur, and a display engine hang could result.
779  */
780 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
781 					const struct intel_watermark_params *wm,
782 					int fifo_size,
783 					int pixel_size,
784 					unsigned long latency_ns)
785 {
786 	long entries_required, wm_size;
787 
788 	/*
789 	 * Note: we need to make sure we don't overflow for various clock &
790 	 * latency values.
791 	 * clocks go from a few thousand to several hundred thousand.
792 	 * latency is usually a few thousand
793 	 */
794 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
795 		1000;
796 	entries_required = howmany(entries_required, wm->cacheline_size);
797 
798 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
799 
800 	wm_size = fifo_size - (entries_required + wm->guard_size);
801 
802 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
803 
804 	/* Don't promote wm_size to unsigned... */
805 	if (wm_size > (long)wm->max_wm)
806 		wm_size = wm->max_wm;
807 	if (wm_size <= 0)
808 		wm_size = wm->default_wm;
809 	return wm_size;
810 }
811 
812 struct cxsr_latency {
813 	int is_desktop;
814 	int is_ddr3;
815 	unsigned long fsb_freq;
816 	unsigned long mem_freq;
817 	unsigned long display_sr;
818 	unsigned long display_hpll_disable;
819 	unsigned long cursor_sr;
820 	unsigned long cursor_hpll_disable;
821 };
822 
823 static const struct cxsr_latency cxsr_latency_table[] = {
824 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
825 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
826 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
827 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
828 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
829 
830 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
831 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
832 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
833 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
834 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
835 
836 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
837 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
838 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
839 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
840 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
841 
842 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
843 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
844 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
845 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
846 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
847 
848 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
849 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
850 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
851 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
852 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
853 
854 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
855 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
856 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
857 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
858 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
859 };
860 
861 const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
862 							 int is_ddr3,
863 							 int fsb,
864 							 int mem)
865 {
866 	const struct cxsr_latency *latency;
867 	int i;
868 
869 	if (fsb == 0 || mem == 0)
870 		return NULL;
871 
872 	for (i = 0; i < DRM_ARRAY_SIZE(cxsr_latency_table); i++) {
873 		latency = &cxsr_latency_table[i];
874 		if (is_desktop == latency->is_desktop &&
875 		    is_ddr3 == latency->is_ddr3 &&
876 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
877 			return latency;
878 	}
879 
880 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
881 
882 	return NULL;
883 }
884 
885 void pineview_disable_cxsr(struct drm_device *dev)
886 {
887 	struct drm_i915_private *dev_priv = dev->dev_private;
888 
889 	/* deactivate cxsr */
890 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
891 }
892 
893 /*
894  * Latency for FIFO fetches is dependent on several factors:
895  *   - memory configuration (speed, channels)
896  *   - chipset
897  *   - current MCH state
898  * It can be fairly high in some situations, so here we assume a fairly
899  * pessimal value.  It's a tradeoff between extra memory fetches (if we
900  * set this value too high, the FIFO will fetch frequently to stay full)
901  * and power consumption (set it too low to save power and we might see
902  * FIFO underruns and display "flicker").
903  *
904  * A value of 5us seems to be a good balance; safe for very low end
905  * platforms but not overly aggressive on lower latency configs.
906  */
907 static const int latency_ns = 5000;
908 
909 int i9xx_get_fifo_size(struct drm_device *dev, int plane)
910 {
911 	struct drm_i915_private *dev_priv = dev->dev_private;
912 	uint32_t dsparb = I915_READ(DSPARB);
913 	int size;
914 
915 	size = dsparb & 0x7f;
916 	if (plane)
917 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
918 
919 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
920 		      plane ? "B" : "A", size);
921 
922 	return size;
923 }
924 
925 int i85x_get_fifo_size(struct drm_device *dev, int plane)
926 {
927 	struct drm_i915_private *dev_priv = dev->dev_private;
928 	uint32_t dsparb = I915_READ(DSPARB);
929 	int size;
930 
931 	size = dsparb & 0x1ff;
932 	if (plane)
933 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
934 	size >>= 1; /* Convert to cachelines */
935 
936 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
937 		      plane ? "B" : "A", size);
938 
939 	return size;
940 }
941 
942 int i845_get_fifo_size(struct drm_device *dev, int plane)
943 {
944 	struct drm_i915_private *dev_priv = dev->dev_private;
945 	uint32_t dsparb = I915_READ(DSPARB);
946 	int size;
947 
948 	size = dsparb & 0x7f;
949 	size >>= 2; /* Convert to cachelines */
950 
951 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
952 		      plane ? "B" : "A",
953 		      size);
954 
955 	return size;
956 }
957 
958 int i830_get_fifo_size(struct drm_device *dev, int plane)
959 {
960 	struct drm_i915_private *dev_priv = dev->dev_private;
961 	uint32_t dsparb = I915_READ(DSPARB);
962 	int size;
963 
964 	size = dsparb & 0x7f;
965 	size >>= 1; /* Convert to cachelines */
966 
967 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
968 		      plane ? "B" : "A", size);
969 
970 	return size;
971 }
972 
973 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
974 {
975 	struct drm_crtc *crtc, *enabled = NULL;
976 
977 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
978 		if (crtc->enabled && crtc->fb) {
979 			if (enabled)
980 				return NULL;
981 			enabled = crtc;
982 		}
983 	}
984 
985 	return enabled;
986 }
987 
988 void pineview_update_wm(struct drm_device *dev)
989 {
990 	struct drm_i915_private *dev_priv = dev->dev_private;
991 	struct drm_crtc *crtc;
992 	const struct cxsr_latency *latency;
993 	u32 reg;
994 	unsigned long wm;
995 
996 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
997 					 dev_priv->fsb_freq, dev_priv->mem_freq);
998 	if (!latency) {
999 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1000 		pineview_disable_cxsr(dev);
1001 		return;
1002 	}
1003 
1004 	crtc = single_enabled_crtc(dev);
1005 	if (crtc) {
1006 		int clock = crtc->mode.clock;
1007 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1008 
1009 		/* Display SR */
1010 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1011 					pineview_display_wm.fifo_size,
1012 					pixel_size, latency->display_sr);
1013 		reg = I915_READ(DSPFW1);
1014 		reg &= ~DSPFW_SR_MASK;
1015 		reg |= wm << DSPFW_SR_SHIFT;
1016 		I915_WRITE(DSPFW1, reg);
1017 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1018 
1019 		/* cursor SR */
1020 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1021 					pineview_display_wm.fifo_size,
1022 					pixel_size, latency->cursor_sr);
1023 		reg = I915_READ(DSPFW3);
1024 		reg &= ~DSPFW_CURSOR_SR_MASK;
1025 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1026 		I915_WRITE(DSPFW3, reg);
1027 
1028 		/* Display HPLL off SR */
1029 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1030 					pineview_display_hplloff_wm.fifo_size,
1031 					pixel_size, latency->display_hpll_disable);
1032 		reg = I915_READ(DSPFW3);
1033 		reg &= ~DSPFW_HPLL_SR_MASK;
1034 		reg |= wm & DSPFW_HPLL_SR_MASK;
1035 		I915_WRITE(DSPFW3, reg);
1036 
1037 		/* cursor HPLL off SR */
1038 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1039 					pineview_display_hplloff_wm.fifo_size,
1040 					pixel_size, latency->cursor_hpll_disable);
1041 		reg = I915_READ(DSPFW3);
1042 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1043 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1044 		I915_WRITE(DSPFW3, reg);
1045 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1046 
1047 		/* activate cxsr */
1048 		I915_WRITE(DSPFW3,
1049 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1050 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1051 	} else {
1052 		pineview_disable_cxsr(dev);
1053 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1054 	}
1055 }
1056 
1057 static bool g4x_compute_wm0(struct drm_device *dev,
1058 			    int plane,
1059 			    const struct intel_watermark_params *display,
1060 			    int display_latency_ns,
1061 			    const struct intel_watermark_params *cursor,
1062 			    int cursor_latency_ns,
1063 			    int *plane_wm,
1064 			    int *cursor_wm)
1065 {
1066 	struct drm_crtc *crtc;
1067 	int htotal, hdisplay, clock, pixel_size;
1068 	int line_time_us, line_count;
1069 	int entries, tlb_miss;
1070 
1071 	crtc = intel_get_crtc_for_plane(dev, plane);
1072 	if (crtc->fb == NULL || !crtc->enabled) {
1073 		*cursor_wm = cursor->guard_size;
1074 		*plane_wm = display->guard_size;
1075 		return false;
1076 	}
1077 
1078 	htotal = crtc->mode.htotal;
1079 	hdisplay = crtc->mode.hdisplay;
1080 	clock = crtc->mode.clock;
1081 	pixel_size = crtc->fb->bits_per_pixel / 8;
1082 
1083 	/* Use the small buffer method to calculate plane watermark */
1084 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1085 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1086 	if (tlb_miss > 0)
1087 		entries += tlb_miss;
1088 	entries = howmany(entries, display->cacheline_size);
1089 	*plane_wm = entries + display->guard_size;
1090 	if (*plane_wm > (int)display->max_wm)
1091 		*plane_wm = display->max_wm;
1092 
1093 	/* Use the large buffer method to calculate cursor watermark */
1094 	line_time_us = ((htotal * 1000) / clock);
1095 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1096 	entries = line_count * 64 * pixel_size;
1097 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1098 	if (tlb_miss > 0)
1099 		entries += tlb_miss;
1100 	entries = howmany(entries, cursor->cacheline_size);
1101 	*cursor_wm = entries + cursor->guard_size;
1102 	if (*cursor_wm > (int)cursor->max_wm)
1103 		*cursor_wm = (int)cursor->max_wm;
1104 
1105 	return true;
1106 }
1107 
1108 /*
1109  * Check the wm result.
1110  *
1111  * If any calculated watermark values is larger than the maximum value that
1112  * can be programmed into the associated watermark register, that watermark
1113  * must be disabled.
