xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 1487f786)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41 
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 	int space = head - tail;
45 	if (space <= 0)
46 		space += size;
47 	return space - I915_RING_FREE_SPACE;
48 }
49 
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52 	if (ringbuf->last_retired_head != -1) {
53 		ringbuf->head = ringbuf->last_retired_head;
54 		ringbuf->last_retired_head = -1;
55 	}
56 
57 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 					    ringbuf->tail, ringbuf->size);
59 }
60 
61 bool intel_engine_stopped(struct intel_engine_cs *engine)
62 {
63 	struct drm_i915_private *dev_priv = engine->i915;
64 	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65 }
66 
67 static void __intel_ring_advance(struct intel_engine_cs *engine)
68 {
69 	struct intel_ringbuffer *ringbuf = engine->buffer;
70 	ringbuf->tail &= ringbuf->size - 1;
71 	if (intel_engine_stopped(engine))
72 		return;
73 	engine->write_tail(engine, ringbuf->tail);
74 }
75 
76 static int
77 gen2_render_ring_flush(struct drm_i915_gem_request *req,
78 		       u32	invalidate_domains,
79 		       u32	flush_domains)
80 {
81 	struct intel_engine_cs *engine = req->engine;
82 	u32 cmd;
83 	int ret;
84 
85 	cmd = MI_FLUSH;
86 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87 		cmd |= MI_NO_WRITE_FLUSH;
88 
89 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90 		cmd |= MI_READ_FLUSH;
91 
92 	ret = intel_ring_begin(req, 2);
93 	if (ret)
94 		return ret;
95 
96 	intel_ring_emit(engine, cmd);
97 	intel_ring_emit(engine, MI_NOOP);
98 	intel_ring_advance(engine);
99 
100 	return 0;
101 }
102 
103 static int
104 gen4_render_ring_flush(struct drm_i915_gem_request *req,
105 		       u32	invalidate_domains,
106 		       u32	flush_domains)
107 {
108 	struct intel_engine_cs *engine = req->engine;
109 	u32 cmd;
110 	int ret;
111 
112 	/*
113 	 * read/write caches:
114 	 *
115 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
117 	 * also flushed at 2d versus 3d pipeline switches.
118 	 *
119 	 * read-only caches:
120 	 *
121 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122 	 * MI_READ_FLUSH is set, and is always flushed on 965.
123 	 *
124 	 * I915_GEM_DOMAIN_COMMAND may not exist?
125 	 *
126 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127 	 * invalidated when MI_EXE_FLUSH is set.
128 	 *
129 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130 	 * invalidated with every MI_FLUSH.
131 	 *
132 	 * TLBs:
133 	 *
134 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137 	 * are flushed at any MI_FLUSH.
138 	 */
139 
140 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142 		cmd &= ~MI_NO_WRITE_FLUSH;
143 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144 		cmd |= MI_EXE_FLUSH;
145 
146 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147 	    (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148 		cmd |= MI_INVALIDATE_ISP;
149 
150 	ret = intel_ring_begin(req, 2);
151 	if (ret)
152 		return ret;
153 
154 	intel_ring_emit(engine, cmd);
155 	intel_ring_emit(engine, MI_NOOP);
156 	intel_ring_advance(engine);
157 
158 	return 0;
159 }
160 
161 /**
162  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163  * implementing two workarounds on gen6.  From section 1.4.7.1
164  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165  *
166  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167  * produced by non-pipelined state commands), software needs to first
168  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169  * 0.
170  *
171  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173  *
174  * And the workaround for these two requires this workaround first:
175  *
176  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177  * BEFORE the pipe-control with a post-sync op and no write-cache
178  * flushes.
179  *
180  * And this last workaround is tricky because of the requirements on
181  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182  * volume 2 part 1:
183  *
184  *     "1 of the following must also be set:
185  *      - Render Target Cache Flush Enable ([12] of DW1)
186  *      - Depth Cache Flush Enable ([0] of DW1)
187  *      - Stall at Pixel Scoreboard ([1] of DW1)
188  *      - Depth Stall ([13] of DW1)
189  *      - Post-Sync Operation ([13] of DW1)
190  *      - Notify Enable ([8] of DW1)"
191  *
192  * The cache flushes require the workaround flush that triggered this
193  * one, so we can't use it.  Depth stall would trigger the same.
194  * Post-sync nonzero is what triggered this second workaround, so we
195  * can't use that one either.  Notify enable is IRQs, which aren't
196  * really our business.  That leaves only stall at scoreboard.
197  */
198 static int
199 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200 {
201 	struct intel_engine_cs *engine = req->engine;
202 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203 	int ret;
204 
205 	ret = intel_ring_begin(req, 6);
206 	if (ret)
207 		return ret;
208 
209 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210 	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
212 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213 	intel_ring_emit(engine, 0); /* low dword */
214 	intel_ring_emit(engine, 0); /* high dword */
215 	intel_ring_emit(engine, MI_NOOP);
216 	intel_ring_advance(engine);
217 
218 	ret = intel_ring_begin(req, 6);
219 	if (ret)
220 		return ret;
221 
222 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223 	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225 	intel_ring_emit(engine, 0);
226 	intel_ring_emit(engine, 0);
227 	intel_ring_emit(engine, MI_NOOP);
228 	intel_ring_advance(engine);
229 
230 	return 0;
231 }
232 
233 static int
234 gen6_render_ring_flush(struct drm_i915_gem_request *req,
235 		       u32 invalidate_domains, u32 flush_domains)
236 {
237 	struct intel_engine_cs *engine = req->engine;
238 	u32 flags = 0;
239 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240 	int ret;
241 
242 	/* Force SNB workarounds for PIPE_CONTROL flushes */
243 	ret = intel_emit_post_sync_nonzero_flush(req);
244 	if (ret)
245 		return ret;
246 
247 	/* Just flush everything.  Experiments have shown that reducing the
248 	 * number of bits based on the write domains has little performance
249 	 * impact.
250 	 */
251 	if (flush_domains) {
252 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254 		/*
255 		 * Ensure that any following seqno writes only happen
256 		 * when the render cache is indeed flushed.
257 		 */
258 		flags |= PIPE_CONTROL_CS_STALL;
259 	}
260 	if (invalidate_domains) {
261 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
262 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267 		/*
268 		 * TLB invalidate requires a post-sync write.
269 		 */
270 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271 	}
272 
273 	ret = intel_ring_begin(req, 4);
274 	if (ret)
275 		return ret;
276 
277 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278 	intel_ring_emit(engine, flags);
279 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280 	intel_ring_emit(engine, 0);
281 	intel_ring_advance(engine);
282 
283 	return 0;
284 }
285 
286 static int
287 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288 {
289 	struct intel_engine_cs *engine = req->engine;
290 	int ret;
291 
292 	ret = intel_ring_begin(req, 4);
293 	if (ret)
294 		return ret;
295 
296 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297 	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
299 	intel_ring_emit(engine, 0);
300 	intel_ring_emit(engine, 0);
301 	intel_ring_advance(engine);
302 
303 	return 0;
304 }
305 
306 static int
307 gen7_render_ring_flush(struct drm_i915_gem_request *req,
308 		       u32 invalidate_domains, u32 flush_domains)
309 {
310 	struct intel_engine_cs *engine = req->engine;
311 	u32 flags = 0;
312 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313 	int ret;
314 
315 	/*
316 	 * Ensure that any following seqno writes only happen when the render
317 	 * cache is indeed flushed.
318 	 *
319 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
320 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
321 	 * don't try to be clever and just set it unconditionally.
322 	 */
323 	flags |= PIPE_CONTROL_CS_STALL;
324 
325 	/* Just flush everything.  Experiments have shown that reducing the
326 	 * number of bits based on the write domains has little performance
327 	 * impact.
328 	 */
329 	if (flush_domains) {
330 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
334 	}
335 	if (invalidate_domains) {
336 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
337 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343 		/*
344 		 * TLB invalidate requires a post-sync write.
345 		 */
346 		flags |= PIPE_CONTROL_QW_WRITE;
347 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348 
349 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350 
351 		/* Workaround: we must issue a pipe_control with CS-stall bit
352 		 * set before a pipe_control command that has the state cache
353 		 * invalidate bit set. */
354 		gen7_render_ring_cs_stall_wa(req);
355 	}
356 
357 	ret = intel_ring_begin(req, 4);
358 	if (ret)
359 		return ret;
360 
361 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362 	intel_ring_emit(engine, flags);
363 	intel_ring_emit(engine, scratch_addr);
364 	intel_ring_emit(engine, 0);
365 	intel_ring_advance(engine);
366 
367 	return 0;
368 }
369 
370 static int
371 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372 		       u32 flags, u32 scratch_addr)
373 {
374 	struct intel_engine_cs *engine = req->engine;
375 	int ret;
376 
377 	ret = intel_ring_begin(req, 6);
378 	if (ret)
379 		return ret;
380 
381 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382 	intel_ring_emit(engine, flags);
383 	intel_ring_emit(engine, scratch_addr);
384 	intel_ring_emit(engine, 0);
385 	intel_ring_emit(engine, 0);
386 	intel_ring_emit(engine, 0);
387 	intel_ring_advance(engine);
388 
389 	return 0;
390 }
391 
392 static int
393 gen8_render_ring_flush(struct drm_i915_gem_request *req,
394 		       u32 invalidate_domains, u32 flush_domains)
395 {
396 	u32 flags = 0;
397 	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398 	int ret;
399 
400 	flags |= PIPE_CONTROL_CS_STALL;
401 
402 	if (flush_domains) {
403 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
407 	}
408 	if (invalidate_domains) {
409 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
410 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415 		flags |= PIPE_CONTROL_QW_WRITE;
416 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417 
418 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419 		ret = gen8_emit_pipe_control(req,
420 					     PIPE_CONTROL_CS_STALL |
421 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
422 					     0);
423 		if (ret)
424 			return ret;
425 	}
426 
427 	return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429 
430 static void ring_write_tail(struct intel_engine_cs *engine,
431 			    u32 value)
432 {
433 	struct drm_i915_private *dev_priv = engine->i915;
434 	I915_WRITE_TAIL(engine, value);
435 }
436 
437 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438 {
439 	struct drm_i915_private *dev_priv = engine->i915;
440 	u64 acthd;
441 
442 	if (INTEL_GEN(dev_priv) >= 8)
443 		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444 					 RING_ACTHD_UDW(engine->mmio_base));
445 	else if (INTEL_GEN(dev_priv) >= 4)
446 		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447 	else
448 		acthd = I915_READ(ACTHD);
449 
450 	return acthd;
451 }
452 
453 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454 {
455 	struct drm_i915_private *dev_priv = engine->i915;
456 	u32 addr;
457 
458 	addr = dev_priv->status_page_dmah->busaddr;
459 	if (INTEL_GEN(dev_priv) >= 4)
460 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 	I915_WRITE(HWS_PGA, addr);
462 }
463 
464 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465 {
466 	struct drm_i915_private *dev_priv = engine->i915;
467 	i915_reg_t mmio;
468 
469 	/* The ring status page addresses are no longer next to the rest of
470 	 * the ring registers as of gen7.
471 	 */
472 	if (IS_GEN7(dev_priv)) {
473 		switch (engine->id) {
474 		case RCS:
475 			mmio = RENDER_HWS_PGA_GEN7;
476 			break;
477 		case BCS:
478 			mmio = BLT_HWS_PGA_GEN7;
479 			break;
480 		/*
481 		 * VCS2 actually doesn't exist on Gen7. Only shut up
482 		 * gcc switch check warning
483 		 */
484 		case VCS2:
485 		case VCS:
486 			mmio = BSD_HWS_PGA_GEN7;
487 			break;
488 		case VECS:
489 			mmio = VEBOX_HWS_PGA_GEN7;
490 			break;
491 		}
492 	} else if (IS_GEN6(dev_priv)) {
493 		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494 	} else {
495 		/* XXX: gen8 returns to sanity */
496 		mmio = RING_HWS_PGA(engine->mmio_base);
497 	}
498 
499 	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500 	POSTING_READ(mmio);
501 
502 	/*
503 	 * Flush the TLB for this page
504 	 *
505 	 * FIXME: These two bits have disappeared on gen8, so a question
506 	 * arises: do we still need this and if so how should we go about
507 	 * invalidating the TLB?
