xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 0fe46dc6)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	struct intel_engine_cs *ring = req->ring;
99 	u32 cmd;
100 	int ret;
101 
102 	cmd = MI_FLUSH;
103 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 		cmd |= MI_NO_WRITE_FLUSH;
105 
106 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 		cmd |= MI_READ_FLUSH;
108 
109 	ret = intel_ring_begin(req, 2);
110 	if (ret)
111 		return ret;
112 
113 	intel_ring_emit(ring, cmd);
114 	intel_ring_emit(ring, MI_NOOP);
115 	intel_ring_advance(ring);
116 
117 	return 0;
118 }
119 
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 		       u32	invalidate_domains,
123 		       u32	flush_domains)
124 {
125 	struct intel_engine_cs *ring = req->ring;
126 	struct drm_device *dev = ring->dev;
127 	u32 cmd;
128 	int ret;
129 
130 	/*
131 	 * read/write caches:
132 	 *
133 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135 	 * also flushed at 2d versus 3d pipeline switches.
136 	 *
137 	 * read-only caches:
138 	 *
139 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 	 * MI_READ_FLUSH is set, and is always flushed on 965.
141 	 *
142 	 * I915_GEM_DOMAIN_COMMAND may not exist?
143 	 *
144 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 	 * invalidated when MI_EXE_FLUSH is set.
146 	 *
147 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 	 * invalidated with every MI_FLUSH.
149 	 *
150 	 * TLBs:
151 	 *
152 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 	 * are flushed at any MI_FLUSH.
156 	 */
157 
158 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 		cmd &= ~MI_NO_WRITE_FLUSH;
161 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 		cmd |= MI_EXE_FLUSH;
163 
164 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 	    (IS_G4X(dev) || IS_GEN5(dev)))
166 		cmd |= MI_INVALIDATE_ISP;
167 
168 	ret = intel_ring_begin(req, 2);
169 	if (ret)
170 		return ret;
171 
172 	intel_ring_emit(ring, cmd);
173 	intel_ring_emit(ring, MI_NOOP);
174 	intel_ring_advance(ring);
175 
176 	return 0;
177 }
178 
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 	struct intel_engine_cs *ring = req->ring;
220 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 	int ret;
222 
223 	ret = intel_ring_begin(req, 6);
224 	if (ret)
225 		return ret;
226 
227 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 	intel_ring_emit(ring, 0); /* low dword */
232 	intel_ring_emit(ring, 0); /* high dword */
233 	intel_ring_emit(ring, MI_NOOP);
234 	intel_ring_advance(ring);
235 
236 	ret = intel_ring_begin(req, 6);
237 	if (ret)
238 		return ret;
239 
240 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 	intel_ring_emit(ring, 0);
244 	intel_ring_emit(ring, 0);
245 	intel_ring_emit(ring, MI_NOOP);
246 	intel_ring_advance(ring);
247 
248 	return 0;
249 }
250 
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 		       u32 invalidate_domains, u32 flush_domains)
254 {
255 	struct intel_engine_cs *ring = req->ring;
256 	u32 flags = 0;
257 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 	int ret;
259 
260 	/* Force SNB workarounds for PIPE_CONTROL flushes */
261 	ret = intel_emit_post_sync_nonzero_flush(req);
262 	if (ret)
263 		return ret;
264 
265 	/* Just flush everything.  Experiments have shown that reducing the
266 	 * number of bits based on the write domains has little performance
267 	 * impact.
268 	 */
269 	if (flush_domains) {
270 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 		/*
273 		 * Ensure that any following seqno writes only happen
274 		 * when the render cache is indeed flushed.
275 		 */
276 		flags |= PIPE_CONTROL_CS_STALL;
277 	}
278 	if (invalidate_domains) {
279 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 		/*
286 		 * TLB invalidate requires a post-sync write.
287 		 */
288 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 	}
290 
291 	ret = intel_ring_begin(req, 4);
292 	if (ret)
293 		return ret;
294 
295 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 	intel_ring_emit(ring, flags);
297 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 	intel_ring_emit(ring, 0);
299 	intel_ring_advance(ring);
300 
301 	return 0;
302 }
303 
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 	struct intel_engine_cs *ring = req->ring;
308 	int ret;
309 
310 	ret = intel_ring_begin(req, 4);
311 	if (ret)
312 		return ret;
313 
314 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 	intel_ring_emit(ring, 0);
318 	intel_ring_emit(ring, 0);
319 	intel_ring_advance(ring);
320 
321 	return 0;
322 }
323 
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 		       u32 invalidate_domains, u32 flush_domains)
327 {
328 	struct intel_engine_cs *ring = req->ring;
329 	u32 flags = 0;
330 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 	int ret;
332 
333 	/*
334 	 * Ensure that any following seqno writes only happen when the render
335 	 * cache is indeed flushed.
336 	 *
337 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 	 * don't try to be clever and just set it unconditionally.
340 	 */
341 	flags |= PIPE_CONTROL_CS_STALL;
342 
343 	/* Just flush everything.  Experiments have shown that reducing the
344 	 * number of bits based on the write domains has little performance
345 	 * impact.
346 	 */
347 	if (flush_domains) {
348 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
351 	}
352 	if (invalidate_domains) {
353 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
354 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360 		/*
361 		 * TLB invalidate requires a post-sync write.
362 		 */
363 		flags |= PIPE_CONTROL_QW_WRITE;
364 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365 
366 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367 
368 		/* Workaround: we must issue a pipe_control with CS-stall bit
369 		 * set before a pipe_control command that has the state cache
370 		 * invalidate bit set. */
371 		gen7_render_ring_cs_stall_wa(req);
372 	}
373 
374 	ret = intel_ring_begin(req, 4);
375 	if (ret)
376 		return ret;
377 
378 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379 	intel_ring_emit(ring, flags);
380 	intel_ring_emit(ring, scratch_addr);
381 	intel_ring_emit(ring, 0);
382 	intel_ring_advance(ring);
383 
384 	return 0;
385 }
386 
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389 		       u32 flags, u32 scratch_addr)
390 {
391 	struct intel_engine_cs *ring = req->ring;
392 	int ret;
393 
394 	ret = intel_ring_begin(req, 6);
395 	if (ret)
396 		return ret;
397 
398 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399 	intel_ring_emit(ring, flags);
400 	intel_ring_emit(ring, scratch_addr);
401 	intel_ring_emit(ring, 0);
402 	intel_ring_emit(ring, 0);
403 	intel_ring_emit(ring, 0);
404 	intel_ring_advance(ring);
405 
406 	return 0;
407 }
408 
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411 		       u32 invalidate_domains, u32 flush_domains)
412 {
413 	u32 flags = 0;
414 	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415 	int ret;
416 
417 	flags |= PIPE_CONTROL_CS_STALL;
418 
419 	if (flush_domains) {
420 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
423 	}
424 	if (invalidate_domains) {
425 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
426 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
427 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
428 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
429 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
430 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
431 		flags |= PIPE_CONTROL_QW_WRITE;
432 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
433 
434 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
435 		ret = gen8_emit_pipe_control(req,
436 					     PIPE_CONTROL_CS_STALL |
437 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
438 					     0);
439 		if (ret)
440 			return ret;
441 	}
442 
443 	return gen8_emit_pipe_control(req, flags, scratch_addr);
444 }
445 
446 static void ring_write_tail(struct intel_engine_cs *ring,
447 			    u32 value)
448 {
449 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 	I915_WRITE_TAIL(ring, value);
451 }
452 
453 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
454 {
455 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
456 	u64 acthd;
457 
458 	if (INTEL_INFO(ring->dev)->gen >= 8)
459 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
460 					 RING_ACTHD_UDW(ring->mmio_base));
461 	else if (INTEL_INFO(ring->dev)->gen >= 4)
462 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
463 	else
464 		acthd = I915_READ(ACTHD);
465 
466 	return acthd;
467 }
468 
469 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
470 {
471 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
472 	u32 addr;
473 
474 	addr = dev_priv->status_page_dmah->busaddr;
475 	if (INTEL_INFO(ring->dev)->gen >= 4)
476 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
477 	I915_WRITE(HWS_PGA, addr);
478 }
479 
480 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
481 {
482 	struct drm_device *dev = ring->dev;
483 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
484 	u32 mmio = 0;
485 
486 	/* The ring status page addresses are no longer next to the rest of
487 	 * the ring registers as of gen7.
488 	 */
489 	if (IS_GEN7(dev)) {
490 		switch (ring->id) {
491 		case RCS:
492 			mmio = RENDER_HWS_PGA_GEN7;
493 			break;
494 		case BCS:
495 			mmio = BLT_HWS_PGA_GEN7;
496 			break;
497 		/*
498 		 * VCS2 actually doesn't exist on Gen7. Only shut up
499 		 * gcc switch check warning
500 		 */
501 		case VCS2:
502 		case VCS:
503 			mmio = BSD_HWS_PGA_GEN7;
504 			break;
505 		case VECS:
506 			mmio = VEBOX_HWS_PGA_GEN7;
507 			break;
508 		}
509 	} else if (IS_GEN6(ring->dev)) {
510 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
511 	} else {
512 		/* XXX: gen8 returns to sanity */
513 		mmio = RING_HWS_PGA(ring->mmio_base);
514 	}
515 
516 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
517 	POSTING_READ(mmio);
518 
519 	/*
520 	 * Flush the TLB for this page
521 	 *
522 	 * FIXME: These two bits have disappeared on gen8, so a question
523 	 * arises: do we still need this and if so how should we go about
524 	 * invalidating the TLB?
525 	 */
526 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
527 		u32 reg = RING_INSTPM(ring->mmio_base);
528 
529 		/* ring should be idle before issuing a sync flush*/
530 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
531 
532 		I915_WRITE(reg,
533 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
534 					      INSTPM_SYNC_FLUSH));
535 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
536 			     1000))
537 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
538 				  ring->name);
539 	}
540 }
541 
542 static bool stop_ring(struct intel_engine_cs *ring)
543 {
544 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
545 
546 	if (!IS_GEN2(ring->dev)) {
547 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
548 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
549 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
550 			/* Sometimes we observe that the idle flag is not
551 			 * set even though the ring is empty. So double
552 			 * check before giving up.
