xref: /dragonfly/sys/dev/drm/i915/intel_psr.c (revision bc7a8293)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * DOC: Panel Self Refresh (PSR/SRD)
26  *
27  * Since Haswell Display controller supports Panel Self-Refresh on display
28  * panels witch have a remote frame buffer (RFB) implemented according to PSR
29  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30  * when system is idle but display is on as it eliminates display refresh
31  * request to DDR memory completely as long as the frame buffer for that
32  * display is unchanged.
33  *
34  * Panel Self Refresh must be supported by both Hardware (source) and
35  * Panel (sink).
36  *
37  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38  * to power down the link and memory controller. For DSI panels the same idea
39  * is called "manual mode".
40  *
41  * The implementation uses the hardware-based PSR support which automatically
42  * enters/exits self-refresh mode. The hardware takes care of sending the
43  * required DP aux message and could even retrain the link (that part isn't
44  * enabled yet though). The hardware also keeps track of any frontbuffer
45  * changes to know when to exit self-refresh mode again. Unfortunately that
46  * part doesn't work too well, hence why the i915 PSR support uses the
47  * software frontbuffer tracking to make sure it doesn't miss a screen
48  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49  * get called by the frontbuffer tracking code. Note that because of locking
50  * issues the self-refresh re-enable code is done from a work queue, which
51  * must be correctly synchronized/cancelled when shutting down the pipe."
52  */
53 
54 #include <drm/drmP.h>
55 
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58 
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63 
64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 	struct drm_i915_private *dev_priv = dev->dev_private;
67 	uint32_t val;
68 
69 	val = I915_READ(VLV_PSRSTAT(pipe)) &
70 	      VLV_EDP_PSR_CURR_STATE_MASK;
71 	return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 	       (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74 
75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 				    struct edp_vsc_psr *vsc_psr)
77 {
78 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 	struct drm_device *dev = dig_port->base.base.dev;
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config->cpu_transcoder);
83 	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config->cpu_transcoder);
84 	uint32_t *data = (uint32_t *) vsc_psr;
85 	unsigned int i;
86 
87 	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 	   the video DIP being updated before program video DIP data buffer
89 	   registers for DIP being updated. */
90 	I915_WRITE(ctl_reg, 0);
91 	POSTING_READ(ctl_reg);
92 
93 	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
94 		if (i < sizeof(struct edp_vsc_psr))
95 			I915_WRITE(data_reg + i, *data++);
96 		else
97 			I915_WRITE(data_reg + i, 0);
98 	}
99 
100 	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
101 	POSTING_READ(ctl_reg);
102 }
103 
104 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
105 {
106 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
107 	struct drm_device *dev = intel_dig_port->base.base.dev;
108 	struct drm_i915_private *dev_priv = dev->dev_private;
109 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
110 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
111 	uint32_t val;
112 
113 	/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
114 	val  = I915_READ(VLV_VSCSDP(pipe));
115 	val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
116 	val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
117 	I915_WRITE(VLV_VSCSDP(pipe), val);
118 }
119 
120 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
121 {
122 	struct edp_vsc_psr psr_vsc;
123 
124 	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
125 	memset(&psr_vsc, 0, sizeof(psr_vsc));
126 	psr_vsc.sdp_header.HB0 = 0;
127 	psr_vsc.sdp_header.HB1 = 0x7;
128 	psr_vsc.sdp_header.HB2 = 0x2;
129 	psr_vsc.sdp_header.HB3 = 0x8;
130 	intel_psr_write_vsc(intel_dp, &psr_vsc);
131 }
132 
133 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
134 {
135 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
136 			   DP_PSR_ENABLE);
137 }
138 
139 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
140 {
141 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
142 	struct drm_device *dev = dig_port->base.base.dev;
143 	struct drm_i915_private *dev_priv = dev->dev_private;
144 	uint32_t aux_clock_divider;
145 	uint32_t aux_data_reg, aux_ctl_reg;
146 	int precharge = 0x3;
147 	static const uint8_t aux_msg[] = {
148 		[0] = DP_AUX_NATIVE_WRITE << 4,
149 		[1] = DP_SET_POWER >> 8,
150 		[2] = DP_SET_POWER & 0xff,
151 		[3] = 1 - 1,
152 		[4] = DP_SET_POWER_D0,
153 	};
154 	int i;
155 
156 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
157 
158 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
159 
160 	/* Enable PSR in sink */
161 	if (dev_priv->psr.link_standby)
162 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
163 				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
164 	else
165 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
166 				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
167 
168 	aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ?