1114  */
1115 static bool g4x_check_srwm(struct drm_device *dev,
1116 			   int display_wm, int cursor_wm,
1117 			   const struct intel_watermark_params *display,
1118 			   const struct intel_watermark_params *cursor)
1119 {
1120 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1121 		      display_wm, cursor_wm);
1122 
1123 	if (display_wm > display->max_wm) {
1124 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1125 			      display_wm, display->max_wm);
1126 		return false;
1127 	}
1128 
1129 	if (cursor_wm > cursor->max_wm) {
1130 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1131 			      cursor_wm, cursor->max_wm);
1132 		return false;
1133 	}
1134 
1135 	if (!(display_wm || cursor_wm)) {
1136 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1137 		return false;
1138 	}
1139 
1140 	return true;
1141 }
1142 
1143 static bool g4x_compute_srwm(struct drm_device *dev,
1144 			     int plane,
1145 			     int latency_ns,
1146 			     const struct intel_watermark_params *display,
1147 			     const struct intel_watermark_params *cursor,
1148 			     int *display_wm, int *cursor_wm)
1149 {
1150 	struct drm_crtc *crtc;
1151 	int hdisplay, htotal, pixel_size, clock;
1152 	unsigned long line_time_us;
1153 	int line_count, line_size;
1154 	int small, large;
1155 	int entries;
1156 
1157 	if (!latency_ns) {
1158 		*display_wm = *cursor_wm = 0;
1159 		return false;
1160 	}
1161 
1162 	crtc = intel_get_crtc_for_plane(dev, plane);
1163 	hdisplay = crtc->mode.hdisplay;
1164 	htotal = crtc->mode.htotal;
1165 	clock = crtc->mode.clock;
1166 	pixel_size = crtc->fb->bits_per_pixel / 8;
1167 
1168 	line_time_us = (htotal * 1000) / clock;
1169 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1170 	line_size = hdisplay * pixel_size;
1171 
1172 	/* Use the minimum of the small and large buffer method for primary */
1173 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1174 	large = line_count * line_size;
1175 
1176 	entries = howmany(min(small, large), display->cacheline_size);
1177 	*display_wm = entries + display->guard_size;
1178 
1179 	/* calculate the self-refresh watermark for display cursor */
1180 	entries = line_count * pixel_size * 64;
1181 	entries = howmany(entries, cursor->cacheline_size);
1182 	*cursor_wm = entries + cursor->guard_size;
1183 
1184 	return g4x_check_srwm(dev,
1185 			      *display_wm, *cursor_wm,
1186 			      display, cursor);
1187 }
1188 
1189 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
1190 
1191 void g4x_update_wm(struct drm_device *dev)
1192 {
1193 	static const int sr_latency_ns = 12000;
1194 	struct drm_i915_private *dev_priv = dev->dev_private;
1195 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1196 	int plane_sr, cursor_sr;
1197 	unsigned int enabled = 0;
1198 
1199 	if (g4x_compute_wm0(dev, 0,
1200 			    &g4x_wm_info, latency_ns,
1201 			    &g4x_cursor_wm_info, latency_ns,
1202 			    &planea_wm, &cursora_wm))
1203 		enabled |= 1;
1204 
1205 	if (g4x_compute_wm0(dev, 1,
1206 			    &g4x_wm_info, latency_ns,
1207 			    &g4x_cursor_wm_info, latency_ns,
1208 			    &planeb_wm, &cursorb_wm))
1209 		enabled |= 2;
1210 
1211 	plane_sr = cursor_sr = 0;
1212 	if (single_plane_enabled(enabled) &&
1213 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1214 			     sr_latency_ns,
1215 			     &g4x_wm_info,
1216 			     &g4x_cursor_wm_info,
1217 			     &plane_sr, &cursor_sr))
1218 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1219 	else
1220 		I915_WRITE(FW_BLC_SELF,
1221 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1222 
1223 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1224 		      planea_wm, cursora_wm,
1225 		      planeb_wm, cursorb_wm,
1226 		      plane_sr, cursor_sr);
1227 
1228 	I915_WRITE(DSPFW1,
1229 		   (plane_sr << DSPFW_SR_SHIFT) |
1230 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1231 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1232 		   planea_wm);
1233 	I915_WRITE(DSPFW2,
1234 		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1235 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1236 	/* HPLL off in SR has some issues on G4x... disable it */
1237 	I915_WRITE(DSPFW3,
1238 		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1239 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1240 }
1241 
1242 void i965_update_wm(struct drm_device *dev)
1243 {
1244 	struct drm_i915_private *dev_priv = dev->dev_private;
1245 	struct drm_crtc *crtc;
1246 	int srwm = 1;
1247 	int cursor_sr = 16;
1248 
1249 	/* Calc sr entries for one plane configs */
1250 	crtc = single_enabled_crtc(dev);
1251 	if (crtc) {
1252 		/* self-refresh has much higher latency */
1253 		static const int sr_latency_ns = 12000;
1254 		int clock = crtc->mode.clock;
1255 		int htotal = crtc->mode.htotal;
1256 		int hdisplay = crtc->mode.hdisplay;
1257 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1258 		unsigned long line_time_us;
1259 		int entries;
1260 
1261 		line_time_us = ((htotal * 1000) / clock);
1262 
1263 		/* Use ns/us then divide to preserve precision */
1264 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1265 			pixel_size * hdisplay;
1266 		entries = howmany(entries, I915_FIFO_LINE_SIZE);
1267 		srwm = I965_FIFO_SIZE - entries;
1268 		if (srwm < 0)
1269 			srwm = 1;
1270 		srwm &= 0x1ff;
1271 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1272 			      entries, srwm);
1273 
1274 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1275 			pixel_size * 64;
1276 		entries = howmany(entries, i965_cursor_wm_info.cacheline_size);
1277 		cursor_sr = i965_cursor_wm_info.fifo_size -
1278 			(entries + i965_cursor_wm_info.guard_size);
1279 
1280 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1281 			cursor_sr = i965_cursor_wm_info.max_wm;
1282 
1283 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1284 			      "cursor %d\n", srwm, cursor_sr);
1285 
1286 		if (IS_CRESTLINE(dev))
1287 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1288 	} else {
1289 		/* Turn off self refresh if both pipes are enabled */
1290 		if (IS_CRESTLINE(dev))
1291 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1292 				   & ~FW_BLC_SELF_EN);
1293 	}
1294 
1295 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1296 		      srwm);
1297 
1298 	/* 965 has limitations... */
1299 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1300 		   (8 << 16) | (8 << 8) | (8 << 0));
1301 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1302 	/* update cursor SR watermark */
1303 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1304 }
1305 
1306 void i9xx_update_wm(struct drm_device *dev)
1307 {
1308 	struct drm_i915_private *dev_priv = dev->dev_private;
1309 	const struct intel_watermark_params *wm_info;
1310 	uint32_t fwater_lo;
1311 	uint32_t fwater_hi;
1312 	int cwm, srwm = 1;
1313 	int fifo_size;
1314 	int planea_wm, planeb_wm;
1315 	struct drm_crtc *crtc, *enabled = NULL;
1316 
1317 	if (IS_I945GM(dev))
1318 		wm_info = &i945_wm_info;
1319 	else if (!IS_GEN2(dev))
1320 		wm_info = &i915_wm_info;
1321 	else
1322 		wm_info = &i855_wm_info;
1323 
1324 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1325 	crtc = intel_get_crtc_for_plane(dev, 0);
1326 	if (crtc->enabled && crtc->fb) {
1327 		planea_wm = intel_calculate_wm(crtc->mode.clock,
1328 					       wm_info, fifo_size,
1329 					       crtc->fb->bits_per_pixel / 8,
1330 					       latency_ns);
1331 		enabled = crtc;
1332 	} else
1333 		planea_wm = fifo_size - wm_info->guard_size;
1334 
1335 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1336 	crtc = intel_get_crtc_for_plane(dev, 1);
1337 	if (crtc->enabled && crtc->fb) {
1338 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1339 					       wm_info, fifo_size,
1340 					       crtc->fb->bits_per_pixel / 8,
1341 					       latency_ns);
1342 		if (enabled == NULL)
1343 			enabled = crtc;
1344 		else
1345 			enabled = NULL;
1346 	} else
1347 		planeb_wm = fifo_size - wm_info->guard_size;
1348 
1349 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1350 
1351 	/*
1352 	 * Overlay gets an aggressive default since video jitter is bad.
1353 	 */
1354 	cwm = 2;
1355 
1356 	/* Play safe and disable self-refresh before adjusting watermarks. */
1357 	if (IS_I945G(dev) || IS_I945GM(dev))
1358 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1359 	else if (IS_I915GM(dev))
1360 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1361 
1362 	/* Calc sr entries for one plane configs */
1363 	if (HAS_FW_BLC(dev) && enabled) {
1364 		/* self-refresh has much higher latency */
1365 		static const int sr_latency_ns = 6000;
1366 		int clock = enabled->mode.clock;
1367 		int htotal = enabled->mode.htotal;
1368 		int hdisplay = enabled->mode.hdisplay;
1369 		int pixel_size = enabled->fb->bits_per_pixel / 8;
1370 		unsigned long line_time_us;
1371 		int entries;
1372 
1373 		line_time_us = (htotal * 1000) / clock;
1374 
1375 		/* Use ns/us then divide to preserve precision */
1376 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1377 			pixel_size * hdisplay;
1378 		entries = howmany(entries, wm_info->cacheline_size);
1379 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1380 		srwm = wm_info->fifo_size - entries;
1381 		if (srwm < 0)
1382 			srwm = 1;
1383 
1384 		if (IS_I945G(dev) || IS_I945GM(dev))
1385 			I915_WRITE(FW_BLC_SELF,
1386 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1387 		else if (IS_I915GM(dev))
1388 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1389 	}
1390 
1391 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1392 		      planea_wm, planeb_wm, cwm, srwm);
1393 
1394 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1395 	fwater_hi = (cwm & 0x1f);
1396 
1397 	/* Set request length to 8 cachelines per fetch */
1398 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1399 	fwater_hi = fwater_hi | (1 << 8);
1400 
1401 	I915_WRITE(FW_BLC, fwater_lo);
1402 	I915_WRITE(FW_BLC2, fwater_hi);
1403 
1404 	if (HAS_FW_BLC(dev)) {
1405 		if (enabled) {
1406 			if (IS_I945G(dev) || IS_I945GM(dev))
1407 				I915_WRITE(FW_BLC_SELF,
1408 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1409 			else if (IS_I915GM(dev))
1410 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1411 			DRM_DEBUG_KMS("memory self refresh enabled\n");
1412 		} else
1413 			DRM_DEBUG_KMS("memory self refresh disabled\n");
1414 	}
1415 }
1416 
1417 void i830_update_wm(struct drm_device *dev)
1418 {
1419 	struct drm_i915_private *dev_priv = dev->dev_private;
1420 	struct drm_crtc *crtc;
1421 	uint32_t fwater_lo;
1422 	int planea_wm;
1423 
1424 	crtc = single_enabled_crtc(dev);
1425 	if (crtc == NULL)
1426 		return;
1427 
1428 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1429 				       dev_priv->display.get_fifo_size(dev, 0),
1430 				       crtc->fb->bits_per_pixel / 8,
1431 				       latency_ns);
1432 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1433 	fwater_lo |= (3<<8) | planea_wm;
1434 
1435 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1436 
1437 	I915_WRITE(FW_BLC, fwater_lo);
1438 }
1439 
1440 #define ILK_LP0_PLANE_LATENCY		700
1441 #define ILK_LP0_CURSOR_LATENCY		1300
1442 
1443 /*
1444  * Check the wm result.
