xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 279dd846)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42 
43 static inline int __ring_space(int head, int tail, int size)
44 {
45 	int space = head - (tail + I915_RING_FREE_SPACE);
46 	if (space < 0)
47 		space += size;
48 	return space;
49 }
50 
51 static inline int ring_space(struct intel_ringbuffer *ringbuf)
52 {
53 	return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54 }
55 
56 static bool intel_ring_stopped(struct intel_engine_cs *ring)
57 {
58 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
59 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60 }
61 
62 void __intel_ring_advance(struct intel_engine_cs *ring)
63 {
64 	struct intel_ringbuffer *ringbuf = ring->buffer;
65 	ringbuf->tail &= ringbuf->size - 1;
66 	if (intel_ring_stopped(ring))
67 		return;
68 	ring->write_tail(ring, ringbuf->tail);
69 }
70 
71 static int
72 gen2_render_ring_flush(struct intel_engine_cs *ring,
73 		       u32	invalidate_domains,
74 		       u32	flush_domains)
75 {
76 	u32 cmd;
77 	int ret;
78 
79 	cmd = MI_FLUSH;
80 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81 		cmd |= MI_NO_WRITE_FLUSH;
82 
83 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84 		cmd |= MI_READ_FLUSH;
85 
86 	ret = intel_ring_begin(ring, 2);
87 	if (ret)
88 		return ret;
89 
90 	intel_ring_emit(ring, cmd);
91 	intel_ring_emit(ring, MI_NOOP);
92 	intel_ring_advance(ring);
93 
94 	return 0;
95 }
96 
97 static int
98 gen4_render_ring_flush(struct intel_engine_cs *ring,
99 		       u32	invalidate_domains,
100 		       u32	flush_domains)
101 {
102 	struct drm_device *dev = ring->dev;
103 	u32 cmd;
104 	int ret;
105 
106 	/*
107 	 * read/write caches:
108 	 *
109 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
111 	 * also flushed at 2d versus 3d pipeline switches.
112 	 *
113 	 * read-only caches:
114 	 *
115 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116 	 * MI_READ_FLUSH is set, and is always flushed on 965.
117 	 *
118 	 * I915_GEM_DOMAIN_COMMAND may not exist?
119 	 *
120 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121 	 * invalidated when MI_EXE_FLUSH is set.
122 	 *
123 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124 	 * invalidated with every MI_FLUSH.
125 	 *
126 	 * TLBs:
127 	 *
128 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131 	 * are flushed at any MI_FLUSH.
132 	 */
133 
134 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
135 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
136 		cmd &= ~MI_NO_WRITE_FLUSH;
137 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138 		cmd |= MI_EXE_FLUSH;
139 
140 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141 	    (IS_G4X(dev) || IS_GEN5(dev)))
142 		cmd |= MI_INVALIDATE_ISP;
143 
144 	ret = intel_ring_begin(ring, 2);
145 	if (ret)
146 		return ret;
147 
148 	intel_ring_emit(ring, cmd);
149 	intel_ring_emit(ring, MI_NOOP);
150 	intel_ring_advance(ring);
151 
152 	return 0;
153 }
154 
155 /**
156  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157  * implementing two workarounds on gen6.  From section 1.4.7.1
158  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159  *
160  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161  * produced by non-pipelined state commands), software needs to first
162  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163  * 0.
164  *
165  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167  *
168  * And the workaround for these two requires this workaround first:
169  *
170  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171  * BEFORE the pipe-control with a post-sync op and no write-cache
172  * flushes.
173  *
174  * And this last workaround is tricky because of the requirements on
175  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176  * volume 2 part 1:
177  *
178  *     "1 of the following must also be set:
179  *      - Render Target Cache Flush Enable ([12] of DW1)
180  *      - Depth Cache Flush Enable ([0] of DW1)
181  *      - Stall at Pixel Scoreboard ([1] of DW1)
182  *      - Depth Stall ([13] of DW1)
183  *      - Post-Sync Operation ([13] of DW1)
184  *      - Notify Enable ([8] of DW1)"
185  *
186  * The cache flushes require the workaround flush that triggered this
187  * one, so we can't use it.  Depth stall would trigger the same.
188  * Post-sync nonzero is what triggered this second workaround, so we
189  * can't use that one either.  Notify enable is IRQs, which aren't
190  * really our business.  That leaves only stall at scoreboard.
191  */
192 static int
193 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
194 {
195 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
196 	int ret;
197 
198 
199 	ret = intel_ring_begin(ring, 6);
200 	if (ret)
201 		return ret;
202 
203 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
206 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207 	intel_ring_emit(ring, 0); /* low dword */
208 	intel_ring_emit(ring, 0); /* high dword */
209 	intel_ring_emit(ring, MI_NOOP);
210 	intel_ring_advance(ring);
211 
212 	ret = intel_ring_begin(ring, 6);
213 	if (ret)
214 		return ret;
215 
216 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219 	intel_ring_emit(ring, 0);
220 	intel_ring_emit(ring, 0);
221 	intel_ring_emit(ring, MI_NOOP);
222 	intel_ring_advance(ring);
223 
224 	return 0;
225 }
226 
227 static int
228 gen6_render_ring_flush(struct intel_engine_cs *ring,
229                          u32 invalidate_domains, u32 flush_domains)
230 {
231 	u32 flags = 0;
232 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
233 	int ret;
234 
235 	/* Force SNB workarounds for PIPE_CONTROL flushes */
236 	ret = intel_emit_post_sync_nonzero_flush(ring);
237 	if (ret)
238 		return ret;
239 
240 	/* Just flush everything.  Experiments have shown that reducing the
241 	 * number of bits based on the write domains has little performance
242 	 * impact.
243 	 */
244 	if (flush_domains) {
245 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247 		/*
248 		 * Ensure that any following seqno writes only happen
249 		 * when the render cache is indeed flushed.
250 		 */
251 		flags |= PIPE_CONTROL_CS_STALL;
252 	}
253 	if (invalidate_domains) {
254 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
255 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260 		/*
261 		 * TLB invalidate requires a post-sync write.
262 		 */
263 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
264 	}
265 
266 	ret = intel_ring_begin(ring, 4);
267 	if (ret)
268 		return ret;
269 
270 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271 	intel_ring_emit(ring, flags);
272 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273 	intel_ring_emit(ring, 0);
274 	intel_ring_advance(ring);
275 
276 	return 0;
277 }
278 
279 static int
280 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
281 {
282 	int ret;
283 
284 	ret = intel_ring_begin(ring, 4);
285 	if (ret)
286 		return ret;
287 
288 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 	intel_ring_emit(ring, 0);
292 	intel_ring_emit(ring, 0);
293 	intel_ring_advance(ring);
294 
295 	return 0;
296 }
297 
298 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
299 {
300 	int ret;
301 
302 	if (!ring->fbc_dirty)
303 		return 0;
304 
305 	ret = intel_ring_begin(ring, 6);
306 	if (ret)
307 		return ret;
308 	/* WaFbcNukeOn3DBlt:ivb/hsw */
309 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
311 	intel_ring_emit(ring, value);
312 	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
314 	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
315 	intel_ring_advance(ring);
316 
317 	ring->fbc_dirty = false;
318 	return 0;
319 }
320 
321 static int
322 gen7_render_ring_flush(struct intel_engine_cs *ring,
323 		       u32 invalidate_domains, u32 flush_domains)
324 {
325 	u32 flags = 0;
326 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
327 	int ret;
328 
329 	/*
330 	 * Ensure that any following seqno writes only happen when the render
331 	 * cache is indeed flushed.
332 	 *
333 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
334 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
335 	 * don't try to be clever and just set it unconditionally.
336 	 */
337 	flags |= PIPE_CONTROL_CS_STALL;
338 
339 	/* Just flush everything.  Experiments have shown that reducing the
340 	 * number of bits based on the write domains has little performance
341 	 * impact.
342 	 */
343 	if (flush_domains) {
344 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
345 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346 	}
347 	if (invalidate_domains) {
348 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 		/*
355 		 * TLB invalidate requires a post-sync write.
