xref: /dragonfly/sys/dev/drm/i915/intel_psr.c (revision 5ca0a96d)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * DOC: Panel Self Refresh (PSR/SRD)
26  *
27  * Since Haswell Display controller supports Panel Self-Refresh on display
28  * panels witch have a remote frame buffer (RFB) implemented according to PSR
29  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30  * when system is idle but display is on as it eliminates display refresh
31  * request to DDR memory completely as long as the frame buffer for that
32  * display is unchanged.
33  *
34  * Panel Self Refresh must be supported by both Hardware (source) and
35  * Panel (sink).
36  *
37  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38  * to power down the link and memory controller. For DSI panels the same idea
39  * is called "manual mode".
40  *
41  * The implementation uses the hardware-based PSR support which automatically
42  * enters/exits self-refresh mode. The hardware takes care of sending the
43  * required DP aux message and could even retrain the link (that part isn't
44  * enabled yet though). The hardware also keeps track of any frontbuffer
45  * changes to know when to exit self-refresh mode again. Unfortunately that
46  * part doesn't work too well, hence why the i915 PSR support uses the
47  * software frontbuffer tracking to make sure it doesn't miss a screen
48  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49  * get called by the frontbuffer tracking code. Note that because of locking
50  * issues the self-refresh re-enable code is done from a work queue, which
51  * must be correctly synchronized/cancelled when shutting down the pipe."
52  */
53 
54 #include <drm/drmP.h>
55 
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58 
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 	if (!intel_dp_is_edp(intel_dp))
62 		return false;
63 
64 	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
65 }
66 
67 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
68 {
69 	struct drm_i915_private *dev_priv = to_i915(dev);
70 	uint32_t val;
71 
72 	val = I915_READ(VLV_PSRSTAT(pipe)) &
73 	      VLV_EDP_PSR_CURR_STATE_MASK;
74 	return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
75 	       (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
76 }
77 
78 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp,
79 			      const struct intel_crtc_state *crtc_state)
80 {
81 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
82 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
83 	uint32_t val;
84 
85 	/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
86 	val  = I915_READ(VLV_VSCSDP(crtc->pipe));
87 	val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
88 	val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
89 	I915_WRITE(VLV_VSCSDP(crtc->pipe), val);
90 }
91 
92 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp,
93 			      const struct intel_crtc_state *crtc_state)
94 {
95 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
96 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
97 	struct edp_vsc_psr psr_vsc;
98 
99 	if (dev_priv->psr.psr2_support) {
100 		/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
101 		memset(&psr_vsc, 0, sizeof(psr_vsc));
102 		psr_vsc.sdp_header.HB0 = 0;
103 		psr_vsc.sdp_header.HB1 = 0x7;
104 		if (dev_priv->psr.colorimetry_support &&
105 		    dev_priv->psr.y_cord_support) {
106 			psr_vsc.sdp_header.HB2 = 0x5;
107 			psr_vsc.sdp_header.HB3 = 0x13;
108 		} else if (dev_priv->psr.y_cord_support) {
109 			psr_vsc.sdp_header.HB2 = 0x4;
110 			psr_vsc.sdp_header.HB3 = 0xe;
111 		} else {
112 			psr_vsc.sdp_header.HB2 = 0x3;
113 			psr_vsc.sdp_header.HB3 = 0xc;
114 		}
115 	} else {
116 		/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
117 		memset(&psr_vsc, 0, sizeof(psr_vsc));
118 		psr_vsc.sdp_header.HB0 = 0;
119 		psr_vsc.sdp_header.HB1 = 0x7;
120 		psr_vsc.sdp_header.HB2 = 0x2;
121 		psr_vsc.sdp_header.HB3 = 0x8;
122 	}
123 
124 	intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state,
125 					DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
126 }
127 
128 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
129 {
130 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
