xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 2b57e6df)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41 
42 static int __intel_ring_space(int head, int tail, int size)
43 {
44 	int space = head - tail;
45 	if (space <= 0)
46 		space += size;
47 	return space - I915_RING_FREE_SPACE;
48 }
49 
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52 	ring->space = __intel_ring_space(ring->head, ring->emit, ring->size);
53 }
54 
55 static int
56 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
57 {
58 	u32 cmd, *cs;
59 
60 	cmd = MI_FLUSH;
61 
62 	if (mode & EMIT_INVALIDATE)
63 		cmd |= MI_READ_FLUSH;
64 
65 	cs = intel_ring_begin(req, 2);
66 	if (IS_ERR(cs))
67 		return PTR_ERR(cs);
68 
69 	*cs++ = cmd;
70 	*cs++ = MI_NOOP;
71 	intel_ring_advance(req, cs);
72 
73 	return 0;
74 }
75 
76 static int
77 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
78 {
79 	u32 cmd, *cs;
80 
81 	/*
82 	 * read/write caches:
83 	 *
84 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
85 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
86 	 * also flushed at 2d versus 3d pipeline switches.
87 	 *
88 	 * read-only caches:
89 	 *
90 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
91 	 * MI_READ_FLUSH is set, and is always flushed on 965.
92 	 *
93 	 * I915_GEM_DOMAIN_COMMAND may not exist?
94 	 *
95 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
96 	 * invalidated when MI_EXE_FLUSH is set.
97 	 *
98 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
99 	 * invalidated with every MI_FLUSH.
100 	 *
101 	 * TLBs:
102 	 *
103 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
104 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
105 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
106 	 * are flushed at any MI_FLUSH.
107 	 */
108 
109 	cmd = MI_FLUSH;
110 	if (mode & EMIT_INVALIDATE) {
111 		cmd |= MI_EXE_FLUSH;
112 		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
113 			cmd |= MI_INVALIDATE_ISP;
114 	}
115 
116 	cs = intel_ring_begin(req, 2);
117 	if (IS_ERR(cs))
118 		return PTR_ERR(cs);
119 
120 	*cs++ = cmd;
121 	*cs++ = MI_NOOP;
122 	intel_ring_advance(req, cs);
123 
124 	return 0;
125 }
126 
127 /**
128  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
129  * implementing two workarounds on gen6.  From section 1.4.7.1
130  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
131  *
132  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
133  * produced by non-pipelined state commands), software needs to first
134  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
135  * 0.
136  *
137  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
138  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
139  *
140  * And the workaround for these two requires this workaround first:
141  *
142  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
143  * BEFORE the pipe-control with a post-sync op and no write-cache
144  * flushes.
145  *
146  * And this last workaround is tricky because of the requirements on
147  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
148  * volume 2 part 1:
149  *
150  *     "1 of the following must also be set:
151  *      - Render Target Cache Flush Enable ([12] of DW1)
152  *      - Depth Cache Flush Enable ([0] of DW1)
153  *      - Stall at Pixel Scoreboard ([1] of DW1)
154  *      - Depth Stall ([13] of DW1)
155  *      - Post-Sync Operation ([13] of DW1)
156  *      - Notify Enable ([8] of DW1)"
157  *
158  * The cache flushes require the workaround flush that triggered this
159  * one, so we can't use it.  Depth stall would trigger the same.
160  * Post-sync nonzero is what triggered this second workaround, so we
161  * can't use that one either.  Notify enable is IRQs, which aren't
162  * really our business.  That leaves only stall at scoreboard.
163  */
164 static int
165 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
166 {
167 	u32 scratch_addr =
168 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
169 	u32 *cs;
170 
171 	cs = intel_ring_begin(req, 6);
172 	if (IS_ERR(cs))
173 		return PTR_ERR(cs);
174 
175 	*cs++ = GFX_OP_PIPE_CONTROL(5);
176 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
177 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
178 	*cs++ = 0; /* low dword */
179 	*cs++ = 0; /* high dword */
180 	*cs++ = MI_NOOP;
181 	intel_ring_advance(req, cs);
182 
183 	cs = intel_ring_begin(req, 6);
184 	if (IS_ERR(cs))
185 		return PTR_ERR(cs);
186 
187 	*cs++ = GFX_OP_PIPE_CONTROL(5);
188 	*cs++ = PIPE_CONTROL_QW_WRITE;
189 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
190 	*cs++ = 0;
191 	*cs++ = 0;
192 	*cs++ = MI_NOOP;
193 	intel_ring_advance(req, cs);
194 
195 	return 0;
196 }
197 
198 static int
199 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
200 {
201 	u32 scratch_addr =
202 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
203 	u32 *cs, flags = 0;
204 	int ret;
205 
206 	/* Force SNB workarounds for PIPE_CONTROL flushes */
207 	ret = intel_emit_post_sync_nonzero_flush(req);
208 	if (ret)
209 		return ret;
210 
211 	/* Just flush everything.  Experiments have shown that reducing the
212 	 * number of bits based on the write domains has little performance
213 	 * impact.
214 	 */
215 	if (mode & EMIT_FLUSH) {
216 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
217 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
218 		/*
219 		 * Ensure that any following seqno writes only happen
220 		 * when the render cache is indeed flushed.
221 		 */
222 		flags |= PIPE_CONTROL_CS_STALL;
223 	}
224 	if (mode & EMIT_INVALIDATE) {
225 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
226 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
227 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
228 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
229 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
230 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
231 		/*
232 		 * TLB invalidate requires a post-sync write.
233 		 */
234 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
235 	}
236 
237 	cs = intel_ring_begin(req, 4);
238 	if (IS_ERR(cs))
239 		return PTR_ERR(cs);
240 
241 	*cs++ = GFX_OP_PIPE_CONTROL(4);
242 	*cs++ = flags;
243 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
244 	*cs++ = 0;
245 	intel_ring_advance(req, cs);
246 
247 	return 0;
248 }
249 
250 static int
251 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
252 {
253 	u32 *cs;
254 
255 	cs = intel_ring_begin(req, 4);
256 	if (IS_ERR(cs))
257 		return PTR_ERR(cs);
258 
259 	*cs++ = GFX_OP_PIPE_CONTROL(4);
260 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
261 	*cs++ = 0;
262 	*cs++ = 0;
263 	intel_ring_advance(req, cs);
264 
265 	return 0;
266 }
267 
268 static int
269 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
270 {
271 	u32 scratch_addr =
272 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
273 	u32 *cs, flags = 0;
274 
275 	/*
276 	 * Ensure that any following seqno writes only happen when the render
277 	 * cache is indeed flushed.
278 	 *
279 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
280 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
281 	 * don't try to be clever and just set it unconditionally.
282 	 */
283 	flags |= PIPE_CONTROL_CS_STALL;
284 
285 	/* Just flush everything.  Experiments have shown that reducing the
286 	 * number of bits based on the write domains has little performance
287 	 * impact.
288 	 */
289 	if (mode & EMIT_FLUSH) {
290 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
291 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
292 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
293 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
294 	}
295 	if (mode & EMIT_INVALIDATE) {
296 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
297 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
298 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
299 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
300 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
301 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
302 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
303 		/*
304 		 * TLB invalidate requires a post-sync write.
305 		 */
306 		flags |= PIPE_CONTROL_QW_WRITE;
307 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
308 
309 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
310 
311 		/* Workaround: we must issue a pipe_control with CS-stall bit
312 		 * set before a pipe_control command that has the state cache
313 		 * invalidate bit set. */
314 		gen7_render_ring_cs_stall_wa(req);
315 	}
316 
317 	cs = intel_ring_begin(req, 4);
318 	if (IS_ERR(cs))
319 		return PTR_ERR(cs);
320 
321 	*cs++ = GFX_OP_PIPE_CONTROL(4);
322 	*cs++ = flags;
323 	*cs++ = scratch_addr;
324 	*cs++ = 0;
325 	intel_ring_advance(req, cs);
326 
327 	return 0;
328 }
329 
330 static int
331 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
332 {
333 	u32 flags;
334 	u32 *cs;
335 
336 	cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
337 	if (IS_ERR(cs))
338 		return PTR_ERR(cs);
339 
340 	flags = PIPE_CONTROL_CS_STALL;
341 
342 	if (mode & EMIT_FLUSH) {
343 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
346 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
347 	}
348 	if (mode & EMIT_INVALIDATE) {
349 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
350 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355 		flags |= PIPE_CONTROL_QW_WRITE;
356 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
357 
358 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
359 		cs = gen8_emit_pipe_control(cs,
360 					    PIPE_CONTROL_CS_STALL |
361 					    PIPE_CONTROL_STALL_AT_SCOREBOARD,
362 					    0);
363 	}
364 
365 	cs = gen8_emit_pipe_control(cs, flags,
366 				    i915_ggtt_offset(req->engine->scratch) +
367 				    2 * CACHELINE_BYTES);
368 
369 	intel_ring_advance(req, cs);
370 
371 	return 0;
372 }
373 
374 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
375 {
376 	struct drm_i915_private *dev_priv = engine->i915;
377 	u32 addr;
378 
379 	addr = dev_priv->status_page_dmah->busaddr;
380 	if (INTEL_GEN(dev_priv) >= 4)
381 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
382 	I915_WRITE(HWS_PGA, addr);
383 }
384 
385 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
386 {
387 	struct drm_i915_private *dev_priv = engine->i915;
388 	i915_reg_t mmio;
389 
390 	/* The ring status page addresses are no longer next to the rest of
391 	 * the ring registers as of gen7.