356 		 */
357 		flags |= PIPE_CONTROL_QW_WRITE;
358 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359 
360 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361 
362 		/* Workaround: we must issue a pipe_control with CS-stall bit
363 		 * set before a pipe_control command that has the state cache
364 		 * invalidate bit set. */
365 		gen7_render_ring_cs_stall_wa(ring);
366 	}
367 
368 	ret = intel_ring_begin(ring, 4);
369 	if (ret)
370 		return ret;
371 
372 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373 	intel_ring_emit(ring, flags);
374 	intel_ring_emit(ring, scratch_addr);
375 	intel_ring_emit(ring, 0);
376 	intel_ring_advance(ring);
377 
378 	if (!invalidate_domains && flush_domains)
379 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
380 
381 	return 0;
382 }
383 
384 static int
385 gen8_emit_pipe_control(struct intel_engine_cs *ring,
386 		       u32 flags, u32 scratch_addr)
387 {
388 	int ret;
389 
390 	ret = intel_ring_begin(ring, 6);
391 	if (ret)
392 		return ret;
393 
394 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395 	intel_ring_emit(ring, flags);
396 	intel_ring_emit(ring, scratch_addr);
397 	intel_ring_emit(ring, 0);
398 	intel_ring_emit(ring, 0);
399 	intel_ring_emit(ring, 0);
400 	intel_ring_advance(ring);
401 
402 	return 0;
403 }
404 
405 static int
406 gen8_render_ring_flush(struct intel_engine_cs *ring,
407 		       u32 invalidate_domains, u32 flush_domains)
408 {
409 	u32 flags = 0;
410 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
411 	int ret;
412 
413 	flags |= PIPE_CONTROL_CS_STALL;
414 
415 	if (flush_domains) {
416 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
417 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
418 	}
419 	if (invalidate_domains) {
420 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
421 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
422 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
423 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
424 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
425 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
426 		flags |= PIPE_CONTROL_QW_WRITE;
427 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
428 
429 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
430 		ret = gen8_emit_pipe_control(ring,
431 					     PIPE_CONTROL_CS_STALL |
432 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
433 					     0);
434 		if (ret)
435 			return ret;
436 	}
437 
438 	return gen8_emit_pipe_control(ring, flags, scratch_addr);
439 }
440 
441 static void ring_write_tail(struct intel_engine_cs *ring,
442 			    u32 value)
443 {
444 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
445 	I915_WRITE_TAIL(ring, value);
446 }
447 
448 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
449 {
450 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
451 	u64 acthd;
452 
453 	if (INTEL_INFO(ring->dev)->gen >= 8)
454 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
455 					 RING_ACTHD_UDW(ring->mmio_base));
456 	else if (INTEL_INFO(ring->dev)->gen >= 4)
457 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
458 	else
459 		acthd = I915_READ(ACTHD);
460 
461 	return acthd;
462 }
463 
464 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
465 {
466 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 	u32 addr;
468 
469 	addr = dev_priv->status_page_dmah->busaddr;
470 	if (INTEL_INFO(ring->dev)->gen >= 4)
471 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
472 	I915_WRITE(HWS_PGA, addr);
473 }
474 
475 static bool stop_ring(struct intel_engine_cs *ring)
476 {
477 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
478 
479 	if (!IS_GEN2(ring->dev)) {
480 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
481 		if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
482 			DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
483 			return false;
484 		}
485 	}
486 
487 	I915_WRITE_CTL(ring, 0);
488 	I915_WRITE_HEAD(ring, 0);
489 	ring->write_tail(ring, 0);
490 
491 	if (!IS_GEN2(ring->dev)) {
492 		(void)I915_READ_CTL(ring);
493 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
494 	}
495 
496 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
497 }
498 
499 static int init_ring_common(struct intel_engine_cs *ring)
500 {
501 	struct drm_device *dev = ring->dev;
502 	struct drm_i915_private *dev_priv = dev->dev_private;
503 	struct intel_ringbuffer *ringbuf = ring->buffer;
504 	struct drm_i915_gem_object *obj = ringbuf->obj;
505 	int ret = 0;
506 
507 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
508 
509 	if (!stop_ring(ring)) {
510 		/* G45 ring initialization often fails to reset head to zero */
511 		DRM_DEBUG_KMS("%s head not reset to zero "
512 			      "ctl %08x head %08x tail %08x start %08x\n",
513 			      ring->name,
514 			      I915_READ_CTL(ring),
515 			      I915_READ_HEAD(ring),
516 			      I915_READ_TAIL(ring),
517 			      I915_READ_START(ring));
518 
519 		if (!stop_ring(ring)) {
520 			DRM_ERROR("failed to set %s head to zero "
521 				  "ctl %08x head %08x tail %08x start %08x\n",
522 				  ring->name,
523 				  I915_READ_CTL(ring),
524 				  I915_READ_HEAD(ring),
525 				  I915_READ_TAIL(ring),
526 				  I915_READ_START(ring));
527 			ret = -EIO;
528 			goto out;
529 		}
530 	}
531 
532 	if (I915_NEED_GFX_HWS(dev))
533 		intel_ring_setup_status_page(ring);
534 	else
535 		ring_setup_phys_status_page(ring);
536 
537 	/* Enforce ordering by reading HEAD register back */
538 	I915_READ_HEAD(ring);
539 
540 	/* Initialize the ring. This must happen _after_ we've cleared the ring
541 	 * registers with the above sequence (the readback of the HEAD registers
542 	 * also enforces ordering), otherwise the hw might lose the new ring
543 	 * register values. */
544 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
545 	I915_WRITE_CTL(ring,
546 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
547 			| RING_VALID);
548 
549 	/* If the head is still not zero, the ring is dead */
550 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
551 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
552 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
553 		DRM_ERROR("%s initialization failed "
554 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
555 			  ring->name,
556 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
557 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
558 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
559 		ret = -EIO;
560 		goto out;
561 	}
562 
563 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
564 		i915_kernel_lost_context(ring->dev);
565 	else {
566 		ringbuf->head = I915_READ_HEAD(ring);
567 		ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
568 		ringbuf->space = ring_space(ringbuf);
569 		ringbuf->last_retired_head = -1;
570 	}
571 
572 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
573 
574 out:
575 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
576 
577 	return ret;
578 }
579 
580 static int
581 init_pipe_control(struct intel_engine_cs *ring)
582 {
583 	int ret;
584 
585 	if (ring->scratch.obj)
586 		return 0;
587 
588 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
589 	if (ring->scratch.obj == NULL) {
590 		DRM_ERROR("Failed to allocate seqno page\n");
591 		ret = -ENOMEM;
592 		goto err;
593 	}
594 
595 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
596 	if (ret)
597 		goto err_unref;
598 
599 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
600 	if (ret)
601 		goto err_unref;
602 
603 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
604 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
605 	if (ring->scratch.cpu_page == NULL) {
606 		ret = -ENOMEM;
607 		goto err_unpin;
608 	}
609 
610 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
611 			 ring->name, ring->scratch.gtt_offset);
612 	return 0;
613 
614 err_unpin:
615 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
616 err_unref:
617 	drm_gem_object_unreference(&ring->scratch.obj->base);
618 err:
619 	return ret;
620 }
621 
622 static int init_render_ring(struct intel_engine_cs *ring)
623 {
624 	struct drm_device *dev = ring->dev;
625 	struct drm_i915_private *dev_priv = dev->dev_private;
626 	int ret = init_ring_common(ring);
627 	if (ret)
628 		return ret;
629 
630 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
631 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
632 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
633 
634 	/* We need to disable the AsyncFlip performance optimisations in order
635 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
636 	 * programmed to '1' on all products.
637 	 *
638 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
639 	 */
640 	if (INTEL_INFO(dev)->gen >= 6)
641 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
642 
643 	/* Required for the hardware to program scanline values for waiting */
644 	/* WaEnableFlushTlbInvalidationMode:snb */
645 	if (INTEL_INFO(dev)->gen == 6)
646 		I915_WRITE(GFX_MODE,
647 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
648 
649 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
650 	if (IS_GEN7(dev))
651 		I915_WRITE(GFX_MODE_GEN7,
652 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
653 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
654 
655 	if (INTEL_INFO(dev)->gen >= 5) {
656 		ret = init_pipe_control(ring);
657 		if (ret)
658 			return ret;
659 	}
660 
661 	if (IS_GEN6(dev)) {
662 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
663 		 * "If this bit is set, STCunit will have LRA as replacement
664 		 *  policy. [...] This bit must be reset.  LRA replacement
665 		 *  policy is not supported."
666 		 */
667 		I915_WRITE(CACHE_MODE_0,
668 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
669 	}
670 
671 	if (INTEL_INFO(dev)->gen >= 6)
672 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
673 
674 	if (HAS_L3_DPF(dev))
675 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
676 
677 	return ret;
678 }
679 
680 static void render_ring_cleanup(struct intel_engine_cs *ring)
681 {
682 	struct drm_device *dev = ring->dev;
683 	struct drm_i915_private *dev_priv = dev->dev_private;
684 
685 	if (dev_priv->semaphore_obj) {
686 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
687 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
688 		dev_priv->semaphore_obj = NULL;
689 	}
690 
691 	if (ring->scratch.obj == NULL)
692 		return;
693 
694 	if (INTEL_INFO(dev)->gen >= 5) {
695 		kunmap(ring->scratch.obj->pages[0]);
696 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
697 	}
698 
699 	drm_gem_object_unreference(&ring->scratch.obj->base);
700 	ring->scratch.obj = NULL;
701 }
702 
703 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
704 			   unsigned int num_dwords)
705 {
706 #define MBOX_UPDATE_DWORDS 8
707 	struct drm_device *dev = signaller->dev;
708 	struct drm_i915_private *dev_priv = dev->dev_private;
709 	struct intel_engine_cs *waiter;
710 	int i, ret, num_rings;
711 
712 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
713 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
714 #undef MBOX_UPDATE_DWORDS
715 
716 	ret = intel_ring_begin(signaller, num_dwords);
717 	if (ret)
718 		return ret;
719 
720 	for_each_ring(waiter, dev_priv, i) {
721 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
722 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
723 			continue;
724 
725 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
726 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
727 					   PIPE_CONTROL_QW_WRITE |
728 					   PIPE_CONTROL_FLUSH_ENABLE);
729 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
730 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
731 		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
732 		intel_ring_emit(signaller, 0);
733 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
734 					   MI_SEMAPHORE_TARGET(waiter->id));
735 		intel_ring_emit(signaller, 0);
736 	}
737 
738 	return 0;
739 }
740 
741 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
742 			   unsigned int num_dwords)
743 {
744 #define MBOX_UPDATE_DWORDS 6
745 	struct drm_device *dev = signaller->dev;
746 	struct drm_i915_private *dev_priv = dev->dev_private;
747 	struct intel_engine_cs *waiter;
748 	int i, ret, num_rings;
749 
750 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
751 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
752 #undef MBOX_UPDATE_DWORDS
753 
754 	ret = intel_ring_begin(signaller, num_dwords);
755 	if (ret)
756 		return ret;
757 
758 	for_each_ring(waiter, dev_priv, i) {
759 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
760 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
761 			continue;
762 
763 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
764 					   MI_FLUSH_DW_OP_STOREDW);
765 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
766 					   MI_FLUSH_DW_USE_GTT);
767 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
768 		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
769 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
770 					   MI_SEMAPHORE_TARGET(waiter->id));
771 		intel_ring_emit(signaller, 0);
772 	}
773 
774 	return 0;
775 }
776 
777 static int gen6_signal(struct intel_engine_cs *signaller,
778 		       unsigned int num_dwords)
779 {
780 	struct drm_device *dev = signaller->dev;
781 	struct drm_i915_private *dev_priv = dev->dev_private;
782 	struct intel_engine_cs *useless;
783 	int i, ret, num_rings;
784 
785 #define MBOX_UPDATE_DWORDS 3
786 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
787 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
788 #undef MBOX_UPDATE_DWORDS
789 
790 	ret = intel_ring_begin(signaller, num_dwords);
791 	if (ret)
792 		return ret;
793 
794 	for_each_ring(useless, dev_priv, i) {
795 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
796 		if (mbox_reg != GEN6_NOSYNC) {
797 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
798 			intel_ring_emit(signaller, mbox_reg);
799 			intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
800 		}
801 	}
802 
803 	/* If num_dwords was rounded, make sure the tail pointer is correct */
804 	if (num_rings % 2 == 0)
805 		intel_ring_emit(signaller, MI_NOOP);
806 
807 	return 0;
808 }
809 
810 /**
811  * gen6_add_request - Update the semaphore mailbox registers
812  *
813  * @ring - ring that is adding a request
814  * @seqno - return seqno stuck into the ring
815  *
816  * Update the mailbox registers in the *other* rings with the current seqno.