553 			 */
554 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
555 				return false;
556 		}
557 	}
558 
559 	I915_WRITE_CTL(ring, 0);
560 	I915_WRITE_HEAD(ring, 0);
561 	ring->write_tail(ring, 0);
562 
563 	if (!IS_GEN2(ring->dev)) {
564 		(void)I915_READ_CTL(ring);
565 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
566 	}
567 
568 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
569 }
570 
571 static int init_ring_common(struct intel_engine_cs *ring)
572 {
573 	struct drm_device *dev = ring->dev;
574 	struct drm_i915_private *dev_priv = dev->dev_private;
575 	struct intel_ringbuffer *ringbuf = ring->buffer;
576 	struct drm_i915_gem_object *obj = ringbuf->obj;
577 	int ret = 0;
578 
579 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
580 
581 	if (!stop_ring(ring)) {
582 		/* G45 ring initialization often fails to reset head to zero */
583 		DRM_DEBUG_KMS("%s head not reset to zero "
584 			      "ctl %08x head %08x tail %08x start %08x\n",
585 			      ring->name,
586 			      I915_READ_CTL(ring),
587 			      I915_READ_HEAD(ring),
588 			      I915_READ_TAIL(ring),
589 			      I915_READ_START(ring));
590 
591 		if (!stop_ring(ring)) {
592 			DRM_ERROR("failed to set %s head to zero "
593 				  "ctl %08x head %08x tail %08x start %08x\n",
594 				  ring->name,
595 				  I915_READ_CTL(ring),
596 				  I915_READ_HEAD(ring),
597 				  I915_READ_TAIL(ring),
598 				  I915_READ_START(ring));
599 			ret = -EIO;
600 			goto out;
601 		}
602 	}
603 
604 	if (I915_NEED_GFX_HWS(dev))
605 		intel_ring_setup_status_page(ring);
606 	else
607 		ring_setup_phys_status_page(ring);
608 
609 	/* Enforce ordering by reading HEAD register back */
610 	I915_READ_HEAD(ring);
611 
612 	/* Initialize the ring. This must happen _after_ we've cleared the ring
613 	 * registers with the above sequence (the readback of the HEAD registers
614 	 * also enforces ordering), otherwise the hw might lose the new ring
615 	 * register values. */
616 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
617 
618 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
619 	if (I915_READ_HEAD(ring))
620 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
621 			  ring->name, I915_READ_HEAD(ring));
622 	I915_WRITE_HEAD(ring, 0);
623 	(void)I915_READ_HEAD(ring);
624 
625 	I915_WRITE_CTL(ring,
626 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
627 			| RING_VALID);
628 
629 	/* If the head is still not zero, the ring is dead */
630 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
631 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
632 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
633 		DRM_ERROR("%s initialization failed "
634 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
635 			  ring->name,
636 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
637 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
638 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
639 		ret = -EIO;
640 		goto out;
641 	}
642 
643 	ringbuf->last_retired_head = -1;
644 	ringbuf->head = I915_READ_HEAD(ring);
645 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
646 	intel_ring_update_space(ringbuf);
647 
648 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
649 
650 out:
651 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
652 
653 	return ret;
654 }
655 
656 void
657 intel_fini_pipe_control(struct intel_engine_cs *ring)
658 {
659 	struct drm_device *dev = ring->dev;
660 
661 	if (ring->scratch.obj == NULL)
662 		return;
663 
664 	if (INTEL_INFO(dev)->gen >= 5) {
665 		kunmap(sg_page(ring->scratch.obj->pages->sgl));
666 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
667 	}
668 
669 	drm_gem_object_unreference(&ring->scratch.obj->base);
670 	ring->scratch.obj = NULL;
671 }
672 
673 int
674 intel_init_pipe_control(struct intel_engine_cs *ring)
675 {
676 	int ret;
677 
678 	WARN_ON(ring->scratch.obj);
679 
680 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
681 	if (ring->scratch.obj == NULL) {
682 		DRM_ERROR("Failed to allocate seqno page\n");
683 		ret = -ENOMEM;
684 		goto err;
685 	}
686 
687 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
688 	if (ret)
689 		goto err_unref;
690 
691 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
692 	if (ret)
693 		goto err_unref;
694 
695 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
696 	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
697 	if (ring->scratch.cpu_page == NULL) {
698 		ret = -ENOMEM;
699 		goto err_unpin;
700 	}
701 
702 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
703 			 ring->name, ring->scratch.gtt_offset);
704 	return 0;
705 
706 err_unpin:
707 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
708 err_unref:
709 	drm_gem_object_unreference(&ring->scratch.obj->base);
710 err:
711 	return ret;
712 }
713 
714 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
715 {
716 	int ret, i;
717 	struct intel_engine_cs *ring = req->ring;
718 	struct drm_device *dev = ring->dev;
719 	struct drm_i915_private *dev_priv = dev->dev_private;
720 	struct i915_workarounds *w = &dev_priv->workarounds;
721 
722 	if (w->count == 0)
723 		return 0;
724 
725 	ring->gpu_caches_dirty = true;
726 	ret = intel_ring_flush_all_caches(req);
727 	if (ret)
728 		return ret;
729 
730 	ret = intel_ring_begin(req, (w->count * 2 + 2));
731 	if (ret)
732 		return ret;
733 
734 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
735 	for (i = 0; i < w->count; i++) {
736 		intel_ring_emit(ring, w->reg[i].addr);
737 		intel_ring_emit(ring, w->reg[i].value);
738 	}
739 	intel_ring_emit(ring, MI_NOOP);
740 
741 	intel_ring_advance(ring);
742 
743 	ring->gpu_caches_dirty = true;
744 	ret = intel_ring_flush_all_caches(req);
745 	if (ret)
746 		return ret;
747 
748 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
749 
750 	return 0;
751 }
752 
753 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
754 {
755 	int ret;
756 
757 	ret = intel_ring_workarounds_emit(req);
758 	if (ret != 0)
759 		return ret;
760 
761 	ret = i915_gem_render_state_init(req);
762 	if (ret)
763 		DRM_ERROR("init render state: %d\n", ret);
764 
765 	return ret;
766 }
767 
768 static int wa_add(struct drm_i915_private *dev_priv,
769 		  const u32 addr, const u32 mask, const u32 val)
770 {
771 	const u32 idx = dev_priv->workarounds.count;
772 
773 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
774 		return -ENOSPC;
775 
776 	dev_priv->workarounds.reg[idx].addr = addr;
777 	dev_priv->workarounds.reg[idx].value = val;
778 	dev_priv->workarounds.reg[idx].mask = mask;
779 
780 	dev_priv->workarounds.count++;
781 
782 	return 0;
783 }
784 
785 #define WA_REG(addr, mask, val) do { \
786 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
787 		if (r) \
788 			return r; \
789 	} while (0)
790 
791 #define WA_SET_BIT_MASKED(addr, mask) \
792 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
793 
794 #define WA_CLR_BIT_MASKED(addr, mask) \
795 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
796 
797 #define WA_SET_FIELD_MASKED(addr, mask, value) \
798 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
799 
800 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
801 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
802 
803 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
804 
805 static int gen8_init_workarounds(struct intel_engine_cs *ring)
806 {
807 	struct drm_device *dev = ring->dev;
808 	struct drm_i915_private *dev_priv = dev->dev_private;
809 
810 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
811 
812 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
813 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
814 
815 	/* WaDisablePartialInstShootdown:bdw,chv */
816 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
817 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
818 
819 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
820 	 * workaround for for a possible hang in the unlikely event a TLB
821 	 * invalidation occurs during a PSD flush.
822 	 */
823 	/* WaForceEnableNonCoherent:bdw,chv */
824 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
825 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
826 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827 			  HDC_FORCE_NON_COHERENT);
828 
829 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
830 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
831 	 *  polygons in the same 8x4 pixel/sample area to be processed without
832 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
833 	 *  buffer."
834 	 *
835 	 * This optimization is off by default for BDW and CHV; turn it on.
836 	 */
837 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
838 
839 	/* Wa4x4STCOptimizationDisable:bdw,chv */
840 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
841 
842 	/*
843 	 * BSpec recommends 8x4 when MSAA is used,
844 	 * however in practice 16x4 seems fastest.
845 	 *
846 	 * Note that PS/WM thread counts depend on the WIZ hashing
847 	 * disable bit, which we don't touch here, but it's good
848 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
849 	 */
850 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
851 			    GEN6_WIZ_HASHING_MASK,
852 			    GEN6_WIZ_HASHING_16x4);
853 
854 	return 0;
855 }
856 
857 static int bdw_init_workarounds(struct intel_engine_cs *ring)
858 {
859 	int ret;
860 	struct drm_device *dev = ring->dev;
861 	struct drm_i915_private *dev_priv = dev->dev_private;
862 
863 	ret = gen8_init_workarounds(ring);
864 	if (ret)
865 		return ret;
866 
867 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
868 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
869 
870 	/* WaDisableDopClockGating:bdw */
871 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
872 			  DOP_CLOCK_GATING_DISABLE);
873 
874 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
875 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
876 
877 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
878 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
879 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
880 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
881 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
882 
883 	return 0;
884 }
885 
886 static int chv_init_workarounds(struct intel_engine_cs *ring)
887 {
888 	int ret;
889 	struct drm_device *dev = ring->dev;
890 	struct drm_i915_private *dev_priv = dev->dev_private;
891 
892 	ret = gen8_init_workarounds(ring);
893 	if (ret)
894 		return ret;
895 
896 	/* WaDisableThreadStallDopClockGating:chv */
897 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
898 
899 	/* Improve HiZ throughput on CHV. */
900 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
901 
902 	return 0;
903 }
904 
905 static int gen9_init_workarounds(struct intel_engine_cs *ring)
906 {
907 	struct drm_device *dev = ring->dev;
908 	struct drm_i915_private *dev_priv = dev->dev_private;
909 	uint32_t tmp;
910 
911 	/* WaEnableLbsSlaRetryTimerDecrement:skl */
912 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
913 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
914 
915 	/* WaDisableKillLogic:bxt,skl */
916 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
917 		   ECOCHK_DIS_TLB);
918 
919 	/* WaDisablePartialInstShootdown:skl,bxt */
920 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
921 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
922 
923 	/* Syncing dependencies between camera and graphics:skl,bxt */
924 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
925 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
926 
927 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
928 	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
929 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
930 		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
931 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
932 				  GEN9_DG_MIRROR_FIX_ENABLE);
933 	}
934 
935 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
936 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
937 		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
939 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
940 		/*
941 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
942 		 * but we do that in per ctx batchbuffer as there is an issue
943 		 * with this register not getting restored on ctx restore
944 		 */
945 	}
946 
947 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
948 	    IS_BROXTON(dev)) {
949 		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
951 				  GEN9_ENABLE_YV12_BUGFIX);
952 	}
953 
954 	/* Wa4x4STCOptimizationDisable:skl,bxt */
955 	/* WaDisablePartialResolveInVc:skl,bxt */
956 	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
957 					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
958 
959 	/* WaCcsTlbPrefetchDisable:skl,bxt */
960 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
961 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
962 
963 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
964 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
965 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
966 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
967 				  PIXEL_MASK_CAMMING_DISABLE);
968 
969 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970 	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
971 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
972 	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
973 		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
974 	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
975 
976 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977 	if (IS_SKYLAKE(dev) ||
978 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
979 		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
980 				  GEN8_SAMPLER_POWER_BYPASS_DIS);
981 	}
982 
983 	/* WaDisableSTUnitPowerOptimization:skl,bxt */
984 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
985 
986 	return 0;
987 }
988 
989 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
990 {
991 	struct drm_device *dev = ring->dev;
992 	struct drm_i915_private *dev_priv = dev->dev_private;
993 	u8 vals[3] = { 0, 0, 0 };
994 	unsigned int i;
995 
996 	for (i = 0; i < 3; i++) {
997 		u8 ss;
998 
999 		/*
1000 		 * Only consider slices where one, and only one, subslice has 7
1001 		 * EUs
1002 		 */
1003 		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1004 			continue;
1005 
1006 		/*
1007 		 * subslice_7eu[i] != 0 (because of the check above) and
1008 		 * ss_max == 4 (maximum number of subslices possible per slice)
1009 		 *
1010 		 * ->    0 <= ss <= 3;
1011 		 */
1012 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1013 		vals[i] = 3 - ss;
1014 	}
1015 
1016 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1017 		return 0;
1018 
1019 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1020 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1021 			    GEN9_IZ_HASHING_MASK(2) |
1022 			    GEN9_IZ_HASHING_MASK(1) |
1023 			    GEN9_IZ_HASHING_MASK(0),
1024 			    GEN9_IZ_HASHING(2, vals[2]) |
1025 			    GEN9_IZ_HASHING(1, vals[1]) |
1026 			    GEN9_IZ_HASHING(0, vals[0]));
1027 
1028 	return 0;
1029 }
1030 
1031 static int skl_init_workarounds(struct intel_engine_cs *ring)
1032 {
1033 	int ret;
1034 	struct drm_device *dev = ring->dev;
1035 	struct drm_i915_private *dev_priv = dev->dev_private;
1036 
1037 	ret = gen9_init_workarounds(ring);
1038 	if (ret)
1039 		return ret;
1040 
1041 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1042 		/* WaDisableHDCInvalidation:skl */
1043 		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1044 			   BDW_DISABLE_HDC_INVALIDATION);
1045 
1046 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1047 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1048 			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1049 	}
1050 
1051 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1052 	 * involving this register should also be added to WA batch as required.
