xref: /dragonfly/sys/dev/drm/i915/intel_psr.c (revision fc7075bb)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * DOC: Panel Self Refresh (PSR/SRD)
26  *
27  * Since Haswell Display controller supports Panel Self-Refresh on display
28  * panels witch have a remote frame buffer (RFB) implemented according to PSR
29  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30  * when system is idle but display is on as it eliminates display refresh
31  * request to DDR memory completely as long as the frame buffer for that
32  * display is unchanged.
33  *
34  * Panel Self Refresh must be supported by both Hardware (source) and
35  * Panel (sink).
36  *
37  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38  * to power down the link and memory controller. For DSI panels the same idea
39  * is called "manual mode".
40  *
41  * The implementation uses the hardware-based PSR support which automatically
42  * enters/exits self-refresh mode. The hardware takes care of sending the
43  * required DP aux message and could even retrain the link (that part isn't
44  * enabled yet though). The hardware also keeps track of any frontbuffer
45  * changes to know when to exit self-refresh mode again. Unfortunately that
46  * part doesn't work too well, hence why the i915 PSR support uses the
47  * software frontbuffer tracking to make sure it doesn't miss a screen
48  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49  * get called by the frontbuffer tracking code. Note that because of locking
50  * issues the self-refresh re-enable code is done from a work queue, which
51  * must be correctly synchronized/cancelled when shutting down the pipe."
52  */
53 
54 #include <drm/drmP.h>
55 
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58 
59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63 
64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 	struct drm_i915_private *dev_priv = dev->dev_private;
67 	uint32_t val;
68 
69 	val = I915_READ(VLV_PSRSTAT(pipe)) &
70 	      VLV_EDP_PSR_CURR_STATE_MASK;
71 	return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 	       (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74 
75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 				const struct edp_vsc_psr *vsc_psr)
77 {
78 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 	struct drm_device *dev = dig_port->base.base.dev;
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 	const uint32_t *data = (const uint32_t *) vsc_psr;
85 	unsigned int i;
86 
87 	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 	   the video DIP being updated before program video DIP data buffer
89 	   registers for DIP being updated. */
90 	I915_WRITE(ctl_reg, 0);
91 	POSTING_READ(ctl_reg);
92 
93 	for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 						   i >> 2), *data);
96 		data++;
97 	}
98 	for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 						   i >> 2), 0);
101 
102 	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 	POSTING_READ(ctl_reg);
104 }
105 
106 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107 {
108 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 	struct drm_device *dev = intel_dig_port->base.base.dev;
110 	struct drm_i915_private *dev_priv = dev->dev_private;
111 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
113 	uint32_t val;
114 
115 	/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 	val  = I915_READ(VLV_VSCSDP(pipe));
117 	val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 	val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 	I915_WRITE(VLV_VSCSDP(pipe), val);
120 }
121 
122 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123 {
124 	struct edp_vsc_psr psr_vsc;
125 
126 	/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 	memset(&psr_vsc, 0, sizeof(psr_vsc));
128 	psr_vsc.sdp_header.HB0 = 0;
129 	psr_vsc.sdp_header.HB1 = 0x7;
130 	psr_vsc.sdp_header.HB2 = 0x3;
131 	psr_vsc.sdp_header.HB3 = 0xb;
132 	intel_psr_write_vsc(intel_dp, &psr_vsc);
133 }
134 
135 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136 {
137 	struct edp_vsc_psr psr_vsc;
138 
139 	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 	memset(&psr_vsc, 0, sizeof(psr_vsc));
141 	psr_vsc.sdp_header.HB0 = 0;
142 	psr_vsc.sdp_header.HB1 = 0x7;
143 	psr_vsc.sdp_header.HB2 = 0x2;
144 	psr_vsc.sdp_header.HB3 = 0x8;
145 	intel_psr_write_vsc(intel_dp, &psr_vsc);
146 }
147 
148 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149 {
150 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 			   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152 }