817  * This acts like a signal in the canonical semaphore.
818  */
819 static int
820 gen6_add_request(struct intel_engine_cs *ring)
821 {
822 	int ret;
823 
824 	if (ring->semaphore.signal)
825 		ret = ring->semaphore.signal(ring, 4);
826 	else
827 		ret = intel_ring_begin(ring, 4);
828 
829 	if (ret)
830 		return ret;
831 
832 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
833 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
834 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
835 	intel_ring_emit(ring, MI_USER_INTERRUPT);
836 	__intel_ring_advance(ring);
837 
838 	return 0;
839 }
840 
841 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
842 					      u32 seqno)
843 {
844 	struct drm_i915_private *dev_priv = dev->dev_private;
845 	return dev_priv->last_seqno < seqno;
846 }
847 
848 /**
849  * intel_ring_sync - sync the waiter to the signaller on seqno
850  *
851  * @waiter - ring that is waiting
852  * @signaller - ring which has, or will signal
853  * @seqno - seqno which the waiter will block on
854  */
855 
856 static int
857 gen8_ring_sync(struct intel_engine_cs *waiter,
858 	       struct intel_engine_cs *signaller,
859 	       u32 seqno)
860 {
861 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
862 	int ret;
863 
864 	ret = intel_ring_begin(waiter, 4);
865 	if (ret)
866 		return ret;
867 
868 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
869 				MI_SEMAPHORE_GLOBAL_GTT |
870 				MI_SEMAPHORE_POLL |
871 				MI_SEMAPHORE_SAD_GTE_SDD);
872 	intel_ring_emit(waiter, seqno);
873 	intel_ring_emit(waiter,
874 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
875 	intel_ring_emit(waiter,
876 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
877 	intel_ring_advance(waiter);
878 	return 0;
879 }
880 
881 static int
882 gen6_ring_sync(struct intel_engine_cs *waiter,
883 	       struct intel_engine_cs *signaller,
884 	       u32 seqno)
885 {
886 	u32 dw1 = MI_SEMAPHORE_MBOX |
887 		  MI_SEMAPHORE_COMPARE |
888 		  MI_SEMAPHORE_REGISTER;
889 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
890 	int ret;
891 
892 	/* Throughout all of the GEM code, seqno passed implies our current
893 	 * seqno is >= the last seqno executed. However for hardware the
894 	 * comparison is strictly greater than.
895 	 */
896 	seqno -= 1;
897 
898 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
899 
900 	ret = intel_ring_begin(waiter, 4);
901 	if (ret)
902 		return ret;
903 
904 	/* If seqno wrap happened, omit the wait with no-ops */
905 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
906 		intel_ring_emit(waiter, dw1 | wait_mbox);
907 		intel_ring_emit(waiter, seqno);
908 		intel_ring_emit(waiter, 0);
909 		intel_ring_emit(waiter, MI_NOOP);
910 	} else {
911 		intel_ring_emit(waiter, MI_NOOP);
912 		intel_ring_emit(waiter, MI_NOOP);
913 		intel_ring_emit(waiter, MI_NOOP);
914 		intel_ring_emit(waiter, MI_NOOP);
915 	}
916 	intel_ring_advance(waiter);
917 
918 	return 0;
919 }
920 
921 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
922 do {									\
923 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
924 		 PIPE_CONTROL_DEPTH_STALL);				\
925 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
926 	intel_ring_emit(ring__, 0);							\
927 	intel_ring_emit(ring__, 0);							\
928 } while (0)
929 
930 static int
931 pc_render_add_request(struct intel_engine_cs *ring)
932 {
933 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
934 	int ret;
935 
936 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
937 	 * incoherent with writes to memory, i.e. completely fubar,
938 	 * so we need to use PIPE_NOTIFY instead.
939 	 *
940 	 * However, we also need to workaround the qword write
941 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
942 	 * memory before requesting an interrupt.
943 	 */
944 	ret = intel_ring_begin(ring, 32);
945 	if (ret)
946 		return ret;
947 
948 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
949 			PIPE_CONTROL_WRITE_FLUSH |
950 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
951 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
952 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
953 	intel_ring_emit(ring, 0);
954 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
955 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
956 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
957 	scratch_addr += 2 * CACHELINE_BYTES;
958 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
959 	scratch_addr += 2 * CACHELINE_BYTES;
960 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
961 	scratch_addr += 2 * CACHELINE_BYTES;
962 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
963 	scratch_addr += 2 * CACHELINE_BYTES;
964 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
965 
966 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
967 			PIPE_CONTROL_WRITE_FLUSH |
968 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
969 			PIPE_CONTROL_NOTIFY);
970 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
971 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
972 	intel_ring_emit(ring, 0);
973 	__intel_ring_advance(ring);
974 
975 	return 0;
976 }
977 
978 static u32
979 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
980 {
981 	/* Workaround to force correct ordering between irq and seqno writes on
982 	 * ivb (and maybe also on snb) by reading from a CS register (like
983 	 * ACTHD) before reading the status page. */
984 	if (!lazy_coherency) {
985 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
986 		POSTING_READ(RING_ACTHD(ring->mmio_base));
987 	}
988 
989 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
990 }
991 
992 static u32
993 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
994 {
995 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
996 }
997 
998 static void
999 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1000 {
1001 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1002 }
1003 
1004 static u32
1005 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1006 {
1007 	return ring->scratch.cpu_page[0];
1008 }
1009 
1010 static void
1011 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1012 {
1013 	ring->scratch.cpu_page[0] = seqno;
1014 }
1015 
1016 static bool
1017 gen5_ring_get_irq(struct intel_engine_cs *ring)
1018 {
1019 	struct drm_device *dev = ring->dev;
1020 	struct drm_i915_private *dev_priv = dev->dev_private;
1021 
1022 	if (!dev->irq_enabled)
1023 		return false;
1024 
1025 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1026 	if (ring->irq_refcount++ == 0)
1027 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1028 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1029 
1030 	return true;
1031 }
1032 
1033 static void
1034 gen5_ring_put_irq(struct intel_engine_cs *ring)
1035 {
1036 	struct drm_device *dev = ring->dev;
1037 	struct drm_i915_private *dev_priv = dev->dev_private;
1038 
1039 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1040 	if (--ring->irq_refcount == 0)
1041 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1042 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1043 }
1044 
1045 static bool
1046 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1047 {
1048 	struct drm_device *dev = ring->dev;
1049 	struct drm_i915_private *dev_priv = dev->dev_private;
1050 
1051 	if (!dev->irq_enabled)
1052 		return false;
1053 
1054 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1055 	if (ring->irq_refcount++ == 0) {
1056 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1057 		I915_WRITE(IMR, dev_priv->irq_mask);
1058 		POSTING_READ(IMR);
1059 	}
1060 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1061 
1062 	return true;
1063 }
1064 
1065 static void
1066 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1067 {
1068 	struct drm_device *dev = ring->dev;
1069 	struct drm_i915_private *dev_priv = dev->dev_private;
1070 
1071 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1072 	if (--ring->irq_refcount == 0) {
1073 		dev_priv->irq_mask |= ring->irq_enable_mask;
1074 		I915_WRITE(IMR, dev_priv->irq_mask);
1075 		POSTING_READ(IMR);
1076 	}
1077 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1078 }
1079 
1080 static bool
1081 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1082 {
1083 	struct drm_device *dev = ring->dev;
1084 	struct drm_i915_private *dev_priv = dev->dev_private;
1085 
1086 	if (!dev->irq_enabled)
1087 		return false;
1088 
1089 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1090 	if (ring->irq_refcount++ == 0) {
1091 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1092 		I915_WRITE16(IMR, dev_priv->irq_mask);
1093 		POSTING_READ16(IMR);
1094 	}
1095 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1096 
1097 	return true;
1098 }
1099 
1100 static void
1101 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1102 {
1103 	struct drm_device *dev = ring->dev;
1104 	struct drm_i915_private *dev_priv = dev->dev_private;
1105 
1106 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1107 	if (--ring->irq_refcount == 0) {
1108 		dev_priv->irq_mask |= ring->irq_enable_mask;
1109 		I915_WRITE16(IMR, dev_priv->irq_mask);
1110 		POSTING_READ16(IMR);
1111 	}
1112 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1113 }
1114 
1115 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1116 {
1117 	struct drm_device *dev = ring->dev;
1118 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1119 	u32 mmio = 0;
1120 
1121 	/* The ring status page addresses are no longer next to the rest of
1122 	 * the ring registers as of gen7.