1053 	 */
1054 	if (INTEL_REVID(dev) <= SKL_REVID_E0)
1055 		/* WaDisableLSQCROPERFforOCL:skl */
1056 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1057 			   GEN8_LQSC_RO_PERF_DIS);
1058 
1059 	/* WaEnableGapsTsvCreditFix:skl */
1060 	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1061 		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1062 					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1063 	}
1064 
1065 	/* WaDisablePowerCompilerClockGating:skl */
1066 	if (INTEL_REVID(dev) == SKL_REVID_B0)
1067 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1068 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1069 
1070 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1071 		/*
1072 		 *Use Force Non-Coherent whenever executing a 3D context. This
1073 		 * is a workaround for a possible hang in the unlikely event
1074 		 * a TLB invalidation occurs during a PSD flush.
1075 		 */
1076 		/* WaForceEnableNonCoherent:skl */
1077 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1078 				  HDC_FORCE_NON_COHERENT);
1079 	}
1080 
1081 	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1082 	    INTEL_REVID(dev) == SKL_REVID_D0)
1083 		/* WaBarrierPerformanceFixDisable:skl */
1084 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1085 				  HDC_FENCE_DEST_SLM_DISABLE |
1086 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1087 
1088 	/* WaDisableSbeCacheDispatchPortSharing:skl */
1089 	if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1090 		WA_SET_BIT_MASKED(
1091 			GEN7_HALF_SLICE_CHICKEN1,
1092 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1093 	}
1094 
1095 	return skl_tune_iz_hashing(ring);
1096 }
1097 
1098 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1099 {
1100 	int ret;
1101 	struct drm_device *dev = ring->dev;
1102 	struct drm_i915_private *dev_priv = dev->dev_private;
1103 
1104 	ret = gen9_init_workarounds(ring);
1105 	if (ret)
1106 		return ret;
1107 
1108 	/* WaStoreMultiplePTEenable:bxt */
1109 	/* This is a requirement according to Hardware specification */
1110 	if (INTEL_REVID(dev) == BXT_REVID_A0)
1111 		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1112 
1113 	/* WaSetClckGatingDisableMedia:bxt */
1114 	if (INTEL_REVID(dev) == BXT_REVID_A0) {
1115 		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1116 					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1117 	}
1118 
1119 	/* WaDisableThreadStallDopClockGating:bxt */
1120 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1121 			  STALL_DOP_GATING_DISABLE);
1122 
1123 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1124 	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1125 		WA_SET_BIT_MASKED(
1126 			GEN7_HALF_SLICE_CHICKEN1,
1127 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 int init_workarounds_ring(struct intel_engine_cs *ring)
1134 {
1135 	struct drm_device *dev = ring->dev;
1136 	struct drm_i915_private *dev_priv = dev->dev_private;
1137 
1138 	WARN_ON(ring->id != RCS);
1139 
1140 	dev_priv->workarounds.count = 0;
1141 
1142 	if (IS_BROADWELL(dev))
1143 		return bdw_init_workarounds(ring);
1144 
1145 	if (IS_CHERRYVIEW(dev))
1146 		return chv_init_workarounds(ring);
1147 
1148 	if (IS_SKYLAKE(dev))
1149 		return skl_init_workarounds(ring);
1150 
1151 	if (IS_BROXTON(dev))
1152 		return bxt_init_workarounds(ring);
1153 
1154 	return 0;
1155 }
1156 
1157 static int init_render_ring(struct intel_engine_cs *ring)
1158 {
1159 	struct drm_device *dev = ring->dev;
1160 	struct drm_i915_private *dev_priv = dev->dev_private;
1161 	int ret = init_ring_common(ring);
1162 	if (ret)
1163 		return ret;
1164 
1165 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1167 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1168 
1169 	/* We need to disable the AsyncFlip performance optimisations in order
1170 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1171 	 * programmed to '1' on all products.
1172 	 *
1173 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1174 	 */
1175 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1176 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1177 
1178 	/* Required for the hardware to program scanline values for waiting */
1179 	/* WaEnableFlushTlbInvalidationMode:snb */
1180 	if (INTEL_INFO(dev)->gen == 6)
1181 		I915_WRITE(GFX_MODE,
1182 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1183 
1184 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1185 	if (IS_GEN7(dev))
1186 		I915_WRITE(GFX_MODE_GEN7,
1187 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1188 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1189 
1190 	if (IS_GEN6(dev)) {
1191 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1192 		 * "If this bit is set, STCunit will have LRA as replacement
1193 		 *  policy. [...] This bit must be reset.  LRA replacement
1194 		 *  policy is not supported."
1195 		 */
1196 		I915_WRITE(CACHE_MODE_0,
1197 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1198 	}
1199 
1200 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1201 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202 
1203 	if (HAS_L3_DPF(dev))
1204 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1205 
1206 	return init_workarounds_ring(ring);
1207 }
1208 
1209 static void render_ring_cleanup(struct intel_engine_cs *ring)
1210 {
1211 	struct drm_device *dev = ring->dev;
1212 	struct drm_i915_private *dev_priv = dev->dev_private;
1213 
1214 	if (dev_priv->semaphore_obj) {
1215 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1216 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1217 		dev_priv->semaphore_obj = NULL;
1218 	}
1219 
1220 	intel_fini_pipe_control(ring);
1221 }
1222 
1223 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1224 			   unsigned int num_dwords)
1225 {
1226 #define MBOX_UPDATE_DWORDS 8
1227 	struct intel_engine_cs *signaller = signaller_req->ring;
1228 	struct drm_device *dev = signaller->dev;
1229 	struct drm_i915_private *dev_priv = dev->dev_private;
1230 	struct intel_engine_cs *waiter;
1231 	int i, ret, num_rings;
1232 
1233 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1234 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1235 #undef MBOX_UPDATE_DWORDS
1236 
1237 	ret = intel_ring_begin(signaller_req, num_dwords);
1238 	if (ret)
1239 		return ret;
1240 
1241 	for_each_ring(waiter, dev_priv, i) {
1242 		u32 seqno;
1243 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1244 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1245 			continue;
1246 
1247 		seqno = i915_gem_request_get_seqno(signaller_req);
1248 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1249 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1250 					   PIPE_CONTROL_QW_WRITE |
1251 					   PIPE_CONTROL_FLUSH_ENABLE);
1252 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1253 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1254 		intel_ring_emit(signaller, seqno);
1255 		intel_ring_emit(signaller, 0);
1256 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1257 					   MI_SEMAPHORE_TARGET(waiter->id));
1258 		intel_ring_emit(signaller, 0);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1265 			   unsigned int num_dwords)
1266 {
1267 #define MBOX_UPDATE_DWORDS 6
1268 	struct intel_engine_cs *signaller = signaller_req->ring;
1269 	struct drm_device *dev = signaller->dev;
1270 	struct drm_i915_private *dev_priv = dev->dev_private;
1271 	struct intel_engine_cs *waiter;
1272 	int i, ret, num_rings;
1273 
1274 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1275 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1276 #undef MBOX_UPDATE_DWORDS
1277 
1278 	ret = intel_ring_begin(signaller_req, num_dwords);
1279 	if (ret)
1280 		return ret;
1281 
1282 	for_each_ring(waiter, dev_priv, i) {
1283 		u32 seqno;
1284 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1285 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1286 			continue;
1287 
1288 		seqno = i915_gem_request_get_seqno(signaller_req);
1289 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1290 					   MI_FLUSH_DW_OP_STOREDW);
1291 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1292 					   MI_FLUSH_DW_USE_GTT);
1293 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1294 		intel_ring_emit(signaller, seqno);
1295 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1296 					   MI_SEMAPHORE_TARGET(waiter->id));
1297 		intel_ring_emit(signaller, 0);
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1304 		       unsigned int num_dwords)
1305 {
1306 	struct intel_engine_cs *signaller = signaller_req->ring;
1307 	struct drm_device *dev = signaller->dev;
1308 	struct drm_i915_private *dev_priv = dev->dev_private;
1309 	struct intel_engine_cs *useless;
1310 	int i, ret, num_rings;
1311 
1312 #define MBOX_UPDATE_DWORDS 3
1313 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1314 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1315 #undef MBOX_UPDATE_DWORDS
1316 
1317 	ret = intel_ring_begin(signaller_req, num_dwords);
1318 	if (ret)
1319 		return ret;
1320 
1321 	for_each_ring(useless, dev_priv, i) {
1322 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1323 		if (mbox_reg != GEN6_NOSYNC) {
1324 			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1325 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1326 			intel_ring_emit(signaller, mbox_reg);
1327 			intel_ring_emit(signaller, seqno);
1328 		}
1329 	}
1330 
1331 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1332 	if (num_rings % 2 == 0)
1333 		intel_ring_emit(signaller, MI_NOOP);
1334 
1335 	return 0;
1336 }
1337 
1338 /**
1339  * gen6_add_request - Update the semaphore mailbox registers
1340  *
1341  * @request - request to write to the ring
1342  *
1343  * Update the mailbox registers in the *other* rings with the current seqno.