508 	 */
509 	if (IS_GEN(dev_priv, 6, 7)) {
510 		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511 
512 		/* ring should be idle before issuing a sync flush*/
513 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514 
515 		I915_WRITE(reg,
516 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517 					      INSTPM_SYNC_FLUSH));
518 		if (intel_wait_for_register(dev_priv,
519 					    reg, INSTPM_SYNC_FLUSH, 0,
520 					    1000))
521 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
522 				  engine->name);
523 	}
524 }
525 
526 static bool stop_ring(struct intel_engine_cs *engine)
527 {
528 	struct drm_i915_private *dev_priv = engine->i915;
529 
530 	if (!IS_GEN2(dev_priv)) {
531 		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
532 		if (intel_wait_for_register(dev_priv,
533 					    RING_MI_MODE(engine->mmio_base),
534 					    MODE_IDLE,
535 					    MODE_IDLE,
536 					    1000)) {
537 			DRM_ERROR("%s : timed out trying to stop ring\n",
538 				  engine->name);
539 			/* Sometimes we observe that the idle flag is not
540 			 * set even though the ring is empty. So double
541 			 * check before giving up.
542 			 */
543 			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
544 				return false;
545 		}
546 	}
547 
548 	I915_WRITE_CTL(engine, 0);
549 	I915_WRITE_HEAD(engine, 0);
550 	engine->write_tail(engine, 0);
551 
552 	if (!IS_GEN2(dev_priv)) {
553 		(void)I915_READ_CTL(engine);
554 		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
555 	}
556 
557 	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
558 }
559 
560 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
561 {
562 	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
563 }
564 
565 static int init_ring_common(struct intel_engine_cs *engine)
566 {
567 	struct drm_i915_private *dev_priv = engine->i915;
568 	struct intel_ringbuffer *ringbuf = engine->buffer;
569 	struct drm_i915_gem_object *obj = ringbuf->obj;
570 	int ret = 0;
571 
572 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
573 
574 	if (!stop_ring(engine)) {
575 		/* G45 ring initialization often fails to reset head to zero */
576 		DRM_DEBUG_KMS("%s head not reset to zero "
577 			      "ctl %08x head %08x tail %08x start %08x\n",
578 			      engine->name,
579 			      I915_READ_CTL(engine),
580 			      I915_READ_HEAD(engine),
581 			      I915_READ_TAIL(engine),
582 			      I915_READ_START(engine));
583 
584 		if (!stop_ring(engine)) {
585 			DRM_ERROR("failed to set %s head to zero "
586 				  "ctl %08x head %08x tail %08x start %08x\n",
587 				  engine->name,
588 				  I915_READ_CTL(engine),
589 				  I915_READ_HEAD(engine),
590 				  I915_READ_TAIL(engine),
591 				  I915_READ_START(engine));
592 			ret = -EIO;
593 			goto out;
594 		}
595 	}
596 
597 	if (I915_NEED_GFX_HWS(dev_priv))
598 		intel_ring_setup_status_page(engine);
599 	else
600 		ring_setup_phys_status_page(engine);
601 
602 	/* Enforce ordering by reading HEAD register back */
603 	I915_READ_HEAD(engine);
604 
605 	/* Initialize the ring. This must happen _after_ we've cleared the ring
606 	 * registers with the above sequence (the readback of the HEAD registers
607 	 * also enforces ordering), otherwise the hw might lose the new ring
608 	 * register values. */
609 	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
610 
611 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
612 	if (I915_READ_HEAD(engine))
613 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
614 			  engine->name, I915_READ_HEAD(engine));
615 	I915_WRITE_HEAD(engine, 0);
616 	(void)I915_READ_HEAD(engine);
617 
618 	I915_WRITE_CTL(engine,
619 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
620 			| RING_VALID);
621 
622 	/* If the head is still not zero, the ring is dead */
623 	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
624 		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
625 		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
626 		DRM_ERROR("%s initialization failed "
627 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
628 			  engine->name,
629 			  I915_READ_CTL(engine),
630 			  I915_READ_CTL(engine) & RING_VALID,
631 			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
632 			  I915_READ_START(engine),
633 			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
634 		ret = -EIO;
635 		goto out;
636 	}
637 
638 	ringbuf->last_retired_head = -1;
639 	ringbuf->head = I915_READ_HEAD(engine);
640 	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
641 	intel_ring_update_space(ringbuf);
642 
643 	intel_engine_init_hangcheck(engine);
644 
645 out:
646 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
647 
648 	return ret;
649 }
650 
651 void
652 intel_fini_pipe_control(struct intel_engine_cs *engine)
653 {
654 	if (engine->scratch.obj == NULL)
655 		return;
656 
657 	if (INTEL_GEN(engine->i915) >= 5) {
658 		kunmap(sg_page(engine->scratch.obj->pages->sgl));
659 		i915_gem_object_ggtt_unpin(engine->scratch.obj);
660 	}
661 
662 	drm_gem_object_unreference(&engine->scratch.obj->base);
663 	engine->scratch.obj = NULL;
664 }
665 
666 int
667 intel_init_pipe_control(struct intel_engine_cs *engine)
668 {
669 	int ret;
670 
671 	WARN_ON(engine->scratch.obj);
672 
673 	engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
674 	if (IS_ERR(engine->scratch.obj)) {
675 		DRM_ERROR("Failed to allocate seqno page\n");
676 		ret = PTR_ERR(engine->scratch.obj);
677 		engine->scratch.obj = NULL;
678 		goto err;
679 	}
680 
681 	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
682 					      I915_CACHE_LLC);
683 	if (ret)
684 		goto err_unref;
685 
686 	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687 	if (ret)
688 		goto err_unref;
689 
690 	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
691 	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
692 	if (engine->scratch.cpu_page == NULL) {
693 		ret = -ENOMEM;
694 		goto err_unpin;
695 	}
696 
697 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698 			 engine->name, engine->scratch.gtt_offset);
699 	return 0;
700 
701 err_unpin:
702 	i915_gem_object_ggtt_unpin(engine->scratch.obj);
703 err_unref:
704 	drm_gem_object_unreference(&engine->scratch.obj->base);
705 err:
706 	return ret;
707 }
708 
709 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710 {
711 	struct intel_engine_cs *engine = req->engine;
712 	struct i915_workarounds *w = &req->i915->workarounds;
713 	int ret, i;
714 
715 	if (w->count == 0)
716 		return 0;
717 
718 	engine->gpu_caches_dirty = true;
719 	ret = intel_ring_flush_all_caches(req);
720 	if (ret)
721 		return ret;
722 
723 	ret = intel_ring_begin(req, (w->count * 2 + 2));
724 	if (ret)
725 		return ret;
726 
727 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
728 	for (i = 0; i < w->count; i++) {
729 		intel_ring_emit_reg(engine, w->reg[i].addr);
730 		intel_ring_emit(engine, w->reg[i].value);
731 	}
732 	intel_ring_emit(engine, MI_NOOP);
733 
734 	intel_ring_advance(engine);
735 
736 	engine->gpu_caches_dirty = true;
737 	ret = intel_ring_flush_all_caches(req);
738 	if (ret)
739 		return ret;
740 
741 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
742 
743 	return 0;
744 }
745 
746 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
747 {
748 	int ret;
749 
750 	ret = intel_ring_workarounds_emit(req);
751 	if (ret != 0)
752 		return ret;
753 
754 	ret = i915_gem_render_state_init(req);
755 	if (ret)
756 		return ret;
757 
758 	return 0;
759 }
760 
761 static int wa_add(struct drm_i915_private *dev_priv,
762 		  i915_reg_t addr,
763 		  const u32 mask, const u32 val)
764 {
765 	const u32 idx = dev_priv->workarounds.count;
766 
767 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
768 		return -ENOSPC;
769 
770 	dev_priv->workarounds.reg[idx].addr = addr;
771 	dev_priv->workarounds.reg[idx].value = val;
772 	dev_priv->workarounds.reg[idx].mask = mask;
773 
774 	dev_priv->workarounds.count++;
775 
776 	return 0;
777 }
778 
779 #define WA_REG(addr, mask, val) do { \
780 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
781 		if (r) \
782 			return r; \
783 	} while (0)
784 
785 #define WA_SET_BIT_MASKED(addr, mask) \
786 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
787 
788 #define WA_CLR_BIT_MASKED(addr, mask) \
789 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
790 
791 #define WA_SET_FIELD_MASKED(addr, mask, value) \
792 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
793 
794 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
795 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
796 
797 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
798 
799 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
800 				 i915_reg_t reg)
801 {
802 	struct drm_i915_private *dev_priv = engine->i915;
803 	struct i915_workarounds *wa = &dev_priv->workarounds;
804 	const uint32_t index = wa->hw_whitelist_count[engine->id];
805 
806 	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
807 		return -EINVAL;
808 
809 	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
810 		 i915_mmio_reg_offset(reg));
811 	wa->hw_whitelist_count[engine->id]++;
812 
813 	return 0;
814 }
815 
816 static int gen8_init_workarounds(struct intel_engine_cs *engine)
817 {
818 	struct drm_i915_private *dev_priv = engine->i915;
819 
820 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
821 
822 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
823 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
824 
825 	/* WaDisablePartialInstShootdown:bdw,chv */
826 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
827 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
828 
829 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
830 	 * workaround for for a possible hang in the unlikely event a TLB
831 	 * invalidation occurs during a PSD flush.
832 	 */
833 	/* WaForceEnableNonCoherent:bdw,chv */
834 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
835 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
836 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837 			  HDC_FORCE_NON_COHERENT);
838 
839 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
840 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
841 	 *  polygons in the same 8x4 pixel/sample area to be processed without
842 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
843 	 *  buffer."
844 	 *
845 	 * This optimization is off by default for BDW and CHV; turn it on.
846 	 */
847 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
848 
849 	/* Wa4x4STCOptimizationDisable:bdw,chv */
850 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
851 
852 	/*
853 	 * BSpec recommends 8x4 when MSAA is used,
854 	 * however in practice 16x4 seems fastest.
855 	 *
856 	 * Note that PS/WM thread counts depend on the WIZ hashing
857 	 * disable bit, which we don't touch here, but it's good
858 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
859 	 */
860 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
861 			    GEN6_WIZ_HASHING_MASK,
862 			    GEN6_WIZ_HASHING_16x4);
863 
864 	return 0;
865 }
866 
867 static int bdw_init_workarounds(struct intel_engine_cs *engine)
868 {
869 	struct drm_i915_private *dev_priv = engine->i915;
870 	int ret;
871 
872 	ret = gen8_init_workarounds(engine);
873 	if (ret)
874 		return ret;
875 
876 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
877 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
878 
879 	/* WaDisableDopClockGating:bdw */
880 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
881 			  DOP_CLOCK_GATING_DISABLE);
882 
883 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
884 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
885 
886 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
887 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
888 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
889 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
890 			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
891 
892 	return 0;
893 }
894 
895 static int chv_init_workarounds(struct intel_engine_cs *engine)
896 {
897 	struct drm_i915_private *dev_priv = engine->i915;
898 	int ret;
899 
900 	ret = gen8_init_workarounds(engine);
901 	if (ret)
902 		return ret;
903 
904 	/* WaDisableThreadStallDopClockGating:chv */
905 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
906 
907 	/* Improve HiZ throughput on CHV. */
908 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
909 
910 	return 0;
911 }
912 
913 static int gen9_init_workarounds(struct intel_engine_cs *engine)
914 {
915 	struct drm_i915_private *dev_priv = engine->i915;
916 	int ret;
917 
918 	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
919 	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
920 
921 	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
923 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
924 
925 	/* WaDisableKillLogic:bxt,skl,kbl */
926 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
927 		   ECOCHK_DIS_TLB);
928 
929 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
930 	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
931 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932 			  FLOW_CONTROL_ENABLE |
933 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
934 
935 	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
937 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
938 
939 	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
941 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
942 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943 				  GEN9_DG_MIRROR_FIX_ENABLE);
944 
945 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
947 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
948 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
950 		/*
951 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
952 		 * but we do that in per ctx batchbuffer as there is an issue
953 		 * with this register not getting restored on ctx restore
954 		 */
955 	}
956 
957 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
958 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959 	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960 			  GEN9_ENABLE_YV12_BUGFIX |
961 			  GEN9_ENABLE_GPGPU_PREEMPTION);
962 
963 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
964 	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
965 	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
966 					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967 
968 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
970 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
971 
972 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
973 	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
974 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
975 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
976 				  PIXEL_MASK_CAMMING_DISABLE);
977 
978 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
979 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
980 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
981 			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982 
983 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
984 	 * both tied to WaForceContextSaveRestoreNonCoherent
985 	 * in some hsds for skl. We keep the tie for all gen9. The
986 	 * documentation is a bit hazy and so we want to get common behaviour,
987 	 * even though there is no clear evidence we would need both on kbl/bxt.