153 
154 static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
155 				       enum port port)
156 {
157 	if (INTEL_INFO(dev_priv)->gen >= 9)
158 		return DP_AUX_CH_CTL(port);
159 	else
160 		return EDP_PSR_AUX_CTL;
161 }
162 
163 static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
164 					enum port port, int index)
165 {
166 	if (INTEL_INFO(dev_priv)->gen >= 9)
167 		return DP_AUX_CH_DATA(port, index);
168 	else
169 		return EDP_PSR_AUX_DATA(index);
170 }
171 
172 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
173 {
174 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
175 	struct drm_device *dev = dig_port->base.base.dev;
176 	struct drm_i915_private *dev_priv = dev->dev_private;
177 	uint32_t aux_clock_divider;
178 	i915_reg_t aux_ctl_reg;
179 	int precharge = 0x3;
180 	static const uint8_t aux_msg[] = {
181 		[0] = DP_AUX_NATIVE_WRITE << 4,
182 		[1] = DP_SET_POWER >> 8,
183 		[2] = DP_SET_POWER & 0xff,
184 		[3] = 1 - 1,
185 		[4] = DP_SET_POWER_D0,
186 	};
187 	enum port port = dig_port->port;
188 	int i;
189 
190 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
191 
192 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
193 
194 	/* Enable AUX frame sync at sink */
195 	if (dev_priv->psr.aux_frame_sync)
196 		drm_dp_dpcd_writeb(&intel_dp->aux,
197 				DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
198 				DP_AUX_FRAME_SYNC_ENABLE);
199 
200 	aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
201 
202 	/* Setup AUX registers */
203 	for (i = 0; i < sizeof(aux_msg); i += 4)
204 		I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
205 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
206 
207 	if (INTEL_INFO(dev)->gen >= 9) {
208 		uint32_t val;
209 
210 		val = I915_READ(aux_ctl_reg);
211 		val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
212 		val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
213 		val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
214 		val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
215 		/* Use hardcoded data values for PSR, frame sync and GTC */
216 		val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
217 		val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
218 		val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
219 		I915_WRITE(aux_ctl_reg, val);
220 	} else {
221 		I915_WRITE(aux_ctl_reg,
222 		   DP_AUX_CH_CTL_TIME_OUT_400us |
223 		   (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
224 		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
225 		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
226 	}
227 
228 	if (dev_priv->psr.link_standby)
229 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
230 				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
231 	else
232 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
233 				   DP_PSR_ENABLE);
234 }
235 
236 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
237 {
238 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
239 	struct drm_device *dev = dig_port->base.base.dev;
240 	struct drm_i915_private *dev_priv = dev->dev_private;
241 	struct drm_crtc *crtc = dig_port->base.base.crtc;
242 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
243 
244 	/* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
245 	I915_WRITE(VLV_PSRCTL(pipe),
246 		   VLV_EDP_PSR_MODE_SW_TIMER |
247 		   VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
248 		   VLV_EDP_PSR_ENABLE);
249 }
250 
251 static void vlv_psr_activate(struct intel_dp *intel_dp)
252 {
253 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
254 	struct drm_device *dev = dig_port->base.base.dev;
255 	struct drm_i915_private *dev_priv = dev->dev_private;
256 	struct drm_crtc *crtc = dig_port->base.base.crtc;
257 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
258 
259 	/* Let's do the transition from PSR_state 1 to PSR_state 2
260 	 * that is PSR transition to active - static frame transmission.
261 	 * Then Hardware is responsible for the transition to PSR_state 3
262 	 * that is PSR active - no Remote Frame Buffer (RFB) update.
263 	 */
264 	I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
265 		   VLV_EDP_PSR_ACTIVE_ENTRY);
266 }
267 
268 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
269 {
270 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
271 	struct drm_device *dev = dig_port->base.base.dev;
272 	struct drm_i915_private *dev_priv = dev->dev_private;
273 
274 	uint32_t max_sleep_time = 0x1f;
275 	/*
276 	 * Let's respect VBT in case VBT asks a higher idle_frame value.
