xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 3851e4b8)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 	int space = head - tail;
40 	if (space <= 0)
41 		space += size;
42 	return space - I915_RING_FREE_SPACE;
43 }
44 
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 	if (ringbuf->last_retired_head != -1) {
48 		ringbuf->head = ringbuf->last_retired_head;
49 		ringbuf->last_retired_head = -1;
50 	}
51 
52 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 					    ringbuf->tail, ringbuf->size);
54 }
55 
56 bool intel_engine_stopped(struct intel_engine_cs *engine)
57 {
58 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
59 	return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
60 }
61 
62 static void __intel_ring_advance(struct intel_engine_cs *engine)
63 {
64 	struct intel_ringbuffer *ringbuf = engine->buffer;
65 	ringbuf->tail &= ringbuf->size - 1;
66 	if (intel_engine_stopped(engine))
67 		return;
68 	engine->write_tail(engine, ringbuf->tail);
69 }
70 
71 static int
72 gen2_render_ring_flush(struct drm_i915_gem_request *req,
73 		       u32	invalidate_domains,
74 		       u32	flush_domains)
75 {
76 	struct intel_engine_cs *engine = req->engine;
77 	u32 cmd;
78 	int ret;
79 
80 	cmd = MI_FLUSH;
81 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 		cmd |= MI_NO_WRITE_FLUSH;
83 
84 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 		cmd |= MI_READ_FLUSH;
86 
87 	ret = intel_ring_begin(req, 2);
88 	if (ret)
89 		return ret;
90 
91 	intel_ring_emit(engine, cmd);
92 	intel_ring_emit(engine, MI_NOOP);
93 	intel_ring_advance(engine);
94 
95 	return 0;
96 }
97 
98 static int
99 gen4_render_ring_flush(struct drm_i915_gem_request *req,
100 		       u32	invalidate_domains,
101 		       u32	flush_domains)
102 {
103 	struct intel_engine_cs *engine = req->engine;
104 	struct drm_device *dev = engine->dev;
105 	u32 cmd;
106 	int ret;
107 
108 	/*
109 	 * read/write caches:
110 	 *
111 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
112 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
113 	 * also flushed at 2d versus 3d pipeline switches.
114 	 *
115 	 * read-only caches:
116 	 *
117 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
118 	 * MI_READ_FLUSH is set, and is always flushed on 965.
119 	 *
120 	 * I915_GEM_DOMAIN_COMMAND may not exist?
121 	 *
122 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
123 	 * invalidated when MI_EXE_FLUSH is set.
124 	 *
125 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
126 	 * invalidated with every MI_FLUSH.
127 	 *
128 	 * TLBs:
129 	 *
130 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
131 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
132 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
133 	 * are flushed at any MI_FLUSH.
134 	 */
135 
136 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
137 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
138 		cmd &= ~MI_NO_WRITE_FLUSH;
139 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
140 		cmd |= MI_EXE_FLUSH;
141 
142 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
143 	    (IS_G4X(dev) || IS_GEN5(dev)))
144 		cmd |= MI_INVALIDATE_ISP;
145 
146 	ret = intel_ring_begin(req, 2);
147 	if (ret)
148 		return ret;
149 
150 	intel_ring_emit(engine, cmd);
151 	intel_ring_emit(engine, MI_NOOP);
152 	intel_ring_advance(engine);
153 
154 	return 0;
155 }
156 
157 /**
158  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
159  * implementing two workarounds on gen6.  From section 1.4.7.1
160  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
161  *
162  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
163  * produced by non-pipelined state commands), software needs to first
164  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
165  * 0.
166  *
167  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
168  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
169  *
170  * And the workaround for these two requires this workaround first:
171  *
172  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
173  * BEFORE the pipe-control with a post-sync op and no write-cache
174  * flushes.
175  *
176  * And this last workaround is tricky because of the requirements on
177  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
178  * volume 2 part 1:
179  *
180  *     "1 of the following must also be set:
181  *      - Render Target Cache Flush Enable ([12] of DW1)
182  *      - Depth Cache Flush Enable ([0] of DW1)
183  *      - Stall at Pixel Scoreboard ([1] of DW1)
184  *      - Depth Stall ([13] of DW1)
185  *      - Post-Sync Operation ([13] of DW1)
186  *      - Notify Enable ([8] of DW1)"
187  *
188  * The cache flushes require the workaround flush that triggered this
189  * one, so we can't use it.  Depth stall would trigger the same.