988 	 * This area has been source of system hangs so we play it safe
989 	 * and mimic the skl regardless of what bspec says.
990 	 *
991 	 * Use Force Non-Coherent whenever executing a 3D context. This
992 	 * is a workaround for a possible hang in the unlikely event
993 	 * a TLB invalidation occurs during a PSD flush.
994 	 */
995 
996 	/* WaForceEnableNonCoherent:skl,bxt,kbl */
997 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
998 			  HDC_FORCE_NON_COHERENT);
999 
1000 	/* WaDisableHDCInvalidation:skl,bxt,kbl */
1001 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1002 		   BDW_DISABLE_HDC_INVALIDATION);
1003 
1004 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1005 	if (IS_SKYLAKE(dev_priv) ||
1006 	    IS_KABYLAKE(dev_priv) ||
1007 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008 		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1009 				  GEN8_SAMPLER_POWER_BYPASS_DIS);
1010 
1011 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1013 
1014 	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015 	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1016 				    GEN8_LQSC_FLUSH_COHERENT_LINES));
1017 
1018 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1019 	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1020 	if (ret)
1021 		return ret;
1022 
1023 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024 	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025 	if (ret)
1026 		return ret;
1027 
1028 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029 	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030 	if (ret)
1031 		return ret;
1032 
1033 	return 0;
1034 }
1035 
1036 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037 {
1038 	struct drm_i915_private *dev_priv = engine->i915;
1039 	u8 vals[3] = { 0, 0, 0 };
1040 	unsigned int i;
1041 
1042 	for (i = 0; i < 3; i++) {
1043 		u8 ss;
1044 
1045 		/*
1046 		 * Only consider slices where one, and only one, subslice has 7
1047 		 * EUs
1048 		 */
1049 		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1050 			continue;
1051 
1052 		/*
1053 		 * subslice_7eu[i] != 0 (because of the check above) and
1054 		 * ss_max == 4 (maximum number of subslices possible per slice)
1055 		 *
1056 		 * ->    0 <= ss <= 3;
1057 		 */
1058 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1059 		vals[i] = 3 - ss;
1060 	}
1061 
1062 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1063 		return 0;
1064 
1065 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1066 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1067 			    GEN9_IZ_HASHING_MASK(2) |
1068 			    GEN9_IZ_HASHING_MASK(1) |
1069 			    GEN9_IZ_HASHING_MASK(0),
1070 			    GEN9_IZ_HASHING(2, vals[2]) |
1071 			    GEN9_IZ_HASHING(1, vals[1]) |
1072 			    GEN9_IZ_HASHING(0, vals[0]));
1073 
1074 	return 0;
1075 }
1076 
1077 static int skl_init_workarounds(struct intel_engine_cs *engine)
1078 {
1079 	struct drm_i915_private *dev_priv = engine->i915;
1080 	int ret;
1081 
1082 	ret = gen9_init_workarounds(engine);
1083 	if (ret)
1084 		return ret;
1085 
1086 	/*
1087 	 * Actual WA is to disable percontext preemption granularity control
1088 	 * until D0 which is the default case so this is equivalent to
1089 	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1090 	 */
1091 	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1092 		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1093 			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1094 	}
1095 
1096 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1097 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1098 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1099 			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1100 	}
1101 
1102 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1103 	 * involving this register should also be added to WA batch as required.
1104 	 */
1105 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1106 		/* WaDisableLSQCROPERFforOCL:skl */
1107 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1108 			   GEN8_LQSC_RO_PERF_DIS);
1109 
1110 	/* WaEnableGapsTsvCreditFix:skl */
1111 	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1112 		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1113 					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1114 	}
1115 
1116 	/* WaDisablePowerCompilerClockGating:skl */
1117 	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1118 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1119 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1120 
1121 	/* WaBarrierPerformanceFixDisable:skl */
1122 	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1123 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1124 				  HDC_FENCE_DEST_SLM_DISABLE |
1125 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1126 
1127 	/* WaDisableSbeCacheDispatchPortSharing:skl */
1128 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1129 		WA_SET_BIT_MASKED(
1130 			GEN7_HALF_SLICE_CHICKEN1,
1131 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1132 
1133 	/* WaDisableGafsUnitClkGating:skl */
1134 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1135 
1136 	/* WaDisableLSQCROPERFforOCL:skl */
1137 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1138 	if (ret)
1139 		return ret;
1140 
1141 	return skl_tune_iz_hashing(engine);
1142 }
1143 
1144 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1145 {
1146 	struct drm_i915_private *dev_priv = engine->i915;
1147 	int ret;
1148 
1149 	ret = gen9_init_workarounds(engine);
1150 	if (ret)
1151 		return ret;
1152 
1153 	/* WaStoreMultiplePTEenable:bxt */
1154 	/* This is a requirement according to Hardware specification */
1155 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1156 		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1157 
1158 	/* WaSetClckGatingDisableMedia:bxt */
1159 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1160 		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1161 					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1162 	}
1163 
1164 	/* WaDisableThreadStallDopClockGating:bxt */
1165 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1166 			  STALL_DOP_GATING_DISABLE);
1167 
1168 	/* WaDisablePooledEuLoadBalancingFix:bxt */
1169 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1170 		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1171 				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1172 	}
1173 
1174 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1175 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1176 		WA_SET_BIT_MASKED(
1177 			GEN7_HALF_SLICE_CHICKEN1,
1178 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1179 	}
1180 
1181 	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1182 	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1183 	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1184 	/* WaDisableLSQCROPERFforOCL:bxt */
1185 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1186 		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1187 		if (ret)
1188 			return ret;
1189 
1190 		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1191 		if (ret)
1192 			return ret;
1193 	}
1194 
1195 	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1196 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1197 		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1198 					   L3_HIGH_PRIO_CREDITS(2));
1199 
1200 	/* WaInsertDummyPushConstPs:bxt */
1201 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1202 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1203 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1204 
1205 	return 0;
1206 }
1207 
1208 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1209 {
1210 	struct drm_i915_private *dev_priv = engine->i915;
1211 	int ret;
1212 
1213 	ret = gen9_init_workarounds(engine);
1214 	if (ret)
1215 		return ret;
1216 
1217 	/* WaEnableGapsTsvCreditFix:kbl */
1218 	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1219 				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1220 
1221 	/* WaDisableDynamicCreditSharing:kbl */
1222 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1223 		WA_SET_BIT(GAMT_CHKN_BIT_REG,
1224 			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1225 
1226 	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1227 	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1228 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1229 				  HDC_FENCE_DEST_SLM_DISABLE);
1230 
1231 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1232 	 * involving this register should also be added to WA batch as required.
1233 	 */
1234 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1235 		/* WaDisableLSQCROPERFforOCL:kbl */
1236 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1237 			   GEN8_LQSC_RO_PERF_DIS);
1238 
1239 	/* WaInsertDummyPushConstPs:kbl */
1240 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1241 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1242 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1243 
1244 	/* WaDisableGafsUnitClkGating:kbl */
1245 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1246 
1247 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
1248 	WA_SET_BIT_MASKED(
1249 		GEN7_HALF_SLICE_CHICKEN1,
1250 		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1251 
1252 	/* WaDisableLSQCROPERFforOCL:kbl */
1253 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1254 	if (ret)
1255 		return ret;
1256 
1257 	return 0;
1258 }
1259 
1260 int init_workarounds_ring(struct intel_engine_cs *engine)
1261 {
1262 	struct drm_i915_private *dev_priv = engine->i915;
1263 
1264 	WARN_ON(engine->id != RCS);
1265 
1266 	dev_priv->workarounds.count = 0;
1267 	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1268 
1269 	if (IS_BROADWELL(dev_priv))
1270 		return bdw_init_workarounds(engine);
1271 
1272 	if (IS_CHERRYVIEW(dev_priv))
1273 		return chv_init_workarounds(engine);
1274 
1275 	if (IS_SKYLAKE(dev_priv))
1276 		return skl_init_workarounds(engine);
1277 
1278 	if (IS_BROXTON(dev_priv))
1279 		return bxt_init_workarounds(engine);
1280 
1281 	if (IS_KABYLAKE(dev_priv))
1282 		return kbl_init_workarounds(engine);
1283 
1284 	return 0;
1285 }
1286 
1287 static int init_render_ring(struct intel_engine_cs *engine)
1288 {
1289 	struct drm_i915_private *dev_priv = engine->i915;
1290 	int ret = init_ring_common(engine);
1291 	if (ret)
1292 		return ret;
1293 
1294 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1295 	if (IS_GEN(dev_priv, 4, 6))
1296 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1297 
1298 	/* We need to disable the AsyncFlip performance optimisations in order
1299 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1300 	 * programmed to '1' on all products.
1301 	 *
1302 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1303 	 */
1304 	if (IS_GEN(dev_priv, 6, 7))
1305 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1306 
1307 	/* Required for the hardware to program scanline values for waiting */
1308 	/* WaEnableFlushTlbInvalidationMode:snb */
1309 	if (IS_GEN6(dev_priv))
1310 		I915_WRITE(GFX_MODE,
1311 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1312 
1313 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1314 	if (IS_GEN7(dev_priv))
1315 		I915_WRITE(GFX_MODE_GEN7,
1316 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1317 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1318 
1319 	if (IS_GEN6(dev_priv)) {
1320 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1321 		 * "If this bit is set, STCunit will have LRA as replacement
1322 		 *  policy. [...] This bit must be reset.  LRA replacement
1323 		 *  policy is not supported."