1445  *
1446  * If any calculated watermark values is larger than the maximum value that
1447  * can be programmed into the associated watermark register, that watermark
1448  * must be disabled.
1449  */
1450 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1451 				int fbc_wm, int display_wm, int cursor_wm,
1452 				const struct intel_watermark_params *display,
1453 				const struct intel_watermark_params *cursor)
1454 {
1455 	struct drm_i915_private *dev_priv = dev->dev_private;
1456 
1457 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1458 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1459 
1460 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1461 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1462 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1463 
1464 		/* fbc has it's own way to disable FBC WM */
1465 		I915_WRITE(DISP_ARB_CTL,
1466 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1467 		return false;
1468 	}
1469 
1470 	if (display_wm > display->max_wm) {
1471 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1472 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1473 		return false;
1474 	}
1475 
1476 	if (cursor_wm > cursor->max_wm) {
1477 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1478 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1479 		return false;
1480 	}
1481 
1482 	if (!(fbc_wm || display_wm || cursor_wm)) {
1483 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1484 		return false;
1485 	}
1486 
1487 	return true;
1488 }
1489 
1490 /*
1491  * Compute watermark values of WM[1-3],
1492  */
1493 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1494 				  int latency_ns,
1495 				  const struct intel_watermark_params *display,
1496 				  const struct intel_watermark_params *cursor,
1497 				  int *fbc_wm, int *display_wm, int *cursor_wm)
1498 {
1499 	struct drm_crtc *crtc;
1500 	unsigned long line_time_us;
1501 	int hdisplay, htotal, pixel_size, clock;
1502 	int line_count, line_size;
1503 	int small, large;
1504 	int entries;
1505 
1506 	if (!latency_ns) {
1507 		*fbc_wm = *display_wm = *cursor_wm = 0;
1508 		return false;
1509 	}
1510 
1511 	crtc = intel_get_crtc_for_plane(dev, plane);
1512 	hdisplay = crtc->mode.hdisplay;
1513 	htotal = crtc->mode.htotal;
1514 	clock = crtc->mode.clock;
1515 	pixel_size = crtc->fb->bits_per_pixel / 8;
1516 
1517 	line_time_us = (htotal * 1000) / clock;
1518 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1519 	line_size = hdisplay * pixel_size;
1520 
1521 	/* Use the minimum of the small and large buffer method for primary */
1522 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1523 	large = line_count * line_size;
1524 
1525 	entries = howmany(min(small, large), display->cacheline_size);
1526 	*display_wm = entries + display->guard_size;
1527 
1528 	/*
1529 	 * Spec says:
1530 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1531 	 */
1532 	*fbc_wm = howmany(*display_wm * 64, line_size) + 2;
1533 
1534 	/* calculate the self-refresh watermark for display cursor */
1535 	entries = line_count * pixel_size * 64;
1536 	entries = howmany(entries, cursor->cacheline_size);
1537 	*cursor_wm = entries + cursor->guard_size;
1538 
1539 	return ironlake_check_srwm(dev, level,
1540 				   *fbc_wm, *display_wm, *cursor_wm,
1541 				   display, cursor);
1542 }
1543 
1544 void ironlake_update_wm(struct drm_device *dev)
1545 {
1546 	struct drm_i915_private *dev_priv = dev->dev_private;
1547 	int fbc_wm, plane_wm, cursor_wm;
1548 	unsigned int enabled;
1549 
1550 	enabled = 0;
1551 	if (g4x_compute_wm0(dev, 0,
1552 			    &ironlake_display_wm_info,
1553 			    ILK_LP0_PLANE_LATENCY,
1554 			    &ironlake_cursor_wm_info,
1555 			    ILK_LP0_CURSOR_LATENCY,
1556 			    &plane_wm, &cursor_wm)) {
1557 		I915_WRITE(WM0_PIPEA_ILK,
1558 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1559 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1560 			      " plane %d, " "cursor: %d\n",
1561 			      plane_wm, cursor_wm);
1562 		enabled |= 1;
1563 	}
1564 
1565 	if (g4x_compute_wm0(dev, 1,
1566 			    &ironlake_display_wm_info,
1567 			    ILK_LP0_PLANE_LATENCY,
1568 			    &ironlake_cursor_wm_info,
1569 			    ILK_LP0_CURSOR_LATENCY,
1570 			    &plane_wm, &cursor_wm)) {
1571 		I915_WRITE(WM0_PIPEB_ILK,
1572 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1573 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1574 			      " plane %d, cursor: %d\n",
1575 			      plane_wm, cursor_wm);
1576 		enabled |= 2;
1577 	}
1578 
1579 	/*
1580 	 * Calculate and update the self-refresh watermark only when one
1581 	 * display plane is used.
1582 	 */
1583 	I915_WRITE(WM3_LP_ILK, 0);
1584 	I915_WRITE(WM2_LP_ILK, 0);
1585 	I915_WRITE(WM1_LP_ILK, 0);
1586 
1587 	if (!single_plane_enabled(enabled))
1588 		return;
1589 	enabled = ffs(enabled) - 1;
1590 
1591 	/* WM1 */
1592 	if (!ironlake_compute_srwm(dev, 1, enabled,
1593 				   ILK_READ_WM1_LATENCY() * 500,
1594 				   &ironlake_display_srwm_info,
1595 				   &ironlake_cursor_srwm_info,
1596 				   &fbc_wm, &plane_wm, &cursor_wm))
1597 		return;
1598 
1599 	I915_WRITE(WM1_LP_ILK,
1600 		   WM1_LP_SR_EN |
1601 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1602 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1603 		   (plane_wm << WM1_LP_SR_SHIFT) |
1604 		   cursor_wm);
1605 
1606 	/* WM2 */
1607 	if (!ironlake_compute_srwm(dev, 2, enabled,
1608 				   ILK_READ_WM2_LATENCY() * 500,
1609 				   &ironlake_display_srwm_info,
1610 				   &ironlake_cursor_srwm_info,
1611 				   &fbc_wm, &plane_wm, &cursor_wm))
1612 		return;
1613 
1614 	I915_WRITE(WM2_LP_ILK,
1615 		   WM2_LP_EN |
1616 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1617 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1618 		   (plane_wm << WM1_LP_SR_SHIFT) |
1619 		   cursor_wm);
1620 
1621 	/*
1622 	 * WM3 is unsupported on ILK, probably because we don't have latency
1623 	 * data for that power state
1624 	 */
1625 }
1626 
1627 void sandybridge_update_wm(struct drm_device *dev)
1628 {
1629 	struct drm_i915_private *dev_priv = dev->dev_private;
1630 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1631 	u32 val;
1632 	int fbc_wm, plane_wm, cursor_wm;
1633 	unsigned int enabled;
1634 
1635 	enabled = 0;
1636 	if (g4x_compute_wm0(dev, 0,
1637 			    &sandybridge_display_wm_info, latency,
1638 			    &sandybridge_cursor_wm_info, latency,
1639 			    &plane_wm, &cursor_wm)) {
1640 		val = I915_READ(WM0_PIPEA_ILK);
1641 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1642 		I915_WRITE(WM0_PIPEA_ILK, val |
1643 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1644 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1645 			      " plane %d, " "cursor: %d\n",
1646 			      plane_wm, cursor_wm);
1647 		enabled |= 1;
1648 	}
1649 
1650 	if (g4x_compute_wm0(dev, 1,
1651 			    &sandybridge_display_wm_info, latency,
1652 			    &sandybridge_cursor_wm_info, latency,
1653 			    &plane_wm, &cursor_wm)) {
1654 		val = I915_READ(WM0_PIPEB_ILK);
1655 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1656 		I915_WRITE(WM0_PIPEB_ILK, val |
1657 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1658 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1659 			      " plane %d, cursor: %d\n",
1660 			      plane_wm, cursor_wm);
1661 		enabled |= 2;
1662 	}
1663 
1664 	/* IVB has 3 pipes */
1665 	if (IS_IVYBRIDGE(dev) &&
1666 	    g4x_compute_wm0(dev, 2,
1667 			    &sandybridge_display_wm_info, latency,
1668 			    &sandybridge_cursor_wm_info, latency,
1669 			    &plane_wm, &cursor_wm)) {
1670 		val = I915_READ(WM0_PIPEC_IVB);
1671 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1672 		I915_WRITE(WM0_PIPEC_IVB, val |
1673 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1674 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1675 			      " plane %d, cursor: %d\n",
1676 			      plane_wm, cursor_wm);
1677 		enabled |= 3;
1678 	}
1679 
1680 	/*
1681 	 * Calculate and update the self-refresh watermark only when one
1682 	 * display plane is used.
1683 	 *
1684 	 * SNB support 3 levels of watermark.