190  * Post-sync nonzero is what triggered this second workaround, so we
191  * can't use that one either.  Notify enable is IRQs, which aren't
192  * really our business.  That leaves only stall at scoreboard.
193  */
194 static int
195 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
196 {
197 	struct intel_engine_cs *engine = req->engine;
198 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
199 	int ret;
200 
201 	ret = intel_ring_begin(req, 6);
202 	if (ret)
203 		return ret;
204 
205 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
206 	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
207 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
208 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
209 	intel_ring_emit(engine, 0); /* low dword */
210 	intel_ring_emit(engine, 0); /* high dword */
211 	intel_ring_emit(engine, MI_NOOP);
212 	intel_ring_advance(engine);
213 
214 	ret = intel_ring_begin(req, 6);
215 	if (ret)
216 		return ret;
217 
218 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
219 	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
220 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
221 	intel_ring_emit(engine, 0);
222 	intel_ring_emit(engine, 0);
223 	intel_ring_emit(engine, MI_NOOP);
224 	intel_ring_advance(engine);
225 
226 	return 0;
227 }
228 
229 static int
230 gen6_render_ring_flush(struct drm_i915_gem_request *req,
231 		       u32 invalidate_domains, u32 flush_domains)
232 {
233 	struct intel_engine_cs *engine = req->engine;
234 	u32 flags = 0;
235 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
236 	int ret;
237 
238 	/* Force SNB workarounds for PIPE_CONTROL flushes */
239 	ret = intel_emit_post_sync_nonzero_flush(req);
240 	if (ret)
241 		return ret;
242 
243 	/* Just flush everything.  Experiments have shown that reducing the
244 	 * number of bits based on the write domains has little performance
245 	 * impact.
246 	 */
247 	if (flush_domains) {
248 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
249 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
250 		/*
251 		 * Ensure that any following seqno writes only happen
252 		 * when the render cache is indeed flushed.
253 		 */
254 		flags |= PIPE_CONTROL_CS_STALL;
255 	}
256 	if (invalidate_domains) {
257 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
258 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
259 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
260 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
261 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
262 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
263 		/*
264 		 * TLB invalidate requires a post-sync write.
265 		 */
266 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
267 	}
268 
269 	ret = intel_ring_begin(req, 4);
270 	if (ret)
271 		return ret;
272 
273 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
274 	intel_ring_emit(engine, flags);
275 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
276 	intel_ring_emit(engine, 0);
277 	intel_ring_advance(engine);
278 
279 	return 0;
280 }
281 
282 static int
283 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
284 {
285 	struct intel_engine_cs *engine = req->engine;
286 	int ret;
287 
288 	ret = intel_ring_begin(req, 4);
289 	if (ret)
290 		return ret;
291 
292 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
293 	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
294 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
295 	intel_ring_emit(engine, 0);
296 	intel_ring_emit(engine, 0);
297 	intel_ring_advance(engine);
298 
299 	return 0;
300 }
301 
302 static int
303 gen7_render_ring_flush(struct drm_i915_gem_request *req,
304 		       u32 invalidate_domains, u32 flush_domains)
305 {
306 	struct intel_engine_cs *engine = req->engine;
307 	u32 flags = 0;
308 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
309 	int ret;
310 
311 	/*
312 	 * Ensure that any following seqno writes only happen when the render
313 	 * cache is indeed flushed.
314 	 *
315 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
316 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
317 	 * don't try to be clever and just set it unconditionally.
318 	 */
319 	flags |= PIPE_CONTROL_CS_STALL;
320 
321 	/* Just flush everything.  Experiments have shown that reducing the
322 	 * number of bits based on the write domains has little performance
323 	 * impact.
324 	 */
325 	if (flush_domains) {
326 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
327 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
328 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
329 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
330 	}
331 	if (invalidate_domains) {
332 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
339 		/*
340 		 * TLB invalidate requires a post-sync write.