169 				DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev);
170 	aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ?
171 				DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev);
172 
173 	/* Setup AUX registers */
174 	for (i = 0; i < sizeof(aux_msg); i += 4)
175 		I915_WRITE(aux_data_reg + i,
176 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
177 
178 	if (INTEL_INFO(dev)->gen >= 9) {
179 		uint32_t val;
180 
181 		val = I915_READ(aux_ctl_reg);
182 		val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
183 		val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
184 		val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
185 		val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
186 		/* Use hardcoded data values for PSR */
187 		val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
188 		I915_WRITE(aux_ctl_reg, val);
189 	} else {
190 		I915_WRITE(aux_ctl_reg,
191 		   DP_AUX_CH_CTL_TIME_OUT_400us |
192 		   (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
193 		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
194 		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
195 	}
196 }
197 
198 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
199 {
200 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
201 	struct drm_device *dev = dig_port->base.base.dev;
202 	struct drm_i915_private *dev_priv = dev->dev_private;
203 	struct drm_crtc *crtc = dig_port->base.base.crtc;
204 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
205 
206 	/* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
207 	I915_WRITE(VLV_PSRCTL(pipe),
208 		   VLV_EDP_PSR_MODE_SW_TIMER |
209 		   VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
210 		   VLV_EDP_PSR_ENABLE);
211 }
212 
213 static void vlv_psr_activate(struct intel_dp *intel_dp)
214 {
215 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
216 	struct drm_device *dev = dig_port->base.base.dev;
217 	struct drm_i915_private *dev_priv = dev->dev_private;
218 	struct drm_crtc *crtc = dig_port->base.base.crtc;
219 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
220 
221 	/* Let's do the transition from PSR_state 1 to PSR_state 2
222 	 * that is PSR transition to active - static frame transmission.
223 	 * Then Hardware is responsible for the transition to PSR_state 3
224 	 * that is PSR active - no Remote Frame Buffer (RFB) update.
225 	 */
226 	I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
227 		   VLV_EDP_PSR_ACTIVE_ENTRY);
228 }
229 
230 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
231 {
232 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
233 	struct drm_device *dev = dig_port->base.base.dev;
234 	struct drm_i915_private *dev_priv = dev->dev_private;
235 	uint32_t max_sleep_time = 0x1f;
236 	/* Lately it was identified that depending on panel idle frame count
237 	 * calculated at HW can be off by 1. So let's use what came
238 	 * from VBT + 1 and at minimum 2 to be on the safe side.
239 	 */
240 	uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ?
241 			       dev_priv->vbt.psr.idle_frames + 1 : 2;
242 	uint32_t val = 0x0;
243 	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
244 
245 	if (dev_priv->psr.link_standby) {
246 		val |= EDP_PSR_LINK_STANDBY;
247 		val |= EDP_PSR_TP2_TP3_TIME_0us;
248 		val |= EDP_PSR_TP1_TIME_0us;
249 		val |= EDP_PSR_SKIP_AUX_EXIT;
250 	} else
251 		val |= EDP_PSR_LINK_DISABLE;
252 
253 	I915_WRITE(EDP_PSR_CTL(dev), val |
254 		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
255 		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
256 		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
257 		   EDP_PSR_ENABLE);
258 }
259 
260 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
261 {
262 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
263 	struct drm_device *dev = dig_port->base.base.dev;
264 	struct drm_i915_private *dev_priv = dev->dev_private;
265 	struct drm_crtc *crtc = dig_port->base.base.crtc;
266 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
267 
268 	lockdep_assert_held(&dev_priv->psr.lock);
269 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
270 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
271 
272 	dev_priv->psr.source_ok = false;
273 
274 	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
275 		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
276 		return false;
277 	}
278 
279 	if (!i915.enable_psr) {
280 		DRM_DEBUG_KMS("PSR disable by flag\n");
281 		return false;
282 	}
283 
284 	if (IS_HASWELL(dev) &&
285 	    I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
286 		      S3D_ENABLE) {
287 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
288 		return false;
289 	}
290 
291 	if (IS_HASWELL(dev) &&
292 	    intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
293 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
294 		return false;
295 	}
296 
297 	dev_priv->psr.source_ok = true;
298 	return true;
299 }
300 
301 static void intel_psr_activate(struct intel_dp *intel_dp)
302 {
303 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304 	struct drm_device *dev = intel_dig_port->base.base.dev;
305 	struct drm_i915_private *dev_priv = dev->dev_private;
306 
307 	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
308 	WARN_ON(dev_priv->psr.active);
309 	lockdep_assert_held(&dev_priv->psr.lock);
310 
311 	/* Enable/Re-enable PSR on the host */
312 	if (HAS_DDI(dev))
313 		/* On HSW+ after we enable PSR on source it will activate it
314 		 * as soon as it match configure idle_frame count. So
315 		 * we just actually enable it here on activation time.