277 	 * Let's use 6 as the minimum to cover all known cases including
278 	 * the off-by-one issue that HW has in some cases. Also there are
279 	 * cases where sink should be able to train
280 	 * with the 5 or 6 idle patterns.
281 	 */
282 	uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
283 	uint32_t val = EDP_PSR_ENABLE;
284 
285 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
286 	val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
287 
288 	if (IS_HASWELL(dev))
289 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
290 
291 	if (dev_priv->psr.link_standby)
292 		val |= EDP_PSR_LINK_STANDBY;
293 
294 	if (dev_priv->vbt.psr.tp1_wakeup_time > 5)
295 		val |= EDP_PSR_TP1_TIME_2500us;
296 	else if (dev_priv->vbt.psr.tp1_wakeup_time > 1)
297 		val |= EDP_PSR_TP1_TIME_500us;
298 	else if (dev_priv->vbt.psr.tp1_wakeup_time > 0)
299 		val |= EDP_PSR_TP1_TIME_100us;
300 	else
301 		val |= EDP_PSR_TP1_TIME_0us;
302 
303 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
304 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
305 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
306 		val |= EDP_PSR_TP2_TP3_TIME_500us;
307 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
308 		val |= EDP_PSR_TP2_TP3_TIME_100us;
309 	else
310 		val |= EDP_PSR_TP2_TP3_TIME_0us;
311 
312 	if (intel_dp_source_supports_hbr2(intel_dp) &&
313 	    drm_dp_tps3_supported(intel_dp->dpcd))
314 		val |= EDP_PSR_TP1_TP3_SEL;
315 	else
316 		val |= EDP_PSR_TP1_TP2_SEL;
317 
318 	I915_WRITE(EDP_PSR_CTL, val);
319 
320 	if (!dev_priv->psr.psr2_support)
321 		return;
322 
323 	/* FIXME: selective update is probably totally broken because it doesn't
324 	 * mesh at all with our frontbuffer tracking. And the hw alone isn't
325 	 * good enough. */
326 	val = EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
327 
328 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
329 		val |= EDP_PSR2_TP2_TIME_2500;
330 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
331 		val |= EDP_PSR2_TP2_TIME_500;
332 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
333 		val |= EDP_PSR2_TP2_TIME_100;
334 	else
335 		val |= EDP_PSR2_TP2_TIME_50;
336 
337 	I915_WRITE(EDP_PSR2_CTL, val);
338 }
339 
340 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
341 {
342 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
343 	struct drm_device *dev = dig_port->base.base.dev;
344 	struct drm_i915_private *dev_priv = dev->dev_private;
345 	struct drm_crtc *crtc = dig_port->base.base.crtc;
346 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
347 
348 	lockdep_assert_held(&dev_priv->psr.lock);
349 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
350 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
351 
352 	dev_priv->psr.source_ok = false;
353 
354 	/*
355 	 * HSW spec explicitly says PSR is tied to port A.
356 	 * BDW+ platforms with DDI implementation of PSR have different
357 	 * PSR registers per transcoder and we only implement transcoder EDP
358 	 * ones. Since by Display design transcoder EDP is tied to port A
359 	 * we can safely escape based on the port A.