341 		 */
342 		flags |= PIPE_CONTROL_QW_WRITE;
343 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
344 
345 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
346 
347 		/* Workaround: we must issue a pipe_control with CS-stall bit
348 		 * set before a pipe_control command that has the state cache
349 		 * invalidate bit set. */
350 		gen7_render_ring_cs_stall_wa(req);
351 	}
352 
353 	ret = intel_ring_begin(req, 4);
354 	if (ret)
355 		return ret;
356 
357 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
358 	intel_ring_emit(engine, flags);
359 	intel_ring_emit(engine, scratch_addr);
360 	intel_ring_emit(engine, 0);
361 	intel_ring_advance(engine);
362 
363 	return 0;
364 }
365 
366 static int
367 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
368 		       u32 flags, u32 scratch_addr)
369 {
370 	struct intel_engine_cs *engine = req->engine;
371 	int ret;
372 
373 	ret = intel_ring_begin(req, 6);
374 	if (ret)
375 		return ret;
376 
377 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
378 	intel_ring_emit(engine, flags);
379 	intel_ring_emit(engine, scratch_addr);
380 	intel_ring_emit(engine, 0);
381 	intel_ring_emit(engine, 0);
382 	intel_ring_emit(engine, 0);
383 	intel_ring_advance(engine);
384 
385 	return 0;
386 }
387 
388 static int
389 gen8_render_ring_flush(struct drm_i915_gem_request *req,
390 		       u32 invalidate_domains, u32 flush_domains)
391 {
392 	u32 flags = 0;
393 	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
394 	int ret;
395 
396 	flags |= PIPE_CONTROL_CS_STALL;
397 
398 	if (flush_domains) {
399 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
400 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
401 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
402 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
403 	}
404 	if (invalidate_domains) {
405 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
406 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
407 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
408 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
409 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
410 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
411 		flags |= PIPE_CONTROL_QW_WRITE;
412 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
413 
414 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
415 		ret = gen8_emit_pipe_control(req,
416 					     PIPE_CONTROL_CS_STALL |
417 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
418 					     0);
419 		if (ret)
420 			return ret;
421 	}
422 
423 	return gen8_emit_pipe_control(req, flags, scratch_addr);
424 }
425 
426 static void ring_write_tail(struct intel_engine_cs *engine,
427 			    u32 value)
428 {
429 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
430 	I915_WRITE_TAIL(engine, value);
431 }
432 
433 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
434 {
435 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
436 	u64 acthd;
437 
438 	if (INTEL_INFO(engine->dev)->gen >= 8)
439 		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
440 					 RING_ACTHD_UDW(engine->mmio_base));
441 	else if (INTEL_INFO(engine->dev)->gen >= 4)
442 		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
443 	else
444 		acthd = I915_READ(ACTHD);
445 
446 	return acthd;
447 }
448 
449 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
450 {
451 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
452 	u32 addr;
453 
454 	addr = dev_priv->status_page_dmah->busaddr;
455 	if (INTEL_INFO(engine->dev)->gen >= 4)
456 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
457 	I915_WRITE(HWS_PGA, addr);
458 }
459 
460 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
461 {
462 	struct drm_device *dev = engine->dev;
463 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
464 	i915_reg_t mmio;
465 
466 	/* The ring status page addresses are no longer next to the rest of
467 	 * the ring registers as of gen7.
468 	 */
469 	if (IS_GEN7(dev)) {
470 		switch (engine->id) {
471 		case RCS:
472 			mmio = RENDER_HWS_PGA_GEN7;
473 			break;
474 		case BCS:
475 			mmio = BLT_HWS_PGA_GEN7;
476 			break;
477 		/*
478 		 * VCS2 actually doesn't exist on Gen7. Only shut up
479 		 * gcc switch check warning
480 		 */
481 		case VCS2:
482 		case VCS:
483 			mmio = BSD_HWS_PGA_GEN7;
484 			break;
485 		case VECS:
486 			mmio = VEBOX_HWS_PGA_GEN7;
487 			break;
488 		}
489 	} else if (IS_GEN6(engine->dev)) {
490 		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
491 	} else {
492 		/* XXX: gen8 returns to sanity */
493 		mmio = RING_HWS_PGA(engine->mmio_base);
494 	}
495 
496 	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
497 	POSTING_READ(mmio);
498 
499 	/*
500 	 * Flush the TLB for this page
501 	 *
502 	 * FIXME: These two bits have disappeared on gen8, so a question
503 	 * arises: do we still need this and if so how should we go about
504 	 * invalidating the TLB?