392 	 */
393 	if (IS_GEN7(dev_priv)) {
394 		switch (engine->id) {
395 		case RCS:
396 			mmio = RENDER_HWS_PGA_GEN7;
397 			break;
398 		case BCS:
399 			mmio = BLT_HWS_PGA_GEN7;
400 			break;
401 		/*
402 		 * VCS2 actually doesn't exist on Gen7. Only shut up
403 		 * gcc switch check warning
404 		 */
405 		case VCS2:
406 		case VCS:
407 			mmio = BSD_HWS_PGA_GEN7;
408 			break;
409 		case VECS:
410 			mmio = VEBOX_HWS_PGA_GEN7;
411 			break;
412 		}
413 	} else if (IS_GEN6(dev_priv)) {
414 		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
415 	} else {
416 		/* XXX: gen8 returns to sanity */
417 		mmio = RING_HWS_PGA(engine->mmio_base);
418 	}
419 
420 	I915_WRITE(mmio, engine->status_page.ggtt_offset);
421 	POSTING_READ(mmio);
422 
423 	/*
424 	 * Flush the TLB for this page
425 	 *
426 	 * FIXME: These two bits have disappeared on gen8, so a question
427 	 * arises: do we still need this and if so how should we go about
428 	 * invalidating the TLB?
429 	 */
430 	if (IS_GEN(dev_priv, 6, 7)) {
431 		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
432 
433 		/* ring should be idle before issuing a sync flush*/
434 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
435 
436 		I915_WRITE(reg,
437 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
438 					      INSTPM_SYNC_FLUSH));
439 		if (intel_wait_for_register(dev_priv,
440 					    reg, INSTPM_SYNC_FLUSH, 0,
441 					    1000))
442 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
443 				  engine->name);
444 	}
445 }
446 
447 static bool stop_ring(struct intel_engine_cs *engine)
448 {
449 	struct drm_i915_private *dev_priv = engine->i915;
450 
451 	if (INTEL_GEN(dev_priv) > 2) {
452 		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
453 		if (intel_wait_for_register(dev_priv,
454 					    RING_MI_MODE(engine->mmio_base),
455 					    MODE_IDLE,
456 					    MODE_IDLE,
457 					    1000)) {
458 			DRM_ERROR("%s : timed out trying to stop ring\n",
459 				  engine->name);
460 			/* Sometimes we observe that the idle flag is not
461 			 * set even though the ring is empty. So double
462 			 * check before giving up.
463 			 */
464 			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
465 				return false;
466 		}
467 	}
468 
469 	I915_WRITE_CTL(engine, 0);
470 	I915_WRITE_HEAD(engine, 0);
471 	I915_WRITE_TAIL(engine, 0);
472 
473 	if (INTEL_GEN(dev_priv) > 2) {
474 		(void)I915_READ_CTL(engine);
475 		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
476 	}
477 
478 	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
479 }
480 
481 static int init_ring_common(struct intel_engine_cs *engine)
482 {
483 	struct drm_i915_private *dev_priv = engine->i915;
484 	struct intel_ring *ring = engine->buffer;
485 	int ret = 0;
486 
487 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
488 
489 	if (!stop_ring(engine)) {
490 		/* G45 ring initialization often fails to reset head to zero */
491 		DRM_DEBUG_KMS("%s head not reset to zero "
492 			      "ctl %08x head %08x tail %08x start %08x\n",
493 			      engine->name,
494 			      I915_READ_CTL(engine),
495 			      I915_READ_HEAD(engine),
496 			      I915_READ_TAIL(engine),
497 			      I915_READ_START(engine));
498 
499 		if (!stop_ring(engine)) {
500 			DRM_ERROR("failed to set %s head to zero "
501 				  "ctl %08x head %08x tail %08x start %08x\n",
502 				  engine->name,
503 				  I915_READ_CTL(engine),
504 				  I915_READ_HEAD(engine),
505 				  I915_READ_TAIL(engine),
506 				  I915_READ_START(engine));
507 			ret = -EIO;
508 			goto out;
509 		}
510 	}
511 
512 	if (HWS_NEEDS_PHYSICAL(dev_priv))
513 		ring_setup_phys_status_page(engine);
514 	else
515 		intel_ring_setup_status_page(engine);
516 
517 	intel_engine_reset_breadcrumbs(engine);
518 
519 	/* Enforce ordering by reading HEAD register back */
520 	I915_READ_HEAD(engine);
521 
522 	/* Initialize the ring. This must happen _after_ we've cleared the ring
523 	 * registers with the above sequence (the readback of the HEAD registers
524 	 * also enforces ordering), otherwise the hw might lose the new ring
525 	 * register values. */
526 	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
527 
528 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
529 	if (I915_READ_HEAD(engine))
530 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
531 			  engine->name, I915_READ_HEAD(engine));
532 
533 	intel_ring_update_space(ring);
534 	I915_WRITE_HEAD(engine, ring->head);
535 	I915_WRITE_TAIL(engine, ring->tail);
536 	(void)I915_READ_TAIL(engine);
537 
538 	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
539 
540 	/* If the head is still not zero, the ring is dead */
541 	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
542 				       RING_VALID, RING_VALID,
543 				       50)) {
544 		DRM_ERROR("%s initialization failed "
545 			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
546 			  engine->name,
547 			  I915_READ_CTL(engine),
548 			  I915_READ_CTL(engine) & RING_VALID,
549 			  I915_READ_HEAD(engine), ring->head,
550 			  I915_READ_TAIL(engine), ring->tail,
551 			  I915_READ_START(engine),
552 			  i915_ggtt_offset(ring->vma));
553 		ret = -EIO;
554 		goto out;
555 	}
556 
557 	intel_engine_init_hangcheck(engine);
558 
559 out:
560 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
561 
562 	return ret;
563 }
564 
565 static void reset_ring_common(struct intel_engine_cs *engine,
566 			      struct drm_i915_gem_request *request)
567 {
568 	/* Try to restore the logical GPU state to match the continuation
569 	 * of the request queue. If we skip the context/PD restore, then
570 	 * the next request may try to execute assuming that its context
571 	 * is valid and loaded on the GPU and so may try to access invalid
572 	 * memory, prompting repeated GPU hangs.
573 	 *
574 	 * If the request was guilty, we still restore the logical state
575 	 * in case the next request requires it (e.g. the aliasing ppgtt),
576 	 * but skip over the hung batch.
577 	 *
578 	 * If the request was innocent, we try to replay the request with
579 	 * the restored context.
580 	 */
581 	if (request) {
582 		struct drm_i915_private *dev_priv = request->i915;
583 		struct intel_context *ce = &request->ctx->engine[engine->id];
584 		struct i915_hw_ppgtt *ppgtt;
585 
586 		/* FIXME consider gen8 reset */
587 
588 		if (ce->state) {
589 			I915_WRITE(CCID,
590 				   i915_ggtt_offset(ce->state) |
591 				   BIT(8) /* must be set! */ |
592 				   CCID_EXTENDED_STATE_SAVE |
593 				   CCID_EXTENDED_STATE_RESTORE |
594 				   CCID_EN);
595 		}
596 
597 		ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
598 		if (ppgtt) {
599 			u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
600 
601 			I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
602 			I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
603 
604 			/* Wait for the PD reload to complete */
605 			if (intel_wait_for_register(dev_priv,
606 						    RING_PP_DIR_BASE(engine),
607 						    BIT(0), 0,
608 						    10))
609 				DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
610 
611 			ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
612 		}
613 
614 		/* If the rq hung, jump to its breadcrumb and skip the batch */
615 		if (request->fence.error == -EIO)
616 			request->ring->head = request->postfix;
617 	} else {
618 		engine->legacy_active_context = NULL;
619 	}
620 }
621 
622 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
623 {
624 	int ret;
625 
626 	ret = intel_ring_workarounds_emit(req);
627 	if (ret != 0)
628 		return ret;
629 
630 	ret = i915_gem_render_state_emit(req);
631 	if (ret)
632 		return ret;
633 
634 	return 0;
635 }
636 
637 static int init_render_ring(struct intel_engine_cs *engine)
638 {
639 	struct drm_i915_private *dev_priv = engine->i915;
640 	int ret = init_ring_common(engine);
641 	if (ret)
642 		return ret;
643 
644 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
645 	if (IS_GEN(dev_priv, 4, 6))
646 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
647 
648 	/* We need to disable the AsyncFlip performance optimisations in order
649 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
650 	 * programmed to '1' on all products.