1324 		 */
1325 		I915_WRITE(CACHE_MODE_0,
1326 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1327 	}
1328 
1329 	if (IS_GEN(dev_priv, 6, 7))
1330 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1331 
1332 	if (HAS_L3_DPF(dev_priv))
1333 		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1334 
1335 	return init_workarounds_ring(engine);
1336 }
1337 
1338 static void render_ring_cleanup(struct intel_engine_cs *engine)
1339 {
1340 	struct drm_i915_private *dev_priv = engine->i915;
1341 
1342 	if (dev_priv->semaphore_obj) {
1343 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1344 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1345 		dev_priv->semaphore_obj = NULL;
1346 	}
1347 
1348 	intel_fini_pipe_control(engine);
1349 }
1350 
1351 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1352 			   unsigned int num_dwords)
1353 {
1354 #define MBOX_UPDATE_DWORDS 8
1355 	struct intel_engine_cs *signaller = signaller_req->engine;
1356 	struct drm_i915_private *dev_priv = signaller_req->i915;
1357 	struct intel_engine_cs *waiter;
1358 	enum intel_engine_id id;
1359 	int ret, num_rings;
1360 
1361 	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1362 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1363 #undef MBOX_UPDATE_DWORDS
1364 
1365 	ret = intel_ring_begin(signaller_req, num_dwords);
1366 	if (ret)
1367 		return ret;
1368 
1369 	for_each_engine_id(waiter, dev_priv, id) {
1370 		u32 seqno;
1371 		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1372 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1373 			continue;
1374 
1375 		seqno = i915_gem_request_get_seqno(signaller_req);
1376 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1377 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1378 					   PIPE_CONTROL_QW_WRITE |
1379 					   PIPE_CONTROL_CS_STALL);
1380 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1381 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1382 		intel_ring_emit(signaller, seqno);
1383 		intel_ring_emit(signaller, 0);
1384 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1385 					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1386 		intel_ring_emit(signaller, 0);
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1393 			   unsigned int num_dwords)
1394 {
1395 #define MBOX_UPDATE_DWORDS 6
1396 	struct intel_engine_cs *signaller = signaller_req->engine;
1397 	struct drm_i915_private *dev_priv = signaller_req->i915;
1398 	struct intel_engine_cs *waiter;
1399 	enum intel_engine_id id;
1400 	int ret, num_rings;
1401 
1402 	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1403 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1404 #undef MBOX_UPDATE_DWORDS
1405 
1406 	ret = intel_ring_begin(signaller_req, num_dwords);
1407 	if (ret)
1408 		return ret;
1409 
1410 	for_each_engine_id(waiter, dev_priv, id) {
1411 		u32 seqno;
1412 		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1413 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1414 			continue;
1415 
1416 		seqno = i915_gem_request_get_seqno(signaller_req);
1417 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1418 					   MI_FLUSH_DW_OP_STOREDW);
1419 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1420 					   MI_FLUSH_DW_USE_GTT);
1421 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1422 		intel_ring_emit(signaller, seqno);
1423 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1424 					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1425 		intel_ring_emit(signaller, 0);
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1432 		       unsigned int num_dwords)
1433 {
1434 	struct intel_engine_cs *signaller = signaller_req->engine;
1435 	struct drm_i915_private *dev_priv = signaller_req->i915;
1436 	struct intel_engine_cs *useless;
1437 	enum intel_engine_id id;
1438 	int ret, num_rings;
1439 
1440 #define MBOX_UPDATE_DWORDS 3
1441 	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1442 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1443 #undef MBOX_UPDATE_DWORDS
1444 
1445 	ret = intel_ring_begin(signaller_req, num_dwords);
1446 	if (ret)
1447 		return ret;
1448 
1449 	for_each_engine_id(useless, dev_priv, id) {
1450 		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1451 
1452 		if (i915_mmio_reg_valid(mbox_reg)) {
1453 			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1454 
1455 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1456 			intel_ring_emit_reg(signaller, mbox_reg);
1457 			intel_ring_emit(signaller, seqno);
1458 		}
1459 	}
1460 
1461 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1462 	if (num_rings % 2 == 0)
1463 		intel_ring_emit(signaller, MI_NOOP);
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  * gen6_add_request - Update the semaphore mailbox registers
1470  *
1471  * @request - request to write to the ring
1472  *
1473  * Update the mailbox registers in the *other* rings with the current seqno.
1474  * This acts like a signal in the canonical semaphore.
1475  */
1476 static int
1477 gen6_add_request(struct drm_i915_gem_request *req)
1478 {
1479 	struct intel_engine_cs *engine = req->engine;
1480 	int ret;
1481 
1482 	if (engine->semaphore.signal)
1483 		ret = engine->semaphore.signal(req, 4);
1484 	else
1485 		ret = intel_ring_begin(req, 4);
1486 
1487 	if (ret)
1488 		return ret;
1489 
1490 	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1491 	intel_ring_emit(engine,
1492 			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1493 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1494 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1495 	__intel_ring_advance(engine);
1496 
1497 	return 0;
1498 }
1499 
1500 static int
1501 gen8_render_add_request(struct drm_i915_gem_request *req)
1502 {
1503 	struct intel_engine_cs *engine = req->engine;
1504 	int ret;
1505 
1506 	if (engine->semaphore.signal)
1507 		ret = engine->semaphore.signal(req, 8);
1508 	else
1509 		ret = intel_ring_begin(req, 8);
1510 	if (ret)
1511 		return ret;
1512 
1513 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1514 	intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1515 				 PIPE_CONTROL_CS_STALL |
1516 				 PIPE_CONTROL_QW_WRITE));
1517 	intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1518 	intel_ring_emit(engine, 0);
1519 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1520 	/* We're thrashing one dword of HWS. */
1521 	intel_ring_emit(engine, 0);
1522 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1523 	intel_ring_emit(engine, MI_NOOP);
1524 	__intel_ring_advance(engine);
1525 
1526 	return 0;
1527 }
1528 
1529 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1530 					      u32 seqno)
1531 {
1532 	return dev_priv->last_seqno < seqno;
1533 }
1534 
1535 /**
1536  * intel_ring_sync - sync the waiter to the signaller on seqno
1537  *
1538  * @waiter - ring that is waiting
1539  * @signaller - ring which has, or will signal
1540  * @seqno - seqno which the waiter will block on
1541  */
1542 
1543 static int
1544 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1545 	       struct intel_engine_cs *signaller,
1546 	       u32 seqno)
1547 {
1548 	struct intel_engine_cs *waiter = waiter_req->engine;
1549 	struct drm_i915_private *dev_priv = waiter_req->i915;
1550 	u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1551 	struct i915_hw_ppgtt *ppgtt;
1552 	int ret;
1553 
1554 	ret = intel_ring_begin(waiter_req, 4);
1555 	if (ret)
1556 		return ret;
1557 
1558 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1559 				MI_SEMAPHORE_GLOBAL_GTT |
1560 				MI_SEMAPHORE_SAD_GTE_SDD);
1561 	intel_ring_emit(waiter, seqno);
1562 	intel_ring_emit(waiter, lower_32_bits(offset));
1563 	intel_ring_emit(waiter, upper_32_bits(offset));
1564 	intel_ring_advance(waiter);
1565 
1566 	/* When the !RCS engines idle waiting upon a semaphore, they lose their
1567 	 * pagetables and we must reload them before executing the batch.
1568 	 * We do this on the i915_switch_context() following the wait and
1569 	 * before the dispatch.
1570 	 */
1571 	ppgtt = waiter_req->ctx->ppgtt;
1572 	if (ppgtt && waiter_req->engine->id != RCS)
1573 		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1574 	return 0;
1575 }
1576 
1577 static int
1578 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1579 	       struct intel_engine_cs *signaller,
1580 	       u32 seqno)
1581 {
1582 	struct intel_engine_cs *waiter = waiter_req->engine;
1583 	u32 dw1 = MI_SEMAPHORE_MBOX |
1584 		  MI_SEMAPHORE_COMPARE |
1585 		  MI_SEMAPHORE_REGISTER;
1586 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1587 	int ret;
1588 
1589 	/* Throughout all of the GEM code, seqno passed implies our current
1590 	 * seqno is >= the last seqno executed. However for hardware the
1591 	 * comparison is strictly greater than.
1592 	 */
1593 	seqno -= 1;
1594 
1595 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1596 
1597 	ret = intel_ring_begin(waiter_req, 4);
1598 	if (ret)
1599 		return ret;
1600 
1601 	/* If seqno wrap happened, omit the wait with no-ops */
1602 	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1603 		intel_ring_emit(waiter, dw1 | wait_mbox);
1604 		intel_ring_emit(waiter, seqno);
1605 		intel_ring_emit(waiter, 0);
1606 		intel_ring_emit(waiter, MI_NOOP);
1607 	} else {
1608 		intel_ring_emit(waiter, MI_NOOP);
1609 		intel_ring_emit(waiter, MI_NOOP);
1610 		intel_ring_emit(waiter, MI_NOOP);
1611 		intel_ring_emit(waiter, MI_NOOP);
1612 	}
1613 	intel_ring_advance(waiter);
1614 
1615 	return 0;
1616 }
1617 
1618 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1619 do {									\
1620 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1621 		 PIPE_CONTROL_DEPTH_STALL);				\
1622 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1623 	intel_ring_emit(ring__, 0);							\
1624 	intel_ring_emit(ring__, 0);							\
1625 } while (0)
1626 
1627 static int
1628 pc_render_add_request(struct drm_i915_gem_request *req)
1629 {
1630 	struct intel_engine_cs *engine = req->engine;
1631 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1632 	int ret;
1633 
1634 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1635 	 * incoherent with writes to memory, i.e. completely fubar,
1636 	 * so we need to use PIPE_NOTIFY instead.
1637 	 *
1638 	 * However, we also need to workaround the qword write
1639 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1640 	 * memory before requesting an interrupt.
1641 	 */
1642 	ret = intel_ring_begin(req, 32);
1643 	if (ret)
1644 		return ret;
1645 
1646 	intel_ring_emit(engine,
1647 			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1648 			PIPE_CONTROL_WRITE_FLUSH |
1649 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1650 	intel_ring_emit(engine,
1651 			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1652 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1653 	intel_ring_emit(engine, 0);
1654 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1655 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1656 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1657 	scratch_addr += 2 * CACHELINE_BYTES;
1658 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1659 	scratch_addr += 2 * CACHELINE_BYTES;
1660 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1661 	scratch_addr += 2 * CACHELINE_BYTES;
1662 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1663 	scratch_addr += 2 * CACHELINE_BYTES;
1664 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1665 
1666 	intel_ring_emit(engine,
1667 			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1668 			PIPE_CONTROL_WRITE_FLUSH |
1669 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1670 			PIPE_CONTROL_NOTIFY);
1671 	intel_ring_emit(engine,
1672 			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1673 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1674 	intel_ring_emit(engine, 0);
1675 	__intel_ring_advance(engine);
1676 
1677 	return 0;
1678 }
1679 
1680 static void
1681 gen6_seqno_barrier(struct intel_engine_cs *engine)
1682 {
1683 	struct drm_i915_private *dev_priv = engine->i915;
1684 
1685 	/* Workaround to force correct ordering between irq and seqno writes on
1686 	 * ivb (and maybe also on snb) by reading from a CS register (like
1687 	 * ACTHD) before reading the status page.
1688 	 *
1689 	 * Note that this effectively stalls the read by the time it takes to
1690 	 * do a memory transaction, which more or less ensures that the write
1691 	 * from the GPU has sufficient time to invalidate the CPU cacheline.
1692 	 * Alternatively we could delay the interrupt from the CS ring to give
1693 	 * the write time to land, but that would incur a delay after every
1694 	 * batch i.e. much more frequent than a delay when waiting for the
1695 	 * interrupt (with the same net latency).
1696 	 *
1697 	 * Also note that to prevent whole machine hangs on gen7, we have to
1698 	 * take the spinlock to guard against concurrent cacheline access.