1344  * This acts like a signal in the canonical semaphore.
1345  */
1346 static int
1347 gen6_add_request(struct drm_i915_gem_request *req)
1348 {
1349 	struct intel_engine_cs *ring = req->ring;
1350 	int ret;
1351 
1352 	if (ring->semaphore.signal)
1353 		ret = ring->semaphore.signal(req, 4);
1354 	else
1355 		ret = intel_ring_begin(req, 4);
1356 
1357 	if (ret)
1358 		return ret;
1359 
1360 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1361 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1362 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1363 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1364 	__intel_ring_advance(ring);
1365 
1366 	return 0;
1367 }
1368 
1369 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1370 					      u32 seqno)
1371 {
1372 	struct drm_i915_private *dev_priv = dev->dev_private;
1373 	return dev_priv->last_seqno < seqno;
1374 }
1375 
1376 /**
1377  * intel_ring_sync - sync the waiter to the signaller on seqno
1378  *
1379  * @waiter - ring that is waiting
1380  * @signaller - ring which has, or will signal
1381  * @seqno - seqno which the waiter will block on
1382  */
1383 
1384 static int
1385 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1386 	       struct intel_engine_cs *signaller,
1387 	       u32 seqno)
1388 {
1389 	struct intel_engine_cs *waiter = waiter_req->ring;
1390 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1391 	int ret;
1392 
1393 	ret = intel_ring_begin(waiter_req, 4);
1394 	if (ret)
1395 		return ret;
1396 
1397 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1398 				MI_SEMAPHORE_GLOBAL_GTT |
1399 				MI_SEMAPHORE_POLL |
1400 				MI_SEMAPHORE_SAD_GTE_SDD);
1401 	intel_ring_emit(waiter, seqno);
1402 	intel_ring_emit(waiter,
1403 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1404 	intel_ring_emit(waiter,
1405 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1406 	intel_ring_advance(waiter);
1407 	return 0;
1408 }
1409 
1410 static int
1411 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1412 	       struct intel_engine_cs *signaller,
1413 	       u32 seqno)
1414 {
1415 	struct intel_engine_cs *waiter = waiter_req->ring;
1416 	u32 dw1 = MI_SEMAPHORE_MBOX |
1417 		  MI_SEMAPHORE_COMPARE |
1418 		  MI_SEMAPHORE_REGISTER;
1419 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1420 	int ret;
1421 
1422 	/* Throughout all of the GEM code, seqno passed implies our current
1423 	 * seqno is >= the last seqno executed. However for hardware the
1424 	 * comparison is strictly greater than.
1425 	 */
1426 	seqno -= 1;
1427 
1428 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1429 
1430 	ret = intel_ring_begin(waiter_req, 4);
1431 	if (ret)
1432 		return ret;
1433 
1434 	/* If seqno wrap happened, omit the wait with no-ops */
1435 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1436 		intel_ring_emit(waiter, dw1 | wait_mbox);
1437 		intel_ring_emit(waiter, seqno);
1438 		intel_ring_emit(waiter, 0);
1439 		intel_ring_emit(waiter, MI_NOOP);
1440 	} else {
1441 		intel_ring_emit(waiter, MI_NOOP);
1442 		intel_ring_emit(waiter, MI_NOOP);
1443 		intel_ring_emit(waiter, MI_NOOP);
1444 		intel_ring_emit(waiter, MI_NOOP);
1445 	}
1446 	intel_ring_advance(waiter);
1447 
1448 	return 0;
1449 }
1450 
1451 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1452 do {									\
1453 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1454 		 PIPE_CONTROL_DEPTH_STALL);				\
1455 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1456 	intel_ring_emit(ring__, 0);							\
1457 	intel_ring_emit(ring__, 0);							\
1458 } while (0)
1459 
1460 static int
1461 pc_render_add_request(struct drm_i915_gem_request *req)
1462 {
1463 	struct intel_engine_cs *ring = req->ring;
1464 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1465 	int ret;
1466 
1467 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1468 	 * incoherent with writes to memory, i.e. completely fubar,
1469 	 * so we need to use PIPE_NOTIFY instead.
1470 	 *
1471 	 * However, we also need to workaround the qword write
1472 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1473 	 * memory before requesting an interrupt.
1474 	 */
1475 	ret = intel_ring_begin(req, 32);
1476 	if (ret)
1477 		return ret;
1478 
1479 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1480 			PIPE_CONTROL_WRITE_FLUSH |
1481 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1482 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1483 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484 	intel_ring_emit(ring, 0);
1485 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1486 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1487 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488 	scratch_addr += 2 * CACHELINE_BYTES;
1489 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490 	scratch_addr += 2 * CACHELINE_BYTES;
1491 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492 	scratch_addr += 2 * CACHELINE_BYTES;
1493 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1494 	scratch_addr += 2 * CACHELINE_BYTES;
1495 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1496 
1497 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1498 			PIPE_CONTROL_WRITE_FLUSH |
1499 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1500 			PIPE_CONTROL_NOTIFY);
1501 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1502 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1503 	intel_ring_emit(ring, 0);
1504 	__intel_ring_advance(ring);
1505 
1506 	return 0;
1507 }
1508 
1509 static u32
1510 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1511 {
1512 	/* Workaround to force correct ordering between irq and seqno writes on
1513 	 * ivb (and maybe also on snb) by reading from a CS register (like
1514 	 * ACTHD) before reading the status page. */
1515 	if (!lazy_coherency) {
1516 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1517 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1518 	}
1519 
1520 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1521 }
1522 
1523 static u32
1524 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1525 {
1526 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1527 }
1528 
1529 static void
1530 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1531 {
1532 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1533 }
1534 
1535 static u32
1536 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1537 {
1538 	return ring->scratch.cpu_page[0];
1539 }
1540 
1541 static void
1542 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1543 {
1544 	ring->scratch.cpu_page[0] = seqno;
1545 }
1546 
1547 static bool
1548 gen5_ring_get_irq(struct intel_engine_cs *ring)
1549 {
1550 	struct drm_device *dev = ring->dev;
1551 	struct drm_i915_private *dev_priv = dev->dev_private;
1552 	unsigned long flags;
1553 
1554 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1555 		return false;
1556 
1557 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1558 	if (ring->irq_refcount++ == 0)
1559 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1560 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1561 
1562 	return true;
1563 }
1564 
1565 static void
1566 gen5_ring_put_irq(struct intel_engine_cs *ring)
1567 {
1568 	struct drm_device *dev = ring->dev;
1569 	struct drm_i915_private *dev_priv = dev->dev_private;
1570 	unsigned long flags;
1571 
1572 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1573 	if (--ring->irq_refcount == 0)
1574 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1575 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1576 }
1577 
1578 static bool
1579 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1580 {
1581 	struct drm_device *dev = ring->dev;
1582 	struct drm_i915_private *dev_priv = dev->dev_private;
1583 	unsigned long flags;
1584 
1585 	if (!intel_irqs_enabled(dev_priv))
1586 		return false;
1587 
1588 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1589 	if (ring->irq_refcount++ == 0) {
1590 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1591 		I915_WRITE(IMR, dev_priv->irq_mask);
1592 		POSTING_READ(IMR);
1593 	}
1594 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1595 
1596 	return true;
1597 }
1598 
1599 static void
1600 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1601 {
1602 	struct drm_device *dev = ring->dev;
1603 	struct drm_i915_private *dev_priv = dev->dev_private;
1604 	unsigned long flags;
1605 
1606 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1607 	if (--ring->irq_refcount == 0) {
1608 		dev_priv->irq_mask |= ring->irq_enable_mask;
1609 		I915_WRITE(IMR, dev_priv->irq_mask);
1610 		POSTING_READ(IMR);
1611 	}
1612 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613 }
1614 
1615 static bool
1616 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1617 {
1618 	struct drm_device *dev = ring->dev;
1619 	struct drm_i915_private *dev_priv = dev->dev_private;
1620 	unsigned long flags;
1621 
1622 	if (!intel_irqs_enabled(dev_priv))
1623 		return false;
1624 
1625 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1626 	if (ring->irq_refcount++ == 0) {
1627 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1628 		I915_WRITE16(IMR, dev_priv->irq_mask);
1629 		POSTING_READ16(IMR);
1630 	}
1631 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1632 
1633 	return true;
1634 }
1635 
1636 static void
1637 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1638 {
1639 	struct drm_device *dev = ring->dev;
1640 	struct drm_i915_private *dev_priv = dev->dev_private;
1641 	unsigned long flags;
1642 
1643 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1644 	if (--ring->irq_refcount == 0) {
1645 		dev_priv->irq_mask |= ring->irq_enable_mask;
1646 		I915_WRITE16(IMR, dev_priv->irq_mask);
1647 		POSTING_READ16(IMR);
1648 	}
1649 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1650 }
1651 
1652 static int
1653 bsd_ring_flush(struct drm_i915_gem_request *req,
1654 	       u32     invalidate_domains,
1655 	       u32     flush_domains)
1656 {
1657 	struct intel_engine_cs *ring = req->ring;
1658 	int ret;
1659 
1660 	ret = intel_ring_begin(req, 2);
1661 	if (ret)
1662 		return ret;
1663 
1664 	intel_ring_emit(ring, MI_FLUSH);
1665 	intel_ring_emit(ring, MI_NOOP);
1666 	intel_ring_advance(ring);
1667 	return 0;
1668 }
1669 
1670 static int
1671 i9xx_add_request(struct drm_i915_gem_request *req)
1672 {
1673 	struct intel_engine_cs *ring = req->ring;
1674 	int ret;
1675 
1676 	ret = intel_ring_begin(req, 4);
1677 	if (ret)
1678 		return ret;
1679 
1680 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1681 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1682 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1683 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1684 	__intel_ring_advance(ring);
1685 
1686 	return 0;
1687 }
1688 
1689 static bool
1690 gen6_ring_get_irq(struct intel_engine_cs *ring)
1691 {
1692 	struct drm_device *dev = ring->dev;
1693 	struct drm_i915_private *dev_priv = dev->dev_private;
1694 	unsigned long flags;
1695 
1696 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1697 		return false;
1698 
1699 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1700 	if (ring->irq_refcount++ == 0) {
1701 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1702 			I915_WRITE_IMR(ring,