651 	 *
652 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
653 	 */
654 	if (IS_GEN(dev_priv, 6, 7))
655 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
656 
657 	/* Required for the hardware to program scanline values for waiting */
658 	/* WaEnableFlushTlbInvalidationMode:snb */
659 	if (IS_GEN6(dev_priv))
660 		I915_WRITE(GFX_MODE,
661 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
662 
663 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
664 	if (IS_GEN7(dev_priv))
665 		I915_WRITE(GFX_MODE_GEN7,
666 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
667 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
668 
669 	if (IS_GEN6(dev_priv)) {
670 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
671 		 * "If this bit is set, STCunit will have LRA as replacement
672 		 *  policy. [...] This bit must be reset.  LRA replacement
673 		 *  policy is not supported."
674 		 */
675 		I915_WRITE(CACHE_MODE_0,
676 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
677 	}
678 
679 	if (IS_GEN(dev_priv, 6, 7))
680 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
681 
682 	if (INTEL_INFO(dev_priv)->gen >= 6)
683 		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
684 
685 	return init_workarounds_ring(engine);
686 }
687 
688 static void render_ring_cleanup(struct intel_engine_cs *engine)
689 {
690 	struct drm_i915_private *dev_priv = engine->i915;
691 
692 	i915_vma_unpin_and_release(&dev_priv->semaphore);
693 }
694 
695 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
696 {
697 	struct drm_i915_private *dev_priv = req->i915;
698 	struct intel_engine_cs *waiter;
699 	enum intel_engine_id id;
700 
701 	for_each_engine(waiter, dev_priv, id) {
702 		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
703 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
704 			continue;
705 
706 		*cs++ = GFX_OP_PIPE_CONTROL(6);
707 		*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
708 			PIPE_CONTROL_CS_STALL;
709 		*cs++ = lower_32_bits(gtt_offset);
710 		*cs++ = upper_32_bits(gtt_offset);
711 		*cs++ = req->global_seqno;
712 		*cs++ = 0;
713 		*cs++ = MI_SEMAPHORE_SIGNAL |
714 			MI_SEMAPHORE_TARGET(waiter->hw_id);
715 		*cs++ = 0;
716 	}
717 
718 	return cs;
719 }
720 
721 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
722 {
723 	struct drm_i915_private *dev_priv = req->i915;
724 	struct intel_engine_cs *waiter;
725 	enum intel_engine_id id;
726 
727 	for_each_engine(waiter, dev_priv, id) {
728 		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
729 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
730 			continue;
731 
732 		*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
733 		*cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
734 		*cs++ = upper_32_bits(gtt_offset);
735 		*cs++ = req->global_seqno;
736 		*cs++ = MI_SEMAPHORE_SIGNAL |
737 			MI_SEMAPHORE_TARGET(waiter->hw_id);
738 		*cs++ = 0;
739 	}
740 
741 	return cs;
742 }
743 
744 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
745 {
746 	struct drm_i915_private *dev_priv = req->i915;
747 	struct intel_engine_cs *engine;
748 	enum intel_engine_id id;
749 	int num_rings = 0;
750 
751 	for_each_engine(engine, dev_priv, id) {
752 		i915_reg_t mbox_reg;
753 
754 		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
755 			continue;
756 
757 		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
758 		if (i915_mmio_reg_valid(mbox_reg)) {
759 			*cs++ = MI_LOAD_REGISTER_IMM(1);
760 			*cs++ = i915_mmio_reg_offset(mbox_reg);
761 			*cs++ = req->global_seqno;
762 			num_rings++;
763 		}
764 	}
765 	if (num_rings & 1)
766 		*cs++ = MI_NOOP;
767 
768 	return cs;
769 }
770 
771 static void i9xx_submit_request(struct drm_i915_gem_request *request)
772 {
773 	struct drm_i915_private *dev_priv = request->i915;
774 
775 	i915_gem_request_submit(request);
776 
777 	I915_WRITE_TAIL(request->engine,
778 			intel_ring_set_tail(request->ring, request->tail));
779 }
780 
781 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
782 {
783 	*cs++ = MI_STORE_DWORD_INDEX;
784 	*cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
785 	*cs++ = req->global_seqno;
786 	*cs++ = MI_USER_INTERRUPT;
787 
788 	req->tail = intel_ring_offset(req, cs);
789 	assert_ring_tail_valid(req->ring, req->tail);
790 }
791 
792 static const int i9xx_emit_breadcrumb_sz = 4;
793 
794 /**
795  * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
796  *
797  * @request - request to write to the ring
798  *
799  * Update the mailbox registers in the *other* rings with the current seqno.
800  * This acts like a signal in the canonical semaphore.
801  */
802 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
803 {
804 	return i9xx_emit_breadcrumb(req,
805 				    req->engine->semaphore.signal(req, cs));
806 }
807 
808 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
809 					u32 *cs)
810 {
811 	struct intel_engine_cs *engine = req->engine;
812 
813 	if (engine->semaphore.signal)
814 		cs = engine->semaphore.signal(req, cs);
815 
816 	*cs++ = GFX_OP_PIPE_CONTROL(6);
817 	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
818 		PIPE_CONTROL_QW_WRITE;
819 	*cs++ = intel_hws_seqno_address(engine);
820 	*cs++ = 0;
821 	*cs++ = req->global_seqno;
822 	/* We're thrashing one dword of HWS. */
823 	*cs++ = 0;
824 	*cs++ = MI_USER_INTERRUPT;
825 	*cs++ = MI_NOOP;
826 
827 	req->tail = intel_ring_offset(req, cs);
828 	assert_ring_tail_valid(req->ring, req->tail);
829 }
830 
831 static const int gen8_render_emit_breadcrumb_sz = 8;
832 
833 /**
834  * intel_ring_sync - sync the waiter to the signaller on seqno
835  *
836  * @waiter - ring that is waiting
837  * @signaller - ring which has, or will signal
838  * @seqno - seqno which the waiter will block on
839  */
840 
841 static int
842 gen8_ring_sync_to(struct drm_i915_gem_request *req,
843 		  struct drm_i915_gem_request *signal)
844 {
845 	struct drm_i915_private *dev_priv = req->i915;
846 	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
847 	struct i915_hw_ppgtt *ppgtt;
848 	u32 *cs;
849 
850 	cs = intel_ring_begin(req, 4);
851 	if (IS_ERR(cs))
852 		return PTR_ERR(cs);
853 
854 	*cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
855 		MI_SEMAPHORE_SAD_GTE_SDD;
856 	*cs++ = signal->global_seqno;
857 	*cs++ = lower_32_bits(offset);
858 	*cs++ = upper_32_bits(offset);
859 	intel_ring_advance(req, cs);
860 
861 	/* When the !RCS engines idle waiting upon a semaphore, they lose their
862 	 * pagetables and we must reload them before executing the batch.
863 	 * We do this on the i915_switch_context() following the wait and
864 	 * before the dispatch.
865 	 */
866 	ppgtt = req->ctx->ppgtt;
867 	if (ppgtt && req->engine->id != RCS)
868 		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
869 	return 0;
870 }
871 
872 static int
873 gen6_ring_sync_to(struct drm_i915_gem_request *req,
874 		  struct drm_i915_gem_request *signal)
875 {
876 	u32 dw1 = MI_SEMAPHORE_MBOX |
877 		  MI_SEMAPHORE_COMPARE |
878 		  MI_SEMAPHORE_REGISTER;
879 	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
880 	u32 *cs;
881 
882 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
883 
884 	cs = intel_ring_begin(req, 4);
885 	if (IS_ERR(cs))
886 		return PTR_ERR(cs);
887 
888 	*cs++ = dw1 | wait_mbox;
889 	/* Throughout all of the GEM code, seqno passed implies our current
890 	 * seqno is >= the last seqno executed. However for hardware the
891 	 * comparison is strictly greater than.