131 			   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
132 }
133 
134 static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
135 				       enum port port)
136 {
137 	if (INTEL_INFO(dev_priv)->gen >= 9)
138 		return DP_AUX_CH_CTL(port);
139 	else
140 		return EDP_PSR_AUX_CTL;
141 }
142 
143 static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
144 					enum port port, int index)
145 {
146 	if (INTEL_INFO(dev_priv)->gen >= 9)
147 		return DP_AUX_CH_DATA(port, index);
148 	else
149 		return EDP_PSR_AUX_DATA(index);
150 }
151 
152 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
153 {
154 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
155 	struct drm_device *dev = dig_port->base.base.dev;
156 	struct drm_i915_private *dev_priv = to_i915(dev);
157 	uint32_t aux_clock_divider;
158 	i915_reg_t aux_ctl_reg;
159 	static const uint8_t aux_msg[] = {
160 		[0] = DP_AUX_NATIVE_WRITE << 4,
161 		[1] = DP_SET_POWER >> 8,
162 		[2] = DP_SET_POWER & 0xff,
163 		[3] = 1 - 1,
164 		[4] = DP_SET_POWER_D0,
165 	};
166 	enum port port = dig_port->port;
167 	u32 aux_ctl;
168 	int i;
169 
170 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
171 
172 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
173 
174 	/* Enable AUX frame sync at sink */
175 	if (dev_priv->psr.aux_frame_sync)
176 		drm_dp_dpcd_writeb(&intel_dp->aux,
177 				DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
178 				DP_AUX_FRAME_SYNC_ENABLE);
179 	/* Enable ALPM at sink for psr2 */
180 	if (dev_priv->psr.psr2_support && dev_priv->psr.alpm)
181 		drm_dp_dpcd_writeb(&intel_dp->aux,
182 				DP_RECEIVER_ALPM_CONFIG,
183 				DP_ALPM_ENABLE);
184 	if (dev_priv->psr.link_standby)
185 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
186 				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
187 	else
188 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
189 				   DP_PSR_ENABLE);
190 
191 	aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
192 
193 	/* Setup AUX registers */
194 	for (i = 0; i < sizeof(aux_msg); i += 4)
195 		I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
196 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
197 
198 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg),
199 					     aux_clock_divider);
200 	I915_WRITE(aux_ctl_reg, aux_ctl);
201 }
202 
203 static void vlv_psr_enable_source(struct intel_dp *intel_dp,
204 				  const struct intel_crtc_state *crtc_state)
205 {
206 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
207 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
208 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
209 
210 	/* Transition from PSR_state 0 (disabled) to PSR_state 1 (inactive) */
211 	I915_WRITE(VLV_PSRCTL(crtc->pipe),
212 		   VLV_EDP_PSR_MODE_SW_TIMER |
213 		   VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
214 		   VLV_EDP_PSR_ENABLE);
215 }
216 
217 static void vlv_psr_activate(struct intel_dp *intel_dp)
218 {
219 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
220 	struct drm_device *dev = dig_port->base.base.dev;
221 	struct drm_i915_private *dev_priv = to_i915(dev);
222 	struct drm_crtc *crtc = dig_port->base.base.crtc;
223 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
224 
225 	/*
226 	 * Let's do the transition from PSR_state 1 (inactive) to
227 	 * PSR_state 2 (transition to active - static frame transmission).
228 	 * Then Hardware is responsible for the transition to
229 	 * PSR_state 3 (active - no Remote Frame Buffer (RFB) update).
230 	 */
231 	I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
232 		   VLV_EDP_PSR_ACTIVE_ENTRY);
233 }
234 
235 static void hsw_activate_psr1(struct intel_dp *intel_dp)
236 {
237 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
238 	struct drm_device *dev = dig_port->base.base.dev;
239 	struct drm_i915_private *dev_priv = to_i915(dev);
240 
241 	uint32_t max_sleep_time = 0x1f;
242 	/*
243 	 * Let's respect VBT in case VBT asks a higher idle_frame value.
244 	 * Let's use 6 as the minimum to cover all known cases including
245 	 * the off-by-one issue that HW has in some cases. Also there are
246 	 * cases where sink should be able to train
247 	 * with the 5 or 6 idle patterns.