316 		 */
317 		hsw_psr_enable_source(intel_dp);
318 	else
319 		vlv_psr_activate(intel_dp);
320 
321 	dev_priv->psr.active = true;
322 }
323 
324 /**
325  * intel_psr_enable - Enable PSR
326  * @intel_dp: Intel DP
327  *
328  * This function can only be called after the pipe is fully trained and enabled.
329  */
330 void intel_psr_enable(struct intel_dp *intel_dp)
331 {
332 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
333 	struct drm_device *dev = intel_dig_port->base.base.dev;
334 	struct drm_i915_private *dev_priv = dev->dev_private;
335 
336 	if (!HAS_PSR(dev)) {
337 		DRM_DEBUG_KMS("PSR not supported on this platform\n");
338 		return;
339 	}
340 
341 	if (!is_edp_psr(intel_dp)) {
342 		DRM_DEBUG_KMS("PSR not supported by this panel\n");
343 		return;
344 	}
345 
346 	mutex_lock(&dev_priv->psr.lock);
347 	if (dev_priv->psr.enabled) {
348 		DRM_DEBUG_KMS("PSR already in use\n");
349 		goto unlock;
350 	}
351 
352 	if (!intel_psr_match_conditions(intel_dp))
353 		goto unlock;
354 
355 	/* First we check VBT, but we must respect sink and source
356 	 * known restrictions */
357 	dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
358 	if ((intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) ||
359 	    (IS_BROADWELL(dev) && intel_dig_port->port != PORT_A))
360 		dev_priv->psr.link_standby = true;
361 
362 	dev_priv->psr.busy_frontbuffer_bits = 0;
363 
364 	if (HAS_DDI(dev)) {
365 		hsw_psr_setup_vsc(intel_dp);
366 
367 		/* Avoid continuous PSR exit by masking memup and hpd */
368 		I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
369 			   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
370 
371 		/* Enable PSR on the panel */
372 		hsw_psr_enable_sink(intel_dp);
373 
374 		if (INTEL_INFO(dev)->gen >= 9)
375 			intel_psr_activate(intel_dp);
376 	} else {
377 		vlv_psr_setup_vsc(intel_dp);
378 
379 		/* Enable PSR on the panel */
380 		vlv_psr_enable_sink(intel_dp);
381 
382 		/* On HSW+ enable_source also means go to PSR entry/active
383 		 * state as soon as idle_frame achieved and here would be
384 		 * to soon. However on VLV enable_source just enable PSR
385 		 * but let it on inactive state. So we might do this prior
386 		 * to active transition, i.e. here.