892 	 */
893 	*cs++ = signal->global_seqno - 1;
894 	*cs++ = 0;
895 	*cs++ = MI_NOOP;
896 	intel_ring_advance(req, cs);
897 
898 	return 0;
899 }
900 
901 static void
902 gen5_seqno_barrier(struct intel_engine_cs *engine)
903 {
904 	/* MI_STORE are internally buffered by the GPU and not flushed
905 	 * either by MI_FLUSH or SyncFlush or any other combination of
906 	 * MI commands.
907 	 *
908 	 * "Only the submission of the store operation is guaranteed.
909 	 * The write result will be complete (coherent) some time later
910 	 * (this is practically a finite period but there is no guaranteed
911 	 * latency)."
912 	 *
913 	 * Empirically, we observe that we need a delay of at least 75us to
914 	 * be sure that the seqno write is visible by the CPU.
915 	 */
916 	usleep_range(125, 250);
917 }
918 
919 static void
920 gen6_seqno_barrier(struct intel_engine_cs *engine)
921 {
922 	struct drm_i915_private *dev_priv = engine->i915;
923 
924 	/* Workaround to force correct ordering between irq and seqno writes on
925 	 * ivb (and maybe also on snb) by reading from a CS register (like
926 	 * ACTHD) before reading the status page.
927 	 *
928 	 * Note that this effectively stalls the read by the time it takes to
929 	 * do a memory transaction, which more or less ensures that the write
930 	 * from the GPU has sufficient time to invalidate the CPU cacheline.
931 	 * Alternatively we could delay the interrupt from the CS ring to give
932 	 * the write time to land, but that would incur a delay after every
933 	 * batch i.e. much more frequent than a delay when waiting for the
934 	 * interrupt (with the same net latency).
935 	 *
936 	 * Also note that to prevent whole machine hangs on gen7, we have to
937 	 * take the spinlock to guard against concurrent cacheline access.
938 	 */
939 	spin_lock_irq(&dev_priv->uncore.lock);
940 	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
941 	spin_unlock_irq(&dev_priv->uncore.lock);
942 }
943 
944 static void
945 gen5_irq_enable(struct intel_engine_cs *engine)
946 {
947 	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
948 }
949 
950 static void
951 gen5_irq_disable(struct intel_engine_cs *engine)
952 {
953 	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
954 }
955 
956 static void
957 i9xx_irq_enable(struct intel_engine_cs *engine)
958 {
959 	struct drm_i915_private *dev_priv = engine->i915;
960 
961 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
962 	I915_WRITE(IMR, dev_priv->irq_mask);
963 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
964 }
965 
966 static void
967 i9xx_irq_disable(struct intel_engine_cs *engine)
968 {
969 	struct drm_i915_private *dev_priv = engine->i915;
970 
971 	dev_priv->irq_mask |= engine->irq_enable_mask;
972 	I915_WRITE(IMR, dev_priv->irq_mask);
973 }
974 
975 static void
976 i8xx_irq_enable(struct intel_engine_cs *engine)
977 {
978 	struct drm_i915_private *dev_priv = engine->i915;
979 
980 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
981 	I915_WRITE16(IMR, dev_priv->irq_mask);
982 	POSTING_READ16(RING_IMR(engine->mmio_base));
983 }
984 
985 static void
986 i8xx_irq_disable(struct intel_engine_cs *engine)
987 {
988 	struct drm_i915_private *dev_priv = engine->i915;
989 
990 	dev_priv->irq_mask |= engine->irq_enable_mask;
991 	I915_WRITE16(IMR, dev_priv->irq_mask);
992 }
993 
994 static int
995 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
996 {
997 	u32 *cs;
998 
999 	cs = intel_ring_begin(req, 2);
1000 	if (IS_ERR(cs))
1001 		return PTR_ERR(cs);
1002 
1003 	*cs++ = MI_FLUSH;
1004 	*cs++ = MI_NOOP;
1005 	intel_ring_advance(req, cs);
1006 	return 0;
1007 }
1008 
1009 static void
1010 gen6_irq_enable(struct intel_engine_cs *engine)
1011 {
1012 	struct drm_i915_private *dev_priv = engine->i915;
1013 
1014 	I915_WRITE_IMR(engine,
1015 		       ~(engine->irq_enable_mask |
1016 			 engine->irq_keep_mask));
1017 	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1018 }
1019 
1020 static void
1021 gen6_irq_disable(struct intel_engine_cs *engine)
1022 {
1023 	struct drm_i915_private *dev_priv = engine->i915;
1024 
1025 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1026 	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1027 }
1028 
1029 static void
1030 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1031 {
1032 	struct drm_i915_private *dev_priv = engine->i915;
1033 
1034 	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1035 	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1036 }
1037 
1038 static void
1039 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1040 {
1041 	struct drm_i915_private *dev_priv = engine->i915;
1042 
1043 	I915_WRITE_IMR(engine, ~0);
1044 	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1045 }
1046 
1047 static void
1048 gen8_irq_enable(struct intel_engine_cs *engine)
1049 {
1050 	struct drm_i915_private *dev_priv = engine->i915;
1051 
1052 	I915_WRITE_IMR(engine,
1053 		       ~(engine->irq_enable_mask |
1054 			 engine->irq_keep_mask));
1055 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1056 }
1057 
1058 static void
1059 gen8_irq_disable(struct intel_engine_cs *engine)
1060 {
1061 	struct drm_i915_private *dev_priv = engine->i915;
1062 
1063 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1064 }
1065 
1066 static int
1067 i965_emit_bb_start(struct drm_i915_gem_request *req,
1068 		   u64 offset, u32 length,
1069 		   unsigned int dispatch_flags)
1070 {
1071 	u32 *cs;
1072 
1073 	cs = intel_ring_begin(req, 2);
1074 	if (IS_ERR(cs))
1075 		return PTR_ERR(cs);
1076 
1077 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1078 		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1079 	*cs++ = offset;
1080 	intel_ring_advance(req, cs);
1081 
1082 	return 0;
1083 }
1084 
1085 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1086 #define I830_BATCH_LIMIT (256*1024)
1087 #define I830_TLB_ENTRIES (2)
1088 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1089 static int
1090 i830_emit_bb_start(struct drm_i915_gem_request *req,
1091 		   u64 offset, u32 len,
1092 		   unsigned int dispatch_flags)
1093 {
1094 	u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1095 
1096 	cs = intel_ring_begin(req, 6);
1097 	if (IS_ERR(cs))
1098 		return PTR_ERR(cs);
1099 
1100 	/* Evict the invalid PTE TLBs */
1101 	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1102 	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1103 	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1104 	*cs++ = cs_offset;
1105 	*cs++ = 0xdeadbeef;
1106 	*cs++ = MI_NOOP;
1107 	intel_ring_advance(req, cs);
1108 
1109 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1110 		if (len > I830_BATCH_LIMIT)
1111 			return -ENOSPC;
1112 
1113 		cs = intel_ring_begin(req, 6 + 2);
1114 		if (IS_ERR(cs))
1115 			return PTR_ERR(cs);
1116 
1117 		/* Blit the batch (which has now all relocs applied) to the
1118 		 * stable batch scratch bo area (so that the CS never
1119 		 * stumbles over its tlb invalidation bug) ...