360 	 */
361 	if (HAS_DDI(dev) && dig_port->port != PORT_A) {
362 		DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
363 		return false;
364 	}
365 
366 	if (!i915.enable_psr) {
367 		DRM_DEBUG_KMS("PSR disable by flag\n");
368 		return false;
369 	}
370 
371 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
372 	    !dev_priv->psr.link_standby) {
373 		DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
374 		return false;
375 	}
376 
377 	if (IS_HASWELL(dev) &&
378 	    I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
379 		      S3D_ENABLE) {
380 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
381 		return false;
382 	}
383 
384 	if (IS_HASWELL(dev) &&
385 	    intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
386 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
387 		return false;
388 	}
389 
390 	dev_priv->psr.source_ok = true;
391 	return true;
392 }
393 
394 static void intel_psr_activate(struct intel_dp *intel_dp)
395 {
396 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 	struct drm_device *dev = intel_dig_port->base.base.dev;
398 	struct drm_i915_private *dev_priv = dev->dev_private;
399 
400 	WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
401 	WARN_ON(dev_priv->psr.active);
402 	lockdep_assert_held(&dev_priv->psr.lock);
403 
404 	/* Enable/Re-enable PSR on the host */
405 	if (HAS_DDI(dev))
406 		/* On HSW+ after we enable PSR on source it will activate it
407 		 * as soon as it match configure idle_frame count. So
408 		 * we just actually enable it here on activation time.
409 		 */
410 		hsw_psr_enable_source(intel_dp);
411 	else
412 		vlv_psr_activate(intel_dp);
413 
414 	dev_priv->psr.active = true;
415 }
416 
417 /**
418  * intel_psr_enable - Enable PSR
419  * @intel_dp: Intel DP
420  *
421  * This function can only be called after the pipe is fully trained and enabled.
422  */
423 void intel_psr_enable(struct intel_dp *intel_dp)
424 {
425 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 	struct drm_device *dev = intel_dig_port->base.base.dev;
427 	struct drm_i915_private *dev_priv = dev->dev_private;
428 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
429 
430 	if (!HAS_PSR(dev)) {
431 		DRM_DEBUG_KMS("PSR not supported on this platform\n");
432 		return;
433 	}
434 
435 	if (!is_edp_psr(intel_dp)) {
436 		DRM_DEBUG_KMS("PSR not supported by this panel\n");
437 		return;
438 	}
439 
440 	mutex_lock(&dev_priv->psr.lock);
441 	if (dev_priv->psr.enabled) {
442 		DRM_DEBUG_KMS("PSR already in use\n");
443 		goto unlock;
444 	}
445 
446 	if (!intel_psr_match_conditions(intel_dp))
447 		goto unlock;
448 
449 	dev_priv->psr.busy_frontbuffer_bits = 0;
450 
451 	if (HAS_DDI(dev)) {
452 		hsw_psr_setup_vsc(intel_dp);
453 
454 		if (dev_priv->psr.psr2_support) {
455 			/* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
456 			if (crtc->config->pipe_src_w > 3200 ||
457 				crtc->config->pipe_src_h > 2000)
458 				dev_priv->psr.psr2_support = false;
459 			else
460 				skl_psr_setup_su_vsc(intel_dp);
461 		}
462 
463 		/*
464 		 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD.
465 		 * Also mask LPSP to avoid dependency on other drivers that
466 		 * might block runtime_pm besides preventing other hw tracking
467 		 * issues now we can rely on frontbuffer tracking.
468 		 */
469 		I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
470 			   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
471 
472 		/* Enable PSR on the panel */
473 		hsw_psr_enable_sink(intel_dp);
474 
475 		if (INTEL_INFO(dev)->gen >= 9)
476 			intel_psr_activate(intel_dp);
477 	} else {
478 		vlv_psr_setup_vsc(intel_dp);
479 
480 		/* Enable PSR on the panel */
481 		vlv_psr_enable_sink(intel_dp);
482 
483 		/* On HSW+ enable_source also means go to PSR entry/active
484 		 * state as soon as idle_frame achieved and here would be
485 		 * to soon. However on VLV enable_source just enable PSR
486 		 * but let it on inactive state. So we might do this prior
487 		 * to active transition, i.e. here.
488 		 */
489 		vlv_psr_enable_source(intel_dp);
490 	}
491 
492 	/*
493 	 * FIXME: Activation should happen immediately since this function
494 	 * is just called after pipe is fully trained and enabled.
495 	 * However on every platform we face issues when first activation
496 	 * follows a modeset so quickly.
497 	 *     - On VLV/CHV we get bank screen on first activation
498 	 *     - On HSW/BDW we get a recoverable frozen screen until next
499 	 *       exit-activate sequence.