1685 	 *
1686 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1687 	 * and disabled in the descending order
1688 	 *
1689 	 */
1690 	I915_WRITE(WM3_LP_ILK, 0);
1691 	I915_WRITE(WM2_LP_ILK, 0);
1692 	I915_WRITE(WM1_LP_ILK, 0);
1693 
1694 	if (!single_plane_enabled(enabled) ||
1695 	    dev_priv->sprite_scaling_enabled)
1696 		return;
1697 	enabled = ffs(enabled) - 1;
1698 
1699 	/* WM1 */
1700 	if (!ironlake_compute_srwm(dev, 1, enabled,
1701 				   SNB_READ_WM1_LATENCY() * 500,
1702 				   &sandybridge_display_srwm_info,
1703 				   &sandybridge_cursor_srwm_info,
1704 				   &fbc_wm, &plane_wm, &cursor_wm))
1705 		return;
1706 
1707 	I915_WRITE(WM1_LP_ILK,
1708 		   WM1_LP_SR_EN |
1709 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1710 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1711 		   (plane_wm << WM1_LP_SR_SHIFT) |
1712 		   cursor_wm);
1713 
1714 	/* WM2 */
1715 	if (!ironlake_compute_srwm(dev, 2, enabled,
1716 				   SNB_READ_WM2_LATENCY() * 500,
1717 				   &sandybridge_display_srwm_info,
1718 				   &sandybridge_cursor_srwm_info,
1719 				   &fbc_wm, &plane_wm, &cursor_wm))
1720 		return;
1721 
1722 	I915_WRITE(WM2_LP_ILK,
1723 		   WM2_LP_EN |
1724 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1725 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1726 		   (plane_wm << WM1_LP_SR_SHIFT) |
1727 		   cursor_wm);
1728 
1729 	/* WM3 */
1730 	if (!ironlake_compute_srwm(dev, 3, enabled,
1731 				   SNB_READ_WM3_LATENCY() * 500,
1732 				   &sandybridge_display_srwm_info,
1733 				   &sandybridge_cursor_srwm_info,
1734 				   &fbc_wm, &plane_wm, &cursor_wm))
1735 		return;
1736 
1737 	I915_WRITE(WM3_LP_ILK,
1738 		   WM3_LP_EN |
1739 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1740 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1741 		   (plane_wm << WM1_LP_SR_SHIFT) |
1742 		   cursor_wm);
1743 }
1744 
1745 static bool
1746 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1747 			      uint32_t sprite_width, int pixel_size,
1748 			      const struct intel_watermark_params *display,
1749 			      int display_latency_ns, int *sprite_wm)
1750 {
1751 	struct drm_crtc *crtc;
1752 	int clock;
1753 	int entries, tlb_miss;
1754 
1755 	crtc = intel_get_crtc_for_plane(dev, plane);
1756 	if (crtc->fb == NULL || !crtc->enabled) {
1757 		*sprite_wm = display->guard_size;
1758 		return false;
1759 	}
1760 
1761 	clock = crtc->mode.clock;
1762 
1763 	/* Use the small buffer method to calculate the sprite watermark */
1764 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1765 	tlb_miss = display->fifo_size*display->cacheline_size -
1766 		sprite_width * 8;
1767 	if (tlb_miss > 0)
1768 		entries += tlb_miss;
1769 	entries = howmany(entries, display->cacheline_size);
1770 	*sprite_wm = entries + display->guard_size;
1771 	if (*sprite_wm > (int)display->max_wm)
1772 		*sprite_wm = display->max_wm;
1773 
1774 	return true;
1775 }
1776 
1777 static bool
1778 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1779 				uint32_t sprite_width, int pixel_size,
1780 				const struct intel_watermark_params *display,
1781 				int latency_ns, int *sprite_wm)
1782 {
1783 	struct drm_crtc *crtc;
1784 	unsigned long line_time_us;
1785 	int clock;
1786 	int line_count, line_size;
1787 	int small, large;
1788 	int entries;
1789 
1790 	if (!latency_ns) {
1791 		*sprite_wm = 0;
1792 		return false;
1793 	}
1794 
1795 	crtc = intel_get_crtc_for_plane(dev, plane);
1796 	clock = crtc->mode.clock;
1797 	if (!clock) {
1798 		*sprite_wm = 0;
1799 		return false;
1800 	}
1801 
1802 	line_time_us = (sprite_width * 1000) / clock;
1803 	if (!line_time_us) {
1804 		*sprite_wm = 0;
1805 		return false;
1806 	}
1807 
1808 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1809 	line_size = sprite_width * pixel_size;
1810 
1811 	/* Use the minimum of the small and large buffer method for primary */
1812 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1813 	large = line_count * line_size;
1814 
1815 	entries = howmany(min(small, large), display->cacheline_size);
1816 	*sprite_wm = entries + display->guard_size;
1817 
1818 	return *sprite_wm > 0x3ff ? false : true;
1819 }
1820 
1821 void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1822 					 uint32_t sprite_width, int pixel_size)
1823 {
1824 	struct drm_i915_private *dev_priv = dev->dev_private;
1825 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1826 	u32 val;
1827 	int sprite_wm, reg;
1828 	int ret;
1829 
1830 	switch (pipe) {
1831 	case 0:
1832 		reg = WM0_PIPEA_ILK;
1833 		break;
1834 	case 1:
1835 		reg = WM0_PIPEB_ILK;
1836 		break;
1837 	case 2:
1838 		reg = WM0_PIPEC_IVB;
1839 		break;
1840 	default:
1841 		return; /* bad pipe */
1842 	}
1843 
1844 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
1845 					    &sandybridge_display_wm_info,
1846 					    latency, &sprite_wm);
1847 	if (!ret) {
1848 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
1849 			      pipe);
1850 		return;
1851 	}
1852 
1853 	val = I915_READ(reg);
1854 	val &= ~WM0_PIPE_SPRITE_MASK;
1855 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
1856 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
1857 
1858 
1859 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1860 					      pixel_size,
1861 					      &sandybridge_display_srwm_info,
1862 					      SNB_READ_WM1_LATENCY() * 500,
1863 					      &sprite_wm);
1864 	if (!ret) {
1865 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
1866 			      pipe);
1867 		return;
1868 	}
1869 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
1870 
1871 	/* Only IVB has two more LP watermarks for sprite */
1872 	if (!IS_IVYBRIDGE(dev))
1873 		return;
1874 
1875 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1876 					      pixel_size,
1877 					      &sandybridge_display_srwm_info,
1878 					      SNB_READ_WM2_LATENCY() * 500,
1879 					      &sprite_wm);
1880 	if (!ret) {
1881 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
1882 			      pipe);
1883 		return;
1884 	}
1885 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
1886 
1887 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
1888 					      pixel_size,
1889 					      &sandybridge_display_srwm_info,
1890 					      SNB_READ_WM3_LATENCY() * 500,
1891 					      &sprite_wm);
1892 	if (!ret) {
1893 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
1894 			      pipe);
1895 		return;
1896 	}
1897 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
1898 }
1899 
1900 /**
1901  * intel_update_watermarks - update FIFO watermark values based on current modes
1902  *
1903  * Calculate watermark values for the various WM regs based on current mode
1904  * and plane configuration.
1905  *
1906  * There are several cases to deal with here:
1907  *   - normal (i.e. non-self-refresh)
1908  *   - self-refresh (SR) mode
1909  *   - lines are large relative to FIFO size (buffer can hold up to 2)
1910  *   - lines are small relative to FIFO size (buffer can hold more than 2
1911  *     lines), so need to account for TLB latency
1912  *
1913  *   The normal calculation is:
1914  *     watermark = dotclock * bytes per pixel * latency
1915  *   where latency is platform & configuration dependent (we assume pessimal
1916  *   values here).
1917  *
1918  *   The SR calculation is:
1919  *     watermark = (trunc(latency/line time)+1) * surface width *
1920  *       bytes per pixel
1921  *   where
1922  *     line time = htotal / dotclock
1923  *     surface width = hdisplay for normal plane and 64 for cursor
1924  *   and latency is assumed to be high, as above.
1925  *
1926  * The final value programmed to the register should always be rounded up,
1927  * and include an extra 2 entries to account for clock crossings.
1928  *
1929  * We don't use the sprite, so we can ignore that.  And on Crestline we have
1930  * to set the non-SR watermarks to 8.
1931  */
1932 void intel_update_watermarks(struct drm_device *dev)
1933 {
1934 	struct drm_i915_private *dev_priv = dev->dev_private;
1935 
1936 	if (dev_priv->display.update_wm)
1937 		dev_priv->display.update_wm(dev);
1938 }
1939 
1940 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
1941 				    uint32_t sprite_width, int pixel_size)
1942 {
1943 	struct drm_i915_private *dev_priv = dev->dev_private;
1944 
1945 	if (dev_priv->display.update_sprite_wm)
1946 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
1947 						   pixel_size);
1948 }
1949 
1950 static struct drm_i915_gem_object *
1951 intel_alloc_context_page(struct drm_device *dev)
1952 {
1953 	struct drm_i915_gem_object *ctx;
1954 	int ret;
1955 
1956 	DRM_LOCK_ASSERT(dev);
1957 
1958 	ctx = i915_gem_alloc_object(dev, 4096);
1959 	if (!ctx) {
1960 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
1961 		return NULL;
1962 	}
1963 
1964 	ret = i915_gem_object_pin(ctx, 4096, true);
1965 	if (ret) {
1966 		DRM_ERROR("failed to pin power context: %d\n", ret);
1967 		goto err_unref;
1968 	}
1969 
1970 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
1971 	if (ret) {
1972 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
1973 		goto err_unpin;
1974 	}
1975 
1976 	return ctx;
1977 
1978 err_unpin:
1979 	i915_gem_object_unpin(ctx);
1980 err_unref:
1981 	drm_gem_object_unreference(&ctx->base);
1982 	DRM_UNLOCK(dev);
1983 	return NULL;
1984 }
1985 
1986 /**
1987  * Lock protecting IPS related data structures
1988  */
1989 struct lock mchdev_lock;
1990 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
1991 
1992 /* Global for IPS driver to get at the current i915 device. Protected by
1993  * mchdev_lock. */
1994 struct drm_i915_private *i915_mch_dev;
1995 
1996 bool ironlake_set_drps(struct drm_device *dev, u8 val)
1997 {
1998 	struct drm_i915_private *dev_priv = dev->dev_private;
1999 	u16 rgvswctl;
2000 
2001 	rgvswctl = I915_READ16(MEMSWCTL);
2002 	if (rgvswctl & MEMCTL_CMD_STS) {
2003 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2004 		return false; /* still busy with another command */
2005 	}
2006 
2007 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2008 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2009 	I915_WRITE16(MEMSWCTL, rgvswctl);
2010 	POSTING_READ16(MEMSWCTL);
2011 
2012 	rgvswctl |= MEMCTL_CMD_STS;
2013 	I915_WRITE16(MEMSWCTL, rgvswctl);
2014 
2015 	return true;
2016 }
2017 
2018 void ironlake_enable_drps(struct drm_device *dev)
2019 {
2020 	struct drm_i915_private *dev_priv = dev->dev_private;
2021 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2022 	u8 fmax, fmin, fstart, vstart;
2023 
2024 	/* Enable temp reporting */
2025 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2026 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2027 
2028 	/* 100ms RC evaluation intervals */
2029 	I915_WRITE(RCUPEI, 100000);
2030 	I915_WRITE(RCDNEI, 100000);
2031 
2032 	/* Set max/min thresholds to 90ms and 80ms respectively */
2033 	I915_WRITE(RCBMAXAVG, 90000);
2034 	I915_WRITE(RCBMINAVG, 80000);
2035 
2036 	I915_WRITE(MEMIHYST, 1);
2037 
2038 	/* Set up min, max, and cur for interrupt handling */