1120 		 */
1121 		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1122 		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1123 		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1124 		*cs++ = cs_offset;
1125 		*cs++ = 4096;
1126 		*cs++ = offset;
1127 
1128 		*cs++ = MI_FLUSH;
1129 		*cs++ = MI_NOOP;
1130 		intel_ring_advance(req, cs);
1131 
1132 		/* ... and execute it. */
1133 		offset = cs_offset;
1134 	}
1135 
1136 	cs = intel_ring_begin(req, 2);
1137 	if (IS_ERR(cs))
1138 		return PTR_ERR(cs);
1139 
1140 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1141 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1142 		MI_BATCH_NON_SECURE);
1143 	intel_ring_advance(req, cs);
1144 
1145 	return 0;
1146 }
1147 
1148 static int
1149 i915_emit_bb_start(struct drm_i915_gem_request *req,
1150 		   u64 offset, u32 len,
1151 		   unsigned int dispatch_flags)
1152 {
1153 	u32 *cs;
1154 
1155 	cs = intel_ring_begin(req, 2);
1156 	if (IS_ERR(cs))
1157 		return PTR_ERR(cs);
1158 
1159 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1160 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1161 		MI_BATCH_NON_SECURE);
1162 	intel_ring_advance(req, cs);
1163 
1164 	return 0;
1165 }
1166 
1167 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1168 {
1169 	struct drm_i915_private *dev_priv = engine->i915;
1170 
1171 	if (!dev_priv->status_page_dmah)
1172 		return;
1173 
1174 	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1175 	engine->status_page.page_addr = NULL;
1176 }
1177 
1178 static void cleanup_status_page(struct intel_engine_cs *engine)
1179 {
1180 	struct i915_vma *vma;
1181 	struct drm_i915_gem_object *obj;
1182 
1183 	vma = fetch_and_zero(&engine->status_page.vma);
1184 	if (!vma)
1185 		return;
1186 
1187 	obj = vma->obj;
1188 
1189 	i915_vma_unpin(vma);
1190 	i915_vma_close(vma);
1191 
1192 	i915_gem_object_unpin_map(obj);
1193 	__i915_gem_object_release_unless_active(obj);
1194 }
1195 
1196 static int init_status_page(struct intel_engine_cs *engine)
1197 {
1198 	struct drm_i915_gem_object *obj;
1199 	struct i915_vma *vma;
1200 	unsigned int flags;
1201 	void *vaddr;
1202 	int ret;
1203 
1204 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1205 	if (IS_ERR(obj)) {
1206 		DRM_ERROR("Failed to allocate status page\n");
1207 		return PTR_ERR(obj);
1208 	}
1209 
1210 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1211 	if (ret)
1212 		goto err;
1213 
1214 	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1215 	if (IS_ERR(vma)) {
1216 		ret = PTR_ERR(vma);
1217 		goto err;
1218 	}
1219 
1220 	flags = PIN_GLOBAL;
1221 	if (!HAS_LLC(engine->i915))
1222 		/* On g33, we cannot place HWS above 256MiB, so
1223 		 * restrict its pinning to the low mappable arena.
1224 		 * Though this restriction is not documented for
1225 		 * gen4, gen5, or byt, they also behave similarly
1226 		 * and hang if the HWS is placed at the top of the
1227 		 * GTT. To generalise, it appears that all !llc
1228 		 * platforms have issues with us placing the HWS
1229 		 * above the mappable region (even though we never
1230 		 * actualy map it).
1231 		 */
1232 		flags |= PIN_MAPPABLE;
1233 	ret = i915_vma_pin(vma, 0, 4096, flags);
1234 	if (ret)
1235 		goto err;
1236 
1237 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1238 	if (IS_ERR(vaddr)) {
1239 		ret = PTR_ERR(vaddr);
1240 		goto err_unpin;
1241 	}
1242 
1243 	engine->status_page.vma = vma;
1244 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1245 	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
1246 
1247 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1248 			 engine->name, i915_ggtt_offset(vma));
1249 	return 0;
1250 
1251 err_unpin:
1252 	i915_vma_unpin(vma);
1253 err:
1254 	i915_gem_object_put(obj);
1255 	return ret;
1256 }
1257 
1258 static int init_phys_status_page(struct intel_engine_cs *engine)
1259 {
1260 	struct drm_i915_private *dev_priv = engine->i915;
1261 
1262 	dev_priv->status_page_dmah =
1263 		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1264 	if (!dev_priv->status_page_dmah)
1265 		return -ENOMEM;
1266 
1267 	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1268 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1269 
1270 	return 0;
1271 }
1272 
1273 int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
1274 {
1275 	unsigned int flags;
1276 	enum i915_map_type map;
1277 	struct i915_vma *vma = ring->vma;
1278 	void *addr;
1279 	int ret;
1280 
1281 	GEM_BUG_ON(ring->vaddr);
1282 
1283 	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1284 
1285 	flags = PIN_GLOBAL;
1286 	if (offset_bias)
1287 		flags |= PIN_OFFSET_BIAS | offset_bias;
1288 	if (vma->obj->stolen)
1289 		flags |= PIN_MAPPABLE;
1290 
1291 	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1292 		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1293 			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1294 		else
1295 			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1296 		if (unlikely(ret))
1297 			return ret;
1298 	}
1299 
1300 	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1301 	if (unlikely(ret))
1302 		return ret;
1303 
1304 	if (i915_vma_is_map_and_fenceable(vma))
1305 		addr = (void __force *)i915_vma_pin_iomap(vma);
1306 	else
1307 		addr = i915_gem_object_pin_map(vma->obj, map);
1308 	if (IS_ERR(addr))
1309 		goto err;
1310 
1311 	ring->vaddr = addr;
1312 	return 0;
1313 
1314 err:
1315 	i915_vma_unpin(vma);
1316 	return PTR_ERR(addr);
1317 }
1318 
1319 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1320 {
1321 	GEM_BUG_ON(!list_empty(&ring->request_list));
1322 	ring->tail = tail;
1323 	ring->head = tail;
1324 	ring->emit = tail;
1325 	intel_ring_update_space(ring);
1326 }
1327 
1328 void intel_ring_unpin(struct intel_ring *ring)
1329 {
1330 	GEM_BUG_ON(!ring->vma);
1331 	GEM_BUG_ON(!ring->vaddr);
1332 
1333 	/* Discard any unused bytes beyond that submitted to hw. */
1334 	intel_ring_reset(ring, ring->tail);
1335 
1336 	if (i915_vma_is_map_and_fenceable(ring->vma))
1337 		i915_vma_unpin_iomap(ring->vma);
1338 	else
1339 		i915_gem_object_unpin_map(ring->vma->obj);
1340 	ring->vaddr = NULL;
1341 
1342 	i915_vma_unpin(ring->vma);
1343 }
1344 
1345 static struct i915_vma *
1346 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1347 {
1348 	struct drm_i915_gem_object *obj;
1349 	struct i915_vma *vma;
1350 
1351 	obj = i915_gem_object_create_stolen(dev_priv, size);
1352 	if (!obj)
1353 		obj = i915_gem_object_create(dev_priv, size);
1354 	if (IS_ERR(obj))
1355 		return ERR_CAST(obj);
1356 
1357 	/* mark ring buffers as read-only from GPU side by default */
1358 	obj->gt_ro = 1;
1359 
1360 	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1361 	if (IS_ERR(vma))
1362 		goto err;
1363 
1364 	return vma;
1365 
1366 err:
1367 	i915_gem_object_put(obj);
1368 	return vma;
1369 }
1370 
1371 struct intel_ring *
1372 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1373 {
1374 	struct intel_ring *ring;
1375 	struct i915_vma *vma;
1376 
1377 	GEM_BUG_ON(!is_power_of_2(size));
1378 	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1379 
1380 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1381 	if (!ring)
1382 		return ERR_PTR(-ENOMEM);
1383 
1384 	ring->engine = engine;
1385 
1386 	INIT_LIST_HEAD(&ring->request_list);
1387 
1388 	ring->size = size;
1389 	/* Workaround an erratum on the i830 which causes a hang if
1390 	 * the TAIL pointer points to within the last 2 cachelines
1391 	 * of the buffer.
1392 	 */
1393 	ring->effective_size = size;
1394 	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1395 		ring->effective_size -= 2 * CACHELINE_BYTES;
1396 
1397 	intel_ring_update_space(ring);
1398 
1399 	vma = intel_ring_create_vma(engine->i915, size);
1400 	if (IS_ERR(vma)) {
1401 		kfree(ring);
1402 		return ERR_CAST(vma);
1403 	}
1404 	ring->vma = vma;
1405 
1406 	return ring;
1407 }
1408 
1409 void
1410 intel_ring_free(struct intel_ring *ring)
1411 {
1412 	struct drm_i915_gem_object *obj = ring->vma->obj;
1413 
1414 	i915_vma_close(ring->vma);
1415 	__i915_gem_object_release_unless_active(obj);
1416 
1417 	kfree(ring);
1418 }
1419 
1420 static int context_pin(struct i915_gem_context *ctx)
1421 {
1422 	struct i915_vma *vma = ctx->engine[RCS].state;
1423 	int ret;
1424 
1425 	/* Clear this page out of any CPU caches for coherent swap-in/out.
1426 	 * We only want to do this on the first bind so that we do not stall
1427 	 * on an active context (which by nature is already on the GPU).