248 	 */
249 	uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
250 	uint32_t val = EDP_PSR_ENABLE;
251 
252 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
253 	val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
254 
255 	if (IS_HASWELL(dev_priv))
256 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
257 
258 	if (dev_priv->psr.link_standby)
259 		val |= EDP_PSR_LINK_STANDBY;
260 
261 	if (dev_priv->vbt.psr.tp1_wakeup_time > 5)
262 		val |= EDP_PSR_TP1_TIME_2500us;
263 	else if (dev_priv->vbt.psr.tp1_wakeup_time > 1)
264 		val |= EDP_PSR_TP1_TIME_500us;
265 	else if (dev_priv->vbt.psr.tp1_wakeup_time > 0)
266 		val |= EDP_PSR_TP1_TIME_100us;
267 	else
268 		val |= EDP_PSR_TP1_TIME_0us;
269 
270 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
271 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
272 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
273 		val |= EDP_PSR_TP2_TP3_TIME_500us;
274 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
275 		val |= EDP_PSR_TP2_TP3_TIME_100us;
276 	else
277 		val |= EDP_PSR_TP2_TP3_TIME_0us;
278 
279 	if (intel_dp_source_supports_hbr2(intel_dp) &&
280 	    drm_dp_tps3_supported(intel_dp->dpcd))
281 		val |= EDP_PSR_TP1_TP3_SEL;
282 	else
283 		val |= EDP_PSR_TP1_TP2_SEL;
284 
285 	val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
286 	I915_WRITE(EDP_PSR_CTL, val);
287 }
288 
289 static void hsw_activate_psr2(struct intel_dp *intel_dp)
290 {
291 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
292 	struct drm_device *dev = dig_port->base.base.dev;
293 	struct drm_i915_private *dev_priv = to_i915(dev);
294 	/*
295 	 * Let's respect VBT in case VBT asks a higher idle_frame value.
296 	 * Let's use 6 as the minimum to cover all known cases including
297 	 * the off-by-one issue that HW has in some cases. Also there are
298 	 * cases where sink should be able to train
299 	 * with the 5 or 6 idle patterns.
300 	 */
301 	uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
302 	uint32_t val;
303 	uint8_t sink_latency;
304 
305 	val = idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
306 
307 	/* FIXME: selective update is probably totally broken because it doesn't
308 	 * mesh at all with our frontbuffer tracking. And the hw alone isn't
309 	 * good enough. */
310 	val |= EDP_PSR2_ENABLE |
311 		EDP_SU_TRACK_ENABLE;
312 
313 	if (drm_dp_dpcd_readb(&intel_dp->aux,
314 				DP_SYNCHRONIZATION_LATENCY_IN_SINK,
315 				&sink_latency) == 1) {
316 		sink_latency &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
317 	} else {
318 		sink_latency = 0;
319 	}
320 	val |= EDP_PSR2_FRAME_BEFORE_SU(sink_latency + 1);
321 
322 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
323 		val |= EDP_PSR2_TP2_TIME_2500;
324 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
325 		val |= EDP_PSR2_TP2_TIME_500;
326 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
327 		val |= EDP_PSR2_TP2_TIME_100;
328 	else
329 		val |= EDP_PSR2_TP2_TIME_50;
330 
331 	I915_WRITE(EDP_PSR2_CTL, val);
332 }
333 
334 static void hsw_psr_activate(struct intel_dp *intel_dp)
335 {
336 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
337 	struct drm_device *dev = dig_port->base.base.dev;
338 	struct drm_i915_private *dev_priv = to_i915(dev);
339 
340 	/* On HSW+ after we enable PSR on source it will activate it
341 	 * as soon as it match configure idle_frame count. So
342 	 * we just actually enable it here on activation time.
343 	 */
344 
345 	/* psr1 and psr2 are mutually exclusive.*/
346 	if (dev_priv->psr.psr2_support)
347 		hsw_activate_psr2(intel_dp);
348 	else
349 		hsw_activate_psr1(intel_dp);
350 }
351 
352 void intel_psr_compute_config(struct intel_dp *intel_dp,
353 			      struct intel_crtc_state *crtc_state)
354 {
355 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
356 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
357 	const struct drm_display_mode *adjusted_mode =
358 		&crtc_state->base.adjusted_mode;
359 	int psr_setup_time;
360 
361 	if (!HAS_PSR(dev_priv))
362 		return;
363 
364 	if (!is_edp_psr(intel_dp))
365 		return;
366 
367 	if (!i915_modparams.enable_psr) {
368 		DRM_DEBUG_KMS("PSR disable by flag\n");
369 		return;
370 	}
371 
372 	/*
373 	 * HSW spec explicitly says PSR is tied to port A.