1699 	 */
1700 	spin_lock_irq(&dev_priv->uncore.lock);
1701 	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1702 	spin_unlock_irq(&dev_priv->uncore.lock);
1703 }
1704 
1705 static u32
1706 ring_get_seqno(struct intel_engine_cs *engine)
1707 {
1708 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1709 }
1710 
1711 static void
1712 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1713 {
1714 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1715 }
1716 
1717 static u32
1718 pc_render_get_seqno(struct intel_engine_cs *engine)
1719 {
1720 	return engine->scratch.cpu_page[0];
1721 }
1722 
1723 static void
1724 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1725 {
1726 	engine->scratch.cpu_page[0] = seqno;
1727 }
1728 
1729 static bool
1730 gen5_ring_get_irq(struct intel_engine_cs *engine)
1731 {
1732 	struct drm_i915_private *dev_priv = engine->i915;
1733 	unsigned long flags;
1734 
1735 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1736 		return false;
1737 
1738 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1739 	if (engine->irq_refcount++ == 0)
1740 		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1741 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1742 
1743 	return true;
1744 }
1745 
1746 static void
1747 gen5_ring_put_irq(struct intel_engine_cs *engine)
1748 {
1749 	struct drm_i915_private *dev_priv = engine->i915;
1750 	unsigned long flags;
1751 
1752 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1753 	if (--engine->irq_refcount == 0)
1754 		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1755 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1756 }
1757 
1758 static bool
1759 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1760 {
1761 	struct drm_i915_private *dev_priv = engine->i915;
1762 	unsigned long flags;
1763 
1764 	if (!intel_irqs_enabled(dev_priv))
1765 		return false;
1766 
1767 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1768 	if (engine->irq_refcount++ == 0) {
1769 		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1770 		I915_WRITE(IMR, dev_priv->irq_mask);
1771 		POSTING_READ(IMR);
1772 	}
1773 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1774 
1775 	return true;
1776 }
1777 
1778 static void
1779 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1780 {
1781 	struct drm_i915_private *dev_priv = engine->i915;
1782 	unsigned long flags;
1783 
1784 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1785 	if (--engine->irq_refcount == 0) {
1786 		dev_priv->irq_mask |= engine->irq_enable_mask;
1787 		I915_WRITE(IMR, dev_priv->irq_mask);
1788 		POSTING_READ(IMR);
1789 	}
1790 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791 }
1792 
1793 static bool
1794 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1795 {
1796 	struct drm_i915_private *dev_priv = engine->i915;
1797 	unsigned long flags;
1798 
1799 	if (!intel_irqs_enabled(dev_priv))
1800 		return false;
1801 
1802 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803 	if (engine->irq_refcount++ == 0) {
1804 		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1805 		I915_WRITE16(IMR, dev_priv->irq_mask);
1806 		POSTING_READ16(IMR);
1807 	}
1808 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1809 
1810 	return true;
1811 }
1812 
1813 static void
1814 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1815 {
1816 	struct drm_i915_private *dev_priv = engine->i915;
1817 	unsigned long flags;
1818 
1819 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1820 	if (--engine->irq_refcount == 0) {
1821 		dev_priv->irq_mask |= engine->irq_enable_mask;
1822 		I915_WRITE16(IMR, dev_priv->irq_mask);
1823 		POSTING_READ16(IMR);
1824 	}
1825 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1826 }
1827 
1828 static int
1829 bsd_ring_flush(struct drm_i915_gem_request *req,
1830 	       u32     invalidate_domains,
1831 	       u32     flush_domains)
1832 {
1833 	struct intel_engine_cs *engine = req->engine;
1834 	int ret;
1835 
1836 	ret = intel_ring_begin(req, 2);
1837 	if (ret)
1838 		return ret;
1839 
1840 	intel_ring_emit(engine, MI_FLUSH);
1841 	intel_ring_emit(engine, MI_NOOP);
1842 	intel_ring_advance(engine);
1843 	return 0;
1844 }
1845 
1846 static int
1847 i9xx_add_request(struct drm_i915_gem_request *req)
1848 {
1849 	struct intel_engine_cs *engine = req->engine;
1850 	int ret;
1851 
1852 	ret = intel_ring_begin(req, 4);
1853 	if (ret)
1854 		return ret;
1855 
1856 	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1857 	intel_ring_emit(engine,
1858 			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1859 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1860 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1861 	__intel_ring_advance(engine);
1862 
1863 	return 0;
1864 }
1865 
1866 static bool
1867 gen6_ring_get_irq(struct intel_engine_cs *engine)
1868 {
1869 	struct drm_i915_private *dev_priv = engine->i915;
1870 	unsigned long flags;
1871 
1872 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1873 		return false;
1874 
1875 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1876 	if (engine->irq_refcount++ == 0) {
1877 		if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1878 			I915_WRITE_IMR(engine,
1879 				       ~(engine->irq_enable_mask |
1880 					 GT_PARITY_ERROR(dev_priv)));
1881 		else
1882 			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1883 		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1884 	}
1885 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1886 
1887 	return true;
1888 }
1889 
1890 static void
1891 gen6_ring_put_irq(struct intel_engine_cs *engine)
1892 {
1893 	struct drm_i915_private *dev_priv = engine->i915;
1894 	unsigned long flags;
1895 
1896 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1897 	if (--engine->irq_refcount == 0) {
1898 		if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1899 			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1900 		else
1901 			I915_WRITE_IMR(engine, ~0);
1902 		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1903 	}
1904 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1905 }
1906 
1907 static bool
1908 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1909 {
1910 	struct drm_i915_private *dev_priv = engine->i915;
1911 	unsigned long flags;
1912 
1913 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1914 		return false;
1915 
1916 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1917 	if (engine->irq_refcount++ == 0) {
1918 		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1919 		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1920 	}
1921 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1922 
1923 	return true;
1924 }
1925 
1926 static void
1927 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1928 {
1929 	struct drm_i915_private *dev_priv = engine->i915;
1930 	unsigned long flags;
1931 
1932 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1933 	if (--engine->irq_refcount == 0) {
1934 		I915_WRITE_IMR(engine, ~0);
1935 		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1936 	}
1937 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1938 }
1939 
1940 static bool
1941 gen8_ring_get_irq(struct intel_engine_cs *engine)
1942 {
1943 	struct drm_i915_private *dev_priv = engine->i915;
1944 	unsigned long flags;
1945 
1946 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1947 		return false;
1948 
1949 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1950 	if (engine->irq_refcount++ == 0) {
1951 		if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1952 			I915_WRITE_IMR(engine,
1953 				       ~(engine->irq_enable_mask |
1954 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1955 		} else {
1956 			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1957 		}
1958 		POSTING_READ(RING_IMR(engine->mmio_base));
1959 	}
1960 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1961 
1962 	return true;
1963 }
1964 
1965 static void
1966 gen8_ring_put_irq(struct intel_engine_cs *engine)
1967 {
1968 	struct drm_i915_private *dev_priv = engine->i915;
1969 	unsigned long flags;
1970 
1971 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1972 	if (--engine->irq_refcount == 0) {
1973 		if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1974 			I915_WRITE_IMR(engine,
1975 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1976 		} else {
1977 			I915_WRITE_IMR(engine, ~0);
1978 		}
1979 		POSTING_READ(RING_IMR(engine->mmio_base));
1980 	}
1981 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1982 }
1983 
1984 static int
1985 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1986 			 u64 offset, u32 length,
1987 			 unsigned dispatch_flags)
1988 {
1989 	struct intel_engine_cs *engine = req->engine;
1990 	int ret;
1991 
1992 	ret = intel_ring_begin(req, 2);
1993 	if (ret)
1994 		return ret;
1995 
1996 	intel_ring_emit(engine,
1997 			MI_BATCH_BUFFER_START |
1998 			MI_BATCH_GTT |
1999 			(dispatch_flags & I915_DISPATCH_SECURE ?
2000 			 0 : MI_BATCH_NON_SECURE_I965));
2001 	intel_ring_emit(engine, offset);
2002 	intel_ring_advance(engine);
2003 
2004 	return 0;
2005 }
2006 
2007 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
2008 #define I830_BATCH_LIMIT (256*1024)
2009 #define I830_TLB_ENTRIES (2)
2010 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2011 static int
2012 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
2013 			 u64 offset, u32 len,
2014 			 unsigned dispatch_flags)
2015 {
2016 	struct intel_engine_cs *engine = req->engine;
2017 	u32 cs_offset = engine->scratch.gtt_offset;
2018 	int ret;
2019 
2020 	ret = intel_ring_begin(req, 6);
2021 	if (ret)
2022 		return ret;
2023 
2024 	/* Evict the invalid PTE TLBs */
2025 	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2026 	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2027 	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2028 	intel_ring_emit(engine, cs_offset);
2029 	intel_ring_emit(engine, 0xdeadbeef);
2030 	intel_ring_emit(engine, MI_NOOP);
2031 	intel_ring_advance(engine);
2032 
2033 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2034 		if (len > I830_BATCH_LIMIT)
2035 			return -ENOSPC;
2036 
2037 		ret = intel_ring_begin(req, 6 + 2);
2038 		if (ret)
2039 			return ret;
2040 
2041 		/* Blit the batch (which has now all relocs applied) to the
2042 		 * stable batch scratch bo area (so that the CS never
2043 		 * stumbles over its tlb invalidation bug) ...
2044 		 */
2045 		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2046 		intel_ring_emit(engine,
2047 				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2048 		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2049 		intel_ring_emit(engine, cs_offset);
2050 		intel_ring_emit(engine, 4096);
2051 		intel_ring_emit(engine, offset);
2052 
2053 		intel_ring_emit(engine, MI_FLUSH);
2054 		intel_ring_emit(engine, MI_NOOP);
2055 		intel_ring_advance(engine);
2056 
2057 		/* ... and execute it. */
2058 		offset = cs_offset;
2059 	}
2060 
2061 	ret = intel_ring_begin(req, 2);
2062 	if (ret)
2063 		return ret;
2064 
2065 	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2066 	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2067 					  0 : MI_BATCH_NON_SECURE));
2068 	intel_ring_advance(engine);
2069 
2070 	return 0;
2071 }
2072 
2073 static int
2074 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2075 			 u64 offset, u32 len,
2076 			 unsigned dispatch_flags)
2077 {
2078 	struct intel_engine_cs *engine = req->engine;
2079 	int ret;
2080 
2081 	ret = intel_ring_begin(req, 2);
2082 	if (ret)
2083 		return ret;
2084 
2085 	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2086 	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2087 					  0 : MI_BATCH_NON_SECURE));
2088 	intel_ring_advance(engine);
2089 
2090 	return 0;
2091 }
2092 
2093 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2094 {
2095 	struct drm_i915_private *dev_priv = engine->i915;
2096 
2097 	if (!dev_priv->status_page_dmah)
2098 		return;
2099 
2100 	drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2101 	engine->status_page.page_addr = NULL;
2102 }
2103 
2104 static void cleanup_status_page(struct intel_engine_cs *engine)
2105 {
2106 	struct drm_i915_gem_object *obj;
2107 
2108 	obj = engine->status_page.obj;
2109 	if (obj == NULL)
2110 		return;
2111 
2112 	kunmap(sg_page(obj->pages->sgl));
2113 	i915_gem_object_ggtt_unpin(obj);
2114 	drm_gem_object_unreference(&obj->base);
2115 	engine->status_page.obj = NULL;
2116 }
2117 
2118 static int init_status_page(struct intel_engine_cs *engine)
2119 {
2120 	struct drm_i915_gem_object *obj = engine->status_page.obj;
2121 
2122 	if (obj == NULL) {
2123 		unsigned flags;
2124 		int ret;
2125 
2126 		obj = i915_gem_object_create(engine->i915->dev, 4096);
2127 		if (IS_ERR(obj)) {
2128 			DRM_ERROR("Failed to allocate status page\n");
2129 			return PTR_ERR(obj);
2130 		}
2131 
2132 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2133 		if (ret)
2134 			goto err_unref;
2135 
2136 		flags = 0;
2137 		if (!HAS_LLC(engine->i915))
2138 			/* On g33, we cannot place HWS above 256MiB, so
2139 			 * restrict its pinning to the low mappable arena.
2140 			 * Though this restriction is not documented for
2141 			 * gen4, gen5, or byt, they also behave similarly
2142 			 * and hang if the HWS is placed at the top of the
2143 			 * GTT. To generalise, it appears that all !llc
2144 			 * platforms have issues with us placing the HWS
2145 			 * above the mappable region (even though we never
2146 			 * actualy map it).