1428 	 */
1429 	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1430 		ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
1431 		if (ret)
1432 			return ret;
1433 	}
1434 
1435 	return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1436 			    PIN_GLOBAL | PIN_HIGH);
1437 }
1438 
1439 static int intel_ring_context_pin(struct intel_engine_cs *engine,
1440 				  struct i915_gem_context *ctx)
1441 {
1442 	struct intel_context *ce = &ctx->engine[engine->id];
1443 	int ret;
1444 
1445 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1446 
1447 	if (ce->pin_count++)
1448 		return 0;
1449 	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1450 
1451 	if (ce->state) {
1452 		ret = context_pin(ctx);
1453 		if (ret)
1454 			goto error;
1455 
1456 		ce->state->obj->mm.dirty = true;
1457 	}
1458 
1459 	/* The kernel context is only used as a placeholder for flushing the
1460 	 * active context. It is never used for submitting user rendering and
1461 	 * as such never requires the golden render context, and so we can skip
1462 	 * emitting it when we switch to the kernel context. This is required
1463 	 * as during eviction we cannot allocate and pin the renderstate in
1464 	 * order to initialise the context.
1465 	 */
1466 	if (i915_gem_context_is_kernel(ctx))
1467 		ce->initialised = true;
1468 
1469 	i915_gem_context_get(ctx);
1470 	return 0;
1471 
1472 error:
1473 	ce->pin_count = 0;
1474 	return ret;
1475 }
1476 
1477 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1478 				     struct i915_gem_context *ctx)
1479 {
1480 	struct intel_context *ce = &ctx->engine[engine->id];
1481 
1482 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1483 	GEM_BUG_ON(ce->pin_count == 0);
1484 
1485 	if (--ce->pin_count)
1486 		return;
1487 
1488 	if (ce->state)
1489 		i915_vma_unpin(ce->state);
1490 
1491 	i915_gem_context_put(ctx);
1492 }
1493 
1494 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1495 {
1496 	struct drm_i915_private *dev_priv = engine->i915;
1497 	struct intel_ring *ring;
1498 	int ret;
1499 
1500 	WARN_ON(engine->buffer);
1501 
1502 	intel_engine_setup_common(engine);
1503 
1504 	ret = intel_engine_init_common(engine);
1505 	if (ret)
1506 		goto error;
1507 
1508 	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1509 	if (IS_ERR(ring)) {
1510 		ret = PTR_ERR(ring);
1511 		goto error;
1512 	}
1513 
1514 	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
1515 		WARN_ON(engine->id != RCS);
1516 		ret = init_phys_status_page(engine);
1517 		if (ret)
1518 			goto error;
1519 	} else {
1520 		ret = init_status_page(engine);
1521 		if (ret)
1522 			goto error;
1523 	}
1524 
1525 	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1526 	ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
1527 	if (ret) {
1528 		intel_ring_free(ring);
1529 		goto error;
1530 	}
1531 	engine->buffer = ring;
1532 
1533 	return 0;
1534 
1535 error:
1536 	intel_engine_cleanup(engine);
1537 	return ret;
1538 }
1539 
1540 void intel_engine_cleanup(struct intel_engine_cs *engine)
1541 {
1542 	struct drm_i915_private *dev_priv;
1543 
1544 	dev_priv = engine->i915;
1545 
1546 	if (engine->buffer) {
1547 		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1548 			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
1549 
1550 		intel_ring_unpin(engine->buffer);
1551 		intel_ring_free(engine->buffer);
1552 		engine->buffer = NULL;
1553 	}
1554 
1555 	if (engine->cleanup)
1556 		engine->cleanup(engine);
1557 
1558 	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
1559 		WARN_ON(engine->id != RCS);
1560 		cleanup_phys_status_page(engine);
1561 	} else {
1562 		cleanup_status_page(engine);
1563 	}
1564 
1565 	intel_engine_cleanup_common(engine);
1566 
1567 	engine->i915 = NULL;
1568 	dev_priv->engine[engine->id] = NULL;
1569 	kfree(engine);
1570 }
1571 
1572 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1573 {
1574 	struct intel_engine_cs *engine;
1575 	enum intel_engine_id id;
1576 
1577 	/* Restart from the beginning of the rings for convenience */
1578 	for_each_engine(engine, dev_priv, id)
1579 		intel_ring_reset(engine->buffer, 0);
1580 }
1581 
1582 static int ring_request_alloc(struct drm_i915_gem_request *request)
1583 {
1584 	u32 *cs;
1585 
1586 	GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1587 
1588 	/* Flush enough space to reduce the likelihood of waiting after
1589 	 * we start building the request - in which case we will just
1590 	 * have to repeat work.
1591 	 */
1592 	request->reserved_space += LEGACY_REQUEST_SIZE;
1593 
1594 	GEM_BUG_ON(!request->engine->buffer);
1595 	request->ring = request->engine->buffer;
1596 
1597 	cs = intel_ring_begin(request, 0);
1598 	if (IS_ERR(cs))
1599 		return PTR_ERR(cs);
1600 
1601 	request->reserved_space -= LEGACY_REQUEST_SIZE;
1602 	return 0;
1603 }
1604 
1605 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
1606 {
1607 	struct intel_ring *ring = req->ring;
1608 	struct drm_i915_gem_request *target;
1609 	long timeout;
1610 
1611 	lockdep_assert_held(&req->i915->drm.struct_mutex);
1612 
1613 	intel_ring_update_space(ring);
1614 	if (ring->space >= bytes)
1615 		return 0;
1616 
1617 	/*
1618 	 * Space is reserved in the ringbuffer for finalising the request,
1619 	 * as that cannot be allowed to fail. During request finalisation,
1620 	 * reserved_space is set to 0 to stop the overallocation and the
1621 	 * assumption is that then we never need to wait (which has the
1622 	 * risk of failing with EINTR).
1623 	 *
1624 	 * See also i915_gem_request_alloc() and i915_add_request().
1625 	 */
1626 	GEM_BUG_ON(!req->reserved_space);
1627 
1628 	list_for_each_entry(target, &ring->request_list, ring_link) {
1629 		unsigned space;
1630 
1631 		/* Would completion of this request free enough space? */
1632 		space = __intel_ring_space(target->postfix, ring->emit,
1633 					   ring->size);
1634 		if (space >= bytes)
1635 			break;
1636 	}
1637 
1638 	if (WARN_ON(&target->ring_link == &ring->request_list))
1639 		return -ENOSPC;
1640 
1641 	timeout = i915_wait_request(target,
1642 				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1643 				    MAX_SCHEDULE_TIMEOUT);
1644 	if (timeout < 0)
1645 		return timeout;
1646 
1647 	i915_gem_request_retire_upto(target);
1648 
1649 	intel_ring_update_space(ring);
1650 	GEM_BUG_ON(ring->space < bytes);
1651 	return 0;
1652 }
1653 
1654 u32 *intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
1655 {
1656 	struct intel_ring *ring = req->ring;
1657 	int remain_actual = ring->size - ring->emit;
1658 	int remain_usable = ring->effective_size - ring->emit;
1659 	int bytes = num_dwords * sizeof(u32);
1660 	int total_bytes, wait_bytes;
1661 	bool need_wrap = false;
1662 	u32 *cs;
1663 
1664 	total_bytes = bytes + req->reserved_space;
1665 
1666 	if (unlikely(bytes > remain_usable)) {
1667 		/*
1668 		 * Not enough space for the basic request. So need to flush
1669 		 * out the remainder and then wait for base + reserved.
1670 		 */
1671 		wait_bytes = remain_actual + total_bytes;
1672 		need_wrap = true;
1673 	} else if (unlikely(total_bytes > remain_usable)) {
1674 		/*
1675 		 * The base request will fit but the reserved space
1676 		 * falls off the end. So we don't need an immediate wrap
1677 		 * and only need to effectively wait for the reserved
1678 		 * size space from the start of ringbuffer.
1679 		 */
1680 		wait_bytes = remain_actual + req->reserved_space;
1681 	} else {
1682 		/* No wrapping required, just waiting. */
1683 		wait_bytes = total_bytes;
1684 	}
1685 
1686 	if (wait_bytes > ring->space) {
1687 		int ret = wait_for_space(req, wait_bytes);
1688 		if (unlikely(ret))
1689 			return ERR_PTR(ret);
1690 	}
1691 
1692 	if (unlikely(need_wrap)) {
1693 		GEM_BUG_ON(remain_actual > ring->space);
1694 		GEM_BUG_ON(ring->emit + remain_actual > ring->size);
1695 
1696 		/* Fill the tail with MI_NOOP */
1697 		memset(ring->vaddr + ring->emit, 0, remain_actual);
1698 		ring->emit = 0;
1699 		ring->space -= remain_actual;
1700 	}
1701 
1702 	GEM_BUG_ON(ring->emit > ring->size - bytes);
1703 	cs = ring->vaddr + ring->emit;
1704 	ring->emit += bytes;
1705 	ring->space -= bytes;
1706 	GEM_BUG_ON(ring->space < 0);
1707 
1708 	return cs;
1709 }
1710 
1711 /* Align the ring tail to a cacheline boundary */
1712 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1713 {
1714 	int num_dwords =
1715 		(req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1716 	u32 *cs;
1717 
1718 	if (num_dwords == 0)
1719 		return 0;
1720 
1721 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1722 	cs = intel_ring_begin(req, num_dwords);
1723 	if (IS_ERR(cs))
1724 		return PTR_ERR(cs);
1725 
1726 	while (num_dwords--)
1727 		*cs++ = MI_NOOP;
1728 
1729 	intel_ring_advance(req, cs);
1730 
1731 	return 0;
1732 }
1733 
1734 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1735 {
1736 	struct drm_i915_private *dev_priv = request->i915;
1737 
1738 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1739 
1740        /* Every tail move must follow the sequence below */
1741 
1742 	/* Disable notification that the ring is IDLE. The GT
1743 	 * will then assume that it is busy and bring it out of rc6.