374 	 * BDW+ platforms with DDI implementation of PSR have different
375 	 * PSR registers per transcoder and we only implement transcoder EDP
376 	 * ones. Since by Display design transcoder EDP is tied to port A
377 	 * we can safely escape based on the port A.
378 	 */
379 	if (HAS_DDI(dev_priv) && dig_port->port != PORT_A) {
380 		DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
381 		return;
382 	}
383 
384 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
385 	    !dev_priv->psr.link_standby) {
386 		DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
387 		return;
388 	}
389 
390 	if (IS_HASWELL(dev_priv) &&
391 	    I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) &
392 		      S3D_ENABLE) {
393 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
394 		return;
395 	}
396 
397 	if (IS_HASWELL(dev_priv) &&
398 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
399 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
400 		return;
401 	}
402 
403 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
404 	if (psr_setup_time < 0) {
405 		DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
406 			      intel_dp->psr_dpcd[1]);
407 		return;
408 	}
409 
410 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
411 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
412 		DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
413 			      psr_setup_time);
414 		return;
415 	}
416 
417 	/*
418 	 * FIXME psr2_support is messed up. It's both computed
419 	 * dynamically during PSR enable, and extracted from sink
420 	 * caps during eDP detection.
421 	 */
422 	if (!dev_priv->psr.psr2_support) {
423 		crtc_state->has_psr = true;
424 		return;
425 	}
426 
427 	/* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
428 	if (adjusted_mode->crtc_hdisplay > 3200 ||
429 	    adjusted_mode->crtc_vdisplay > 2000) {
430 		DRM_DEBUG_KMS("PSR2 disabled, panel resolution too big\n");
431 		return;
432 	}
433 
434 	/*
435 	 * FIXME:enable psr2 only for y-cordinate psr2 panels
436 	 * After gtc implementation , remove this restriction.
437 	 */
438 	if (!dev_priv->psr.y_cord_support) {
439 		DRM_DEBUG_KMS("PSR2 disabled, panel does not support Y coordinate\n");
440 		return;
441 	}
442 
443 	crtc_state->has_psr = true;
444 	crtc_state->has_psr2 = true;
445 }
446 
447 static void intel_psr_activate(struct intel_dp *intel_dp)
448 {
449 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
450 	struct drm_device *dev = intel_dig_port->base.base.dev;
451 	struct drm_i915_private *dev_priv = to_i915(dev);
452 
453 	if (dev_priv->psr.psr2_support)
454 		WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
455 	else
456 		WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
457 	WARN_ON(dev_priv->psr.active);
458 	lockdep_assert_held(&dev_priv->psr.lock);
459 
460 	dev_priv->psr.activate(intel_dp);
461 	dev_priv->psr.active = true;
462 }
463 
464 static void hsw_psr_enable_source(struct intel_dp *intel_dp,
465 				  const struct intel_crtc_state *crtc_state)
466 {
467 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
468 	struct drm_device *dev = dig_port->base.base.dev;
469 	struct drm_i915_private *dev_priv = to_i915(dev);
470 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
471 	u32 chicken;
472 
473 	if (dev_priv->psr.psr2_support) {
474 		chicken = PSR2_VSC_ENABLE_PROG_HEADER;
475 		if (dev_priv->psr.y_cord_support)
476 			chicken |= PSR2_ADD_VERTICAL_LINE_COUNT;
477 		I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
478 
479 		I915_WRITE(EDP_PSR_DEBUG_CTL,
480 			   EDP_PSR_DEBUG_MASK_MEMUP |
481 			   EDP_PSR_DEBUG_MASK_HPD |
482 			   EDP_PSR_DEBUG_MASK_LPSP |
483 			   EDP_PSR_DEBUG_MASK_MAX_SLEEP |
484 			   EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
485 	} else {
486 		/*
487 		 * Per Spec: Avoid continuous PSR exit by masking MEMUP
488 		 * and HPD. also mask LPSP to avoid dependency on other
489 		 * drivers that might block runtime_pm besides
490 		 * preventing  other hw tracking issues now we can rely
491 		 * on frontbuffer tracking.