1703 				       ~(ring->irq_enable_mask |
1704 					 GT_PARITY_ERROR(dev)));
1705 		else
1706 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1707 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1708 	}
1709 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1710 
1711 	return true;
1712 }
1713 
1714 static void
1715 gen6_ring_put_irq(struct intel_engine_cs *ring)
1716 {
1717 	struct drm_device *dev = ring->dev;
1718 	struct drm_i915_private *dev_priv = dev->dev_private;
1719 	unsigned long flags;
1720 
1721 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1722 	if (--ring->irq_refcount == 0) {
1723 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1724 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1725 		else
1726 			I915_WRITE_IMR(ring, ~0);
1727 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1728 	}
1729 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1730 }
1731 
1732 static bool
1733 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1734 {
1735 	struct drm_device *dev = ring->dev;
1736 	struct drm_i915_private *dev_priv = dev->dev_private;
1737 	unsigned long flags;
1738 
1739 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1740 		return false;
1741 
1742 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1743 	if (ring->irq_refcount++ == 0) {
1744 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1745 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1746 	}
1747 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1748 
1749 	return true;
1750 }
1751 
1752 static void
1753 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1754 {
1755 	struct drm_device *dev = ring->dev;
1756 	struct drm_i915_private *dev_priv = dev->dev_private;
1757 	unsigned long flags;
1758 
1759 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1760 	if (--ring->irq_refcount == 0) {
1761 		I915_WRITE_IMR(ring, ~0);
1762 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1763 	}
1764 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1765 }
1766 
1767 static bool
1768 gen8_ring_get_irq(struct intel_engine_cs *ring)
1769 {
1770 	struct drm_device *dev = ring->dev;
1771 	struct drm_i915_private *dev_priv = dev->dev_private;
1772 	unsigned long flags;
1773 
1774 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1775 		return false;
1776 
1777 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1778 	if (ring->irq_refcount++ == 0) {
1779 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1780 			I915_WRITE_IMR(ring,
1781 				       ~(ring->irq_enable_mask |
1782 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1783 		} else {
1784 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1785 		}
1786 		POSTING_READ(RING_IMR(ring->mmio_base));
1787 	}
1788 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1789 
1790 	return true;
1791 }
1792 
1793 static void
1794 gen8_ring_put_irq(struct intel_engine_cs *ring)
1795 {
1796 	struct drm_device *dev = ring->dev;
1797 	struct drm_i915_private *dev_priv = dev->dev_private;
1798 	unsigned long flags;
1799 
1800 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1801 	if (--ring->irq_refcount == 0) {
1802 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1803 			I915_WRITE_IMR(ring,
1804 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1805 		} else {
1806 			I915_WRITE_IMR(ring, ~0);
1807 		}
1808 		POSTING_READ(RING_IMR(ring->mmio_base));
1809 	}
1810 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1811 }
1812 
1813 static int
1814 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1815 			 u64 offset, u32 length,
1816 			 unsigned dispatch_flags)
1817 {
1818 	struct intel_engine_cs *ring = req->ring;
1819 	int ret;
1820 
1821 	ret = intel_ring_begin(req, 2);
1822 	if (ret)
1823 		return ret;
1824 
1825 	intel_ring_emit(ring,
1826 			MI_BATCH_BUFFER_START |
1827 			MI_BATCH_GTT |
1828 			(dispatch_flags & I915_DISPATCH_SECURE ?
1829 			 0 : MI_BATCH_NON_SECURE_I965));
1830 	intel_ring_emit(ring, offset);
1831 	intel_ring_advance(ring);
1832 
1833 	return 0;
1834 }
1835 
1836 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1837 #define I830_BATCH_LIMIT (256*1024)
1838 #define I830_TLB_ENTRIES (2)
1839 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1840 static int
1841 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1842 			 u64 offset, u32 len,
1843 			 unsigned dispatch_flags)
1844 {
1845 	struct intel_engine_cs *ring = req->ring;
1846 	u32 cs_offset = ring->scratch.gtt_offset;
1847 	int ret;
1848 
1849 	ret = intel_ring_begin(req, 6);
1850 	if (ret)
1851 		return ret;
1852 
1853 	/* Evict the invalid PTE TLBs */
1854 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1855 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1856 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1857 	intel_ring_emit(ring, cs_offset);
1858 	intel_ring_emit(ring, 0xdeadbeef);
1859 	intel_ring_emit(ring, MI_NOOP);
1860 	intel_ring_advance(ring);
1861 
1862 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1863 		if (len > I830_BATCH_LIMIT)
1864 			return -ENOSPC;
1865 
1866 		ret = intel_ring_begin(req, 6 + 2);
1867 		if (ret)
1868 			return ret;
1869 
1870 		/* Blit the batch (which has now all relocs applied) to the
1871 		 * stable batch scratch bo area (so that the CS never
1872 		 * stumbles over its tlb invalidation bug) ...
1873 		 */
1874 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1875 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1876 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1877 		intel_ring_emit(ring, cs_offset);
1878 		intel_ring_emit(ring, 4096);
1879 		intel_ring_emit(ring, offset);
1880 
1881 		intel_ring_emit(ring, MI_FLUSH);
1882 		intel_ring_emit(ring, MI_NOOP);
1883 		intel_ring_advance(ring);
1884 
1885 		/* ... and execute it. */
1886 		offset = cs_offset;
1887 	}
1888 
1889 	ret = intel_ring_begin(req, 4);
1890 	if (ret)
1891 		return ret;
1892 
1893 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1894 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1895 					0 : MI_BATCH_NON_SECURE));
1896 	intel_ring_emit(ring, offset + len - 8);
1897 	intel_ring_emit(ring, MI_NOOP);
1898 	intel_ring_advance(ring);
1899 
1900 	return 0;
1901 }
1902 
1903 static int
1904 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1905 			 u64 offset, u32 len,
1906 			 unsigned dispatch_flags)
1907 {
1908 	struct intel_engine_cs *ring = req->ring;
1909 	int ret;
1910 
1911 	ret = intel_ring_begin(req, 2);
1912 	if (ret)
1913 		return ret;
1914 
1915 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1916 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1917 					0 : MI_BATCH_NON_SECURE));
1918 	intel_ring_advance(ring);
1919 
1920 	return 0;
1921 }
1922 
1923 static void cleanup_status_page(struct intel_engine_cs *ring)
1924 {
1925 	struct drm_i915_gem_object *obj;
1926 
1927 	obj = ring->status_page.obj;
1928 	if (obj == NULL)
1929 		return;
1930 
1931 	kunmap(sg_page(obj->pages->sgl));
1932 	i915_gem_object_ggtt_unpin(obj);
1933 	drm_gem_object_unreference(&obj->base);
1934 	ring->status_page.obj = NULL;
1935 }
1936 
1937 static int init_status_page(struct intel_engine_cs *ring)
1938 {
1939 	struct drm_i915_gem_object *obj;
1940 
1941 	if ((obj = ring->status_page.obj) == NULL) {
1942 		unsigned flags;
1943 		int ret;
1944 
1945 		obj = i915_gem_alloc_object(ring->dev, 4096);
1946 		if (obj == NULL) {
1947 			DRM_ERROR("Failed to allocate status page\n");
1948 			return -ENOMEM;
1949 		}
1950 
1951 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1952 		if (ret)
1953 			goto err_unref;
1954 
1955 		flags = 0;
1956 		if (!HAS_LLC(ring->dev))
1957 			/* On g33, we cannot place HWS above 256MiB, so
1958 			 * restrict its pinning to the low mappable arena.
1959 			 * Though this restriction is not documented for
1960 			 * gen4, gen5, or byt, they also behave similarly
1961 			 * and hang if the HWS is placed at the top of the
1962 			 * GTT. To generalise, it appears that all !llc
1963 			 * platforms have issues with us placing the HWS
1964 			 * above the mappable region (even though we never
1965 			 * actualy map it).
1966 			 */
1967 			flags |= PIN_MAPPABLE;
1968 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1969 		if (ret) {
1970 err_unref:
1971 			drm_gem_object_unreference(&obj->base);
1972 			return ret;
1973 		}
1974 
1975 		ring->status_page.obj = obj;
1976 	}
1977 
1978 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1979 	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1980 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1981 
1982 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1983 			ring->name, ring->status_page.gfx_addr);
1984 
1985 	return 0;
1986 }
1987 
1988 static int init_phys_status_page(struct intel_engine_cs *ring)
1989 {
1990 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1991 
1992 	if (!dev_priv->status_page_dmah) {
1993 		dev_priv->status_page_dmah =
1994 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1995 		if (!dev_priv->status_page_dmah)
1996 			return -ENOMEM;
1997 	}
1998 
1999 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2000 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2001 
2002 	return 0;
2003 }
2004 
2005 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2006 {
2007 	iounmap(ringbuf->virtual_start);
2008 	ringbuf->virtual_start = NULL;
2009 	i915_gem_object_ggtt_unpin(ringbuf->obj);
2010 }
2011 
2012 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2013 				     struct intel_ringbuffer *ringbuf)
2014 {
2015 	struct drm_i915_private *dev_priv = to_i915(dev);
2016 	struct drm_i915_gem_object *obj = ringbuf->obj;
2017 	int ret;
2018 
2019 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2020 	if (ret)
2021 		return ret;
2022 
2023 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
2024 	if (ret) {
2025 		i915_gem_object_ggtt_unpin(obj);
2026 		return ret;
2027 	}
2028 
2029 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2030 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2031 	if (ringbuf->virtual_start == NULL) {
2032 		i915_gem_object_ggtt_unpin(obj);
2033 		return -EINVAL;
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2040 {
2041 	drm_gem_object_unreference(&ringbuf->obj->base);
2042 	ringbuf->obj = NULL;
2043 }
2044 
2045 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2046 				      struct intel_ringbuffer *ringbuf)
2047 {
2048 	struct drm_i915_gem_object *obj;
2049 
2050 	obj = NULL;
2051 	if (!HAS_LLC(dev))
2052 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2053 	if (obj == NULL)
2054 		obj = i915_gem_alloc_object(dev, ringbuf->size);
2055 	if (obj == NULL)
2056 		return -ENOMEM;
2057 
2058 	/* mark ring buffers as read-only from GPU side by default */
2059 	obj->gt_ro = 1;
2060 
2061 	ringbuf->obj = obj;
2062 
2063 	return 0;
2064 }
2065 
2066 struct intel_ringbuffer *
2067 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2068 {
2069 	struct intel_ringbuffer *ring;
2070 	int ret;
2071 
2072 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2073 	if (ring == NULL)
2074 		return ERR_PTR(-ENOMEM);
2075 
2076 	ring->ring = engine;
2077 
2078 	ring->size = size;
2079 	/* Workaround an erratum on the i830 which causes a hang if
2080 	 * the TAIL pointer points to within the last 2 cachelines
2081 	 * of the buffer.