2147 			 */
2148 			flags |= PIN_MAPPABLE;
2149 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2150 		if (ret) {
2151 err_unref:
2152 			drm_gem_object_unreference(&obj->base);
2153 			return ret;
2154 		}
2155 
2156 		engine->status_page.obj = obj;
2157 	}
2158 
2159 	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2160 	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2161 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2162 
2163 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2164 			engine->name, engine->status_page.gfx_addr);
2165 
2166 	return 0;
2167 }
2168 
2169 static int init_phys_status_page(struct intel_engine_cs *engine)
2170 {
2171 	struct drm_i915_private *dev_priv = engine->i915;
2172 
2173 	if (!dev_priv->status_page_dmah) {
2174 		dev_priv->status_page_dmah =
2175 			drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2176 		if (!dev_priv->status_page_dmah)
2177 			return -ENOMEM;
2178 	}
2179 
2180 	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2181 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2182 
2183 	return 0;
2184 }
2185 
2186 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2187 {
2188 	GEM_BUG_ON(ringbuf->vma == NULL);
2189 	GEM_BUG_ON(ringbuf->virtual_start == NULL);
2190 
2191 	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2192 		i915_gem_object_unpin_map(ringbuf->obj);
2193 	else
2194 		i915_vma_unpin_iomap(ringbuf->vma);
2195 	ringbuf->virtual_start = NULL;
2196 
2197 	i915_gem_object_ggtt_unpin(ringbuf->obj);
2198 	ringbuf->vma = NULL;
2199 }
2200 
2201 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2202 				     struct intel_ringbuffer *ringbuf)
2203 {
2204 	struct drm_i915_gem_object *obj = ringbuf->obj;
2205 	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2206 	unsigned flags = PIN_OFFSET_BIAS | 4096;
2207 	void *addr;
2208 	int ret;
2209 
2210 	if (HAS_LLC(dev_priv) && !obj->stolen) {
2211 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2212 		if (ret)
2213 			return ret;
2214 
2215 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2216 		if (ret)
2217 			goto err_unpin;
2218 
2219 		addr = i915_gem_object_pin_map(obj);
2220 		if (IS_ERR(addr)) {
2221 			ret = PTR_ERR(addr);
2222 			goto err_unpin;
2223 		}
2224 	} else {
2225 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2226 					    flags | PIN_MAPPABLE);
2227 		if (ret)
2228 			return ret;
2229 
2230 		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2231 		if (ret)
2232 			goto err_unpin;
2233 
2234 		/* Access through the GTT requires the device to be awake. */
2235 		assert_rpm_wakelock_held(dev_priv);
2236 
2237 		addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2238 		if (IS_ERR(addr)) {
2239 			ret = PTR_ERR(addr);
2240 			goto err_unpin;
2241 		}
2242 	}
2243 
2244 	ringbuf->virtual_start = addr;
2245 	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2246 	return 0;
2247 
2248 err_unpin:
2249 	i915_gem_object_ggtt_unpin(obj);
2250 	return ret;
2251 }
2252 
2253 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2254 {
2255 	drm_gem_object_unreference(&ringbuf->obj->base);
2256 	ringbuf->obj = NULL;
2257 }
2258 
2259 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2260 				      struct intel_ringbuffer *ringbuf)
2261 {
2262 	struct drm_i915_gem_object *obj;
2263 
2264 	obj = NULL;
2265 	if (!HAS_LLC(dev))
2266 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2267 	if (obj == NULL)
2268 		obj = i915_gem_object_create(dev, ringbuf->size);
2269 	if (IS_ERR(obj))
2270 		return PTR_ERR(obj);
2271 
2272 	/* mark ring buffers as read-only from GPU side by default */
2273 	obj->gt_ro = 1;
2274 
2275 	ringbuf->obj = obj;
2276 
2277 	return 0;
2278 }
2279 
2280 struct intel_ringbuffer *
2281 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2282 {
2283 	struct intel_ringbuffer *ring;
2284 	int ret;
2285 
2286 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2287 	if (ring == NULL) {
2288 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2289 				 engine->name);
2290 		return ERR_PTR(-ENOMEM);
2291 	}
2292 
2293 	ring->engine = engine;
2294 	list_add(&ring->link, &engine->buffers);
2295 
2296 	ring->size = size;
2297 	/* Workaround an erratum on the i830 which causes a hang if
2298 	 * the TAIL pointer points to within the last 2 cachelines
2299 	 * of the buffer.
2300 	 */
2301 	ring->effective_size = size;
2302 	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2303 		ring->effective_size -= 2 * CACHELINE_BYTES;
2304 
2305 	ring->last_retired_head = -1;
2306 	intel_ring_update_space(ring);
2307 
2308 	ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2309 	if (ret) {
2310 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2311 				 engine->name, ret);
2312 		list_del(&ring->link);
2313 		kfree(ring);
2314 		return ERR_PTR(ret);
2315 	}
2316 
2317 	return ring;
2318 }
2319 
2320 void
2321 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2322 {
2323 	intel_destroy_ringbuffer_obj(ring);
2324 	list_del(&ring->link);
2325 	kfree(ring);
2326 }
2327 
2328 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2329 				  struct intel_engine_cs *engine)
2330 {
2331 	struct intel_context *ce = &ctx->engine[engine->id];
2332 	int ret;
2333 
2334 	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2335 
2336 	if (ce->pin_count++)
2337 		return 0;
2338 
2339 	if (ce->state) {
2340 		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2341 		if (ret)
2342 			goto error;
2343 	}
2344 
2345 	/* The kernel context is only used as a placeholder for flushing the
2346 	 * active context. It is never used for submitting user rendering and
2347 	 * as such never requires the golden render context, and so we can skip
2348 	 * emitting it when we switch to the kernel context. This is required
2349 	 * as during eviction we cannot allocate and pin the renderstate in
2350 	 * order to initialise the context.
2351 	 */
2352 	if (ctx == ctx->i915->kernel_context)
2353 		ce->initialised = true;
2354 
2355 	i915_gem_context_reference(ctx);
2356 	return 0;
2357 
2358 error:
2359 	ce->pin_count = 0;
2360 	return ret;
2361 }
2362 
2363 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2364 				     struct intel_engine_cs *engine)
2365 {
2366 	struct intel_context *ce = &ctx->engine[engine->id];
2367 
2368 	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2369 
2370 	if (--ce->pin_count)
2371 		return;
2372 
2373 	if (ce->state)
2374 		i915_gem_object_ggtt_unpin(ce->state);
2375 
2376 	i915_gem_context_unreference(ctx);
2377 }
2378 
2379 static int intel_init_ring_buffer(struct drm_device *dev,
2380 				  struct intel_engine_cs *engine)
2381 {
2382 	struct drm_i915_private *dev_priv = to_i915(dev);
2383 	struct intel_ringbuffer *ringbuf;
2384 	int ret;
2385 
2386 	WARN_ON(engine->buffer);
2387 
2388 	engine->i915 = dev_priv;
2389 	INIT_LIST_HEAD(&engine->active_list);
2390 	INIT_LIST_HEAD(&engine->request_list);
2391 	INIT_LIST_HEAD(&engine->execlist_queue);
2392 	INIT_LIST_HEAD(&engine->buffers);
2393 	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2394 	memset(engine->semaphore.sync_seqno, 0,
2395 	       sizeof(engine->semaphore.sync_seqno));
2396 
2397 	init_waitqueue_head(&engine->irq_queue);
2398 
2399 	/* We may need to do things with the shrinker which
2400 	 * require us to immediately switch back to the default
2401 	 * context. This can cause a problem as pinning the
2402 	 * default context also requires GTT space which may not
2403 	 * be available. To avoid this we always pin the default
2404 	 * context.
2405 	 */
2406 	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2407 	if (ret)
2408 		goto error;
2409 
2410 	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2411 	if (IS_ERR(ringbuf)) {
2412 		ret = PTR_ERR(ringbuf);
2413 		goto error;
2414 	}
2415 	engine->buffer = ringbuf;
2416 
2417 	if (I915_NEED_GFX_HWS(dev_priv)) {
2418 		ret = init_status_page(engine);
2419 		if (ret)
2420 			goto error;
2421 	} else {
2422 		WARN_ON(engine->id != RCS);
2423 		ret = init_phys_status_page(engine);
2424 		if (ret)
2425 			goto error;
2426 	}
2427 
2428 	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2429 	if (ret) {
2430 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2431 				engine->name, ret);
2432 		intel_destroy_ringbuffer_obj(ringbuf);
2433 		goto error;
2434 	}
2435 
2436 	ret = i915_cmd_parser_init_ring(engine);
2437 	if (ret)
2438 		goto error;
2439 
2440 	return 0;
2441 
2442 error:
2443 	intel_cleanup_engine(engine);
2444 	return ret;
2445 }
2446 
2447 void intel_cleanup_engine(struct intel_engine_cs *engine)
2448 {
2449 	struct drm_i915_private *dev_priv;
2450 
2451 	if (!intel_engine_initialized(engine))
2452 		return;
2453 
2454 	dev_priv = engine->i915;
2455 
2456 	if (engine->buffer) {
2457 		intel_stop_engine(engine);
2458 		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2459 
2460 		intel_unpin_ringbuffer_obj(engine->buffer);
2461 		intel_ringbuffer_free(engine->buffer);
2462 		engine->buffer = NULL;
2463 	}
2464 
2465 	if (engine->cleanup)
2466 		engine->cleanup(engine);
2467 
2468 	if (I915_NEED_GFX_HWS(dev_priv)) {
2469 		cleanup_status_page(engine);
2470 	} else {
2471 		WARN_ON(engine->id != RCS);
2472 		cleanup_phys_status_page(engine);
2473 	}
2474 
2475 	i915_cmd_parser_fini_ring(engine);
2476 	i915_gem_batch_pool_fini(&engine->batch_pool);
2477 
2478 	intel_ring_context_unpin(dev_priv->kernel_context, engine);
2479 
2480 	engine->i915 = NULL;
2481 }
2482 
2483 int intel_engine_idle(struct intel_engine_cs *engine)
2484 {
2485 	struct drm_i915_gem_request *req;
2486 
2487 	/* Wait upon the last request to be completed */
2488 	if (list_empty(&engine->request_list))
2489 		return 0;
2490 
2491 	req = list_entry(engine->request_list.prev,
2492 			 struct drm_i915_gem_request,
2493 			 list);
2494 
2495 	/* Make sure we do not trigger any retires */
2496 	return __i915_wait_request(req,
2497 				   req->i915->mm.interruptible,
2498 				   NULL, NULL);
2499 }
2500 
2501 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2502 {
2503 	int ret;
2504 
2505 	/* Flush enough space to reduce the likelihood of waiting after
2506 	 * we start building the request - in which case we will just
2507 	 * have to repeat work.
2508 	 */
2509 	request->reserved_space += LEGACY_REQUEST_SIZE;
2510 
2511 	request->ringbuf = request->engine->buffer;
2512 
2513 	ret = intel_ring_begin(request, 0);
2514 	if (ret)
2515 		return ret;
2516 
2517 	request->reserved_space -= LEGACY_REQUEST_SIZE;
2518 	return 0;
2519 }
2520 
2521 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2522 {
2523 	struct intel_ringbuffer *ringbuf = req->ringbuf;
2524 	struct intel_engine_cs *engine = req->engine;
2525 	struct drm_i915_gem_request *target;
2526 
2527 	intel_ring_update_space(ringbuf);
2528 	if (ringbuf->space >= bytes)
2529 		return 0;
2530 
2531 	/*
2532 	 * Space is reserved in the ringbuffer for finalising the request,
2533 	 * as that cannot be allowed to fail. During request finalisation,
2534 	 * reserved_space is set to 0 to stop the overallocation and the
2535 	 * assumption is that then we never need to wait (which has the
2536 	 * risk of failing with EINTR).
2537 	 *
2538 	 * See also i915_gem_request_alloc() and i915_add_request().
2539 	 */
2540 	GEM_BUG_ON(!req->reserved_space);
2541 
2542 	list_for_each_entry(target, &engine->request_list, list) {
2543 		unsigned space;
2544 
2545 		/*
2546 		 * The request queue is per-engine, so can contain requests
2547 		 * from multiple ringbuffers. Here, we must ignore any that
2548 		 * aren't from the ringbuffer we're considering.
2549 		 */
2550 		if (target->ringbuf != ringbuf)
2551 			continue;
2552 
2553 		/* Would completion of this request free enough space? */
2554 		space = __intel_ring_space(target->postfix, ringbuf->tail,
2555 					   ringbuf->size);
2556 		if (space >= bytes)
2557 			break;
2558 	}
2559 
2560 	if (WARN_ON(&target->list == &engine->request_list))
2561 		return -ENOSPC;
2562 
2563 	return i915_wait_request(target);
2564 }
2565 
2566 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2567 {
2568 	struct intel_ringbuffer *ringbuf = req->ringbuf;
2569 	int remain_actual = ringbuf->size - ringbuf->tail;
2570 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2571 	int bytes = num_dwords * sizeof(u32);
2572 	int total_bytes, wait_bytes;
2573 	bool need_wrap = false;
2574 
2575 	total_bytes = bytes + req->reserved_space;
2576 
2577 	if (unlikely(bytes > remain_usable)) {
2578 		/*
2579 		 * Not enough space for the basic request. So need to flush
2580 		 * out the remainder and then wait for base + reserved.