492 		 */
493 		I915_WRITE(EDP_PSR_DEBUG_CTL,
494 			   EDP_PSR_DEBUG_MASK_MEMUP |
495 			   EDP_PSR_DEBUG_MASK_HPD |
496 			   EDP_PSR_DEBUG_MASK_LPSP);
497 	}
498 }
499 
500 /**
501  * intel_psr_enable - Enable PSR
502  * @intel_dp: Intel DP
503  * @crtc_state: new CRTC state
504  *
505  * This function can only be called after the pipe is fully trained and enabled.
506  */
507 void intel_psr_enable(struct intel_dp *intel_dp,
508 		      const struct intel_crtc_state *crtc_state)
509 {
510 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
511 	struct drm_device *dev = intel_dig_port->base.base.dev;
512 	struct drm_i915_private *dev_priv = to_i915(dev);
513 
514 	if (!crtc_state->has_psr)
515 		return;
516 
517 	WARN_ON(dev_priv->drrs.dp);
518 	mutex_lock(&dev_priv->psr.lock);
519 	if (dev_priv->psr.enabled) {
520 		DRM_DEBUG_KMS("PSR already in use\n");
521 		goto unlock;
522 	}
523 
524 	dev_priv->psr.psr2_support = crtc_state->has_psr2;
525 	dev_priv->psr.source_ok = true;
526 
527 	dev_priv->psr.busy_frontbuffer_bits = 0;
528 
529 	dev_priv->psr.setup_vsc(intel_dp, crtc_state);
530 	dev_priv->psr.enable_sink(intel_dp);
531 	dev_priv->psr.enable_source(intel_dp, crtc_state);
532 	dev_priv->psr.enabled = intel_dp;
533 
534 	if (INTEL_GEN(dev_priv) >= 9) {
535 		intel_psr_activate(intel_dp);
536 	} else {
537 		/*
538 		 * FIXME: Activation should happen immediately since this
539 		 * function is just called after pipe is fully trained and
540 		 * enabled.
541 		 * However on some platforms we face issues when first
542 		 * activation follows a modeset so quickly.
543 		 *     - On VLV/CHV we get bank screen on first activation
544 		 *     - On HSW/BDW we get a recoverable frozen screen until
545 		 *       next exit-activate sequence.
546 		 */
547 		schedule_delayed_work(&dev_priv->psr.work,
548 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
549 	}
550 
551 unlock:
552 	mutex_unlock(&dev_priv->psr.lock);
553 }
554 
555 static void vlv_psr_disable(struct intel_dp *intel_dp,
556 			    const struct intel_crtc_state *old_crtc_state)
557 {
558 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
559 	struct drm_device *dev = intel_dig_port->base.base.dev;
560 	struct drm_i915_private *dev_priv = to_i915(dev);
561 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
562 	uint32_t val;
563 
564 	if (dev_priv->psr.active) {
565 		/* Put VLV PSR back to PSR_state 0 (disabled). */
566 		if (intel_wait_for_register(dev_priv,
567 					    VLV_PSRSTAT(crtc->pipe),
568 					    VLV_EDP_PSR_IN_TRANS,
569 					    0,
570 					    1))
571 			WARN(1, "PSR transition took longer than expected\n");
572 
573 		val = I915_READ(VLV_PSRCTL(crtc->pipe));
574 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
575 		val &= ~VLV_EDP_PSR_ENABLE;
576 		val &= ~VLV_EDP_PSR_MODE_MASK;
577 		I915_WRITE(VLV_PSRCTL(crtc->pipe), val);
578 
579 		dev_priv->psr.active = false;
580 	} else {
581 		WARN_ON(vlv_is_psr_active_on_pipe(dev, crtc->pipe));
582 	}
583 }
584 
585 static void hsw_psr_disable(struct intel_dp *intel_dp,
586 			    const struct intel_crtc_state *old_crtc_state)
587 {
588 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
589 	struct drm_device *dev = intel_dig_port->base.base.dev;
590 	struct drm_i915_private *dev_priv = to_i915(dev);
591 
592 	if (dev_priv->psr.active) {
593 		i915_reg_t psr_status;
594 		u32 psr_status_mask;
595 
596 		if (dev_priv->psr.aux_frame_sync)
597 			drm_dp_dpcd_writeb(&intel_dp->aux,
598 					DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
599 					0);
600 
601 		if (dev_priv->psr.psr2_support) {
602 			psr_status = EDP_PSR2_STATUS_CTL;
603 			psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
604 
605 			I915_WRITE(EDP_PSR2_CTL,
606 				   I915_READ(EDP_PSR2_CTL) &
607 				   ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
608 
609 		} else {
610 			psr_status = EDP_PSR_STATUS_CTL;
611 			psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
612 
613 			I915_WRITE(EDP_PSR_CTL,
614 				   I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
615 		}
616 
617 		/* Wait till PSR is idle */
618 		if (intel_wait_for_register(dev_priv,
619 					    psr_status, psr_status_mask, 0,
620 					    2000))
621 			DRM_ERROR("Timed out waiting for PSR Idle State\n");
622 
623 		dev_priv->psr.active = false;
624 	} else {
625 		if (dev_priv->psr.psr2_support)
626 			WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
627 		else
628 			WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
629 	}
630 }
631 
632 /**
633  * intel_psr_disable - Disable PSR
634  * @intel_dp: Intel DP
635  * @old_crtc_state: old CRTC state
636  *
637  * This function needs to be called before disabling pipe.