387 		 */
388 		vlv_psr_enable_source(intel_dp);
389 	}
390 
391 	dev_priv->psr.enabled = intel_dp;
392 unlock:
393 	mutex_unlock(&dev_priv->psr.lock);
394 }
395 
396 static void vlv_psr_disable(struct intel_dp *intel_dp)
397 {
398 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399 	struct drm_device *dev = intel_dig_port->base.base.dev;
400 	struct drm_i915_private *dev_priv = dev->dev_private;
401 	struct intel_crtc *intel_crtc =
402 		to_intel_crtc(intel_dig_port->base.base.crtc);
403 	uint32_t val;
404 
405 	if (dev_priv->psr.active) {
406 		/* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
407 		if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
408 			      VLV_EDP_PSR_IN_TRANS) == 0, 1))
409 			WARN(1, "PSR transition took longer than expected\n");
410 
411 		val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
412 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
413 		val &= ~VLV_EDP_PSR_ENABLE;
414 		val &= ~VLV_EDP_PSR_MODE_MASK;
415 		I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
416 
417 		dev_priv->psr.active = false;
418 	} else {
419 		WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
420 	}
421 }
422 
423 static void hsw_psr_disable(struct intel_dp *intel_dp)
424 {
425 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 	struct drm_device *dev = intel_dig_port->base.base.dev;
427 	struct drm_i915_private *dev_priv = dev->dev_private;
428 
429 	if (dev_priv->psr.active) {
430 		I915_WRITE(EDP_PSR_CTL(dev),
431 			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
432 
433 		/* Wait till PSR is idle */
434 		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
435 			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
436 			DRM_ERROR("Timed out waiting for PSR Idle State\n");
437 
438 		dev_priv->psr.active = false;
439 	} else {
440 		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
441 	}
442 }
443 
444 /**
445  * intel_psr_disable - Disable PSR
446  * @intel_dp: Intel DP
447  *
448  * This function needs to be called before disabling pipe.
449  */
450 void intel_psr_disable(struct intel_dp *intel_dp)
451 {
452 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
453 	struct drm_device *dev = intel_dig_port->base.base.dev;
454 	struct drm_i915_private *dev_priv = dev->dev_private;
455 
456 	mutex_lock(&dev_priv->psr.lock);
457 	if (!dev_priv->psr.enabled) {
458 		mutex_unlock(&dev_priv->psr.lock);
459 		return;
460 	}
461 
462 	if (HAS_DDI(dev))
463 		hsw_psr_disable(intel_dp);
464 	else
465 		vlv_psr_disable(intel_dp);
466 
467 	dev_priv->psr.enabled = NULL;
468 	mutex_unlock(&dev_priv->psr.lock);
469 
470 	cancel_delayed_work_sync(&dev_priv->psr.work);
471 }
472 
473 static void intel_psr_work(struct work_struct *work)
474 {
475 	struct drm_i915_private *dev_priv =
476 		container_of(work, typeof(*dev_priv), psr.work.work);
477 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
478 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
479 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
480 
481 	/* We have to make sure PSR is ready for re-enable
482 	 * otherwise it keeps disabled until next full enable/disable cycle.
483 	 * PSR might take some time to get fully disabled
484 	 * and be ready for re-enable.
485 	 */
486 	if (HAS_DDI(dev_priv->dev)) {
487 		if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
488 			      EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
489 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
490 			return;
491 		}
492 	} else {
493 		if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
494 			      VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
495 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
496 			return;
497 		}
498 	}
499 	mutex_lock(&dev_priv->psr.lock);
500 	intel_dp = dev_priv->psr.enabled;
501 
502 	if (!intel_dp)
503 		goto unlock;
504 
505 	/*
506 	 * The delayed work can race with an invalidate hence we need to
507 	 * recheck. Since psr_flush first clears this and then reschedules we
508 	 * won't ever miss a flush when bailing out here.
509 	 */
510 	if (dev_priv->psr.busy_frontbuffer_bits)
511 		goto unlock;
512 
513 	intel_psr_activate(intel_dp);
514 unlock:
515 	mutex_unlock(&dev_priv->psr.lock);
516 }
517 
518 static void intel_psr_exit(struct drm_device *dev)
519 {
520 	struct drm_i915_private *dev_priv = dev->dev_private;
521 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
522 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
523 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
524 	u32 val;
525 
526 	if (!dev_priv->psr.active)
527 		return;
528 
529 	if (HAS_DDI(dev)) {
530 		val = I915_READ(EDP_PSR_CTL(dev));
531 
532 		WARN_ON(!(val & EDP_PSR_ENABLE));
533 
534 		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
535 	} else {
536 		val = I915_READ(VLV_PSRCTL(pipe));
537 
538 		/* Here we do the transition from PSR_state 3 to PSR_state 5
539 		 * directly once PSR State 4 that is active with single frame
540 		 * update can be skipped. PSR_state 5 that is PSR exit then
541 		 * Hardware is responsible to transition back to PSR_state 1
542 		 * that is PSR inactive. Same state after
543 		 * vlv_edp_psr_enable_source.