2581 		 */
2582 		wait_bytes = remain_actual + total_bytes;
2583 		need_wrap = true;
2584 	} else if (unlikely(total_bytes > remain_usable)) {
2585 		/*
2586 		 * The base request will fit but the reserved space
2587 		 * falls off the end. So we don't need an immediate wrap
2588 		 * and only need to effectively wait for the reserved
2589 		 * size space from the start of ringbuffer.
2590 		 */
2591 		wait_bytes = remain_actual + req->reserved_space;
2592 	} else {
2593 		/* No wrapping required, just waiting. */
2594 		wait_bytes = total_bytes;
2595 	}
2596 
2597 	if (wait_bytes > ringbuf->space) {
2598 		int ret = wait_for_space(req, wait_bytes);
2599 		if (unlikely(ret))
2600 			return ret;
2601 
2602 		intel_ring_update_space(ringbuf);
2603 		if (unlikely(ringbuf->space < wait_bytes))
2604 			return -EAGAIN;
2605 	}
2606 
2607 	if (unlikely(need_wrap)) {
2608 		GEM_BUG_ON(remain_actual > ringbuf->space);
2609 		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2610 
2611 		/* Fill the tail with MI_NOOP */
2612 		memset(ringbuf->virtual_start + ringbuf->tail,
2613 		       0, remain_actual);
2614 		ringbuf->tail = 0;
2615 		ringbuf->space -= remain_actual;
2616 	}
2617 
2618 	ringbuf->space -= bytes;
2619 	GEM_BUG_ON(ringbuf->space < 0);
2620 	return 0;
2621 }
2622 
2623 /* Align the ring tail to a cacheline boundary */
2624 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2625 {
2626 	struct intel_engine_cs *engine = req->engine;
2627 	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2628 	int ret;
2629 
2630 	if (num_dwords == 0)
2631 		return 0;
2632 
2633 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2634 	ret = intel_ring_begin(req, num_dwords);
2635 	if (ret)
2636 		return ret;
2637 
2638 	while (num_dwords--)
2639 		intel_ring_emit(engine, MI_NOOP);
2640 
2641 	intel_ring_advance(engine);
2642 
2643 	return 0;
2644 }
2645 
2646 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2647 {
2648 	struct drm_i915_private *dev_priv = engine->i915;
2649 
2650 	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
2651 	 * so long as the semaphore value in the register/page is greater
2652 	 * than the sync value), so whenever we reset the seqno,
2653 	 * so long as we reset the tracking semaphore value to 0, it will
2654 	 * always be before the next request's seqno. If we don't reset
2655 	 * the semaphore value, then when the seqno moves backwards all
2656 	 * future waits will complete instantly (causing rendering corruption).
2657 	 */
2658 	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2659 		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2660 		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2661 		if (HAS_VEBOX(dev_priv))
2662 			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2663 	}
2664 	if (dev_priv->semaphore_obj) {
2665 		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2666 		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2667 		void *semaphores = kmap(page);
2668 		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2669 		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2670 		kunmap(page);
2671 	}
2672 	memset(engine->semaphore.sync_seqno, 0,
2673 	       sizeof(engine->semaphore.sync_seqno));
2674 
2675 	engine->set_seqno(engine, seqno);
2676 	engine->last_submitted_seqno = seqno;
2677 
2678 	engine->hangcheck.seqno = seqno;
2679 }
2680 
2681 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2682 				     u32 value)
2683 {
2684 	struct drm_i915_private *dev_priv = engine->i915;
2685 
2686 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2687 
2688        /* Every tail move must follow the sequence below */
2689 
2690 	/* Disable notification that the ring is IDLE. The GT
2691 	 * will then assume that it is busy and bring it out of rc6.
2692 	 */
2693 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2694 		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2695 
2696 	/* Clear the context id. Here be magic! */
2697 	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2698 
2699 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2700 	if (intel_wait_for_register_fw(dev_priv,
2701 				       GEN6_BSD_SLEEP_PSMI_CONTROL,
2702 				       GEN6_BSD_SLEEP_INDICATOR,
2703 				       0,
2704 				       50))
2705 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2706 
2707 	/* Now that the ring is fully powered up, update the tail */
2708 	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2709 	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2710 
2711 	/* Let the ring send IDLE messages to the GT again,
2712 	 * and so let it sleep to conserve power when idle.
2713 	 */
2714 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2715 		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2716 
2717 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2718 }
2719 
2720 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2721 			       u32 invalidate, u32 flush)
2722 {
2723 	struct intel_engine_cs *engine = req->engine;
2724 	uint32_t cmd;
2725 	int ret;
2726 
2727 	ret = intel_ring_begin(req, 4);
2728 	if (ret)
2729 		return ret;
2730 
2731 	cmd = MI_FLUSH_DW;
2732 	if (INTEL_GEN(req->i915) >= 8)
2733 		cmd += 1;
2734 
2735 	/* We always require a command barrier so that subsequent
2736 	 * commands, such as breadcrumb interrupts, are strictly ordered
2737 	 * wrt the contents of the write cache being flushed to memory
2738 	 * (and thus being coherent from the CPU).
2739 	 */
2740 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2741 
2742 	/*
2743 	 * Bspec vol 1c.5 - video engine command streamer:
2744 	 * "If ENABLED, all TLBs will be invalidated once the flush
2745 	 * operation is complete. This bit is only valid when the
2746 	 * Post-Sync Operation field is a value of 1h or 3h."
2747 	 */
2748 	if (invalidate & I915_GEM_GPU_DOMAINS)
2749 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2750 
2751 	intel_ring_emit(engine, cmd);
2752 	intel_ring_emit(engine,
2753 			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2754 	if (INTEL_GEN(req->i915) >= 8) {
2755 		intel_ring_emit(engine, 0); /* upper addr */
2756 		intel_ring_emit(engine, 0); /* value */
2757 	} else  {
2758 		intel_ring_emit(engine, 0);
2759 		intel_ring_emit(engine, MI_NOOP);
2760 	}
2761 	intel_ring_advance(engine);
2762 	return 0;
2763 }
2764 
2765 static int
2766 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2767 			      u64 offset, u32 len,
2768 			      unsigned dispatch_flags)
2769 {
2770 	struct intel_engine_cs *engine = req->engine;
2771 	bool ppgtt = USES_PPGTT(engine->dev) &&
2772 			!(dispatch_flags & I915_DISPATCH_SECURE);
2773 	int ret;
2774 
2775 	ret = intel_ring_begin(req, 4);
2776 	if (ret)
2777 		return ret;
2778 
2779 	/* FIXME(BDW): Address space and security selectors. */
2780 	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2781 			(dispatch_flags & I915_DISPATCH_RS ?
2782 			 MI_BATCH_RESOURCE_STREAMER : 0));
2783 	intel_ring_emit(engine, lower_32_bits(offset));
2784 	intel_ring_emit(engine, upper_32_bits(offset));
2785 	intel_ring_emit(engine, MI_NOOP);
2786 	intel_ring_advance(engine);
2787 
2788 	return 0;
2789 }
2790 
2791 static int
2792 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2793 			     u64 offset, u32 len,
2794 			     unsigned dispatch_flags)
2795 {
2796 	struct intel_engine_cs *engine = req->engine;
2797 	int ret;
2798 
2799 	ret = intel_ring_begin(req, 2);
2800 	if (ret)
2801 		return ret;
2802 
2803 	intel_ring_emit(engine,
2804 			MI_BATCH_BUFFER_START |
2805 			(dispatch_flags & I915_DISPATCH_SECURE ?
2806 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2807 			(dispatch_flags & I915_DISPATCH_RS ?
2808 			 MI_BATCH_RESOURCE_STREAMER : 0));
2809 	/* bit0-7 is the length on GEN6+ */
2810 	intel_ring_emit(engine, offset);
2811 	intel_ring_advance(engine);
2812 
2813 	return 0;
2814 }
2815 
2816 static int
2817 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2818 			      u64 offset, u32 len,
2819 			      unsigned dispatch_flags)
2820 {
2821 	struct intel_engine_cs *engine = req->engine;
2822 	int ret;
2823 
2824 	ret = intel_ring_begin(req, 2);
2825 	if (ret)
2826 		return ret;
2827 
2828 	intel_ring_emit(engine,
2829 			MI_BATCH_BUFFER_START |
2830 			(dispatch_flags & I915_DISPATCH_SECURE ?
2831 			 0 : MI_BATCH_NON_SECURE_I965));
2832 	/* bit0-7 is the length on GEN6+ */
2833 	intel_ring_emit(engine, offset);
2834 	intel_ring_advance(engine);
2835 
2836 	return 0;
2837 }
2838 
2839 /* Blitter support (SandyBridge+) */
2840 
2841 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2842 			   u32 invalidate, u32 flush)
2843 {
2844 	struct intel_engine_cs *engine = req->engine;
2845 	uint32_t cmd;
2846 	int ret;
2847 
2848 	ret = intel_ring_begin(req, 4);
2849 	if (ret)
2850 		return ret;
2851 
2852 	cmd = MI_FLUSH_DW;
2853 	if (INTEL_GEN(req->i915) >= 8)
2854 		cmd += 1;
2855 
2856 	/* We always require a command barrier so that subsequent
2857 	 * commands, such as breadcrumb interrupts, are strictly ordered
2858 	 * wrt the contents of the write cache being flushed to memory
2859 	 * (and thus being coherent from the CPU).
2860 	 */
2861 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2862 
2863 	/*
2864 	 * Bspec vol 1c.3 - blitter engine command streamer:
2865 	 * "If ENABLED, all TLBs will be invalidated once the flush
2866 	 * operation is complete. This bit is only valid when the
2867 	 * Post-Sync Operation field is a value of 1h or 3h."
2868 	 */
2869 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2870 		cmd |= MI_INVALIDATE_TLB;
2871 	intel_ring_emit(engine, cmd);
2872 	intel_ring_emit(engine,
2873 			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2874 	if (INTEL_GEN(req->i915) >= 8) {
2875 		intel_ring_emit(engine, 0); /* upper addr */
2876 		intel_ring_emit(engine, 0); /* value */
2877 	} else  {
2878 		intel_ring_emit(engine, 0);
2879 		intel_ring_emit(engine, MI_NOOP);
2880 	}
2881 	intel_ring_advance(engine);
2882 
2883 	return 0;
2884 }
2885 
2886 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2887 				       struct intel_engine_cs *engine)
2888 {
2889 	struct drm_i915_gem_object *obj;
2890 	int ret, i;
2891 
2892 	if (!i915_semaphore_is_enabled(dev_priv))
2893 		return;
2894 
2895 	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2896 		obj = i915_gem_object_create(dev_priv->dev, 4096);
2897 		if (IS_ERR(obj)) {
2898 			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2899 			i915.semaphores = 0;
2900 		} else {
2901 			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2902 			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2903 			if (ret != 0) {
2904 				drm_gem_object_unreference(&obj->base);
2905 				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2906 				i915.semaphores = 0;
2907 			} else {
2908 				dev_priv->semaphore_obj = obj;
2909 			}
2910 		}
2911 	}
2912 
2913 	if (!i915_semaphore_is_enabled(dev_priv))
2914 		return;
2915 
2916 	if (INTEL_GEN(dev_priv) >= 8) {
2917 		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2918 
2919 		engine->semaphore.sync_to = gen8_ring_sync;
2920 		engine->semaphore.signal = gen8_xcs_signal;
2921 
2922 		for (i = 0; i < I915_NUM_ENGINES; i++) {
2923 			u64 ring_offset;
2924 
2925 			if (i != engine->id)
2926 				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2927 			else
2928 				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2929 
2930 			engine->semaphore.signal_ggtt[i] = ring_offset;
2931 		}
2932 	} else if (INTEL_GEN(dev_priv) >= 6) {
2933 		engine->semaphore.sync_to = gen6_ring_sync;
2934 		engine->semaphore.signal = gen6_signal;
2935 
2936 		/*
2937 		 * The current semaphore is only applied on pre-gen8
2938 		 * platform.  And there is no VCS2 ring on the pre-gen8
2939 		 * platform. So the semaphore between RCS and VCS2 is
2940 		 * initialized as INVALID.  Gen8 will initialize the
2941 		 * sema between VCS2 and RCS later.