2082 	 */
2083 	ring->effective_size = size;
2084 	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2085 		ring->effective_size -= 2 * CACHELINE_BYTES;
2086 
2087 	ring->last_retired_head = -1;
2088 	intel_ring_update_space(ring);
2089 
2090 	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2091 	if (ret) {
2092 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2093 			  engine->name, ret);
2094 		kfree(ring);
2095 		return ERR_PTR(ret);
2096 	}
2097 
2098 	return ring;
2099 }
2100 
2101 void
2102 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2103 {
2104 	intel_destroy_ringbuffer_obj(ring);
2105 	kfree(ring);
2106 }
2107 
2108 static int intel_init_ring_buffer(struct drm_device *dev,
2109 				  struct intel_engine_cs *ring)
2110 {
2111 	struct intel_ringbuffer *ringbuf;
2112 	int ret;
2113 
2114 	WARN_ON(ring->buffer);
2115 
2116 	ring->dev = dev;
2117 	INIT_LIST_HEAD(&ring->active_list);
2118 	INIT_LIST_HEAD(&ring->request_list);
2119 	INIT_LIST_HEAD(&ring->execlist_queue);
2120 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2121 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2122 
2123 	init_waitqueue_head(&ring->irq_queue);
2124 
2125 	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2126 	if (IS_ERR(ringbuf))
2127 		return PTR_ERR(ringbuf);
2128 	ring->buffer = ringbuf;
2129 
2130 	if (I915_NEED_GFX_HWS(dev)) {
2131 		ret = init_status_page(ring);
2132 		if (ret)
2133 			goto error;
2134 	} else {
2135 		BUG_ON(ring->id != RCS);
2136 		ret = init_phys_status_page(ring);
2137 		if (ret)
2138 			goto error;
2139 	}
2140 
2141 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2142 	if (ret) {
2143 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2144 				ring->name, ret);
2145 		intel_destroy_ringbuffer_obj(ringbuf);
2146 		goto error;
2147 	}
2148 
2149 	ret = i915_cmd_parser_init_ring(ring);
2150 	if (ret)
2151 		goto error;
2152 
2153 	return 0;
2154 
2155 error:
2156 	intel_ringbuffer_free(ringbuf);
2157 	ring->buffer = NULL;
2158 	return ret;
2159 }
2160 
2161 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2162 {
2163 	struct drm_i915_private *dev_priv;
2164 
2165 	if (!intel_ring_initialized(ring))
2166 		return;
2167 
2168 	dev_priv = to_i915(ring->dev);
2169 
2170 	intel_stop_ring_buffer(ring);
2171 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2172 
2173 	intel_unpin_ringbuffer_obj(ring->buffer);
2174 	intel_ringbuffer_free(ring->buffer);
2175 	ring->buffer = NULL;
2176 
2177 	if (ring->cleanup)
2178 		ring->cleanup(ring);
2179 
2180 	cleanup_status_page(ring);
2181 
2182 	i915_cmd_parser_fini_ring(ring);
2183 	i915_gem_batch_pool_fini(&ring->batch_pool);
2184 }
2185 
2186 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2187 {
2188 	struct intel_ringbuffer *ringbuf = ring->buffer;
2189 	struct drm_i915_gem_request *request;
2190 	unsigned space;
2191 	int ret;
2192 
2193 	if (intel_ring_space(ringbuf) >= n)
2194 		return 0;
2195 
2196 	/* The whole point of reserving space is to not wait! */
2197 	WARN_ON(ringbuf->reserved_in_use);
2198 
2199 	list_for_each_entry(request, &ring->request_list, list) {
2200 		space = __intel_ring_space(request->postfix, ringbuf->tail,
2201 					   ringbuf->size);
2202 		if (space >= n)
2203 			break;
2204 	}
2205 
2206 	if (WARN_ON(&request->list == &ring->request_list))
2207 		return -ENOSPC;
2208 
2209 	ret = i915_wait_request(request);
2210 	if (ret)
2211 		return ret;
2212 
2213 	ringbuf->space = space;
2214 	return 0;
2215 }
2216 
2217 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2218 {
2219 	uint32_t __iomem *virt;
2220 	int rem = ringbuf->size - ringbuf->tail;
2221 
2222 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2223 	rem /= 4;
2224 	while (rem--)
2225 		iowrite32(MI_NOOP, virt++);
2226 
2227 	ringbuf->tail = 0;
2228 	intel_ring_update_space(ringbuf);
2229 }
2230 
2231 int intel_ring_idle(struct intel_engine_cs *ring)
2232 {
2233 	struct drm_i915_gem_request *req;
2234 
2235 	/* Wait upon the last request to be completed */
2236 	if (list_empty(&ring->request_list))
2237 		return 0;
2238 
2239 	req = list_entry(ring->request_list.prev,
2240 			struct drm_i915_gem_request,
2241 			list);
2242 
2243 	/* Make sure we do not trigger any retires */
2244 	return __i915_wait_request(req,
2245 				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2246 				   to_i915(ring->dev)->mm.interruptible,
2247 				   NULL, NULL);
2248 }
2249 
2250 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2251 {
2252 	request->ringbuf = request->ring->buffer;
2253 	return 0;
2254 }
2255 
2256 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2257 {
2258 	/*
2259 	 * The first call merely notes the reserve request and is common for
2260 	 * all back ends. The subsequent localised _begin() call actually
2261 	 * ensures that the reservation is available. Without the begin, if
2262 	 * the request creator immediately submitted the request without
2263 	 * adding any commands to it then there might not actually be
2264 	 * sufficient room for the submission commands.
2265 	 */
2266 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2267 
2268 	return intel_ring_begin(request, 0);
2269 }
2270 
2271 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2272 {
2273 	WARN_ON(ringbuf->reserved_size);
2274 	WARN_ON(ringbuf->reserved_in_use);
2275 
2276 	ringbuf->reserved_size = size;
2277 }
2278 
2279 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2280 {
2281 	WARN_ON(ringbuf->reserved_in_use);
2282 
2283 	ringbuf->reserved_size   = 0;
2284 	ringbuf->reserved_in_use = false;
2285 }
2286 
2287 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2288 {
2289 	WARN_ON(ringbuf->reserved_in_use);
2290 
2291 	ringbuf->reserved_in_use = true;
2292 	ringbuf->reserved_tail   = ringbuf->tail;
2293 }
2294 
2295 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2296 {
2297 	WARN_ON(!ringbuf->reserved_in_use);
2298 	if (ringbuf->tail > ringbuf->reserved_tail) {
2299 		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2300 		     "request reserved size too small: %d vs %d!\n",
2301 		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2302 	} else {
2303 		/*
2304 		 * The ring was wrapped while the reserved space was in use.
2305 		 * That means that some unknown amount of the ring tail was
2306 		 * no-op filled and skipped. Thus simply adding the ring size
2307 		 * to the tail and doing the above space check will not work.
2308 		 * Rather than attempt to track how much tail was skipped,
2309 		 * it is much simpler to say that also skipping the sanity
2310 		 * check every once in a while is not a big issue.
2311 		 */
2312 	}
2313 
2314 	ringbuf->reserved_size   = 0;
2315 	ringbuf->reserved_in_use = false;
2316 }
2317 
2318 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2319 {
2320 	struct intel_ringbuffer *ringbuf = ring->buffer;
2321 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2322 	int remain_actual = ringbuf->size - ringbuf->tail;
2323 	int ret, total_bytes, wait_bytes = 0;
2324 	bool need_wrap = false;
2325 
2326 	if (ringbuf->reserved_in_use)
2327 		total_bytes = bytes;
2328 	else
2329 		total_bytes = bytes + ringbuf->reserved_size;
2330 
2331 	if (unlikely(bytes > remain_usable)) {
2332 		/*
2333 		 * Not enough space for the basic request. So need to flush
2334 		 * out the remainder and then wait for base + reserved.
2335 		 */
2336 		wait_bytes = remain_actual + total_bytes;
2337 		need_wrap = true;
2338 	} else {
2339 		if (unlikely(total_bytes > remain_usable)) {
2340 			/*
2341 			 * The base request will fit but the reserved space
2342 			 * falls off the end. So only need to to wait for the
2343 			 * reserved size after flushing out the remainder.
2344 			 */
2345 			wait_bytes = remain_actual + ringbuf->reserved_size;
2346 			need_wrap = true;
2347 		} else if (total_bytes > ringbuf->space) {
2348 			/* No wrapping required, just waiting. */
2349 			wait_bytes = total_bytes;
2350 		}
2351 	}
2352 
2353 	if (wait_bytes) {
2354 		ret = ring_wait_for_space(ring, wait_bytes);
2355 		if (unlikely(ret))
2356 			return ret;
2357 
2358 		if (need_wrap)
2359 			__wrap_ring_buffer(ringbuf);
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 int intel_ring_begin(struct drm_i915_gem_request *req,
2366 		     int num_dwords)
2367 {
2368 	struct intel_engine_cs *ring;
2369 	struct drm_i915_private *dev_priv;
2370 	int ret;
2371 
2372 	WARN_ON(req == NULL);
2373 	ring = req->ring;
2374 	dev_priv = ring->dev->dev_private;
2375 
2376 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2377 				   dev_priv->mm.interruptible);
2378 	if (ret)
2379 		return ret;
2380 
2381 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2382 	if (ret)
2383 		return ret;
2384 
2385 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2386 	return 0;
2387 }
2388 
2389 /* Align the ring tail to a cacheline boundary */
2390 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2391 {
2392 	struct intel_engine_cs *ring = req->ring;
2393 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2394 	int ret;
2395 
2396 	if (num_dwords == 0)
2397 		return 0;
2398 
2399 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2400 	ret = intel_ring_begin(req, num_dwords);
2401 	if (ret)
2402 		return ret;
2403 
2404 	while (num_dwords--)
2405 		intel_ring_emit(ring, MI_NOOP);
2406 
2407 	intel_ring_advance(ring);
2408 
2409 	return 0;
2410 }
2411 
2412 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2413 {
2414 	struct drm_device *dev = ring->dev;
2415 	struct drm_i915_private *dev_priv = dev->dev_private;
2416 
2417 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2418 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2419 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2420 		if (HAS_VEBOX(dev))
2421 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2422 	}
2423 
2424 	ring->set_seqno(ring, seqno);
2425 	ring->hangcheck.seqno = seqno;
2426 }
2427 
2428 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2429 				     u32 value)
2430 {
2431 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2432 
2433        /* Every tail move must follow the sequence below */
2434 
2435 	/* Disable notification that the ring is IDLE. The GT
2436 	 * will then assume that it is busy and bring it out of rc6.