1744 	 */
1745 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1746 		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1747 
1748 	/* Clear the context id. Here be magic! */
1749 	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1750 
1751 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1752 	if (intel_wait_for_register_fw(dev_priv,
1753 				       GEN6_BSD_SLEEP_PSMI_CONTROL,
1754 				       GEN6_BSD_SLEEP_INDICATOR,
1755 				       0,
1756 				       50))
1757 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1758 
1759 	/* Now that the ring is fully powered up, update the tail */
1760 	i9xx_submit_request(request);
1761 
1762 	/* Let the ring send IDLE messages to the GT again,
1763 	 * and so let it sleep to conserve power when idle.
1764 	 */
1765 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1766 		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1767 
1768 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1769 }
1770 
1771 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1772 {
1773 	u32 cmd, *cs;
1774 
1775 	cs = intel_ring_begin(req, 4);
1776 	if (IS_ERR(cs))
1777 		return PTR_ERR(cs);
1778 
1779 	cmd = MI_FLUSH_DW;
1780 	if (INTEL_GEN(req->i915) >= 8)
1781 		cmd += 1;
1782 
1783 	/* We always require a command barrier so that subsequent
1784 	 * commands, such as breadcrumb interrupts, are strictly ordered
1785 	 * wrt the contents of the write cache being flushed to memory
1786 	 * (and thus being coherent from the CPU).
1787 	 */
1788 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1789 
1790 	/*
1791 	 * Bspec vol 1c.5 - video engine command streamer:
1792 	 * "If ENABLED, all TLBs will be invalidated once the flush
1793 	 * operation is complete. This bit is only valid when the
1794 	 * Post-Sync Operation field is a value of 1h or 3h."
1795 	 */
1796 	if (mode & EMIT_INVALIDATE)
1797 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1798 
1799 	*cs++ = cmd;
1800 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1801 	if (INTEL_GEN(req->i915) >= 8) {
1802 		*cs++ = 0; /* upper addr */
1803 		*cs++ = 0; /* value */
1804 	} else  {
1805 		*cs++ = 0;
1806 		*cs++ = MI_NOOP;
1807 	}
1808 	intel_ring_advance(req, cs);
1809 	return 0;
1810 }
1811 
1812 static int
1813 gen8_emit_bb_start(struct drm_i915_gem_request *req,
1814 		   u64 offset, u32 len,
1815 		   unsigned int dispatch_flags)
1816 {
1817 	bool ppgtt = USES_PPGTT(req->i915) &&
1818 			!(dispatch_flags & I915_DISPATCH_SECURE);
1819 	u32 *cs;
1820 
1821 	cs = intel_ring_begin(req, 4);
1822 	if (IS_ERR(cs))
1823 		return PTR_ERR(cs);
1824 
1825 	/* FIXME(BDW): Address space and security selectors. */
1826 	*cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1827 		I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1828 	*cs++ = lower_32_bits(offset);
1829 	*cs++ = upper_32_bits(offset);
1830 	*cs++ = MI_NOOP;
1831 	intel_ring_advance(req, cs);
1832 
1833 	return 0;
1834 }
1835 
1836 static int
1837 hsw_emit_bb_start(struct drm_i915_gem_request *req,
1838 		  u64 offset, u32 len,
1839 		  unsigned int dispatch_flags)
1840 {
1841 	u32 *cs;
1842 
1843 	cs = intel_ring_begin(req, 2);
1844 	if (IS_ERR(cs))
1845 		return PTR_ERR(cs);
1846 
1847 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1848 		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1849 		(dispatch_flags & I915_DISPATCH_RS ?
1850 		MI_BATCH_RESOURCE_STREAMER : 0);
1851 	/* bit0-7 is the length on GEN6+ */
1852 	*cs++ = offset;
1853 	intel_ring_advance(req, cs);
1854 
1855 	return 0;
1856 }
1857 
1858 static int
1859 gen6_emit_bb_start(struct drm_i915_gem_request *req,
1860 		   u64 offset, u32 len,
1861 		   unsigned int dispatch_flags)
1862 {
1863 	u32 *cs;
1864 
1865 	cs = intel_ring_begin(req, 2);
1866 	if (IS_ERR(cs))
1867 		return PTR_ERR(cs);
1868 
1869 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1870 		0 : MI_BATCH_NON_SECURE_I965);
1871 	/* bit0-7 is the length on GEN6+ */
1872 	*cs++ = offset;
1873 	intel_ring_advance(req, cs);
1874 
1875 	return 0;
1876 }
1877 
1878 /* Blitter support (SandyBridge+) */
1879 
1880 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1881 {
1882 	u32 cmd, *cs;
1883 
1884 	cs = intel_ring_begin(req, 4);
1885 	if (IS_ERR(cs))
1886 		return PTR_ERR(cs);
1887 
1888 	cmd = MI_FLUSH_DW;
1889 	if (INTEL_GEN(req->i915) >= 8)
1890 		cmd += 1;
1891 
1892 	/* We always require a command barrier so that subsequent
1893 	 * commands, such as breadcrumb interrupts, are strictly ordered
1894 	 * wrt the contents of the write cache being flushed to memory
1895 	 * (and thus being coherent from the CPU).
1896 	 */
1897 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1898 
1899 	/*
1900 	 * Bspec vol 1c.3 - blitter engine command streamer:
1901 	 * "If ENABLED, all TLBs will be invalidated once the flush
1902 	 * operation is complete. This bit is only valid when the
1903 	 * Post-Sync Operation field is a value of 1h or 3h."
1904 	 */
1905 	if (mode & EMIT_INVALIDATE)
1906 		cmd |= MI_INVALIDATE_TLB;
1907 	*cs++ = cmd;
1908 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1909 	if (INTEL_GEN(req->i915) >= 8) {
1910 		*cs++ = 0; /* upper addr */
1911 		*cs++ = 0; /* value */
1912 	} else  {
1913 		*cs++ = 0;
1914 		*cs++ = MI_NOOP;
1915 	}
1916 	intel_ring_advance(req, cs);
1917 
1918 	return 0;
1919 }
1920 
1921 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1922 				       struct intel_engine_cs *engine)
1923 {
1924 	struct drm_i915_gem_object *obj;
1925 	int ret, i;
1926 
1927 	if (!i915.semaphores)
1928 		return;
1929 
1930 	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1931 		struct i915_vma *vma;
1932 
1933 		obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1934 		if (IS_ERR(obj))
1935 			goto err;
1936 
1937 		vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1938 		if (IS_ERR(vma))
1939 			goto err_obj;
1940 
1941 		ret = i915_gem_object_set_to_gtt_domain(obj, false);
1942 		if (ret)
1943 			goto err_obj;
1944 
1945 		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1946 		if (ret)
1947 			goto err_obj;
1948 
1949 		dev_priv->semaphore = vma;
1950 	}
1951 
1952 	if (INTEL_GEN(dev_priv) >= 8) {
1953 		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1954 
1955 		engine->semaphore.sync_to = gen8_ring_sync_to;
1956 		engine->semaphore.signal = gen8_xcs_signal;
1957 
1958 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1959 			u32 ring_offset;
1960 
1961 			if (i != engine->id)
1962 				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
1963 			else
1964 				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
1965 
1966 			engine->semaphore.signal_ggtt[i] = ring_offset;
1967 		}
1968 	} else if (INTEL_GEN(dev_priv) >= 6) {
1969 		engine->semaphore.sync_to = gen6_ring_sync_to;
1970 		engine->semaphore.signal = gen6_signal;
1971 
1972 		/*
1973 		 * The current semaphore is only applied on pre-gen8
1974 		 * platform.  And there is no VCS2 ring on the pre-gen8
1975 		 * platform. So the semaphore between RCS and VCS2 is
1976 		 * initialized as INVALID.  Gen8 will initialize the
1977 		 * sema between VCS2 and RCS later.