2942 		 */
2943 		for (i = 0; i < I915_NUM_ENGINES; i++) {
2944 			static const struct {
2945 				u32 wait_mbox;
2946 				i915_reg_t mbox_reg;
2947 			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2948 				[RCS] = {
2949 					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2950 					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2951 					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2952 				},
2953 				[VCS] = {
2954 					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2955 					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2956 					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2957 				},
2958 				[BCS] = {
2959 					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2960 					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2961 					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2962 				},
2963 				[VECS] = {
2964 					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2965 					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2966 					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2967 				},
2968 			};
2969 			u32 wait_mbox;
2970 			i915_reg_t mbox_reg;
2971 
2972 			if (i == engine->id || i == VCS2) {
2973 				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2974 				mbox_reg = GEN6_NOSYNC;
2975 			} else {
2976 				wait_mbox = sem_data[engine->id][i].wait_mbox;
2977 				mbox_reg = sem_data[engine->id][i].mbox_reg;
2978 			}
2979 
2980 			engine->semaphore.mbox.wait[i] = wait_mbox;
2981 			engine->semaphore.mbox.signal[i] = mbox_reg;
2982 		}
2983 	}
2984 }
2985 
2986 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2987 				struct intel_engine_cs *engine)
2988 {
2989 	if (INTEL_GEN(dev_priv) >= 8) {
2990 		engine->irq_get = gen8_ring_get_irq;
2991 		engine->irq_put = gen8_ring_put_irq;
2992 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2993 	} else if (INTEL_GEN(dev_priv) >= 6) {
2994 		engine->irq_get = gen6_ring_get_irq;
2995 		engine->irq_put = gen6_ring_put_irq;
2996 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2997 	} else if (INTEL_GEN(dev_priv) >= 5) {
2998 		engine->irq_get = gen5_ring_get_irq;
2999 		engine->irq_put = gen5_ring_put_irq;
3000 	} else if (INTEL_GEN(dev_priv) >= 3) {
3001 		engine->irq_get = i9xx_ring_get_irq;
3002 		engine->irq_put = i9xx_ring_put_irq;
3003 	} else {
3004 		engine->irq_get = i8xx_ring_get_irq;
3005 		engine->irq_put = i8xx_ring_put_irq;
3006 	}
3007 }
3008 
3009 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
3010 				      struct intel_engine_cs *engine)
3011 {
3012 	engine->init_hw = init_ring_common;
3013 	engine->write_tail = ring_write_tail;
3014 	engine->get_seqno = ring_get_seqno;
3015 	engine->set_seqno = ring_set_seqno;
3016 
3017 	engine->add_request = i9xx_add_request;
3018 	if (INTEL_GEN(dev_priv) >= 6)
3019 		engine->add_request = gen6_add_request;
3020 
3021 	if (INTEL_GEN(dev_priv) >= 8)
3022 		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3023 	else if (INTEL_GEN(dev_priv) >= 6)
3024 		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3025 	else if (INTEL_GEN(dev_priv) >= 4)
3026 		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3027 	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
3028 		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
3029 	else
3030 		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
3031 
3032 	intel_ring_init_irq(dev_priv, engine);
3033 	intel_ring_init_semaphores(dev_priv, engine);
3034 }
3035 
3036 int intel_init_render_ring_buffer(struct drm_device *dev)
3037 {
3038 	struct drm_i915_private *dev_priv = dev->dev_private;
3039 	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
3040 	struct drm_i915_gem_object *obj;
3041 	int ret;
3042 
3043 	engine->name = "render ring";
3044 	engine->id = RCS;
3045 	engine->exec_id = I915_EXEC_RENDER;
3046 	engine->hw_id = 0;
3047 	engine->mmio_base = RENDER_RING_BASE;
3048 
3049 	intel_ring_default_vfuncs(dev_priv, engine);
3050 
3051 	if (INTEL_GEN(dev_priv) >= 8) {
3052 		engine->init_context = intel_rcs_ctx_init;
3053 		engine->add_request = gen8_render_add_request;
3054 		engine->flush = gen8_render_ring_flush;
3055 		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3056 		if (i915_semaphore_is_enabled(dev_priv))
3057 			engine->semaphore.signal = gen8_rcs_signal;
3058 	} else if (INTEL_GEN(dev_priv) >= 6) {
3059 		engine->init_context = intel_rcs_ctx_init;
3060 		engine->flush = gen7_render_ring_flush;
3061 		if (IS_GEN6(dev_priv))
3062 			engine->flush = gen6_render_ring_flush;
3063 		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3064 	} else if (IS_GEN5(dev_priv)) {
3065 		engine->add_request = pc_render_add_request;
3066 		engine->flush = gen4_render_ring_flush;
3067 		engine->get_seqno = pc_render_get_seqno;
3068 		engine->set_seqno = pc_render_set_seqno;
3069 		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
3070 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3071 	} else {
3072 		if (INTEL_GEN(dev_priv) < 4)
3073 			engine->flush = gen2_render_ring_flush;
3074 		else
3075 			engine->flush = gen4_render_ring_flush;
3076 		engine->irq_enable_mask = I915_USER_INTERRUPT;
3077 	}
3078 
3079 	if (IS_HASWELL(dev_priv))
3080 		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
3081 
3082 	engine->init_hw = init_render_ring;
3083 	engine->cleanup = render_ring_cleanup;
3084 
3085 	/* Workaround batchbuffer to combat CS tlb bug. */
3086 	if (HAS_BROKEN_CS_TLB(dev_priv)) {
3087 		obj = i915_gem_object_create(dev, I830_WA_SIZE);
3088 		if (IS_ERR(obj)) {
3089 			DRM_ERROR("Failed to allocate batch bo\n");
3090 			return PTR_ERR(obj);
3091 		}
3092 
3093 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3094 		if (ret != 0) {
3095 			drm_gem_object_unreference(&obj->base);
3096 			DRM_ERROR("Failed to ping batch bo\n");
3097 			return ret;
3098 		}
3099 
3100 		engine->scratch.obj = obj;
3101 		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
3102 	}
3103 
3104 	ret = intel_init_ring_buffer(dev, engine);
3105 	if (ret)
3106 		return ret;
3107 
3108 	if (INTEL_GEN(dev_priv) >= 5) {
3109 		ret = intel_init_pipe_control(engine);
3110 		if (ret)
3111 			return ret;
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 int intel_init_bsd_ring_buffer(struct drm_device *dev)
3118 {
3119 	struct drm_i915_private *dev_priv = dev->dev_private;
3120 	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
3121 
3122 	engine->name = "bsd ring";
3123 	engine->id = VCS;
3124 	engine->exec_id = I915_EXEC_BSD;
3125 	engine->hw_id = 1;
3126 
3127 	intel_ring_default_vfuncs(dev_priv, engine);
3128 
3129 	if (INTEL_GEN(dev_priv) >= 6) {
3130 		engine->mmio_base = GEN6_BSD_RING_BASE;
3131 		/* gen6 bsd needs a special wa for tail updates */
3132 		if (IS_GEN6(dev_priv))
3133 			engine->write_tail = gen6_bsd_ring_write_tail;
3134 		engine->flush = gen6_bsd_ring_flush;
3135 		if (INTEL_GEN(dev_priv) >= 8)
3136 			engine->irq_enable_mask =
3137 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
3138 		else
3139 			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3140 	} else {
3141 		engine->mmio_base = BSD_RING_BASE;
3142 		engine->flush = bsd_ring_flush;
3143 		if (IS_GEN5(dev_priv))
3144 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3145 		else
3146 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3147 	}
3148 
3149 	return intel_init_ring_buffer(dev, engine);
3150 }
3151 
3152 /**
3153  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3154  */
3155 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3156 {
3157 	struct drm_i915_private *dev_priv = dev->dev_private;
3158 	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3159 
3160 	engine->name = "bsd2 ring";
3161 	engine->id = VCS2;
3162 	engine->exec_id = I915_EXEC_BSD;
3163 	engine->hw_id = 4;
3164 	engine->mmio_base = GEN8_BSD2_RING_BASE;
3165 
3166 	intel_ring_default_vfuncs(dev_priv, engine);
3167 
3168 	engine->flush = gen6_bsd_ring_flush;
3169 	engine->irq_enable_mask =
3170 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3171 
3172 	return intel_init_ring_buffer(dev, engine);
3173 }
3174 
3175 int intel_init_blt_ring_buffer(struct drm_device *dev)
3176 {
3177 	struct drm_i915_private *dev_priv = dev->dev_private;
3178 	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3179 
3180 	engine->name = "blitter ring";
3181 	engine->id = BCS;
3182 	engine->exec_id = I915_EXEC_BLT;
3183 	engine->hw_id = 2;
3184 	engine->mmio_base = BLT_RING_BASE;
3185 
3186 	intel_ring_default_vfuncs(dev_priv, engine);
3187 
3188 	engine->flush = gen6_ring_flush;
3189 	if (INTEL_GEN(dev_priv) >= 8)
3190 		engine->irq_enable_mask =
3191 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3192 	else
3193 		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3194 
3195 	return intel_init_ring_buffer(dev, engine);
3196 }
3197 
3198 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3199 {
3200 	struct drm_i915_private *dev_priv = dev->dev_private;
3201 	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3202 
3203 	engine->name = "video enhancement ring";
3204 	engine->id = VECS;
3205 	engine->exec_id = I915_EXEC_VEBOX;
3206 	engine->hw_id = 3;
3207 	engine->mmio_base = VEBOX_RING_BASE;
3208 
3209 	intel_ring_default_vfuncs(dev_priv, engine);
3210 
3211 	engine->flush = gen6_ring_flush;
3212 
3213 	if (INTEL_GEN(dev_priv) >= 8) {
3214 		engine->irq_enable_mask =
3215 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3216 	} else {
3217 		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3218 		engine->irq_get = hsw_vebox_get_irq;
3219 		engine->irq_put = hsw_vebox_put_irq;
3220 	}
3221 
3222 	return intel_init_ring_buffer(dev, engine);
3223 }
3224 
3225 int
3226 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3227 {
3228 	struct intel_engine_cs *engine = req->engine;
3229 	int ret;
3230 
3231 	if (!engine->gpu_caches_dirty)
3232 		return 0;
3233 
3234 	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3235 	if (ret)
3236 		return ret;
3237 
3238 	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3239 
3240 	engine->gpu_caches_dirty = false;
3241 	return 0;
3242 }
3243 
3244 int
3245 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3246 {
3247 	struct intel_engine_cs *engine = req->engine;
3248 	uint32_t flush_domains;
3249 	int ret;
3250 
3251 	flush_domains = 0;
3252 	if (engine->gpu_caches_dirty)
3253 		flush_domains = I915_GEM_GPU_DOMAINS;
3254 
3255 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3256 	if (ret)
3257 		return ret;
3258 
3259 	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3260 
3261 	engine->gpu_caches_dirty = false;
3262 	return 0;
3263 }
3264 
3265 void
3266 intel_stop_engine(struct intel_engine_cs *engine)
3267 {
3268 	int ret;
3269 
3270 	if (!intel_engine_initialized(engine))
3271 		return;
3272 
3273 	ret = intel_engine_idle(engine);
3274 	if (ret)
3275 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3276 			  engine->name, ret);
3277 
3278 	stop_ring(engine);
3279 }
3280