638  */
639 void intel_psr_disable(struct intel_dp *intel_dp,
640 		       const struct intel_crtc_state *old_crtc_state)
641 {
642 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
643 	struct drm_device *dev = intel_dig_port->base.base.dev;
644 	struct drm_i915_private *dev_priv = to_i915(dev);
645 
646 	if (!old_crtc_state->has_psr)
647 		return;
648 
649 	mutex_lock(&dev_priv->psr.lock);
650 	if (!dev_priv->psr.enabled) {
651 		mutex_unlock(&dev_priv->psr.lock);
652 		return;
653 	}
654 
655 	dev_priv->psr.disable_source(intel_dp, old_crtc_state);
656 
657 	/* Disable PSR on Sink */
658 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
659 
660 	dev_priv->psr.enabled = NULL;
661 	mutex_unlock(&dev_priv->psr.lock);
662 
663 	cancel_delayed_work_sync(&dev_priv->psr.work);
664 }
665 
666 static void intel_psr_work(struct work_struct *work)
667 {
668 	struct drm_i915_private *dev_priv =
669 		container_of(work, typeof(*dev_priv), psr.work.work);
670 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
671 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
672 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
673 
674 	/* We have to make sure PSR is ready for re-enable
675 	 * otherwise it keeps disabled until next full enable/disable cycle.
676 	 * PSR might take some time to get fully disabled
677 	 * and be ready for re-enable.
678 	 */
679 	if (HAS_DDI(dev_priv)) {
680 		if (dev_priv->psr.psr2_support) {
681 			if (intel_wait_for_register(dev_priv,
682 						EDP_PSR2_STATUS_CTL,
683 						EDP_PSR2_STATUS_STATE_MASK,
684 						0,
685 						50)) {
686 				DRM_ERROR("Timed out waiting for PSR2 Idle for re-enable\n");
687 				return;
688 			}
689 		} else {
690 			if (intel_wait_for_register(dev_priv,
691 						EDP_PSR_STATUS_CTL,
692 						EDP_PSR_STATUS_STATE_MASK,
693 						0,
694 						50)) {
695 				DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
696 				return;
697 			}
698 		}
699 	} else {
700 		if (intel_wait_for_register(dev_priv,
701 					    VLV_PSRSTAT(pipe),
702 					    VLV_EDP_PSR_IN_TRANS,
703 					    0,
704 					    1)) {
705 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
706 			return;
707 		}
708 	}
709 	mutex_lock(&dev_priv->psr.lock);
710 	intel_dp = dev_priv->psr.enabled;
711 
712 	if (!intel_dp)
713 		goto unlock;
714 
715 	/*
716 	 * The delayed work can race with an invalidate hence we need to
717 	 * recheck. Since psr_flush first clears this and then reschedules we
718 	 * won't ever miss a flush when bailing out here.