1123 	 */
1124 	if (IS_GEN7(dev)) {
1125 		switch (ring->id) {
1126 		case RCS:
1127 			mmio = RENDER_HWS_PGA_GEN7;
1128 			break;
1129 		case BCS:
1130 			mmio = BLT_HWS_PGA_GEN7;
1131 			break;
1132 		/*
1133 		 * VCS2 actually doesn't exist on Gen7. Only shut up
1134 		 * gcc switch check warning
1135 		 */
1136 		case VCS2:
1137 		case VCS:
1138 			mmio = BSD_HWS_PGA_GEN7;
1139 			break;
1140 		case VECS:
1141 			mmio = VEBOX_HWS_PGA_GEN7;
1142 			break;
1143 		}
1144 	} else if (IS_GEN6(ring->dev)) {
1145 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1146 	} else {
1147 		/* XXX: gen8 returns to sanity */
1148 		mmio = RING_HWS_PGA(ring->mmio_base);
1149 	}
1150 
1151 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1152 	POSTING_READ(mmio);
1153 
1154 	/*
1155 	 * Flush the TLB for this page
1156 	 *
1157 	 * FIXME: These two bits have disappeared on gen8, so a question
1158 	 * arises: do we still need this and if so how should we go about
1159 	 * invalidating the TLB?
1160 	 */
1161 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1162 		u32 reg = RING_INSTPM(ring->mmio_base);
1163 
1164 		/* ring should be idle before issuing a sync flush*/
1165 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1166 
1167 		I915_WRITE(reg,
1168 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1169 					      INSTPM_SYNC_FLUSH));
1170 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1171 			     1000))
1172 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1173 				  ring->name);
1174 	}
1175 }
1176 
1177 static int
1178 bsd_ring_flush(struct intel_engine_cs *ring,
1179 	       u32     invalidate_domains,
1180 	       u32     flush_domains)
1181 {
1182 	int ret;
1183 
1184 	ret = intel_ring_begin(ring, 2);
1185 	if (ret)
1186 		return ret;
1187 
1188 	intel_ring_emit(ring, MI_FLUSH);
1189 	intel_ring_emit(ring, MI_NOOP);
1190 	intel_ring_advance(ring);
1191 	return 0;
1192 }
1193 
1194 static int
1195 i9xx_add_request(struct intel_engine_cs *ring)
1196 {
1197 	int ret;
1198 
1199 	ret = intel_ring_begin(ring, 4);
1200 	if (ret)
1201 		return ret;
1202 
1203 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1204 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1205 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1206 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1207 	__intel_ring_advance(ring);
1208 
1209 	return 0;
1210 }
1211 
1212 static bool
1213 gen6_ring_get_irq(struct intel_engine_cs *ring)
1214 {
1215 	struct drm_device *dev = ring->dev;
1216 	struct drm_i915_private *dev_priv = dev->dev_private;
1217 
1218 	if (!dev->irq_enabled)
1219 	       return false;
1220 
1221 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1222 	if (ring->irq_refcount++ == 0) {
1223 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1224 			I915_WRITE_IMR(ring,
1225 				       ~(ring->irq_enable_mask |
1226 					 GT_PARITY_ERROR(dev)));
1227 		else
1228 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1229 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1230 	}
1231 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1232 
1233 	return true;
1234 }
1235 
1236 static void
1237 gen6_ring_put_irq(struct intel_engine_cs *ring)
1238 {
1239 	struct drm_device *dev = ring->dev;
1240 	struct drm_i915_private *dev_priv = dev->dev_private;
1241 
1242 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1243 	if (--ring->irq_refcount == 0) {
1244 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1245 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1246 		else
1247 			I915_WRITE_IMR(ring, ~0);
1248 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1249 	}
1250 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1251 }
1252 
1253 static bool
1254 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1255 {
1256 	struct drm_device *dev = ring->dev;
1257 	struct drm_i915_private *dev_priv = dev->dev_private;
1258 
1259 	if (!dev->irq_enabled)
1260 		return false;
1261 
1262 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1263 	if (ring->irq_refcount++ == 0) {
1264 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1265 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1266 	}
1267 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1268 
1269 	return true;
1270 }
1271 
1272 static void
1273 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1274 {
1275 	struct drm_device *dev = ring->dev;
1276 	struct drm_i915_private *dev_priv = dev->dev_private;
1277 
1278 	if (!dev->irq_enabled)
1279 		return;
1280 
1281 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1282 	if (--ring->irq_refcount == 0) {
1283 		I915_WRITE_IMR(ring, ~0);
1284 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1285 	}
1286 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1287 }
1288 
1289 static bool
1290 gen8_ring_get_irq(struct intel_engine_cs *ring)
1291 {
1292 	struct drm_device *dev = ring->dev;
1293 	struct drm_i915_private *dev_priv = dev->dev_private;
1294 
1295 	if (!dev->irq_enabled)
1296 		return false;
1297 
1298 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1299 	if (ring->irq_refcount++ == 0) {
1300 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1301 			I915_WRITE_IMR(ring,
1302 				       ~(ring->irq_enable_mask |
1303 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1304 		} else {
1305 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1306 		}
1307 		POSTING_READ(RING_IMR(ring->mmio_base));
1308 	}
1309 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1310 
1311 	return true;
1312 }
1313 
1314 static void
1315 gen8_ring_put_irq(struct intel_engine_cs *ring)
1316 {
1317 	struct drm_device *dev = ring->dev;
1318 	struct drm_i915_private *dev_priv = dev->dev_private;
1319 
1320 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1321 	if (--ring->irq_refcount == 0) {
1322 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1323 			I915_WRITE_IMR(ring,
1324 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1325 		} else {
1326 			I915_WRITE_IMR(ring, ~0);
1327 		}
1328 		POSTING_READ(RING_IMR(ring->mmio_base));
1329 	}
1330 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1331 }
1332 
1333 static int
1334 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1335 			 u64 offset, u32 length,
1336 			 unsigned flags)
1337 {
1338 	int ret;
1339 
1340 	ret = intel_ring_begin(ring, 2);
1341 	if (ret)
1342 		return ret;
1343 
1344 	intel_ring_emit(ring,
1345 			MI_BATCH_BUFFER_START |
1346 			MI_BATCH_GTT |
1347 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1348 	intel_ring_emit(ring, offset);
1349 	intel_ring_advance(ring);
1350 
1351 	return 0;
1352 }
1353 
1354 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1355 #define I830_BATCH_LIMIT (256*1024)
1356 #define I830_TLB_ENTRIES (2)
1357 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1358 static int
1359 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1360 				u64 offset, u32 len,
1361 				unsigned flags)
1362 {
1363 	u32 cs_offset = ring->scratch.gtt_offset;
1364 	int ret;
1365 
1366 	ret = intel_ring_begin(ring, 6);
1367 	if (ret)
1368 		return ret;
1369 
1370 	/* Evict the invalid PTE TLBs */
1371 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1372 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1373 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1374 	intel_ring_emit(ring, cs_offset);
1375 	intel_ring_emit(ring, 0xdeadbeef);
1376 	intel_ring_emit(ring, MI_NOOP);
1377 	intel_ring_advance(ring);
1378 
1379 	if ((flags & I915_DISPATCH_PINNED) == 0) {
1380 		if (len > I830_BATCH_LIMIT)
1381 			return -ENOSPC;
1382 
1383 		ret = intel_ring_begin(ring, 6 + 2);
1384 		if (ret)
1385 			return ret;
1386 
1387 		/* Blit the batch (which has now all relocs applied) to the
1388 		 * stable batch scratch bo area (so that the CS never
1389 		 * stumbles over its tlb invalidation bug) ...