2039 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2040 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2041 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2042 		MEMMODE_FSTART_SHIFT;
2043 
2044 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2045 		PXVFREQ_PX_SHIFT;
2046 
2047 	dev_priv->fmax = fmax; /* IPS callback will increase this */
2048 	dev_priv->fstart = fstart;
2049 
2050 	dev_priv->max_delay = fstart;
2051 	dev_priv->min_delay = fmin;
2052 	dev_priv->cur_delay = fstart;
2053 
2054 	DRM_DEBUG("fmax: %d, fmin: %d, fstart: %d\n",
2055 			 fmax, fmin, fstart);
2056 
2057 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2058 
2059 	/*
2060 	 * Interrupts will be enabled in ironlake_irq_postinstall
2061 	 */
2062 
2063 	I915_WRITE(VIDSTART, vstart);
2064 	POSTING_READ(VIDSTART);
2065 
2066 	rgvmodectl |= MEMMODE_SWMODE_EN;
2067 	I915_WRITE(MEMMODECTL, rgvmodectl);
2068 
2069 	if (_intel_wait_for(dev,
2070 	    (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10,
2071 	    1, "915per"))
2072 		DRM_ERROR("stuck trying to change perf mode\n");
2073 	DELAY(1000);
2074 
2075 	ironlake_set_drps(dev, fstart);
2076 
2077 	dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2078 		I915_READ(0x112e0);
2079 	dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2080 	dev_priv->last_count2 = I915_READ(0x112f4);
2081 	nanotime(&dev_priv->last_time2);
2082 }
2083 
2084 void ironlake_disable_drps(struct drm_device *dev)
2085 {
2086 	struct drm_i915_private *dev_priv = dev->dev_private;
2087 	u16 rgvswctl = I915_READ16(MEMSWCTL);
2088 
2089 	/* Ack interrupts, disable EFC interrupt */
2090 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2091 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2092 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2093 	I915_WRITE(DEIIR, DE_PCU_EVENT);
2094 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2095 
2096 	/* Go back to the starting frequency */
2097 	ironlake_set_drps(dev, dev_priv->fstart);
2098 	DELAY(1000);
2099 	rgvswctl |= MEMCTL_CMD_STS;
2100 	I915_WRITE(MEMSWCTL, rgvswctl);
2101 	DELAY(1000);
2102 
2103 }
2104 
2105 void gen6_set_rps(struct drm_device *dev, u8 val)
2106 {
2107 	struct drm_i915_private *dev_priv = dev->dev_private;
2108 	u32 swreq;
2109 
2110 	swreq = (val & 0x3ff) << 25;
2111 	I915_WRITE(GEN6_RPNSWREQ, swreq);
2112 }
2113 
2114 void gen6_disable_rps(struct drm_device *dev)
2115 {
2116 	struct drm_i915_private *dev_priv = dev->dev_private;
2117 
2118 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2119 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2120 	I915_WRITE(GEN6_PMIER, 0);
2121 	/* Complete PM interrupt masking here doesn't race with the rps work
2122 	 * item again unmasking PM interrupts because that is using a different
2123 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2124 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2125 
2126 	lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
2127 	dev_priv->pm_iir = 0;
2128 	lockmgr(&dev_priv->rps_lock, LK_RELEASE);
2129 
2130 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2131 }
2132 
2133 static unsigned long intel_pxfreq(u32 vidfreq)
2134 {
2135 	unsigned long freq;
2136 	int div = (vidfreq & 0x3f0000) >> 16;
2137 	int post = (vidfreq & 0x3000) >> 12;
2138 	int pre = (vidfreq & 0x7);
2139 
2140 	if (!pre)
2141 		return 0;
2142 
2143 	freq = ((div * 133333) / ((1<<post) * pre));
2144 
2145 	return freq;
2146 }
2147 
2148 static const struct cparams {
2149 	u16 i;
2150 	u16 t;
2151 	u16 m;
2152 	u16 c;
2153 } cparams[] = {
2154 	{ 1, 1333, 301, 28664 },
2155 	{ 1, 1066, 294, 24460 },
2156 	{ 1, 800, 294, 25192 },
2157 	{ 0, 1333, 276, 27605 },
2158 	{ 0, 1066, 276, 27605 },
2159 	{ 0, 800, 231, 23784 },
2160 };
2161 
2162 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2163 {
2164 	u64 total_count, diff, ret;
2165 	u32 count1, count2, count3, m = 0, c = 0;
2166 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2167 	int i;
2168 
2169 	diff1 = now - dev_priv->last_time1;
2170 	/*
2171 	 * sysctl(8) reads the value of sysctl twice in rapid
2172 	 * succession.  There is high chance that it happens in the
2173 	 * same timer tick.  Use the cached value to not divide by
2174 	 * zero and give the hw a chance to gather more samples.
2175 	 */
2176 	if (diff1 <= 10)
2177 		return (dev_priv->chipset_power);
2178 
2179 	count1 = I915_READ(DMIEC);
2180 	count2 = I915_READ(DDREC);
2181 	count3 = I915_READ(CSIEC);
2182 
2183 	total_count = count1 + count2 + count3;
2184 
2185 	/* FIXME: handle per-counter overflow */
2186 	if (total_count < dev_priv->last_count1) {
2187 		diff = ~0UL - dev_priv->last_count1;
2188 		diff += total_count;
2189 	} else {
2190 		diff = total_count - dev_priv->last_count1;
2191 	}
2192 
2193 	for (i = 0; i < DRM_ARRAY_SIZE(cparams); i++) {
2194 		if (cparams[i].i == dev_priv->c_m &&
2195 		    cparams[i].t == dev_priv->r_t) {
2196 			m = cparams[i].m;
2197 			c = cparams[i].c;
2198 			break;
2199 		}
2200 	}
2201 
2202 	diff = diff / diff1;
2203 	ret = ((m * diff) + c);
2204 	ret = ret / 10;
2205 
2206 	dev_priv->last_count1 = total_count;
2207 	dev_priv->last_time1 = now;
2208 
2209 	dev_priv->chipset_power = ret;
2210 	return (ret);
2211 }
2212 
2213 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2214 {
2215 	unsigned long m, x, b;
2216 	u32 tsfs;
2217 
2218 	tsfs = I915_READ(TSFS);
2219 
2220 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2221 	x = I915_READ8(TR1);
2222 
2223 	b = tsfs & TSFS_INTR_MASK;
2224 
2225 	return ((m * x) / 127) - b;
2226 }
2227 
2228 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2229 {
2230 	static const struct v_table {
2231 		u16 vd; /* in .1 mil */
2232 		u16 vm; /* in .1 mil */
2233 	} v_table[] = {
2234 		{ 0, 0, },
2235 		{ 375, 0, },
2236 		{ 500, 0, },
2237 		{ 625, 0, },
2238 		{ 750, 0, },
2239 		{ 875, 0, },
2240 		{ 1000, 0, },
2241 		{ 1125, 0, },
2242 		{ 4125, 3000, },
2243 		{ 4125, 3000, },
2244 		{ 4125, 3000, },
2245 		{ 4125, 3000, },
2246 		{ 4125, 3000, },
2247 		{ 4125, 3000, },
2248 		{ 4125, 3000, },
2249 		{ 4125, 3000, },
2250 		{ 4125, 3000, },
2251 		{ 4125, 3000, },
2252 		{ 4125, 3000, },
2253 		{ 4125, 3000, },
2254 		{ 4125, 3000, },
2255 		{ 4125, 3000, },
2256 		{ 4125, 3000, },
2257 		{ 4125, 3000, },
2258 		{ 4125, 3000, },
2259 		{ 4125, 3000, },
2260 		{ 4125, 3000, },
2261 		{ 4125, 3000, },
2262 		{ 4125, 3000, },
2263 		{ 4125, 3000, },
2264 		{ 4125, 3000, },
2265 		{ 4125, 3000, },
2266 		{ 4250, 3125, },
2267 		{ 4375, 3250, },
2268 		{ 4500, 3375, },
2269 		{ 4625, 3500, },
2270 		{ 4750, 3625, },
2271 		{ 4875, 3750, },
2272 		{ 5000, 3875, },
2273 		{ 5125, 4000, },
2274 		{ 5250, 4125, },
2275 		{ 5375, 4250, },
2276 		{ 5500, 4375, },
2277 		{ 5625, 4500, },
2278 		{ 5750, 4625, },
2279 		{ 5875, 4750, },
2280 		{ 6000, 4875, },
2281 		{ 6125, 5000, },
2282 		{ 6250, 5125, },
2283 		{ 6375, 5250, },
2284 		{ 6500, 5375, },
2285 		{ 6625, 5500, },
2286 		{ 6750, 5625, },
2287 		{ 6875, 5750, },
2288 		{ 7000, 5875, },
2289 		{ 7125, 6000, },
2290 		{ 7250, 6125, },
2291 		{ 7375, 6250, },
2292 		{ 7500, 6375, },
2293 		{ 7625, 6500, },
2294 		{ 7750, 6625, },
2295 		{ 7875, 6750, },
2296 		{ 8000, 6875, },
2297 		{ 8125, 7000, },
2298 		{ 8250, 7125, },
2299 		{ 8375, 7250, },
2300 		{ 8500, 7375, },
2301 		{ 8625, 7500, },
2302 		{ 8750, 7625, },
2303 		{ 8875, 7750, },
2304 		{ 9000, 7875, },
2305 		{ 9125, 8000, },
2306 		{ 9250, 8125, },
2307 		{ 9375, 8250, },
2308 		{ 9500, 8375, },
2309 		{ 9625, 8500, },
2310 		{ 9750, 8625, },
2311 		{ 9875, 8750, },
2312 		{ 10000, 8875, },
2313 		{ 10125, 9000, },
2314 		{ 10250, 9125, },
2315 		{ 10375, 9250, },
2316 		{ 10500, 9375, },
2317 		{ 10625, 9500, },
2318 		{ 10750, 9625, },
2319 		{ 10875, 9750, },
2320 		{ 11000, 9875, },
2321 		{ 11125, 10000, },
2322 		{ 11250, 10125, },
2323 		{ 11375, 10250, },
2324 		{ 11500, 10375, },
2325 		{ 11625, 10500, },
2326 		{ 11750, 10625, },
2327 		{ 11875, 10750, },
2328 		{ 12000, 10875, },
2329 		{ 12125, 11000, },
2330 		{ 12250, 11125, },
2331 		{ 12375, 11250, },
2332 		{ 12500, 11375, },
2333 		{ 12625, 11500, },
2334 		{ 12750, 11625, },
2335 		{ 12875, 11750, },
2336 		{ 13000, 11875, },
2337 		{ 13125, 12000, },
2338 		{ 13250, 12125, },
2339 		{ 13375, 12250, },
2340 		{ 13500, 12375, },
2341 		{ 13625, 12500, },
2342 		{ 13750, 12625, },
2343 		{ 13875, 12750, },
2344 		{ 14000, 12875, },
2345 		{ 14125, 13000, },
2346 		{ 14250, 13125, },
2347 		{ 14375, 13250, },
2348 		{ 14500, 13375, },
2349 		{ 14625, 13500, },
2350 		{ 14750, 13625, },
2351 		{ 14875, 13750, },
2352 		{ 15000, 13875, },
2353 		{ 15125, 14000, },
2354 		{ 15250, 14125, },
2355 		{ 15375, 14250, },
2356 		{ 15500, 14375, },
2357 		{ 15625, 14500, },
2358 		{ 15750, 14625, },
2359 		{ 15875, 14750, },
2360 		{ 16000, 14875, },
2361 		{ 16125, 15000, },
2362 	};
2363 	if (dev_priv->info->is_mobile)
2364 		return v_table[pxvid].vm;
2365 	else
2366 		return v_table[pxvid].vd;
2367 }
2368 
2369 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2370 {
2371 	struct timespec now, diff1;
2372 	u64 diff;
2373 	unsigned long diffms;
2374 	u32 count;
2375 
2376 	if (dev_priv->info->gen != 5)
2377 		return;
2378 
2379 	nanotime(&now);
2380 	diff1 = now;
2381 	timespecsub(&diff1, &dev_priv->last_time2);
2382 
2383 	/* Don't divide by 0 */
2384 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2385 	if (!diffms)
2386 		return;
2387 
2388 	count = I915_READ(GFXEC);
2389 
2390 	if (count < dev_priv->last_count2) {
2391 		diff = ~0UL - dev_priv->last_count2;
2392 		diff += count;
2393 	} else {
2394 		diff = count - dev_priv->last_count2;
2395 	}
2396 
2397 	dev_priv->last_count2 = count;
2398 	dev_priv->last_time2 = now;
2399 
2400 	/* More magic constants... */
2401 	diff = diff * 1181;
2402 	diff = diff / (diffms * 10);
2403 	dev_priv->gfx_power = diff;
2404 }
2405 
2406 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2407 {
2408 	unsigned long t, corr, state1, corr2, state2;
2409 	u32 pxvid, ext_v;
2410 
2411 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
2412 	pxvid = (pxvid >> 24) & 0x7f;
2413 	ext_v = pvid_to_extvid(dev_priv, pxvid);
2414 
2415 	state1 = ext_v;
2416 
2417 	t = i915_mch_val(dev_priv);
2418 
2419 	/* Revel in the empirically derived constants */
2420 
2421 	/* Correction factor in 1/100000 units */
2422 	if (t > 80)
2423 		corr = ((t * 2349) + 135940);
2424 	else if (t >= 50)
2425 		corr = ((t * 964) + 29317);
2426 	else /* < 50 */
2427 		corr = ((t * 301) + 1004);
2428 
2429 	corr = corr * ((150142 * state1) / 10000 - 78642);
2430 	corr /= 100000;
2431 	corr2 = (corr * dev_priv->corr);
2432 
2433 	state2 = (corr2 * state1) / 10000;
2434 	state2 /= 100; /* convert to mW */
2435 
2436 	i915_update_gfx_val(dev_priv);
2437 
2438 	return dev_priv->gfx_power + state2;
2439 }
2440 
2441 /**
2442  * i915_read_mch_val - return value for IPS use
2443  *
2444  * Calculate and return a value for the IPS driver to use when deciding whether
2445  * we have thermal and power headroom to increase CPU or GPU power budget.