719 	 */
720 	if (dev_priv->psr.busy_frontbuffer_bits)
721 		goto unlock;
722 
723 	intel_psr_activate(intel_dp);
724 unlock:
725 	mutex_unlock(&dev_priv->psr.lock);
726 }
727 
728 static void intel_psr_exit(struct drm_i915_private *dev_priv)
729 {
730 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
731 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
732 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
733 	u32 val;
734 
735 	if (!dev_priv->psr.active)
736 		return;
737 
738 	if (HAS_DDI(dev_priv)) {
739 		if (dev_priv->psr.aux_frame_sync)
740 			drm_dp_dpcd_writeb(&intel_dp->aux,
741 					DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
742 					0);
743 		if (dev_priv->psr.psr2_support) {
744 			val = I915_READ(EDP_PSR2_CTL);
745 			WARN_ON(!(val & EDP_PSR2_ENABLE));
746 			I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
747 		} else {
748 			val = I915_READ(EDP_PSR_CTL);
749 			WARN_ON(!(val & EDP_PSR_ENABLE));
750 			I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
751 		}
752 	} else {
753 		val = I915_READ(VLV_PSRCTL(pipe));
754 
755 		/*
756 		 * Here we do the transition drirectly from
757 		 * PSR_state 3 (active - no Remote Frame Buffer (RFB) update) to
758 		 * PSR_state 5 (exit).
759 		 * PSR State 4 (active with single frame update) can be skipped.
760 		 * On PSR_state 5 (exit) Hardware is responsible to transition
761 		 * back to PSR_state 1 (inactive).
762 		 * Now we are at Same state after vlv_psr_enable_source.
763 		 */
764 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
765 		I915_WRITE(VLV_PSRCTL(pipe), val);
766 
767 		/*
768 		 * Send AUX wake up - Spec says after transitioning to PSR
769 		 * active we have to send AUX wake up by writing 01h in DPCD
770 		 * 600h of sink device.
771 		 * XXX: This might slow down the transition, but without this
772 		 * HW doesn't complete the transition to PSR_state 1 and we
773 		 * never get the screen updated.
774 		 */
775 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
776 				   DP_SET_POWER_D0);
777 	}
778 
779 	dev_priv->psr.active = false;
780 }
781 
782 /**
783  * intel_psr_single_frame_update - Single Frame Update
784  * @dev_priv: i915 device
785  * @frontbuffer_bits: frontbuffer plane tracking bits
786  *
787  * Some platforms support a single frame update feature that is used to
788  * send and update only one frame on Remote Frame Buffer.
789  * So far it is only implemented for Valleyview and Cherryview because
790  * hardware requires this to be done before a page flip.
791  */
792 void intel_psr_single_frame_update(struct drm_i915_private *dev_priv,
793 				   unsigned frontbuffer_bits)
794 {
795 	struct drm_crtc *crtc;
796 	enum i915_pipe pipe;
797 	u32 val;
798 
799 	if (!HAS_PSR(dev_priv))
800 		return;
801 
802 	/*
803 	 * Single frame update is already supported on BDW+ but it requires
804 	 * many W/A and it isn't really needed.
805 	 */
806 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
807 		return;
808 
809 	mutex_lock(&dev_priv->psr.lock);
810 	if (!dev_priv->psr.enabled) {
811 		mutex_unlock(&dev_priv->psr.lock);
812 		return;
813 	}
814 
815 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
816 	pipe = to_intel_crtc(crtc)->pipe;
817 
818 	if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
819 		val = I915_READ(VLV_PSRCTL(pipe));
820 
821 		/*
822 		 * We need to set this bit before writing registers for a flip.
823 		 * This bit will be self-clear when it gets to the PSR active state.