1390 		 */
1391 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1392 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1393 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1394 		intel_ring_emit(ring, cs_offset);
1395 		intel_ring_emit(ring, 4096);
1396 		intel_ring_emit(ring, offset);
1397 
1398 		intel_ring_emit(ring, MI_FLUSH);
1399 		intel_ring_emit(ring, MI_NOOP);
1400 		intel_ring_advance(ring);
1401 
1402 		/* ... and execute it. */
1403 		offset = cs_offset;
1404 	}
1405 
1406 	ret = intel_ring_begin(ring, 4);
1407 	if (ret)
1408 		return ret;
1409 
1410 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1411 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1412 	intel_ring_emit(ring, offset + len - 8);
1413 	intel_ring_emit(ring, MI_NOOP);
1414 	intel_ring_advance(ring);
1415 
1416 	return 0;
1417 }
1418 
1419 static int
1420 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1421 			 u64 offset, u32 len,
1422 			 unsigned flags)
1423 {
1424 	int ret;
1425 
1426 	ret = intel_ring_begin(ring, 2);
1427 	if (ret)
1428 		return ret;
1429 
1430 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1431 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1432 	intel_ring_advance(ring);
1433 
1434 	return 0;
1435 }
1436 
1437 static void cleanup_status_page(struct intel_engine_cs *ring)
1438 {
1439 	struct drm_i915_gem_object *obj;
1440 
1441 	obj = ring->status_page.obj;
1442 	if (obj == NULL)
1443 		return;
1444 
1445 	kunmap(obj->pages[0]);
1446 	i915_gem_object_ggtt_unpin(obj);
1447 	drm_gem_object_unreference(&obj->base);
1448 	ring->status_page.obj = NULL;
1449 }
1450 
1451 static int init_status_page(struct intel_engine_cs *ring)
1452 {
1453 	struct drm_i915_gem_object *obj;
1454 
1455 	if ((obj = ring->status_page.obj) == NULL) {
1456 		unsigned flags;
1457 		int ret;
1458 
1459 		obj = i915_gem_alloc_object(ring->dev, 4096);
1460 		if (obj == NULL) {
1461 			DRM_ERROR("Failed to allocate status page\n");
1462 			return -ENOMEM;
1463 		}
1464 
1465 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1466 		if (ret)
1467 			goto err_unref;
1468 
1469 		flags = 0;
1470 		if (!HAS_LLC(ring->dev))
1471 			/* On g33, we cannot place HWS above 256MiB, so
1472 			 * restrict its pinning to the low mappable arena.
1473 			 * Though this restriction is not documented for
1474 			 * gen4, gen5, or byt, they also behave similarly
1475 			 * and hang if the HWS is placed at the top of the
1476 			 * GTT. To generalise, it appears that all !llc
1477 			 * platforms have issues with us placing the HWS
1478 			 * above the mappable region (even though we never
1479 			 * actualy map it).
1480 			 */
1481 			flags |= PIN_MAPPABLE;
1482 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1483 		if (ret) {
1484 err_unref:
1485 			drm_gem_object_unreference(&obj->base);
1486 			return ret;
1487 		}
1488 
1489 		ring->status_page.obj = obj;
1490 	}
1491 
1492 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1493 	ring->status_page.page_addr = kmap(obj->pages[0]);
1494 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1495 
1496 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1497 			ring->name, ring->status_page.gfx_addr);
1498 
1499 	return 0;
1500 }
1501 
1502 static int init_phys_status_page(struct intel_engine_cs *ring)
1503 {
1504 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1505 
1506 	if (!dev_priv->status_page_dmah) {
1507 		dev_priv->status_page_dmah =
1508 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1509 		if (!dev_priv->status_page_dmah)
1510 			return -ENOMEM;
1511 	}
1512 
1513 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1514 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1515 
1516 	return 0;
1517 }
1518 
1519 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1520 {
1521 	if (!ringbuf->obj)
1522 		return;
1523 
1524 	iounmap(ringbuf->virtual_start, ringbuf->size);
1525 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1526 	drm_gem_object_unreference(&ringbuf->obj->base);
1527 	ringbuf->obj = NULL;
1528 }
1529 
1530 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1531 				      struct intel_ringbuffer *ringbuf)
1532 {
1533 	struct drm_i915_gem_object *obj;
1534 	int ret;
1535 
1536 	if (ringbuf->obj)
1537 		return 0;
1538 
1539 	obj = NULL;
1540 	if (!HAS_LLC(dev))
1541 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1542 	if (obj == NULL)
1543 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1544 	if (obj == NULL)
1545 		return -ENOMEM;
1546 
1547 	/* mark ring buffers as read-only from GPU side by default */
1548 	obj->gt_ro = 1;
1549 
1550 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1551 	if (ret)
1552 		goto err_unref;
1553 
1554 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1555 	if (ret)
1556 		goto err_unpin;
1557 
1558 	ringbuf->virtual_start =
1559 		ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1560 				ringbuf->size);
1561 	if (ringbuf->virtual_start == NULL) {
1562 		ret = -EINVAL;
1563 		goto err_unpin;
1564 	}
1565 
1566 	ringbuf->obj = obj;
1567 	return 0;
1568 
1569 err_unpin:
1570 	i915_gem_object_ggtt_unpin(obj);
1571 err_unref:
1572 	drm_gem_object_unreference(&obj->base);
1573 	return ret;
1574 }
1575 
1576 static int intel_init_ring_buffer(struct drm_device *dev,
1577 				  struct intel_engine_cs *ring)
1578 {
1579 	struct intel_ringbuffer *ringbuf = ring->buffer;
1580 	int ret;
1581 
1582 	if (ringbuf == NULL) {
1583 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1584 		if (!ringbuf)
1585 			return -ENOMEM;
1586 		ring->buffer = ringbuf;
1587 	}
1588 
1589 	ring->dev = dev;
1590 	INIT_LIST_HEAD(&ring->active_list);
1591 	INIT_LIST_HEAD(&ring->request_list);
1592 	ringbuf->size = 32 * PAGE_SIZE;
1593 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1594 
1595 	init_waitqueue_head(&ring->irq_queue);
1596 
1597 	if (I915_NEED_GFX_HWS(dev)) {
1598 		ret = init_status_page(ring);
1599 		if (ret)
1600 			goto error;
1601 	} else {
1602 		BUG_ON(ring->id != RCS);
1603 		ret = init_phys_status_page(ring);
1604 		if (ret)
1605 			goto error;
1606 	}
1607 
1608 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1609 	if (ret) {
1610 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1611 		goto error;
1612 	}
1613 
1614 	/* Workaround an erratum on the i830 which causes a hang if
1615 	 * the TAIL pointer points to within the last 2 cachelines
1616 	 * of the buffer.
1617 	 */
1618 	ringbuf->effective_size = ringbuf->size;
1619 	if (IS_I830(dev) || IS_845G(dev))
1620 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1621 
1622 	ret = i915_cmd_parser_init_ring(ring);
1623 	if (ret)
1624 		goto error;
1625 
1626 	ret = ring->init(ring);
1627 	if (ret)
1628 		goto error;
1629 
1630 	return 0;
1631 
1632 error:
1633 	kfree(ringbuf);
1634 	ring->buffer = NULL;
1635 	return ret;
1636 }
1637 
1638 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1639 {
1640 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1641 	struct intel_ringbuffer *ringbuf = ring->buffer;
1642 
1643 	if (!intel_ring_initialized(ring))
1644 		return;
1645 
1646 	intel_stop_ring_buffer(ring);
1647 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1648 
1649 	intel_destroy_ringbuffer_obj(ringbuf);
1650 	ring->preallocated_lazy_request = NULL;
1651 	ring->outstanding_lazy_seqno = 0;
1652 
1653 	if (ring->cleanup)
1654 		ring->cleanup(ring);
1655 
1656 	cleanup_status_page(ring);
1657 
1658 	i915_cmd_parser_fini_ring(ring);
1659 
1660 	kfree(ringbuf);
1661 	ring->buffer = NULL;
1662 }
1663 
1664 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1665 {
1666 	struct intel_ringbuffer *ringbuf = ring->buffer;
1667 	struct drm_i915_gem_request *request;
1668 	u32 seqno = 0;
1669 	int ret;
1670 
1671 	if (ringbuf->last_retired_head != -1) {
1672 		ringbuf->head = ringbuf->last_retired_head;
1673 		ringbuf->last_retired_head = -1;
1674 
1675 		ringbuf->space = ring_space(ringbuf);
1676 		if (ringbuf->space >= n)
1677 			return 0;
1678 	}
1679 
1680 	list_for_each_entry(request, &ring->request_list, list) {
1681 		if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1682 			seqno = request->seqno;
1683 			break;
1684 		}
1685 	}
1686 
1687 	if (seqno == 0)
1688 		return -ENOSPC;
1689 
1690 	ret = i915_wait_seqno(ring, seqno);
1691 	if (ret)
1692 		return ret;
1693 
1694 	i915_gem_retire_requests_ring(ring);
1695 	ringbuf->head = ringbuf->last_retired_head;
1696 	ringbuf->last_retired_head = -1;
1697 
1698 	ringbuf->space = ring_space(ringbuf);
1699 	return 0;
1700 }
1701 
1702 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1703 {
1704 	struct drm_device *dev = ring->dev;
1705 	struct drm_i915_private *dev_priv = dev->dev_private;
1706 	struct intel_ringbuffer *ringbuf = ring->buffer;
1707 	unsigned long end;
1708 	int ret;
1709 
1710 	ret = intel_ring_wait_request(ring, n);
1711 	if (ret != -ENOSPC)
1712 		return ret;
1713 
1714 	/* force the tail write in case we have been skipping them */
1715 	__intel_ring_advance(ring);
1716 
1717 	/* With GEM the hangcheck timer should kick us out of the loop,
1718 	 * leaving it early runs the risk of corrupting GEM state (due
1719 	 * to running on almost untested codepaths). But on resume
1720 	 * timers don't work yet, so prevent a complete hang in that
1721 	 * case by choosing an insanely large timeout. */
1722 	end = jiffies + 60 * HZ;
1723 
1724 	trace_i915_ring_wait_begin(ring);
1725 	do {
1726 		ringbuf->head = I915_READ_HEAD(ring);
1727 		ringbuf->space = ring_space(ringbuf);
1728 		if (ringbuf->space >= n) {
1729 			ret = 0;
1730 			break;
1731 		}
1732 
1733 #if 0