1978 		 */
1979 		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1980 			static const struct {
1981 				u32 wait_mbox;
1982 				i915_reg_t mbox_reg;
1983 			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1984 				[RCS_HW] = {
1985 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
1986 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
1987 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1988 				},
1989 				[VCS_HW] = {
1990 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
1991 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
1992 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1993 				},
1994 				[BCS_HW] = {
1995 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
1996 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
1997 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1998 				},
1999 				[VECS_HW] = {
2000 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2001 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2002 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2003 				},
2004 			};
2005 			u32 wait_mbox;
2006 			i915_reg_t mbox_reg;
2007 
2008 			if (i == engine->hw_id) {
2009 				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2010 				mbox_reg = GEN6_NOSYNC;
2011 			} else {
2012 				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2013 				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2014 			}
2015 
2016 			engine->semaphore.mbox.wait[i] = wait_mbox;
2017 			engine->semaphore.mbox.signal[i] = mbox_reg;
2018 		}
2019 	}
2020 
2021 	return;
2022 
2023 err_obj:
2024 	i915_gem_object_put(obj);
2025 err:
2026 	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2027 	i915.semaphores = 0;
2028 }
2029 
2030 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2031 				struct intel_engine_cs *engine)
2032 {
2033 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2034 
2035 	if (INTEL_GEN(dev_priv) >= 8) {
2036 		engine->irq_enable = gen8_irq_enable;
2037 		engine->irq_disable = gen8_irq_disable;
2038 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2039 	} else if (INTEL_GEN(dev_priv) >= 6) {
2040 		engine->irq_enable = gen6_irq_enable;
2041 		engine->irq_disable = gen6_irq_disable;
2042 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2043 	} else if (INTEL_GEN(dev_priv) >= 5) {
2044 		engine->irq_enable = gen5_irq_enable;
2045 		engine->irq_disable = gen5_irq_disable;
2046 		engine->irq_seqno_barrier = gen5_seqno_barrier;
2047 	} else if (INTEL_GEN(dev_priv) >= 3) {
2048 		engine->irq_enable = i9xx_irq_enable;
2049 		engine->irq_disable = i9xx_irq_disable;
2050 	} else {
2051 		engine->irq_enable = i8xx_irq_enable;
2052 		engine->irq_disable = i8xx_irq_disable;
2053 	}
2054 }
2055 
2056 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2057 {
2058 	engine->submit_request = i9xx_submit_request;
2059 }
2060 
2061 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2062 {
2063 	engine->submit_request = gen6_bsd_submit_request;
2064 }
2065 
2066 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2067 				      struct intel_engine_cs *engine)
2068 {
2069 	intel_ring_init_irq(dev_priv, engine);
2070 	intel_ring_init_semaphores(dev_priv, engine);
2071 
2072 	engine->init_hw = init_ring_common;
2073 	engine->reset_hw = reset_ring_common;
2074 
2075 	engine->context_pin = intel_ring_context_pin;
2076 	engine->context_unpin = intel_ring_context_unpin;
2077 
2078 	engine->request_alloc = ring_request_alloc;
2079 
2080 	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2081 	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2082 	if (i915.semaphores) {
2083 		int num_rings;
2084 
2085 		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2086 
2087 		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2088 		if (INTEL_GEN(dev_priv) >= 8) {
2089 			engine->emit_breadcrumb_sz += num_rings * 6;
2090 		} else {
2091 			engine->emit_breadcrumb_sz += num_rings * 3;
2092 			if (num_rings & 1)
2093 				engine->emit_breadcrumb_sz++;
2094 		}
2095 	}
2096 
2097 	engine->set_default_submission = i9xx_set_default_submission;
2098 
2099 	if (INTEL_GEN(dev_priv) >= 8)
2100 		engine->emit_bb_start = gen8_emit_bb_start;
2101 	else if (INTEL_GEN(dev_priv) >= 6)
2102 		engine->emit_bb_start = gen6_emit_bb_start;
2103 	else if (INTEL_GEN(dev_priv) >= 4)
2104 		engine->emit_bb_start = i965_emit_bb_start;
2105 	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2106 		engine->emit_bb_start = i830_emit_bb_start;
2107 	else
2108 		engine->emit_bb_start = i915_emit_bb_start;
2109 }
2110 
2111 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2112 {
2113 	struct drm_i915_private *dev_priv = engine->i915;
2114 	int ret;
2115 
2116 	intel_ring_default_vfuncs(dev_priv, engine);
2117 
2118 	if (HAS_L3_DPF(dev_priv))
2119 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2120 
2121 	if (INTEL_GEN(dev_priv) >= 8) {
2122 		engine->init_context = intel_rcs_ctx_init;
2123 		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2124 		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2125 		engine->emit_flush = gen8_render_ring_flush;
2126 		if (i915.semaphores) {
2127 			int num_rings;
2128 
2129 			engine->semaphore.signal = gen8_rcs_signal;
2130 
2131 			num_rings =
2132 				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2133 			engine->emit_breadcrumb_sz += num_rings * 8;
2134 		}
2135 	} else if (INTEL_GEN(dev_priv) >= 6) {
2136 		engine->init_context = intel_rcs_ctx_init;
2137 		engine->emit_flush = gen7_render_ring_flush;
2138 		if (IS_GEN6(dev_priv))
2139 			engine->emit_flush = gen6_render_ring_flush;
2140 	} else if (IS_GEN5(dev_priv)) {
2141 		engine->emit_flush = gen4_render_ring_flush;
2142 	} else {
2143 		if (INTEL_GEN(dev_priv) < 4)
2144 			engine->emit_flush = gen2_render_ring_flush;
2145 		else
2146 			engine->emit_flush = gen4_render_ring_flush;
2147 		engine->irq_enable_mask = I915_USER_INTERRUPT;
2148 	}
2149 
2150 	if (IS_HASWELL(dev_priv))
2151 		engine->emit_bb_start = hsw_emit_bb_start;
2152 
2153 	engine->init_hw = init_render_ring;
2154 	engine->cleanup = render_ring_cleanup;
2155 
2156 	ret = intel_init_ring_buffer(engine);
2157 	if (ret)
2158 		return ret;
2159 
2160 	if (INTEL_GEN(dev_priv) >= 6) {
2161 		ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2162 		if (ret)
2163 			return ret;
2164 	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2165 		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2166 		if (ret)
2167 			return ret;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2174 {
2175 	struct drm_i915_private *dev_priv = engine->i915;
2176 
2177 	intel_ring_default_vfuncs(dev_priv, engine);
2178 
2179 	if (INTEL_GEN(dev_priv) >= 6) {
2180 		/* gen6 bsd needs a special wa for tail updates */
2181 		if (IS_GEN6(dev_priv))
2182 			engine->set_default_submission = gen6_bsd_set_default_submission;
2183 		engine->emit_flush = gen6_bsd_ring_flush;
2184 		if (INTEL_GEN(dev_priv) < 8)
2185 			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2186 	} else {
2187 		engine->mmio_base = BSD_RING_BASE;
2188 		engine->emit_flush = bsd_ring_flush;
2189 		if (IS_GEN5(dev_priv))
2190 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2191 		else
2192 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2193 	}
2194 
2195 	return intel_init_ring_buffer(engine);
2196 }
2197 
2198 /**
2199  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2200  */
2201 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2202 {
2203 	struct drm_i915_private *dev_priv = engine->i915;
2204 
2205 	intel_ring_default_vfuncs(dev_priv, engine);
2206 
2207 	engine->emit_flush = gen6_bsd_ring_flush;
2208 
2209 	return intel_init_ring_buffer(engine);
2210 }
2211 
2212 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2213 {
2214 	struct drm_i915_private *dev_priv = engine->i915;
2215 
2216 	intel_ring_default_vfuncs(dev_priv, engine);
2217 
2218 	engine->emit_flush = gen6_ring_flush;
2219 	if (INTEL_GEN(dev_priv) < 8)
2220 		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2221 
2222 	return intel_init_ring_buffer(engine);
2223 }
2224 
2225 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2226 {
2227 	struct drm_i915_private *dev_priv = engine->i915;
2228 
2229 	intel_ring_default_vfuncs(dev_priv, engine);
2230 
2231 	engine->emit_flush = gen6_ring_flush;
2232 
2233 	if (INTEL_GEN(dev_priv) < 8) {
2234 		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2235 		engine->irq_enable = hsw_vebox_irq_enable;
2236 		engine->irq_disable = hsw_vebox_irq_disable;
2237 	}
2238 
2239 	return intel_init_ring_buffer(engine);
2240 }
2241