2446  */
2447 unsigned long i915_read_mch_val(void)
2448 {
2449 	struct drm_i915_private *dev_priv;
2450 	unsigned long chipset_val, graphics_val, ret = 0;
2451 
2452 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2453 	if (!i915_mch_dev)
2454 		goto out_unlock;
2455 	dev_priv = i915_mch_dev;
2456 
2457 	chipset_val = i915_chipset_val(dev_priv);
2458 	graphics_val = i915_gfx_val(dev_priv);
2459 
2460 	ret = chipset_val + graphics_val;
2461 
2462 out_unlock:
2463 	lockmgr(&mchdev_lock, LK_RELEASE);
2464 
2465 	return ret;
2466 }
2467 
2468 /**
2469  * i915_gpu_raise - raise GPU frequency limit
2470  *
2471  * Raise the limit; IPS indicates we have thermal headroom.
2472  */
2473 bool i915_gpu_raise(void)
2474 {
2475 	struct drm_i915_private *dev_priv;
2476 	bool ret = true;
2477 
2478 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2479 	if (!i915_mch_dev) {
2480 		ret = false;
2481 		goto out_unlock;
2482 	}
2483 	dev_priv = i915_mch_dev;
2484 
2485 	if (dev_priv->max_delay > dev_priv->fmax)
2486 		dev_priv->max_delay--;
2487 
2488 out_unlock:
2489 	lockmgr(&mchdev_lock, LK_RELEASE);
2490 
2491 	return ret;
2492 }
2493 
2494 /**
2495  * i915_gpu_lower - lower GPU frequency limit
2496  *
2497  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2498  * frequency maximum.
2499  */
2500 bool i915_gpu_lower(void)
2501 {
2502 	struct drm_i915_private *dev_priv;
2503 	bool ret = true;
2504 
2505 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2506 	if (!i915_mch_dev) {
2507 		ret = false;
2508 		goto out_unlock;
2509 	}
2510 	dev_priv = i915_mch_dev;
2511 
2512 	if (dev_priv->max_delay < dev_priv->min_delay)
2513 		dev_priv->max_delay++;
2514 
2515 out_unlock:
2516 	lockmgr(&mchdev_lock, LK_RELEASE);
2517 
2518 	return ret;
2519 }
2520 
2521 /**
2522  * i915_gpu_busy - indicate GPU business to IPS
2523  *
2524  * Tell the IPS driver whether or not the GPU is busy.
2525  */
2526 bool i915_gpu_busy(void)
2527 {
2528 	struct drm_i915_private *dev_priv;
2529 	bool ret = false;
2530 
2531 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2532 	if (!i915_mch_dev)
2533 		goto out_unlock;
2534 	dev_priv = i915_mch_dev;
2535 
2536 	ret = dev_priv->busy;
2537 
2538 out_unlock:
2539 	lockmgr(&mchdev_lock, LK_RELEASE);
2540 
2541 	return ret;
2542 }
2543 
2544 /**
2545  * i915_gpu_turbo_disable - disable graphics turbo
2546  *
2547  * Disable graphics turbo by resetting the max frequency and setting the
2548  * current frequency to the default.
2549  */
2550 bool i915_gpu_turbo_disable(void)
2551 {
2552 	struct drm_i915_private *dev_priv;
2553 	bool ret = true;
2554 
2555 	lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2556 	if (!i915_mch_dev) {
2557 		ret = false;
2558 		goto out_unlock;
2559 	}
2560 	dev_priv = i915_mch_dev;
2561 
2562 	dev_priv->max_delay = dev_priv->fstart;
2563 
2564 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
2565 		ret = false;
2566 
2567 out_unlock:
2568 	lockmgr(&mchdev_lock, LK_RELEASE);
2569 
2570 	return ret;
2571 }
2572 
2573 void intel_init_emon(struct drm_device *dev)
2574 {
2575 	struct drm_i915_private *dev_priv = dev->dev_private;
2576 	u32 lcfuse;
2577 	u8 pxw[16];
2578 	int i;
2579 
2580 	/* Disable to program */
2581 	I915_WRITE(ECR, 0);
2582 	POSTING_READ(ECR);
2583 
2584 	/* Program energy weights for various events */
2585 	I915_WRITE(SDEW, 0x15040d00);
2586 	I915_WRITE(CSIEW0, 0x007f0000);
2587 	I915_WRITE(CSIEW1, 0x1e220004);
2588 	I915_WRITE(CSIEW2, 0x04000004);
2589 
2590 	for (i = 0; i < 5; i++)
2591 		I915_WRITE(PEW + (i * 4), 0);
2592 	for (i = 0; i < 3; i++)
2593 		I915_WRITE(DEW + (i * 4), 0);
2594 
2595 	/* Program P-state weights to account for frequency power adjustment */
2596 	for (i = 0; i < 16; i++) {
2597 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
2598 		unsigned long freq = intel_pxfreq(pxvidfreq);
2599 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
2600 			PXVFREQ_PX_SHIFT;
2601 		unsigned long val;
2602 
2603 		val = vid * vid;
2604 		val *= (freq / 1000);
2605 		val *= 255;
2606 		val /= (127*127*900);
2607 		if (val > 0xff)
2608 			DRM_ERROR("bad pxval: %ld\n", val);
2609 		pxw[i] = val;
2610 	}
2611 	/* Render standby states get 0 weight */
2612 	pxw[14] = 0;
2613 	pxw[15] = 0;
2614 
2615 	for (i = 0; i < 4; i++) {
2616 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
2617 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
2618 		I915_WRITE(PXW + (i * 4), val);
2619 	}
2620 
2621 	/* Adjust magic regs to magic values (more experimental results) */
2622 	I915_WRITE(OGW0, 0);
2623 	I915_WRITE(OGW1, 0);
2624 	I915_WRITE(EG0, 0x00007f00);
2625 	I915_WRITE(EG1, 0x0000000e);
2626 	I915_WRITE(EG2, 0x000e0000);
2627 	I915_WRITE(EG3, 0x68000300);
2628 	I915_WRITE(EG4, 0x42000000);
2629 	I915_WRITE(EG5, 0x00140031);
2630 	I915_WRITE(EG6, 0);
2631 	I915_WRITE(EG7, 0);
2632 
2633 	for (i = 0; i < 8; i++)
2634 		I915_WRITE(PXWL + (i * 4), 0);
2635 
2636 	/* Enable PMON + select events */
2637 	I915_WRITE(ECR, 0x80000019);
2638 
2639 	lcfuse = I915_READ(LCFUSE02);
2640 
2641 	dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
2642 }
2643 
2644 static int intel_enable_rc6(struct drm_device *dev)
2645 {
2646 	/*
2647 	 * Respect the kernel parameter if it is set
2648 	 */
2649 	if (i915_enable_rc6 >= 0)
2650 		return i915_enable_rc6;
2651 
2652 	/*
2653 	 * Disable RC6 on Ironlake
2654 	 */
2655 	if (INTEL_INFO(dev)->gen == 5)
2656 		return 0;
2657 
2658 	/*
2659 	 * Enable rc6 on Sandybridge if DMA remapping is disabled
2660 	 */
2661 	if (INTEL_INFO(dev)->gen == 6) {
2662 		DRM_DEBUG_DRIVER(
2663 		    "Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
2664 		     intel_iommu_enabled ? "true" : "false",
2665 		     !intel_iommu_enabled ? "en" : "dis");
2666 		return (intel_iommu_enabled ? 0 : INTEL_RC6_ENABLE);
2667 	}
2668 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2669 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2670 }
2671 
2672 void gen6_enable_rps(struct drm_i915_private *dev_priv)
2673 {
2674 	struct drm_device *dev = dev_priv->dev;
2675 	u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2676 	u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2677 	u32 pcu_mbox, rc6_mask = 0;
2678 	u32 gtfifodbg;
2679 	int cur_freq, min_freq, max_freq;
2680 	int rc6_mode;
2681 	int i;
2682 
2683 	/* Here begins a magic sequence of register writes to enable
2684 	 * auto-downclocking.
2685 	 *
2686 	 * Perhaps there might be some value in exposing these to
2687 	 * userspace...