1734 		if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1735 		    dev->primary->master) {
1736 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1737 			if (master_priv->sarea_priv)
1738 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1739 		}
1740 #else
1741 		if (dev_priv->sarea_priv)
1742 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1743 #endif
1744 
1745 
1746 		msleep(1);
1747 
1748 #if 0
1749 		if (dev_priv->mm.interruptible && signal_pending(current)) {
1750 			ret = -ERESTARTSYS;
1751 			break;
1752 		}
1753 #endif
1754 
1755 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1756 					   dev_priv->mm.interruptible);
1757 		if (ret)
1758 			break;
1759 
1760 		if (time_after(jiffies, end)) {
1761 			ret = -EBUSY;
1762 			break;
1763 		}
1764 	} while (1);
1765 	trace_i915_ring_wait_end(ring);
1766 	return ret;
1767 }
1768 
1769 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1770 {
1771 	uint32_t __iomem *virt;
1772 	struct intel_ringbuffer *ringbuf = ring->buffer;
1773 	int rem = ringbuf->size - ringbuf->tail;
1774 
1775 	if (ringbuf->space < rem) {
1776 		int ret = ring_wait_for_space(ring, rem);
1777 		if (ret)
1778 			return ret;
1779 	}
1780 
1781 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1782 	rem /= 4;
1783 	while (rem--)
1784 		iowrite32(MI_NOOP, virt++);
1785 
1786 	ringbuf->tail = 0;
1787 	ringbuf->space = ring_space(ringbuf);
1788 
1789 	return 0;
1790 }
1791 
1792 int intel_ring_idle(struct intel_engine_cs *ring)
1793 {
1794 	u32 seqno;
1795 	int ret;
1796 
1797 	/* We need to add any requests required to flush the objects and ring */
1798 	if (ring->outstanding_lazy_seqno) {
1799 		ret = i915_add_request(ring, NULL);
1800 		if (ret)
1801 			return ret;
1802 	}
1803 
1804 	/* Wait upon the last request to be completed */
1805 	if (list_empty(&ring->request_list))
1806 		return 0;
1807 
1808 	seqno = list_entry(ring->request_list.prev,
1809 			   struct drm_i915_gem_request,
1810 			   list)->seqno;
1811 
1812 	return i915_wait_seqno(ring, seqno);
1813 }
1814 
1815 static int
1816 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1817 {
1818 	if (ring->outstanding_lazy_seqno)
1819 		return 0;
1820 
1821 	if (ring->preallocated_lazy_request == NULL) {
1822 		struct drm_i915_gem_request *request;
1823 
1824 		request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1825 		if (request == NULL)
1826 			return -ENOMEM;
1827 
1828 		ring->preallocated_lazy_request = request;
1829 	}
1830 
1831 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1832 }
1833 
1834 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1835 				int bytes)
1836 {
1837 	struct intel_ringbuffer *ringbuf = ring->buffer;
1838 	int ret;
1839 
1840 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1841 		ret = intel_wrap_ring_buffer(ring);
1842 		if (unlikely(ret))
1843 			return ret;
1844 	}
1845 
1846 	if (unlikely(ringbuf->space < bytes)) {
1847 		ret = ring_wait_for_space(ring, bytes);
1848 		if (unlikely(ret))
1849 			return ret;
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 int intel_ring_begin(struct intel_engine_cs *ring,
1856 		     int num_dwords)
1857 {
1858 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1859 	int ret;
1860 
1861 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1862 				   dev_priv->mm.interruptible);
1863 	if (ret)
1864 		return ret;
1865 
1866 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1867 	if (ret)
1868 		return ret;
1869 
1870 	/* Preallocate the olr before touching the ring */
1871 	ret = intel_ring_alloc_seqno(ring);
1872 	if (ret)
1873 		return ret;
1874 
1875 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
1876 	return 0;
1877 }
1878 
1879 /* Align the ring tail to a cacheline boundary */
1880 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1881 {
1882 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1883 	int ret;
1884 
1885 	if (num_dwords == 0)
1886 		return 0;
1887 
1888 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1889 	ret = intel_ring_begin(ring, num_dwords);
1890 	if (ret)
1891 		return ret;
1892 
1893 	while (num_dwords--)
1894 		intel_ring_emit(ring, MI_NOOP);
1895 
1896 	intel_ring_advance(ring);
1897 
1898 	return 0;
1899 }
1900 
1901 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1902 {
1903 	struct drm_device *dev = ring->dev;
1904 	struct drm_i915_private *dev_priv = dev->dev_private;
1905 
1906 	BUG_ON(ring->outstanding_lazy_seqno);
1907 
1908 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1909 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1910 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1911 		if (HAS_VEBOX(dev))
1912 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1913 	}
1914 
1915 	ring->set_seqno(ring, seqno);
1916 	ring->hangcheck.seqno = seqno;
1917 }
1918 
1919 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1920 				     u32 value)
1921 {
1922 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1923 
1924        /* Every tail move must follow the sequence below */
1925 
1926 	/* Disable notification that the ring is IDLE. The GT
1927 	 * will then assume that it is busy and bring it out of rc6.
1928 	 */
1929 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1930 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1931 
1932 	/* Clear the context id. Here be magic! */
1933 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1934 
1935 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1936 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1937 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1938 		     50))
1939 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1940 
1941 	/* Now that the ring is fully powered up, update the tail */
1942 	I915_WRITE_TAIL(ring, value);
1943 	POSTING_READ(RING_TAIL(ring->mmio_base));
1944 
1945 	/* Let the ring send IDLE messages to the GT again,
1946 	 * and so let it sleep to conserve power when idle.
1947 	 */
1948 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1949 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1950 }
1951 
1952 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1953 			       u32 invalidate, u32 flush)
1954 {
1955 	uint32_t cmd;
1956 	int ret;
1957 
1958 	ret = intel_ring_begin(ring, 4);
1959 	if (ret)
1960 		return ret;
1961 
1962 	cmd = MI_FLUSH_DW;
1963 	if (INTEL_INFO(ring->dev)->gen >= 8)
1964 		cmd += 1;
1965 	/*
1966 	 * Bspec vol 1c.5 - video engine command streamer:
1967 	 * "If ENABLED, all TLBs will be invalidated once the flush
1968 	 * operation is complete. This bit is only valid when the
1969 	 * Post-Sync Operation field is a value of 1h or 3h."
1970 	 */
1971 	if (invalidate & I915_GEM_GPU_DOMAINS)
1972 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1973 			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1974 	intel_ring_emit(ring, cmd);
1975 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1976 	if (INTEL_INFO(ring->dev)->gen >= 8) {
1977 		intel_ring_emit(ring, 0); /* upper addr */
1978 		intel_ring_emit(ring, 0); /* value */
1979 	} else  {
1980 		intel_ring_emit(ring, 0);
1981 		intel_ring_emit(ring, MI_NOOP);
1982 	}
1983 	intel_ring_advance(ring);
1984 	return 0;
1985 }
1986 
1987 static int
1988 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1989 			      u64 offset, u32 len,
1990 			      unsigned flags)
1991 {
1992 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1993 	bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1994 		!(flags & I915_DISPATCH_SECURE);
1995 	int ret;
1996 
1997 	ret = intel_ring_begin(ring, 4);
1998 	if (ret)
1999 		return ret;
2000 
2001 	/* FIXME(BDW): Address space and security selectors. */
2002 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2003 	intel_ring_emit(ring, lower_32_bits(offset));
2004 	intel_ring_emit(ring, upper_32_bits(offset));
2005 	intel_ring_emit(ring, MI_NOOP);
2006 	intel_ring_advance(ring);
2007 
2008 	return 0;
2009 }
2010 
2011 static int
2012 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2013 			      u64 offset, u32 len,
2014 			      unsigned flags)
2015 {
2016 	int ret;
2017 
2018 	ret = intel_ring_begin(ring, 2);
2019 	if (ret)
2020 		return ret;
2021 
2022 	intel_ring_emit(ring,
2023 			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2024 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2025 	/* bit0-7 is the length on GEN6+ */
2026 	intel_ring_emit(ring, offset);
2027 	intel_ring_advance(ring);
2028 
2029 	return 0;
2030 }
2031 
2032 static int
2033 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2034 			      u64 offset, u32 len,
2035 			      unsigned flags)
2036 {
2037 	int ret;
2038 
2039 	ret = intel_ring_begin(ring, 2);
2040 	if (ret)
2041 		return ret;
2042 
2043 	intel_ring_emit(ring,
2044 			MI_BATCH_BUFFER_START |
2045 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2046 	/* bit0-7 is the length on GEN6+ */
2047 	intel_ring_emit(ring, offset);
2048 	intel_ring_advance(ring);
2049 
2050 	return 0;
2051 }
2052 
2053 /* Blitter support (SandyBridge+) */
2054 
2055 static int gen6_ring_flush(struct intel_engine_cs *ring,
2056 			   u32 invalidate, u32 flush)
2057 {
2058 	struct drm_device *dev = ring->dev;
2059 	uint32_t cmd;
2060 	int ret;
2061 
2062 	ret = intel_ring_begin(ring, 4);
2063 	if (ret)
2064 		return ret;
2065 
2066 	cmd = MI_FLUSH_DW;
2067 	if (INTEL_INFO(ring->dev)->gen >= 8)
2068 		cmd += 1;
2069 	/*
2070 	 * Bspec vol 1c.3 - blitter engine command streamer:
2071 	 * "If ENABLED, all TLBs will be invalidated once the flush
2072 	 * operation is complete. This bit is only valid when the
2073 	 * Post-Sync Operation field is a value of 1h or 3h."