500 	 */
501 	if (INTEL_INFO(dev)->gen < 9)
502 		schedule_delayed_work(&dev_priv->psr.work,
503 				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
504 
505 	dev_priv->psr.enabled = intel_dp;
506 unlock:
507 	mutex_unlock(&dev_priv->psr.lock);
508 }
509 
510 static void vlv_psr_disable(struct intel_dp *intel_dp)
511 {
512 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
513 	struct drm_device *dev = intel_dig_port->base.base.dev;
514 	struct drm_i915_private *dev_priv = dev->dev_private;
515 	struct intel_crtc *intel_crtc =
516 		to_intel_crtc(intel_dig_port->base.base.crtc);
517 	uint32_t val;
518 
519 	if (dev_priv->psr.active) {
520 		/* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
521 		if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
522 			      VLV_EDP_PSR_IN_TRANS) == 0, 1))
523 			WARN(1, "PSR transition took longer than expected\n");
524 
525 		val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
526 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
527 		val &= ~VLV_EDP_PSR_ENABLE;
528 		val &= ~VLV_EDP_PSR_MODE_MASK;
529 		I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
530 
531 		dev_priv->psr.active = false;
532 	} else {
533 		WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
534 	}
535 }
536 
537 static void hsw_psr_disable(struct intel_dp *intel_dp)
538 {
539 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
540 	struct drm_device *dev = intel_dig_port->base.base.dev;
541 	struct drm_i915_private *dev_priv = dev->dev_private;
542 
543 	if (dev_priv->psr.active) {
544 		I915_WRITE(EDP_PSR_CTL,
545 			   I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
546 
547 		/* Wait till PSR is idle */
548 		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
549 			       EDP_PSR_STATUS_STATE_MASK) == 0,
550 			       2 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
551 			DRM_ERROR("Timed out waiting for PSR Idle State\n");
552 
553 		dev_priv->psr.active = false;
554 	} else {
555 		WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
556 	}
557 }
558 
559 /**
560  * intel_psr_disable - Disable PSR
561  * @intel_dp: Intel DP
562  *
563  * This function needs to be called before disabling pipe.
564  */
565 void intel_psr_disable(struct intel_dp *intel_dp)
566 {
567 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
568 	struct drm_device *dev = intel_dig_port->base.base.dev;
569 	struct drm_i915_private *dev_priv = dev->dev_private;
570 
571 	mutex_lock(&dev_priv->psr.lock);
572 	if (!dev_priv->psr.enabled) {
573 		mutex_unlock(&dev_priv->psr.lock);
574 		return;
575 	}
576 
577 	/* Disable PSR on Source */
578 	if (HAS_DDI(dev))
579 		hsw_psr_disable(intel_dp);
580 	else
581 		vlv_psr_disable(intel_dp);
582 
583 	/* Disable PSR on Sink */
584 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
585 
586 	dev_priv->psr.enabled = NULL;
587 	mutex_unlock(&dev_priv->psr.lock);
588 
589 	cancel_delayed_work_sync(&dev_priv->psr.work);
590 }
591 
592 static void intel_psr_work(struct work_struct *work)
593 {
594 	struct drm_i915_private *dev_priv =
595 		container_of(work, typeof(*dev_priv), psr.work.work);
596 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
597 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
598 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
599 
600 	/* We have to make sure PSR is ready for re-enable
601 	 * otherwise it keeps disabled until next full enable/disable cycle.
602 	 * PSR might take some time to get fully disabled
603 	 * and be ready for re-enable.
604 	 */
605 	if (HAS_DDI(dev_priv)) {
606 		if (wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
607 			      EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
608 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
609 			return;
610 		}
611 	} else {
612 		if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
613 			      VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
614 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
615 			return;
616 		}
617 	}
618 	mutex_lock(&dev_priv->psr.lock);
619 	intel_dp = dev_priv->psr.enabled;
620 
621 	if (!intel_dp)
622 		goto unlock;
623 
624 	/*
625 	 * The delayed work can race with an invalidate hence we need to
626 	 * recheck. Since psr_flush first clears this and then reschedules we
627 	 * won't ever miss a flush when bailing out here.