2688 	 */
2689 	I915_WRITE(GEN6_RC_STATE, 0);
2690 	DRM_LOCK(dev);
2691 
2692 	/* Clear the DBG now so we don't confuse earlier errors */
2693 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2694 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2695 		I915_WRITE(GTFIFODBG, gtfifodbg);
2696 	}
2697 
2698 	gen6_gt_force_wake_get(dev_priv);
2699 
2700 	/* disable the counters and set deterministic thresholds */
2701 	I915_WRITE(GEN6_RC_CONTROL, 0);
2702 
2703 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2704 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2705 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2706 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2707 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2708 
2709 	for (i = 0; i < I915_NUM_RINGS; i++)
2710 		I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
2711 
2712 	I915_WRITE(GEN6_RC_SLEEP, 0);
2713 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2714 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2715 	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2716 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2717 
2718 	rc6_mode = intel_enable_rc6(dev_priv->dev);
2719 	if (rc6_mode & INTEL_RC6_ENABLE)
2720 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2721 
2722 	if (rc6_mode & INTEL_RC6p_ENABLE)
2723 		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2724 
2725 	if (rc6_mode & INTEL_RC6pp_ENABLE)
2726 		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2727 
2728 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2729 			(rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
2730 			(rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
2731 			(rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
2732 
2733 	I915_WRITE(GEN6_RC_CONTROL,
2734 		   rc6_mask |
2735 		   GEN6_RC_CTL_EI_MODE(1) |
2736 		   GEN6_RC_CTL_HW_ENABLE);
2737 
2738 	I915_WRITE(GEN6_RPNSWREQ,
2739 		   GEN6_FREQUENCY(10) |
2740 		   GEN6_OFFSET(0) |
2741 		   GEN6_AGGRESSIVE_TURBO);
2742 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2743 		   GEN6_FREQUENCY(12));
2744 
2745 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2746 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2747 		   18 << 24 |
2748 		   6 << 16);
2749 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2750 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2751 	I915_WRITE(GEN6_RP_UP_EI, 100000);
2752 	I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2753 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2754 	I915_WRITE(GEN6_RP_CONTROL,
2755 		   GEN6_RP_MEDIA_TURBO |
2756 		   GEN6_RP_MEDIA_HW_MODE |
2757 		   GEN6_RP_MEDIA_IS_GFX |
2758 		   GEN6_RP_ENABLE |
2759 		   GEN6_RP_UP_BUSY_AVG |
2760 		   GEN6_RP_DOWN_IDLE_CONT);
2761 
2762 	if (_intel_wait_for(dev,
2763 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2764 	    1, "915pr1"))
2765 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2766 
2767 	I915_WRITE(GEN6_PCODE_DATA, 0);
2768 	I915_WRITE(GEN6_PCODE_MAILBOX,
2769 		   GEN6_PCODE_READY |
2770 		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2771 	if (_intel_wait_for(dev,
2772 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2773 	    1, "915pr2"))
2774 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2775 
2776 	min_freq = (rp_state_cap & 0xff0000) >> 16;
2777 	max_freq = rp_state_cap & 0xff;
2778 	cur_freq = (gt_perf_status & 0xff00) >> 8;
2779 
2780 	/* Check for overclock support */
2781 	if (_intel_wait_for(dev,
2782 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2783 	    1, "915pr3"))
2784 		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2785 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2786 	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2787 	if (_intel_wait_for(dev,
2788 	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
2789 	    1, "915pr4"))
2790 		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2791 	if (pcu_mbox & (1<<31)) { /* OC supported */
2792 		max_freq = pcu_mbox & 0xff;
2793 		DRM_DEBUG("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2794 	}
2795 
2796 	/* In units of 100MHz */
2797 	dev_priv->max_delay = max_freq;
2798 	dev_priv->min_delay = min_freq;
2799 	dev_priv->cur_delay = cur_freq;
2800 
2801 	/* requires MSI enabled */
2802 	I915_WRITE(GEN6_PMIER,
2803 		   GEN6_PM_MBOX_EVENT |
2804 		   GEN6_PM_THERMAL_EVENT |
2805 		   GEN6_PM_RP_DOWN_TIMEOUT |
2806 		   GEN6_PM_RP_UP_THRESHOLD |
2807 		   GEN6_PM_RP_DOWN_THRESHOLD |
2808 		   GEN6_PM_RP_UP_EI_EXPIRED |
2809 		   GEN6_PM_RP_DOWN_EI_EXPIRED);
2810 	lockmgr(&dev_priv->rps_lock, LK_EXCLUSIVE);
2811 	if (dev_priv->pm_iir != 0)
2812 		kprintf("pm_iir %x\n", dev_priv->pm_iir);
2813 	I915_WRITE(GEN6_PMIMR, 0);
2814 	lockmgr(&dev_priv->rps_lock, LK_RELEASE);
2815 	/* enable all PM interrupts */
2816 	I915_WRITE(GEN6_PMINTRMSK, 0);
2817 
2818 	gen6_gt_force_wake_put(dev_priv);
2819 	DRM_UNLOCK(dev);
2820 }
2821 
2822 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2823 {
2824 	struct drm_device *dev;
2825 	int min_freq = 15;
2826 	int gpu_freq, ia_freq, max_ia_freq;
2827 	int scaling_factor = 180;
2828 	uint64_t tsc_freq;
2829 
2830 	dev = dev_priv->dev;
2831 #if 0
2832 	max_ia_freq = cpufreq_quick_get_max(0);
2833 	/*
2834 	 * Default to measured freq if none found, PCU will ensure we don't go
2835 	 * over
2836 	 */
2837 	if (!max_ia_freq)
2838 		max_ia_freq = tsc_freq;
2839 
2840 	/* Convert from Hz to MHz */
2841 	max_ia_freq /= 1000;
2842 #else
2843 	tsc_freq = atomic_load_acq_64(&tsc_freq);
2844 	max_ia_freq = tsc_freq / 1000 / 1000;
2845 #endif
2846 
2847 	DRM_LOCK(dev);
2848 
2849 	/*
2850 	 * For each potential GPU frequency, load a ring frequency we'd like
2851 	 * to use for memory access.  We do this by specifying the IA frequency
2852 	 * the PCU should use as a reference to determine the ring frequency.
2853 	 */
2854 	for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
2855 	     gpu_freq--) {
2856 		int diff = dev_priv->max_delay - gpu_freq;
2857 		int d;
2858 
2859 		/*
2860 		 * For GPU frequencies less than 750MHz, just use the lowest
2861 		 * ring freq.
2862 		 */
2863 		if (gpu_freq < min_freq)
2864 			ia_freq = 800;
2865 		else
2866 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2867 		d = 100;
2868 		ia_freq = (ia_freq + d / 2) / d;
2869 
2870 		I915_WRITE(GEN6_PCODE_DATA,
2871 			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2872 			   gpu_freq);
2873 		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2874 			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2875 		if (_intel_wait_for(dev,
2876 		    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2877 		    10, 1, "915frq")) {
2878 			DRM_ERROR("pcode write of freq table timed out\n");
2879 			continue;
2880 		}
2881 	}
2882 
2883 	DRM_UNLOCK(dev);
2884 }
2885 
2886 void ironlake_init_clock_gating(struct drm_device *dev)
2887 {
2888 	struct drm_i915_private *dev_priv = dev->dev_private;
2889 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
2890 
2891 	/* Required for FBC */
2892 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
2893 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
2894 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
2895 
2896 	I915_WRITE(PCH_3DCGDIS0,
2897 		   MARIUNIT_CLOCK_GATE_DISABLE |
2898 		   SVSMUNIT_CLOCK_GATE_DISABLE);
2899 	I915_WRITE(PCH_3DCGDIS1,
2900 		   VFMUNIT_CLOCK_GATE_DISABLE);
2901 
2902 	/*
2903 	 * According to the spec the following bits should be set in
2904 	 * order to enable memory self-refresh
2905 	 * The bit 22/21 of 0x42004
2906 	 * The bit 5 of 0x42020
2907 	 * The bit 15 of 0x45000
2908 	 */
2909 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2910 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
2911 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
2912 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
2913 	I915_WRITE(DISP_ARB_CTL,
2914 		   (I915_READ(DISP_ARB_CTL) |
2915 		    DISP_FBC_WM_DIS));
2916 	I915_WRITE(WM3_LP_ILK, 0);
2917 	I915_WRITE(WM2_LP_ILK, 0);
2918 	I915_WRITE(WM1_LP_ILK, 0);
2919 
2920 	/*
2921 	 * Based on the document from hardware guys the following bits
2922 	 * should be set unconditionally in order to enable FBC.
2923 	 * The bit 22 of 0x42000
2924 	 * The bit 22 of 0x42004
2925 	 * The bit 7,8,9 of 0x42020.
2926 	 */
2927 	if (IS_IRONLAKE_M(dev)) {
2928 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
2929 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
2930 			   ILK_FBCQ_DIS);
2931 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
2932 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
2933 			   ILK_DPARB_GATE);
2934 	}
2935 
2936 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
2937 
2938 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2939 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
2940 		   ILK_ELPIN_409_SELECT);
2941 	I915_WRITE(_3D_CHICKEN2,
2942 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
2943 		   _3D_CHICKEN2_WM_READ_PIPELINED);
2944 
2945 	/* WaDisableRenderCachePipelinedFlush */
2946 	I915_WRITE(CACHE_MODE_0,
2947 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
2948 
2949 	ibx_init_clock_gating(dev);
2950 }
2951 
2952 void cpt_init_clock_gating(struct drm_device *dev)
2953 {
2954 	struct drm_i915_private *dev_priv = dev->dev_private;
2955 	int pipe;
2956 
2957 	/*
2958 	 * On Ibex Peak and Cougar Point, we need to disable clock
2959 	 * gating for the panel power sequencer or it will fail to
2960 	 * start up when no ports are active.
2961 	 */
2962 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
2963 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
2964 		   DPLS_EDP_PPS_FIX_DIS);
2965 	/* The below fixes the weird display corruption, a few pixels shifted
2966 	 * downward, on (only) LVDS of some HP laptops with IVY.
2967 	 */
2968 	for_each_pipe(pipe)
2969 		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
2970 	/* WADP0ClockGatingDisable */
2971 	for_each_pipe(pipe) {
2972 		I915_WRITE(TRANS_CHICKEN1(pipe),
2973 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
2974 	}
2975 }
2976 
2977 void gen6_init_clock_gating(struct drm_device *dev)
2978 {
2979 	struct drm_i915_private *dev_priv = dev->dev_private;
2980 	int pipe;
2981 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
2982 
2983 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
2984 
2985 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
2986 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
2987 		   ILK_ELPIN_409_SELECT);
2988 
2989 	/* WaDisableHiZPlanesWhenMSAAEnabled */
2990 	I915_WRITE(_3D_CHICKEN,
2991 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
2992 
2993 	/* WaSetupGtModeTdRowDispatch */
2994 	if (IS_SNB_GT1(dev))
2995 		I915_WRITE(GEN6_GT_MODE,
2996 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
2997 
2998 	I915_WRITE(WM3_LP_ILK, 0);
2999 	I915_WRITE(WM2_LP_ILK, 0);
3000 	I915_WRITE(WM1_LP_ILK, 0);
3001 
3002 	I915_WRITE(CACHE_MODE_0,
3003 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3004 
3005 	I915_WRITE(GEN6_UCGCTL1,
3006 		   I915_READ(GEN6_UCGCTL1) |
3007 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3008 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3009 
3010 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3011 	 * gating disable must be set.  Failure to set it results in
3012 	 * flickering pixels due to Z write ordering failures after
3013 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3014 	 * Sanctuary and Tropics, and apparently anything else with
3015 	 * alpha test or pixel discard.