2074 	 */
2075 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2076 		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2077 			MI_FLUSH_DW_OP_STOREDW;
2078 	intel_ring_emit(ring, cmd);
2079 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2080 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2081 		intel_ring_emit(ring, 0); /* upper addr */
2082 		intel_ring_emit(ring, 0); /* value */
2083 	} else  {
2084 		intel_ring_emit(ring, 0);
2085 		intel_ring_emit(ring, MI_NOOP);
2086 	}
2087 	intel_ring_advance(ring);
2088 
2089 	if (IS_GEN7(dev) && !invalidate && flush)
2090 		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2091 
2092 	return 0;
2093 }
2094 
2095 int intel_init_render_ring_buffer(struct drm_device *dev)
2096 {
2097 	struct drm_i915_private *dev_priv = dev->dev_private;
2098 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2099 	struct drm_i915_gem_object *obj;
2100 	int ret;
2101 
2102 	ring->name = "render ring";
2103 	ring->id = RCS;
2104 	ring->mmio_base = RENDER_RING_BASE;
2105 
2106 	if (INTEL_INFO(dev)->gen >= 8) {
2107 		if (i915_semaphore_is_enabled(dev)) {
2108 			obj = i915_gem_alloc_object(dev, 4096);
2109 			if (obj == NULL) {
2110 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2111 				i915.semaphores = 0;
2112 			} else {
2113 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2114 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2115 				if (ret != 0) {
2116 					drm_gem_object_unreference(&obj->base);
2117 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2118 					i915.semaphores = 0;
2119 				} else
2120 					dev_priv->semaphore_obj = obj;
2121 			}
2122 		}
2123 		ring->add_request = gen6_add_request;
2124 		ring->flush = gen8_render_ring_flush;
2125 		ring->irq_get = gen8_ring_get_irq;
2126 		ring->irq_put = gen8_ring_put_irq;
2127 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2128 		ring->get_seqno = gen6_ring_get_seqno;
2129 		ring->set_seqno = ring_set_seqno;
2130 		if (i915_semaphore_is_enabled(dev)) {
2131 			WARN_ON(!dev_priv->semaphore_obj);
2132 			ring->semaphore.sync_to = gen8_ring_sync;
2133 			ring->semaphore.signal = gen8_rcs_signal;
2134 			GEN8_RING_SEMAPHORE_INIT;
2135 		}
2136 	} else if (INTEL_INFO(dev)->gen >= 6) {
2137 		ring->add_request = gen6_add_request;
2138 		ring->flush = gen7_render_ring_flush;
2139 		if (INTEL_INFO(dev)->gen == 6)
2140 			ring->flush = gen6_render_ring_flush;
2141 		ring->irq_get = gen6_ring_get_irq;
2142 		ring->irq_put = gen6_ring_put_irq;
2143 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2144 		ring->get_seqno = gen6_ring_get_seqno;
2145 		ring->set_seqno = ring_set_seqno;
2146 		if (i915_semaphore_is_enabled(dev)) {
2147 			ring->semaphore.sync_to = gen6_ring_sync;
2148 			ring->semaphore.signal = gen6_signal;
2149 			/*
2150 			 * The current semaphore is only applied on pre-gen8
2151 			 * platform.  And there is no VCS2 ring on the pre-gen8
2152 			 * platform. So the semaphore between RCS and VCS2 is
2153 			 * initialized as INVALID.  Gen8 will initialize the
2154 			 * sema between VCS2 and RCS later.
2155 			 */
2156 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2157 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2158 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2159 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2160 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2161 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2162 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2163 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2164 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2165 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2166 		}
2167 	} else if (IS_GEN5(dev)) {
2168 		ring->add_request = pc_render_add_request;
2169 		ring->flush = gen4_render_ring_flush;
2170 		ring->get_seqno = pc_render_get_seqno;
2171 		ring->set_seqno = pc_render_set_seqno;
2172 		ring->irq_get = gen5_ring_get_irq;
2173 		ring->irq_put = gen5_ring_put_irq;
2174 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2175 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2176 	} else {
2177 		ring->add_request = i9xx_add_request;
2178 		if (INTEL_INFO(dev)->gen < 4)
2179 			ring->flush = gen2_render_ring_flush;
2180 		else
2181 			ring->flush = gen4_render_ring_flush;
2182 		ring->get_seqno = ring_get_seqno;
2183 		ring->set_seqno = ring_set_seqno;
2184 		if (IS_GEN2(dev)) {
2185 			ring->irq_get = i8xx_ring_get_irq;
2186 			ring->irq_put = i8xx_ring_put_irq;
2187 		} else {
2188 			ring->irq_get = i9xx_ring_get_irq;
2189 			ring->irq_put = i9xx_ring_put_irq;
2190 		}
2191 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2192 	}
2193 	ring->write_tail = ring_write_tail;
2194 
2195 	if (IS_HASWELL(dev))
2196 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2197 	else if (IS_GEN8(dev))
2198 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2199 	else if (INTEL_INFO(dev)->gen >= 6)
2200 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2201 	else if (INTEL_INFO(dev)->gen >= 4)
2202 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2203 	else if (IS_I830(dev) || IS_845G(dev))
2204 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2205 	else
2206 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2207 	ring->init = init_render_ring;
2208 	ring->cleanup = render_ring_cleanup;
2209 
2210 	/* Workaround batchbuffer to combat CS tlb bug. */
2211 	if (HAS_BROKEN_CS_TLB(dev)) {
2212 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2213 		if (obj == NULL) {
2214 			DRM_ERROR("Failed to allocate batch bo\n");
2215 			return -ENOMEM;
2216 		}
2217 
2218 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2219 		if (ret != 0) {
2220 			drm_gem_object_unreference(&obj->base);
2221 			DRM_ERROR("Failed to ping batch bo\n");
2222 			return ret;
2223 		}
2224 
2225 		ring->scratch.obj = obj;
2226 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2227 	}
2228 
2229 	return intel_init_ring_buffer(dev, ring);
2230 }
2231 
2232 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2233 {
2234 	struct drm_i915_private *dev_priv = dev->dev_private;
2235 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2236 	struct intel_ringbuffer *ringbuf = ring->buffer;
2237 	int ret;
2238 
2239 	if (ringbuf == NULL) {
2240 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2241 		if (!ringbuf)
2242 			return -ENOMEM;
2243 		ring->buffer = ringbuf;
2244 	}
2245 
2246 	ring->name = "render ring";
2247 	ring->id = RCS;
2248 	ring->mmio_base = RENDER_RING_BASE;
2249 
2250 	if (INTEL_INFO(dev)->gen >= 6) {
2251 		/* non-kms not supported on gen6+ */
2252 		ret = -ENODEV;
2253 		goto err_ringbuf;
2254 	}
2255 
2256 	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2257 	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2258 	 * the special gen5 functions. */
2259 	ring->add_request = i9xx_add_request;
2260 	if (INTEL_INFO(dev)->gen < 4)
2261 		ring->flush = gen2_render_ring_flush;
2262 	else
2263 		ring->flush = gen4_render_ring_flush;
2264 	ring->get_seqno = ring_get_seqno;
2265 	ring->set_seqno = ring_set_seqno;
2266 	if (IS_GEN2(dev)) {
2267 		ring->irq_get = i8xx_ring_get_irq;
2268 		ring->irq_put = i8xx_ring_put_irq;
2269 	} else {
2270 		ring->irq_get = i9xx_ring_get_irq;
2271 		ring->irq_put = i9xx_ring_put_irq;
2272 	}
2273 	ring->irq_enable_mask = I915_USER_INTERRUPT;
2274 	ring->write_tail = ring_write_tail;
2275 	if (INTEL_INFO(dev)->gen >= 4)
2276 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2277 	else if (IS_I830(dev) || IS_845G(dev))
2278 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2279 	else
2280 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2281 	ring->init = init_render_ring;
2282 	ring->cleanup = render_ring_cleanup;
2283 
2284 	ring->dev = dev;
2285 	INIT_LIST_HEAD(&ring->active_list);
2286 	INIT_LIST_HEAD(&ring->request_list);
2287 
2288 	ringbuf->size = size;
2289 	ringbuf->effective_size = ringbuf->size;
2290 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
2291 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2292 
2293 	ringbuf->virtual_start = ioremap_wc(start, size);
2294 	if (ringbuf->virtual_start == NULL) {
2295 		DRM_ERROR("can not ioremap virtual address for"
2296 			  " ring buffer\n");
2297 		ret = -ENOMEM;
2298 		goto err_ringbuf;
2299 	}
2300 
2301 	if (!I915_NEED_GFX_HWS(dev)) {
2302 		ret = init_phys_status_page(ring);
2303 		if (ret)
2304 			goto err_vstart;
2305 	}
2306 
2307 	return 0;
2308 
2309 err_vstart:
2310 	pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2311 err_ringbuf:
2312 	kfree(ringbuf);
2313 	ring->buffer = NULL;
2314 	return ret;
2315 }
2316 
2317 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2318 {
2319 	struct drm_i915_private *dev_priv = dev->dev_private;
2320 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2321 
2322 	ring->name = "bsd ring";
2323 	ring->id = VCS;
2324 
2325 	ring->write_tail = ring_write_tail;
2326 	if (INTEL_INFO(dev)->gen >= 6) {
2327 		ring->mmio_base = GEN6_BSD_RING_BASE;
2328 		/* gen6 bsd needs a special wa for tail updates */
2329 		if (IS_GEN6(dev))
2330 			ring->write_tail = gen6_bsd_ring_write_tail;
2331 		ring->flush = gen6_bsd_ring_flush;