628 	 */
629 	if (dev_priv->psr.busy_frontbuffer_bits)
630 		goto unlock;
631 
632 	intel_psr_activate(intel_dp);
633 unlock:
634 	mutex_unlock(&dev_priv->psr.lock);
635 }
636 
637 static void intel_psr_exit(struct drm_device *dev)
638 {
639 	struct drm_i915_private *dev_priv = dev->dev_private;
640 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
641 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
642 	enum i915_pipe pipe = to_intel_crtc(crtc)->pipe;
643 	u32 val;
644 
645 	if (!dev_priv->psr.active)
646 		return;
647 
648 	if (HAS_DDI(dev)) {
649 		val = I915_READ(EDP_PSR_CTL);
650 
651 		WARN_ON(!(val & EDP_PSR_ENABLE));
652 
653 		I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
654 	} else {
655 		val = I915_READ(VLV_PSRCTL(pipe));
656 
657 		/* Here we do the transition from PSR_state 3 to PSR_state 5
658 		 * directly once PSR State 4 that is active with single frame
659 		 * update can be skipped. PSR_state 5 that is PSR exit then
660 		 * Hardware is responsible to transition back to PSR_state 1
661 		 * that is PSR inactive. Same state after
662 		 * vlv_edp_psr_enable_source.
663 		 */
664 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
665 		I915_WRITE(VLV_PSRCTL(pipe), val);
666 
667 		/* Send AUX wake up - Spec says after transitioning to PSR
668 		 * active we have to send AUX wake up by writing 01h in DPCD
669 		 * 600h of sink device.
670 		 * XXX: This might slow down the transition, but without this
671 		 * HW doesn't complete the transition to PSR_state 1 and we
672 		 * never get the screen updated.
673 		 */
674 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
675 				   DP_SET_POWER_D0);
676 	}
677 
678 	dev_priv->psr.active = false;
679 }
680 
681 /**
682  * intel_psr_single_frame_update - Single Frame Update
683  * @dev: DRM device
684  * @frontbuffer_bits: frontbuffer plane tracking bits
685  *
686  * Some platforms support a single frame update feature that is used to
687  * send and update only one frame on Remote Frame Buffer.
688  * So far it is only implemented for Valleyview and Cherryview because
689  * hardware requires this to be done before a page flip.
690  */
691 void intel_psr_single_frame_update(struct drm_device *dev,
692 				   unsigned frontbuffer_bits)
693 {
694 	struct drm_i915_private *dev_priv = dev->dev_private;
695 	struct drm_crtc *crtc;
696 	enum i915_pipe pipe;
697 	u32 val;
698 
699 	/*
700 	 * Single frame update is already supported on BDW+ but it requires
701 	 * many W/A and it isn't really needed.
702 	 */
703 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
704 		return;
705 
706 	mutex_lock(&dev_priv->psr.lock);
707 	if (!dev_priv->psr.enabled) {
708 		mutex_unlock(&dev_priv->psr.lock);
709 		return;
710 	}
711 
712 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
713 	pipe = to_intel_crtc(crtc)->pipe;
714 
715 	if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
716 		val = I915_READ(VLV_PSRCTL(pipe));
717 
718 		/*
719 		 * We need to set this bit before writing registers for a flip.
720 		 * This bit will be self-clear when it gets to the PSR active state.