3016 	 *
3017 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3018 	 * but we didn't debug actual testcases to find it out.
3019 	 *
3020 	 * Also apply WaDisableVDSUnitClockGating and
3021 	 * WaDisableRCPBUnitClockGating.
3022 	 */
3023 	I915_WRITE(GEN6_UCGCTL2,
3024 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3025 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3026 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3027 
3028 	/* Bspec says we need to always set all mask bits. */
3029 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3030 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3031 
3032 	/*
3033 	 * According to the spec the following bits should be
3034 	 * set in order to enable memory self-refresh and fbc:
3035 	 * The bit21 and bit22 of 0x42000
3036 	 * The bit21 and bit22 of 0x42004
3037 	 * The bit5 and bit7 of 0x42020
3038 	 * The bit14 of 0x70180
3039 	 * The bit14 of 0x71180
3040 	 */
3041 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3042 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3043 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3044 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3045 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3046 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3047 	I915_WRITE(ILK_DSPCLK_GATE_D,
3048 		   I915_READ(ILK_DSPCLK_GATE_D) |
3049 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3050 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3051 
3052 	/* WaMbcDriverBootEnable */
3053 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3054 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3055 
3056 	for_each_pipe(pipe) {
3057 		I915_WRITE(DSPCNTR(pipe),
3058 			   I915_READ(DSPCNTR(pipe)) |
3059 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3060 		intel_flush_display_plane(dev_priv, pipe);
3061 	}
3062 
3063 	/* The default value should be 0x200 according to docs, but the two
3064 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3065 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3066 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3067 
3068 	cpt_init_clock_gating(dev);
3069 }
3070 
3071 void ivybridge_init_clock_gating(struct drm_device *dev)
3072 {
3073 	struct drm_i915_private *dev_priv = dev->dev_private;
3074 	int pipe;
3075 	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3076 
3077 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3078 
3079 	I915_WRITE(WM3_LP_ILK, 0);
3080 	I915_WRITE(WM2_LP_ILK, 0);
3081 	I915_WRITE(WM1_LP_ILK, 0);
3082 
3083 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3084 	 * This implements the WaDisableRCZUnitClockGating workaround.
3085 	 */
3086 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3087 
3088 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3089 
3090 	I915_WRITE(IVB_CHICKEN3,
3091 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3092 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3093 
3094 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3095 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3096 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3097 
3098 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3099 	I915_WRITE(GEN7_L3CNTLREG1,
3100 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3101 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3102 			GEN7_WA_L3_CHICKEN_MODE);
3103 
3104 	/* This is required by WaCatErrorRejectionIssue */
3105 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3106 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3107 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3108 
3109 	for_each_pipe(pipe) {
3110 		I915_WRITE(DSPCNTR(pipe),
3111 			   I915_READ(DSPCNTR(pipe)) |
3112 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3113 		intel_flush_display_plane(dev_priv, pipe);
3114 	}
3115 }
3116 
3117 void g4x_init_clock_gating(struct drm_device *dev)
3118 {
3119 	struct drm_i915_private *dev_priv = dev->dev_private;
3120 	uint32_t dspclk_gate;
3121 
3122 	I915_WRITE(RENCLK_GATE_D1, 0);
3123 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3124 		   GS_UNIT_CLOCK_GATE_DISABLE |
3125 		   CL_UNIT_CLOCK_GATE_DISABLE);
3126 	I915_WRITE(RAMCLK_GATE_D, 0);
3127 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3128 		OVRUNIT_CLOCK_GATE_DISABLE |
3129 		OVCUNIT_CLOCK_GATE_DISABLE;
3130 	if (IS_GM45(dev))
3131 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3132 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3133 }
3134 
3135 void crestline_init_clock_gating(struct drm_device *dev)
3136 {
3137 	struct drm_i915_private *dev_priv = dev->dev_private;
3138 
3139 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3140 	I915_WRITE(RENCLK_GATE_D2, 0);
3141 	I915_WRITE(DSPCLK_GATE_D, 0);
3142 	I915_WRITE(RAMCLK_GATE_D, 0);
3143 	I915_WRITE16(DEUC, 0);
3144 }
3145 
3146 void broadwater_init_clock_gating(struct drm_device *dev)
3147 {
3148 	struct drm_i915_private *dev_priv = dev->dev_private;
3149 
3150 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3151 		   I965_RCC_CLOCK_GATE_DISABLE |
3152 		   I965_RCPB_CLOCK_GATE_DISABLE |
3153 		   I965_ISC_CLOCK_GATE_DISABLE |
3154 		   I965_FBC_CLOCK_GATE_DISABLE);
3155 	I915_WRITE(RENCLK_GATE_D2, 0);
3156 }
3157 
3158 void gen3_init_clock_gating(struct drm_device *dev)
3159 {
3160 	struct drm_i915_private *dev_priv = dev->dev_private;
3161 	u32 dstate = I915_READ(D_STATE);
3162 
3163 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3164 		DSTATE_DOT_CLOCK_GATING;
3165 	I915_WRITE(D_STATE, dstate);
3166 }
3167 
3168 void i85x_init_clock_gating(struct drm_device *dev)
3169 {
3170 	struct drm_i915_private *dev_priv = dev->dev_private;
3171 
3172 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3173 }
3174 
3175 void i830_init_clock_gating(struct drm_device *dev)
3176 {
3177 	struct drm_i915_private *dev_priv = dev->dev_private;
3178 
3179 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3180 }
3181 
3182 void ibx_init_clock_gating(struct drm_device *dev)
3183 {
3184 	struct drm_i915_private *dev_priv = dev->dev_private;
3185 
3186 	/*
3187 	 * On Ibex Peak and Cougar Point, we need to disable clock
3188 	 * gating for the panel power sequencer or it will fail to
3189 	 * start up when no ports are active.
3190 	 */
3191 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3192 }
3193 
3194 static void ironlake_teardown_rc6(struct drm_device *dev)
3195 {
3196 	struct drm_i915_private *dev_priv = dev->dev_private;
3197 
3198 	if (dev_priv->renderctx) {
3199 		i915_gem_object_unpin(dev_priv->renderctx);
3200 		drm_gem_object_unreference(&dev_priv->renderctx->base);
3201 		dev_priv->renderctx = NULL;
3202 	}
3203 
3204 	if (dev_priv->pwrctx) {
3205 		i915_gem_object_unpin(dev_priv->pwrctx);
3206 		drm_gem_object_unreference(&dev_priv->pwrctx->base);
3207 		dev_priv->pwrctx = NULL;
3208 	}
3209 }
3210 
3211 void ironlake_disable_rc6(struct drm_device *dev)
3212 {
3213 	struct drm_i915_private *dev_priv = dev->dev_private;
3214 
3215 	if (I915_READ(PWRCTXA)) {
3216 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3217 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3218 		(void)_intel_wait_for(dev,
3219 		    ((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3220 		    50, 1, "915pro");
3221 
3222 		I915_WRITE(PWRCTXA, 0);
3223 		POSTING_READ(PWRCTXA);
3224 
3225 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3226 		POSTING_READ(RSTDBYCTL);
3227 	}
3228 
3229 	ironlake_teardown_rc6(dev);
3230 }
3231 
3232 static int ironlake_setup_rc6(struct drm_device *dev)
3233 {
3234 	struct drm_i915_private *dev_priv = dev->dev_private;
3235 
3236 	if (dev_priv->renderctx == NULL)
3237 		dev_priv->renderctx = intel_alloc_context_page(dev);
3238 	if (!dev_priv->renderctx)
3239 		return -ENOMEM;
3240 
3241 	if (dev_priv->pwrctx == NULL)
3242 		dev_priv->pwrctx = intel_alloc_context_page(dev);
3243 	if (!dev_priv->pwrctx) {
3244 		ironlake_teardown_rc6(dev);
3245 		return -ENOMEM;
3246 	}
3247 
3248 	return 0;
3249 }
3250 
3251 void ironlake_enable_rc6(struct drm_device *dev)
3252 {
3253 	struct drm_i915_private *dev_priv = dev->dev_private;
3254 	int ret;
3255 
3256 	/* rc6 disabled by default due to repeated reports of hanging during
3257 	 * boot and resume.
3258 	 */
3259 	if (!intel_enable_rc6(dev))
3260 		return;
3261 
3262 	DRM_LOCK(dev);
3263 	ret = ironlake_setup_rc6(dev);
3264 	if (ret) {
3265 		DRM_UNLOCK(dev);
3266 		return;
3267 	}
3268 
3269 	/*
3270 	 * GPU can automatically power down the render unit if given a page
3271 	 * to save state.
3272 	 */
3273 	ret = BEGIN_LP_RING(6);
3274 	if (ret) {
3275 		ironlake_teardown_rc6(dev);
3276 		DRM_UNLOCK(dev);
3277 		return;
3278 	}
3279 
3280 	OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3281 	OUT_RING(MI_SET_CONTEXT);
3282 	OUT_RING(dev_priv->renderctx->gtt_offset |
3283 		 MI_MM_SPACE_GTT |
3284 		 MI_SAVE_EXT_STATE_EN |
3285 		 MI_RESTORE_EXT_STATE_EN |
3286 		 MI_RESTORE_INHIBIT);
3287 	OUT_RING(MI_SUSPEND_FLUSH);
3288 	OUT_RING(MI_NOOP);
3289 	OUT_RING(MI_FLUSH);
3290 	ADVANCE_LP_RING();
3291 
3292 	/*
3293 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3294 	 * does an implicit flush, combined with MI_FLUSH above, it should be
3295 	 * safe to assume that renderctx is valid
3296 	 */
3297 	ret = intel_wait_ring_idle(LP_RING(dev_priv));
3298 	if (ret) {
3299 		DRM_ERROR("failed to enable ironlake power savings\n");
3300 		ironlake_teardown_rc6(dev);
3301 		DRM_UNLOCK(dev);
3302 		return;
3303 	}
3304 
3305 	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
3306 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3307 	DRM_UNLOCK(dev);
3308 }
3309 
3310 void intel_init_clock_gating(struct drm_device *dev)
3311 {
3312 	struct drm_i915_private *dev_priv = dev->dev_private;
3313 
3314 	dev_priv->display.init_clock_gating(dev);
3315 
3316 	if (dev_priv->display.init_pch_clock_gating)
3317 		dev_priv->display.init_pch_clock_gating(dev);
3318 }
3319