2332 		ring->add_request = gen6_add_request;
2333 		ring->get_seqno = gen6_ring_get_seqno;
2334 		ring->set_seqno = ring_set_seqno;
2335 		if (INTEL_INFO(dev)->gen >= 8) {
2336 			ring->irq_enable_mask =
2337 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2338 			ring->irq_get = gen8_ring_get_irq;
2339 			ring->irq_put = gen8_ring_put_irq;
2340 			ring->dispatch_execbuffer =
2341 				gen8_ring_dispatch_execbuffer;
2342 			if (i915_semaphore_is_enabled(dev)) {
2343 				ring->semaphore.sync_to = gen8_ring_sync;
2344 				ring->semaphore.signal = gen8_xcs_signal;
2345 				GEN8_RING_SEMAPHORE_INIT;
2346 			}
2347 		} else {
2348 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2349 			ring->irq_get = gen6_ring_get_irq;
2350 			ring->irq_put = gen6_ring_put_irq;
2351 			ring->dispatch_execbuffer =
2352 				gen6_ring_dispatch_execbuffer;
2353 			if (i915_semaphore_is_enabled(dev)) {
2354 				ring->semaphore.sync_to = gen6_ring_sync;
2355 				ring->semaphore.signal = gen6_signal;
2356 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2357 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2358 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2359 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2360 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2361 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2362 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2363 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2364 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2365 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2366 			}
2367 		}
2368 	} else {
2369 		ring->mmio_base = BSD_RING_BASE;
2370 		ring->flush = bsd_ring_flush;
2371 		ring->add_request = i9xx_add_request;
2372 		ring->get_seqno = ring_get_seqno;
2373 		ring->set_seqno = ring_set_seqno;
2374 		if (IS_GEN5(dev)) {
2375 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2376 			ring->irq_get = gen5_ring_get_irq;
2377 			ring->irq_put = gen5_ring_put_irq;
2378 		} else {
2379 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2380 			ring->irq_get = i9xx_ring_get_irq;
2381 			ring->irq_put = i9xx_ring_put_irq;
2382 		}
2383 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2384 	}
2385 	ring->init = init_ring_common;
2386 
2387 	return intel_init_ring_buffer(dev, ring);
2388 }
2389 
2390 /**
2391  * Initialize the second BSD ring for Broadwell GT3.
2392  * It is noted that this only exists on Broadwell GT3.
2393  */
2394 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2395 {
2396 	struct drm_i915_private *dev_priv = dev->dev_private;
2397 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2398 
2399 	if ((INTEL_INFO(dev)->gen != 8)) {
2400 		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2401 		return -EINVAL;
2402 	}
2403 
2404 	ring->name = "bsd2 ring";
2405 	ring->id = VCS2;
2406 
2407 	ring->write_tail = ring_write_tail;
2408 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2409 	ring->flush = gen6_bsd_ring_flush;
2410 	ring->add_request = gen6_add_request;
2411 	ring->get_seqno = gen6_ring_get_seqno;
2412 	ring->set_seqno = ring_set_seqno;
2413 	ring->irq_enable_mask =
2414 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2415 	ring->irq_get = gen8_ring_get_irq;
2416 	ring->irq_put = gen8_ring_put_irq;
2417 	ring->dispatch_execbuffer =
2418 			gen8_ring_dispatch_execbuffer;
2419 	if (i915_semaphore_is_enabled(dev)) {
2420 		ring->semaphore.sync_to = gen8_ring_sync;
2421 		ring->semaphore.signal = gen8_xcs_signal;
2422 		GEN8_RING_SEMAPHORE_INIT;
2423 	}
2424 	ring->init = init_ring_common;
2425 
2426 	return intel_init_ring_buffer(dev, ring);
2427 }
2428 
2429 int intel_init_blt_ring_buffer(struct drm_device *dev)
2430 {
2431 	struct drm_i915_private *dev_priv = dev->dev_private;
2432 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2433 
2434 	ring->name = "blitter ring";
2435 	ring->id = BCS;
2436 
2437 	ring->mmio_base = BLT_RING_BASE;
2438 	ring->write_tail = ring_write_tail;
2439 	ring->flush = gen6_ring_flush;
2440 	ring->add_request = gen6_add_request;
2441 	ring->get_seqno = gen6_ring_get_seqno;
2442 	ring->set_seqno = ring_set_seqno;
2443 	if (INTEL_INFO(dev)->gen >= 8) {
2444 		ring->irq_enable_mask =
2445 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2446 		ring->irq_get = gen8_ring_get_irq;
2447 		ring->irq_put = gen8_ring_put_irq;
2448 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2449 		if (i915_semaphore_is_enabled(dev)) {
2450 			ring->semaphore.sync_to = gen8_ring_sync;
2451 			ring->semaphore.signal = gen8_xcs_signal;
2452 			GEN8_RING_SEMAPHORE_INIT;
2453 		}
2454 	} else {
2455 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2456 		ring->irq_get = gen6_ring_get_irq;
2457 		ring->irq_put = gen6_ring_put_irq;
2458 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2459 		if (i915_semaphore_is_enabled(dev)) {
2460 			ring->semaphore.signal = gen6_signal;
2461 			ring->semaphore.sync_to = gen6_ring_sync;
2462 			/*
2463 			 * The current semaphore is only applied on pre-gen8
2464 			 * platform.  And there is no VCS2 ring on the pre-gen8
2465 			 * platform. So the semaphore between BCS and VCS2 is
2466 			 * initialized as INVALID.  Gen8 will initialize the
2467 			 * sema between BCS and VCS2 later.
2468 			 */
2469 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2470 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2471 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2472 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2473 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2474 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2475 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2476 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2477 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2478 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2479 		}
2480 	}
2481 	ring->init = init_ring_common;
2482 
2483 	return intel_init_ring_buffer(dev, ring);
2484 }
2485 
2486 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2487 {
2488 	struct drm_i915_private *dev_priv = dev->dev_private;
2489 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2490 
2491 	ring->name = "video enhancement ring";
2492 	ring->id = VECS;
2493 
2494 	ring->mmio_base = VEBOX_RING_BASE;
2495 	ring->write_tail = ring_write_tail;
2496 	ring->flush = gen6_ring_flush;
2497 	ring->add_request = gen6_add_request;
2498 	ring->get_seqno = gen6_ring_get_seqno;
2499 	ring->set_seqno = ring_set_seqno;
2500 
2501 	if (INTEL_INFO(dev)->gen >= 8) {
2502 		ring->irq_enable_mask =
2503 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2504 		ring->irq_get = gen8_ring_get_irq;
2505 		ring->irq_put = gen8_ring_put_irq;
2506 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2507 		if (i915_semaphore_is_enabled(dev)) {
2508 			ring->semaphore.sync_to = gen8_ring_sync;
2509 			ring->semaphore.signal = gen8_xcs_signal;
2510 			GEN8_RING_SEMAPHORE_INIT;
2511 		}
2512 	} else {
2513 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2514 		ring->irq_get = hsw_vebox_get_irq;
2515 		ring->irq_put = hsw_vebox_put_irq;
2516 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2517 		if (i915_semaphore_is_enabled(dev)) {
2518 			ring->semaphore.sync_to = gen6_ring_sync;
2519 			ring->semaphore.signal = gen6_signal;
2520 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2521 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2522 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2523 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2524 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2525 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2526 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2527 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2528 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2529 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2530 		}
2531 	}
2532 	ring->init = init_ring_common;
2533 
2534 	return intel_init_ring_buffer(dev, ring);
2535 }
2536 
2537 int
2538 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2539 {
2540 	int ret;
2541 
2542 	if (!ring->gpu_caches_dirty)
2543 		return 0;
2544 
2545 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2546 	if (ret)
2547 		return ret;
2548 
2549 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2550 
2551 	ring->gpu_caches_dirty = false;
2552 	return 0;
2553 }
2554 
2555 int
2556 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2557 {
2558 	uint32_t flush_domains;
2559 	int ret;
2560 
2561 	flush_domains = 0;
2562 	if (ring->gpu_caches_dirty)
2563 		flush_domains = I915_GEM_GPU_DOMAINS;
2564 
2565 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2566 	if (ret)
2567 		return ret;
2568 
2569 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2570 
2571 	ring->gpu_caches_dirty = false;
2572 	return 0;
2573 }
2574 
2575 void
2576 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2577 {
2578 	int ret;
2579 
2580 	if (!intel_ring_initialized(ring))
2581 		return;
2582 
2583 	ret = intel_ring_idle(ring);
2584 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2585 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2586 			  ring->name, ret);
2587 
2588 	stop_ring(ring);
2589 }
2590