2437 	 */
2438 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2439 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2440 
2441 	/* Clear the context id. Here be magic! */
2442 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2443 
2444 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2445 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2446 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2447 		     50))
2448 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2449 
2450 	/* Now that the ring is fully powered up, update the tail */
2451 	I915_WRITE_TAIL(ring, value);
2452 	POSTING_READ(RING_TAIL(ring->mmio_base));
2453 
2454 	/* Let the ring send IDLE messages to the GT again,
2455 	 * and so let it sleep to conserve power when idle.
2456 	 */
2457 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2458 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2459 }
2460 
2461 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2462 			       u32 invalidate, u32 flush)
2463 {
2464 	struct intel_engine_cs *ring = req->ring;
2465 	uint32_t cmd;
2466 	int ret;
2467 
2468 	ret = intel_ring_begin(req, 4);
2469 	if (ret)
2470 		return ret;
2471 
2472 	cmd = MI_FLUSH_DW;
2473 	if (INTEL_INFO(ring->dev)->gen >= 8)
2474 		cmd += 1;
2475 
2476 	/* We always require a command barrier so that subsequent
2477 	 * commands, such as breadcrumb interrupts, are strictly ordered
2478 	 * wrt the contents of the write cache being flushed to memory
2479 	 * (and thus being coherent from the CPU).
2480 	 */
2481 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2482 
2483 	/*
2484 	 * Bspec vol 1c.5 - video engine command streamer:
2485 	 * "If ENABLED, all TLBs will be invalidated once the flush
2486 	 * operation is complete. This bit is only valid when the
2487 	 * Post-Sync Operation field is a value of 1h or 3h."
2488 	 */
2489 	if (invalidate & I915_GEM_GPU_DOMAINS)
2490 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2491 
2492 	intel_ring_emit(ring, cmd);
2493 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2494 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2495 		intel_ring_emit(ring, 0); /* upper addr */
2496 		intel_ring_emit(ring, 0); /* value */
2497 	} else  {
2498 		intel_ring_emit(ring, 0);
2499 		intel_ring_emit(ring, MI_NOOP);
2500 	}
2501 	intel_ring_advance(ring);
2502 	return 0;
2503 }
2504 
2505 static int
2506 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2507 			      u64 offset, u32 len,
2508 			      unsigned dispatch_flags)
2509 {
2510 	struct intel_engine_cs *ring = req->ring;
2511 	bool ppgtt = USES_PPGTT(ring->dev) &&
2512 			!(dispatch_flags & I915_DISPATCH_SECURE);
2513 	int ret;
2514 
2515 	ret = intel_ring_begin(req, 4);
2516 	if (ret)
2517 		return ret;
2518 
2519 	/* FIXME(BDW): Address space and security selectors. */
2520 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2521 			(dispatch_flags & I915_DISPATCH_RS ?
2522 			 MI_BATCH_RESOURCE_STREAMER : 0));
2523 	intel_ring_emit(ring, lower_32_bits(offset));
2524 	intel_ring_emit(ring, upper_32_bits(offset));
2525 	intel_ring_emit(ring, MI_NOOP);
2526 	intel_ring_advance(ring);
2527 
2528 	return 0;
2529 }
2530 
2531 static int
2532 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2533 			     u64 offset, u32 len,
2534 			     unsigned dispatch_flags)
2535 {
2536 	struct intel_engine_cs *ring = req->ring;
2537 	int ret;
2538 
2539 	ret = intel_ring_begin(req, 2);
2540 	if (ret)
2541 		return ret;
2542 
2543 	intel_ring_emit(ring,
2544 			MI_BATCH_BUFFER_START |
2545 			(dispatch_flags & I915_DISPATCH_SECURE ?
2546 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2547 			(dispatch_flags & I915_DISPATCH_RS ?
2548 			 MI_BATCH_RESOURCE_STREAMER : 0));
2549 	/* bit0-7 is the length on GEN6+ */
2550 	intel_ring_emit(ring, offset);
2551 	intel_ring_advance(ring);
2552 
2553 	return 0;
2554 }
2555 
2556 static int
2557 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2558 			      u64 offset, u32 len,
2559 			      unsigned dispatch_flags)
2560 {
2561 	struct intel_engine_cs *ring = req->ring;
2562 	int ret;
2563 
2564 	ret = intel_ring_begin(req, 2);
2565 	if (ret)
2566 		return ret;
2567 
2568 	intel_ring_emit(ring,
2569 			MI_BATCH_BUFFER_START |
2570 			(dispatch_flags & I915_DISPATCH_SECURE ?
2571 			 0 : MI_BATCH_NON_SECURE_I965));
2572 	/* bit0-7 is the length on GEN6+ */
2573 	intel_ring_emit(ring, offset);
2574 	intel_ring_advance(ring);
2575 
2576 	return 0;
2577 }
2578 
2579 /* Blitter support (SandyBridge+) */
2580 
2581 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2582 			   u32 invalidate, u32 flush)
2583 {
2584 	struct intel_engine_cs *ring = req->ring;
2585 	struct drm_device *dev = ring->dev;
2586 	uint32_t cmd;
2587 	int ret;
2588 
2589 	ret = intel_ring_begin(req, 4);
2590 	if (ret)
2591 		return ret;
2592 
2593 	cmd = MI_FLUSH_DW;
2594 	if (INTEL_INFO(dev)->gen >= 8)
2595 		cmd += 1;
2596 
2597 	/* We always require a command barrier so that subsequent
2598 	 * commands, such as breadcrumb interrupts, are strictly ordered
2599 	 * wrt the contents of the write cache being flushed to memory
2600 	 * (and thus being coherent from the CPU).
2601 	 */
2602 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2603 
2604 	/*
2605 	 * Bspec vol 1c.3 - blitter engine command streamer:
2606 	 * "If ENABLED, all TLBs will be invalidated once the flush
2607 	 * operation is complete. This bit is only valid when the
2608 	 * Post-Sync Operation field is a value of 1h or 3h."
2609 	 */
2610 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2611 		cmd |= MI_INVALIDATE_TLB;
2612 	intel_ring_emit(ring, cmd);
2613 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2614 	if (INTEL_INFO(dev)->gen >= 8) {
2615 		intel_ring_emit(ring, 0); /* upper addr */
2616 		intel_ring_emit(ring, 0); /* value */
2617 	} else  {
2618 		intel_ring_emit(ring, 0);
2619 		intel_ring_emit(ring, MI_NOOP);
2620 	}
2621 	intel_ring_advance(ring);
2622 
2623 	return 0;
2624 }
2625 
2626 int intel_init_render_ring_buffer(struct drm_device *dev)
2627 {
2628 	struct drm_i915_private *dev_priv = dev->dev_private;
2629 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2630 	struct drm_i915_gem_object *obj;
2631 	int ret;
2632 
2633 	ring->name = "render ring";
2634 	ring->id = RCS;
2635 	ring->mmio_base = RENDER_RING_BASE;
2636 
2637 	if (INTEL_INFO(dev)->gen >= 8) {
2638 		if (i915_semaphore_is_enabled(dev)) {
2639 			obj = i915_gem_alloc_object(dev, 4096);
2640 			if (obj == NULL) {
2641 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2642 				i915.semaphores = 0;
2643 			} else {
2644 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2645 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2646 				if (ret != 0) {
2647 					drm_gem_object_unreference(&obj->base);
2648 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2649 					i915.semaphores = 0;
2650 				} else
2651 					dev_priv->semaphore_obj = obj;
2652 			}
2653 		}
2654 
2655 		ring->init_context = intel_rcs_ctx_init;
2656 		ring->add_request = gen6_add_request;
2657 		ring->flush = gen8_render_ring_flush;
2658 		ring->irq_get = gen8_ring_get_irq;
2659 		ring->irq_put = gen8_ring_put_irq;
2660 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2661 		ring->get_seqno = gen6_ring_get_seqno;
2662 		ring->set_seqno = ring_set_seqno;
2663 		if (i915_semaphore_is_enabled(dev)) {
2664 			WARN_ON(!dev_priv->semaphore_obj);
2665 			ring->semaphore.sync_to = gen8_ring_sync;
2666 			ring->semaphore.signal = gen8_rcs_signal;
2667 			GEN8_RING_SEMAPHORE_INIT;
2668 		}
2669 	} else if (INTEL_INFO(dev)->gen >= 6) {
2670 		ring->init_context = intel_rcs_ctx_init;
2671 		ring->add_request = gen6_add_request;
2672 		ring->flush = gen7_render_ring_flush;
2673 		if (INTEL_INFO(dev)->gen == 6)
2674 			ring->flush = gen6_render_ring_flush;
2675 		ring->irq_get = gen6_ring_get_irq;
2676 		ring->irq_put = gen6_ring_put_irq;
2677 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2678 		ring->get_seqno = gen6_ring_get_seqno;
2679 		ring->set_seqno = ring_set_seqno;
2680 		if (i915_semaphore_is_enabled(dev)) {
2681 			ring->semaphore.sync_to = gen6_ring_sync;
2682 			ring->semaphore.signal = gen6_signal;
2683 			/*
2684 			 * The current semaphore is only applied on pre-gen8
2685 			 * platform.  And there is no VCS2 ring on the pre-gen8
2686 			 * platform. So the semaphore between RCS and VCS2 is
2687 			 * initialized as INVALID.  Gen8 will initialize the
2688 			 * sema between VCS2 and RCS later.