544 		 */
545 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
546 		I915_WRITE(VLV_PSRCTL(pipe), val);
547 
548 		/* Send AUX wake up - Spec says after transitioning to PSR
549 		 * active we have to send AUX wake up by writing 01h in DPCD
550 		 * 600h of sink device.
551 		 * XXX: This might slow down the transition, but without this
552 		 * HW doesn't complete the transition to PSR_state 1 and we
553 		 * never get the screen updated.
554 		 */
555 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
556 				   DP_SET_POWER_D0);
557 	}
558 
559 	dev_priv->psr.active = false;
560 }
561 
562 /**
563  * intel_psr_invalidate - Invalidade PSR
564  * @dev: DRM device
565  * @frontbuffer_bits: frontbuffer plane tracking bits
566  *
567  * Since the hardware frontbuffer tracking has gaps we need to integrate
568  * with the software frontbuffer tracking. This function gets called every
569  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
570  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
571  *
572  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
573  */
574 void intel_psr_invalidate(struct drm_device *dev,
575 			      unsigned frontbuffer_bits)
576 {
577 	struct drm_i915_private *dev_priv = dev->dev_private;
578 	struct drm_crtc *crtc;
579 	enum i915_pipe pipe;
580 
581 	mutex_lock(&dev_priv->psr.lock);
582 	if (!dev_priv->psr.enabled) {
583 		mutex_unlock(&dev_priv->psr.lock);
584 		return;
585 	}
586 
587 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
588 	pipe = to_intel_crtc(crtc)->pipe;
589 
590 	intel_psr_exit(dev);
591 
592 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
593 
594 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
595 	mutex_unlock(&dev_priv->psr.lock);
596 }
597 
598 /**
599  * intel_psr_flush - Flush PSR
600  * @dev: DRM device
601  * @frontbuffer_bits: frontbuffer plane tracking bits
602  *
603  * Since the hardware frontbuffer tracking has gaps we need to integrate
604  * with the software frontbuffer tracking. This function gets called every
605  * time frontbuffer rendering has completed and flushed out to memory. PSR
606  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
607  *
608  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
609  */
610 void intel_psr_flush(struct drm_device *dev,
611 			 unsigned frontbuffer_bits)
612 {
613 	struct drm_i915_private *dev_priv = dev->dev_private;
614 	struct drm_crtc *crtc;
615 	enum i915_pipe pipe;
616 
617 	mutex_lock(&dev_priv->psr.lock);
618 	if (!dev_priv->psr.enabled) {
619 		mutex_unlock(&dev_priv->psr.lock);
620 		return;
621 	}
622 
623 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
624 	pipe = to_intel_crtc(crtc)->pipe;
625 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
626 
627 	/*
628 	 * On Haswell sprite plane updates don't result in a psr invalidating
629 	 * signal in the hardware. Which means we need to manually fake this in
630 	 * software for all flushes, not just when we've seen a preceding
631 	 * invalidation through frontbuffer rendering.
632 	 */
633 	if (IS_HASWELL(dev) &&
634 	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
635 		intel_psr_exit(dev);
636 
637 	/*
638 	 * On Valleyview and Cherryview we don't use hardware tracking so
639 	 * any plane updates or cursor moves don't result in a PSR
640 	 * invalidating. Which means we need to manually fake this in
641 	 * software for all flushes, not just when we've seen a preceding
642 	 * invalidation through frontbuffer rendering. */
643 	if (!HAS_DDI(dev))
644 		intel_psr_exit(dev);
645 
646 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
647 		schedule_delayed_work(&dev_priv->psr.work,
648 				      msecs_to_jiffies(100));
649 	mutex_unlock(&dev_priv->psr.lock);
650 }
651 
652 /**
653  * intel_psr_init - Init basic PSR work and mutex.
654  * @dev: DRM device
655  *
656  * This function is  called only once at driver load to initialize basic
657  * PSR stuff.
658  */
659 void intel_psr_init(struct drm_device *dev)
660 {
661 	struct drm_i915_private *dev_priv = dev->dev_private;
662 
663 	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
664 	lockinit(&dev_priv->psr.lock, "i915dpl", 0, LK_CANRECURSE);
665 }
666