824 		 */
825 		I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
826 	}
827 	mutex_unlock(&dev_priv->psr.lock);
828 }
829 
830 /**
831  * intel_psr_invalidate - Invalidade PSR
832  * @dev_priv: i915 device
833  * @frontbuffer_bits: frontbuffer plane tracking bits
834  *
835  * Since the hardware frontbuffer tracking has gaps we need to integrate
836  * with the software frontbuffer tracking. This function gets called every
837  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
838  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
839  *
840  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
841  */
842 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
843 			  unsigned frontbuffer_bits)
844 {
845 	struct drm_crtc *crtc;
846 	enum i915_pipe pipe;
847 
848 	if (!HAS_PSR(dev_priv))
849 		return;
850 
851 	mutex_lock(&dev_priv->psr.lock);
852 	if (!dev_priv->psr.enabled) {
853 		mutex_unlock(&dev_priv->psr.lock);
854 		return;
855 	}
856 
857 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
858 	pipe = to_intel_crtc(crtc)->pipe;
859 
860 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
861 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
862 
863 	if (frontbuffer_bits)
864 		intel_psr_exit(dev_priv);
865 
866 	mutex_unlock(&dev_priv->psr.lock);
867 }
868 
869 /**
870  * intel_psr_flush - Flush PSR
871  * @dev_priv: i915 device
872  * @frontbuffer_bits: frontbuffer plane tracking bits
873  * @origin: which operation caused the flush
874  *
875  * Since the hardware frontbuffer tracking has gaps we need to integrate
876  * with the software frontbuffer tracking. This function gets called every
877  * time frontbuffer rendering has completed and flushed out to memory. PSR
878  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
879  *
880  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
881  */
882 void intel_psr_flush(struct drm_i915_private *dev_priv,
883 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
884 {
885 	struct drm_crtc *crtc;
886 	enum i915_pipe pipe;
887 
888 	if (!HAS_PSR(dev_priv))
889 		return;
890 
891 	mutex_lock(&dev_priv->psr.lock);
892 	if (!dev_priv->psr.enabled) {
893 		mutex_unlock(&dev_priv->psr.lock);
894 		return;
895 	}
896 
897 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
898 	pipe = to_intel_crtc(crtc)->pipe;
899 
900 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
901 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
902 
903 	/* By definition flush = invalidate + flush */
904 	if (frontbuffer_bits)
905 		intel_psr_exit(dev_priv);
906 
907 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
908 		if (!work_busy(&dev_priv->psr.work.work))
909 			schedule_delayed_work(&dev_priv->psr.work,
910 					      msecs_to_jiffies(100));
911 	mutex_unlock(&dev_priv->psr.lock);
912 }
913 
914 /**
915  * intel_psr_init - Init basic PSR work and mutex.
916  * @dev_priv: i915 device private
917  *
918  * This function is  called only once at driver load to initialize basic
919  * PSR stuff.
920  */
921 void intel_psr_init(struct drm_i915_private *dev_priv)
922 {
923 	if (!HAS_PSR(dev_priv))
924 		return;
925 
926 	dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
927 		HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
928 
929 	/* Per platform default: all disabled. */
930 	if (i915_modparams.enable_psr == -1)
931 		i915_modparams.enable_psr = 0;
932 
933 	/* Set link_standby x link_off defaults */
934 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
935 		/* HSW and BDW require workarounds that we don't implement. */
936 		dev_priv->psr.link_standby = false;
937 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
938 		/* On VLV and CHV only standby mode is supported. */
939 		dev_priv->psr.link_standby = true;
940 	else
941 		/* For new platforms let's respect VBT back again */
942 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
943 
944 	/* Override link_standby x link_off defaults */
945 	if (i915_modparams.enable_psr == 2 && !dev_priv->psr.link_standby) {
946 		DRM_DEBUG_KMS("PSR: Forcing link standby\n");
947 		dev_priv->psr.link_standby = true;
948 	}
949 	if (i915_modparams.enable_psr == 3 && dev_priv->psr.link_standby) {
950 		DRM_DEBUG_KMS("PSR: Forcing main link off\n");
951 		dev_priv->psr.link_standby = false;
952 	}
953 
954 	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
955 	lockinit(&dev_priv->psr.lock, "i915dpl", 0, LK_CANRECURSE);
956 
957 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
958 		dev_priv->psr.enable_source = vlv_psr_enable_source;
959 		dev_priv->psr.disable_source = vlv_psr_disable;
960 		dev_priv->psr.enable_sink = vlv_psr_enable_sink;
961 		dev_priv->psr.activate = vlv_psr_activate;
962 		dev_priv->psr.setup_vsc = vlv_psr_setup_vsc;
963 	} else {
964 		dev_priv->psr.enable_source = hsw_psr_enable_source;
965 		dev_priv->psr.disable_source = hsw_psr_disable;
966 		dev_priv->psr.enable_sink = hsw_psr_enable_sink;
967 		dev_priv->psr.activate = hsw_psr_activate;
968 		dev_priv->psr.setup_vsc = hsw_psr_setup_vsc;
969 	}
970 }
971