721 		 */
722 		I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
723 	}
724 	mutex_unlock(&dev_priv->psr.lock);
725 }
726 
727 /**
728  * intel_psr_invalidate - Invalidade PSR
729  * @dev: DRM device
730  * @frontbuffer_bits: frontbuffer plane tracking bits
731  *
732  * Since the hardware frontbuffer tracking has gaps we need to integrate
733  * with the software frontbuffer tracking. This function gets called every
734  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
735  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
736  *
737  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
738  */
739 void intel_psr_invalidate(struct drm_device *dev,
740 			  unsigned frontbuffer_bits)
741 {
742 	struct drm_i915_private *dev_priv = dev->dev_private;
743 	struct drm_crtc *crtc;
744 	enum i915_pipe pipe;
745 
746 	mutex_lock(&dev_priv->psr.lock);
747 	if (!dev_priv->psr.enabled) {
748 		mutex_unlock(&dev_priv->psr.lock);
749 		return;
750 	}
751 
752 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
753 	pipe = to_intel_crtc(crtc)->pipe;
754 
755 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
756 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
757 
758 	if (frontbuffer_bits)
759 		intel_psr_exit(dev);
760 
761 	mutex_unlock(&dev_priv->psr.lock);
762 }
763 
764 /**
765  * intel_psr_flush - Flush PSR
766  * @dev: DRM device
767  * @frontbuffer_bits: frontbuffer plane tracking bits
768  * @origin: which operation caused the flush
769  *
770  * Since the hardware frontbuffer tracking has gaps we need to integrate
771  * with the software frontbuffer tracking. This function gets called every
772  * time frontbuffer rendering has completed and flushed out to memory. PSR
773  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
774  *
775  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
776  */
777 void intel_psr_flush(struct drm_device *dev,
778 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
779 {
780 	struct drm_i915_private *dev_priv = dev->dev_private;
781 	struct drm_crtc *crtc;
782 	enum i915_pipe pipe;
783 
784 	mutex_lock(&dev_priv->psr.lock);
785 	if (!dev_priv->psr.enabled) {
786 		mutex_unlock(&dev_priv->psr.lock);
787 		return;
788 	}
789 
790 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
791 	pipe = to_intel_crtc(crtc)->pipe;
792 
793 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
794 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
795 
796 	/* By definition flush = invalidate + flush */
797 	if (frontbuffer_bits)
798 		intel_psr_exit(dev);
799 
800 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
801 #if 0
802 		if (!work_busy(&dev_priv->psr.work.work))
803 #endif
804 			schedule_delayed_work(&dev_priv->psr.work,
805 					      msecs_to_jiffies(100));
806 	mutex_unlock(&dev_priv->psr.lock);
807 }
808 
809 /**
810  * intel_psr_init - Init basic PSR work and mutex.
811  * @dev: DRM device
812  *
813  * This function is  called only once at driver load to initialize basic
814  * PSR stuff.
815  */
816 void intel_psr_init(struct drm_device *dev)
817 {
818 	struct drm_i915_private *dev_priv = dev->dev_private;
819 
820 	dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
821 		HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
822 
823 	/* Per platform default */
824 	if (i915.enable_psr == -1) {
825 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
826 			i915.enable_psr = 1;
827 		else
828 			i915.enable_psr = 0;
829 	}
830 
831 	/* Set link_standby x link_off defaults */
832 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
833 		/* HSW and BDW require workarounds that we don't implement. */
834 		dev_priv->psr.link_standby = false;
835 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
836 		/* On VLV and CHV only standby mode is supported. */
837 		dev_priv->psr.link_standby = true;
838 	else
839 		/* For new platforms let's respect VBT back again */
840 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
841 
842 	/* Override link_standby x link_off defaults */
843 	if (i915.enable_psr == 2 && !dev_priv->psr.link_standby) {
844 		DRM_DEBUG_KMS("PSR: Forcing link standby\n");
845 		dev_priv->psr.link_standby = true;
846 	}
847 	if (i915.enable_psr == 3 && dev_priv->psr.link_standby) {
848 		DRM_DEBUG_KMS("PSR: Forcing main link off\n");
849 		dev_priv->psr.link_standby = false;
850 	}
851 
852 	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
853 	lockinit(&dev_priv->psr.lock, "i915dpl", 0, LK_CANRECURSE);
854 }
855