2689 			 */
2690 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2691 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2692 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2693 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2694 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2695 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2696 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2697 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2698 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2699 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2700 		}
2701 	} else if (IS_GEN5(dev)) {
2702 		ring->add_request = pc_render_add_request;
2703 		ring->flush = gen4_render_ring_flush;
2704 		ring->get_seqno = pc_render_get_seqno;
2705 		ring->set_seqno = pc_render_set_seqno;
2706 		ring->irq_get = gen5_ring_get_irq;
2707 		ring->irq_put = gen5_ring_put_irq;
2708 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2709 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2710 	} else {
2711 		ring->add_request = i9xx_add_request;
2712 		if (INTEL_INFO(dev)->gen < 4)
2713 			ring->flush = gen2_render_ring_flush;
2714 		else
2715 			ring->flush = gen4_render_ring_flush;
2716 		ring->get_seqno = ring_get_seqno;
2717 		ring->set_seqno = ring_set_seqno;
2718 		if (IS_GEN2(dev)) {
2719 			ring->irq_get = i8xx_ring_get_irq;
2720 			ring->irq_put = i8xx_ring_put_irq;
2721 		} else {
2722 			ring->irq_get = i9xx_ring_get_irq;
2723 			ring->irq_put = i9xx_ring_put_irq;
2724 		}
2725 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2726 	}
2727 	ring->write_tail = ring_write_tail;
2728 
2729 	if (IS_HASWELL(dev))
2730 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2731 	else if (IS_GEN8(dev))
2732 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2733 	else if (INTEL_INFO(dev)->gen >= 6)
2734 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2735 	else if (INTEL_INFO(dev)->gen >= 4)
2736 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2737 	else if (IS_I830(dev) || IS_845G(dev))
2738 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2739 	else
2740 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2741 	ring->init_hw = init_render_ring;
2742 	ring->cleanup = render_ring_cleanup;
2743 
2744 	/* Workaround batchbuffer to combat CS tlb bug. */
2745 	if (HAS_BROKEN_CS_TLB(dev)) {
2746 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2747 		if (obj == NULL) {
2748 			DRM_ERROR("Failed to allocate batch bo\n");
2749 			return -ENOMEM;
2750 		}
2751 
2752 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2753 		if (ret != 0) {
2754 			drm_gem_object_unreference(&obj->base);
2755 			DRM_ERROR("Failed to ping batch bo\n");
2756 			return ret;
2757 		}
2758 
2759 		ring->scratch.obj = obj;
2760 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2761 	}
2762 
2763 	ret = intel_init_ring_buffer(dev, ring);
2764 	if (ret)
2765 		return ret;
2766 
2767 	if (INTEL_INFO(dev)->gen >= 5) {
2768 		ret = intel_init_pipe_control(ring);
2769 		if (ret)
2770 			return ret;
2771 	}
2772 
2773 	return 0;
2774 }
2775 
2776 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2777 {
2778 	struct drm_i915_private *dev_priv = dev->dev_private;
2779 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2780 
2781 	ring->name = "bsd ring";
2782 	ring->id = VCS;
2783 
2784 	ring->write_tail = ring_write_tail;
2785 	if (INTEL_INFO(dev)->gen >= 6) {
2786 		ring->mmio_base = GEN6_BSD_RING_BASE;
2787 		/* gen6 bsd needs a special wa for tail updates */
2788 		if (IS_GEN6(dev))
2789 			ring->write_tail = gen6_bsd_ring_write_tail;
2790 		ring->flush = gen6_bsd_ring_flush;
2791 		ring->add_request = gen6_add_request;
2792 		ring->get_seqno = gen6_ring_get_seqno;
2793 		ring->set_seqno = ring_set_seqno;
2794 		if (INTEL_INFO(dev)->gen >= 8) {
2795 			ring->irq_enable_mask =
2796 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2797 			ring->irq_get = gen8_ring_get_irq;
2798 			ring->irq_put = gen8_ring_put_irq;
2799 			ring->dispatch_execbuffer =
2800 				gen8_ring_dispatch_execbuffer;
2801 			if (i915_semaphore_is_enabled(dev)) {
2802 				ring->semaphore.sync_to = gen8_ring_sync;
2803 				ring->semaphore.signal = gen8_xcs_signal;
2804 				GEN8_RING_SEMAPHORE_INIT;
2805 			}
2806 		} else {
2807 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2808 			ring->irq_get = gen6_ring_get_irq;
2809 			ring->irq_put = gen6_ring_put_irq;
2810 			ring->dispatch_execbuffer =
2811 				gen6_ring_dispatch_execbuffer;
2812 			if (i915_semaphore_is_enabled(dev)) {
2813 				ring->semaphore.sync_to = gen6_ring_sync;
2814 				ring->semaphore.signal = gen6_signal;
2815 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2816 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2817 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2818 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2819 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2820 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2821 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2822 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2823 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2824 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2825 			}
2826 		}
2827 	} else {
2828 		ring->mmio_base = BSD_RING_BASE;
2829 		ring->flush = bsd_ring_flush;
2830 		ring->add_request = i9xx_add_request;
2831 		ring->get_seqno = ring_get_seqno;
2832 		ring->set_seqno = ring_set_seqno;
2833 		if (IS_GEN5(dev)) {
2834 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2835 			ring->irq_get = gen5_ring_get_irq;
2836 			ring->irq_put = gen5_ring_put_irq;
2837 		} else {
2838 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2839 			ring->irq_get = i9xx_ring_get_irq;
2840 			ring->irq_put = i9xx_ring_put_irq;
2841 		}
2842 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2843 	}
2844 	ring->init_hw = init_ring_common;
2845 
2846 	return intel_init_ring_buffer(dev, ring);
2847 }
2848 
2849 /**
2850  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2851  */
2852 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2853 {
2854 	struct drm_i915_private *dev_priv = dev->dev_private;
2855 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2856 
2857 	ring->name = "bsd2 ring";
2858 	ring->id = VCS2;
2859 
2860 	ring->write_tail = ring_write_tail;
2861 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2862 	ring->flush = gen6_bsd_ring_flush;
2863 	ring->add_request = gen6_add_request;
2864 	ring->get_seqno = gen6_ring_get_seqno;
2865 	ring->set_seqno = ring_set_seqno;
2866 	ring->irq_enable_mask =
2867 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2868 	ring->irq_get = gen8_ring_get_irq;
2869 	ring->irq_put = gen8_ring_put_irq;
2870 	ring->dispatch_execbuffer =
2871 			gen8_ring_dispatch_execbuffer;
2872 	if (i915_semaphore_is_enabled(dev)) {
2873 		ring->semaphore.sync_to = gen8_ring_sync;
2874 		ring->semaphore.signal = gen8_xcs_signal;
2875 		GEN8_RING_SEMAPHORE_INIT;
2876 	}
2877 	ring->init_hw = init_ring_common;
2878 
2879 	return intel_init_ring_buffer(dev, ring);
2880 }
2881 
2882 int intel_init_blt_ring_buffer(struct drm_device *dev)
2883 {
2884 	struct drm_i915_private *dev_priv = dev->dev_private;
2885 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2886 
2887 	ring->name = "blitter ring";
2888 	ring->id = BCS;
2889 
2890 	ring->mmio_base = BLT_RING_BASE;
2891 	ring->write_tail = ring_write_tail;
2892 	ring->flush = gen6_ring_flush;
2893 	ring->add_request = gen6_add_request;
2894 	ring->get_seqno = gen6_ring_get_seqno;
2895 	ring->set_seqno = ring_set_seqno;
2896 	if (INTEL_INFO(dev)->gen >= 8) {
2897 		ring->irq_enable_mask =
2898 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2899 		ring->irq_get = gen8_ring_get_irq;
2900 		ring->irq_put = gen8_ring_put_irq;
2901 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2902 		if (i915_semaphore_is_enabled(dev)) {
2903 			ring->semaphore.sync_to = gen8_ring_sync;
2904 			ring->semaphore.signal = gen8_xcs_signal;
2905 			GEN8_RING_SEMAPHORE_INIT;
2906 		}
2907 	} else {
2908 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2909 		ring->irq_get = gen6_ring_get_irq;
2910 		ring->irq_put = gen6_ring_put_irq;
2911 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2912 		if (i915_semaphore_is_enabled(dev)) {
2913 			ring->semaphore.signal = gen6_signal;
2914 			ring->semaphore.sync_to = gen6_ring_sync;
2915 			/*
2916 			 * The current semaphore is only applied on pre-gen8
2917 			 * platform.  And there is no VCS2 ring on the pre-gen8
2918 			 * platform. So the semaphore between BCS and VCS2 is
2919 			 * initialized as INVALID.  Gen8 will initialize the
2920 			 * sema between BCS and VCS2 later.
2921 			 */
2922 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2923 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2924 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2925 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2926 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2927 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2928 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2929 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2930 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2931 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2932 		}
2933 	}
2934 	ring->init_hw = init_ring_common;
2935 
2936 	return intel_init_ring_buffer(dev, ring);
2937 }
2938 
2939 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2940 {
2941 	struct drm_i915_private *dev_priv = dev->dev_private;
2942 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2943 
2944 	ring->name = "video enhancement ring";
2945 	ring->id = VECS;
2946 
2947 	ring->mmio_base = VEBOX_RING_BASE;
2948 	ring->write_tail = ring_write_tail;
2949 	ring->flush = gen6_ring_flush;
2950 	ring->add_request = gen6_add_request;
2951 	ring->get_seqno = gen6_ring_get_seqno;
2952 	ring->set_seqno = ring_set_seqno;
2953 
2954 	if (INTEL_INFO(dev)->gen >= 8) {
2955 		ring->irq_enable_mask =
2956 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2957 		ring->irq_get = gen8_ring_get_irq;
2958 		ring->irq_put = gen8_ring_put_irq;
2959 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2960 		if (i915_semaphore_is_enabled(dev)) {
2961 			ring->semaphore.sync_to = gen8_ring_sync;
2962 			ring->semaphore.signal = gen8_xcs_signal;
2963 			GEN8_RING_SEMAPHORE_INIT;
2964 		}
2965 	} else {
2966 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2967 		ring->irq_get = hsw_vebox_get_irq;
2968 		ring->irq_put = hsw_vebox_put_irq;
2969 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2970 		if (i915_semaphore_is_enabled(dev)) {
2971 			ring->semaphore.sync_to = gen6_ring_sync;
2972 			ring->semaphore.signal = gen6_signal;
2973 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2974 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2975 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2976 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2977 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2978 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2979 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2980 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2981 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2982 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2983 		}
2984 	}
2985 	ring->init_hw = init_ring_common;
2986 
2987 	return intel_init_ring_buffer(dev, ring);
2988 }
2989 
2990 int
2991 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2992 {
2993 	struct intel_engine_cs *ring = req->ring;
2994 	int ret;
2995 
2996 	if (!ring->gpu_caches_dirty)
2997 		return 0;
2998 
2999 	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3000 	if (ret)
3001 		return ret;
3002 
3003 	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3004 
3005 	ring->gpu_caches_dirty = false;
3006 	return 0;
3007 }
3008 
3009 int
3010 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3011 {
3012 	struct intel_engine_cs *ring = req->ring;
3013 	uint32_t flush_domains;
3014 	int ret;
3015 
3016 	flush_domains = 0;
3017 	if (ring->gpu_caches_dirty)
3018 		flush_domains = I915_GEM_GPU_DOMAINS;
3019 
3020 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3021 	if (ret)
3022 		return ret;
3023 
3024 	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3025 
3026 	ring->gpu_caches_dirty = false;
3027 	return 0;
3028 }
3029 
3030 void
3031 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3032 {
3033 	int ret;
3034 
3035 	if (!intel_ring_initialized(ring))
3036 		return;
3037 
3038 	ret = intel_ring_idle(ring);
3039 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3040 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3041 			  ring->name, ret);
3042 
3043 	stop_ring(ring);
3044 }
3045