505 	 */
506 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
507 		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
508 
509 		/* ring should be idle before issuing a sync flush*/
510 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
511 
512 		I915_WRITE(reg,
513 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
514 					      INSTPM_SYNC_FLUSH));
515 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
516 			     1000))
517 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
518 				  engine->name);
519 	}
520 }
521 
522 static bool stop_ring(struct intel_engine_cs *engine)
523 {
524 	struct drm_i915_private *dev_priv = to_i915(engine->dev);
525 
526 	if (!IS_GEN2(engine->dev)) {
527 		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
528 		if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
529 			DRM_ERROR("%s : timed out trying to stop ring\n",
530 				  engine->name);
531 			/* Sometimes we observe that the idle flag is not
532 			 * set even though the ring is empty. So double
533 			 * check before giving up.
534 			 */
535 			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536 				return false;
537 		}
538 	}
539 
540 	I915_WRITE_CTL(engine, 0);
541 	I915_WRITE_HEAD(engine, 0);
542 	engine->write_tail(engine, 0);
543 
544 	if (!IS_GEN2(engine->dev)) {
545 		(void)I915_READ_CTL(engine);
546 		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547 	}
548 
549 	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551 
552 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
553 {
554 	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
555 }
556 
557 static int init_ring_common(struct intel_engine_cs *engine)
558 {
559 	struct drm_device *dev = engine->dev;
560 	struct drm_i915_private *dev_priv = dev->dev_private;
561 	struct intel_ringbuffer *ringbuf = engine->buffer;
562 	struct drm_i915_gem_object *obj = ringbuf->obj;
563 	int ret = 0;
564 
565 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566 
567 	if (!stop_ring(engine)) {
568 		/* G45 ring initialization often fails to reset head to zero */
569 		DRM_DEBUG_KMS("%s head not reset to zero "
570 			      "ctl %08x head %08x tail %08x start %08x\n",
571 			      engine->name,
572 			      I915_READ_CTL(engine),
573 			      I915_READ_HEAD(engine),
574 			      I915_READ_TAIL(engine),
575 			      I915_READ_START(engine));
576 
577 		if (!stop_ring(engine)) {
578 			DRM_ERROR("failed to set %s head to zero "
579 				  "ctl %08x head %08x tail %08x start %08x\n",
580 				  engine->name,
581 				  I915_READ_CTL(engine),
582 				  I915_READ_HEAD(engine),
583 				  I915_READ_TAIL(engine),
584 				  I915_READ_START(engine));
585 			ret = -EIO;
586 			goto out;
587 		}
588 	}
589 
590 	if (I915_NEED_GFX_HWS(dev))
591 		intel_ring_setup_status_page(engine);
592 	else
593 		ring_setup_phys_status_page(engine);
594 
595 	/* Enforce ordering by reading HEAD register back */
596 	I915_READ_HEAD(engine);
597 
598 	/* Initialize the ring. This must happen _after_ we've cleared the ring
599 	 * registers with the above sequence (the readback of the HEAD registers
600 	 * also enforces ordering), otherwise the hw might lose the new ring
601 	 * register values. */
602 	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
603 
604 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
605 	if (I915_READ_HEAD(engine))
606 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 			  engine->name, I915_READ_HEAD(engine));
608 	I915_WRITE_HEAD(engine, 0);
609 	(void)I915_READ_HEAD(engine);
610 
611 	I915_WRITE_CTL(engine,
612 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 			| RING_VALID);
614 
615 	/* If the head is still not zero, the ring is dead */
616 	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
617 		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
618 		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
619 		DRM_ERROR("%s initialization failed "
620 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 			  engine->name,
622 			  I915_READ_CTL(engine),
623 			  I915_READ_CTL(engine) & RING_VALID,
624 			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
625 			  I915_READ_START(engine),
626 			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
627 		ret = -EIO;
628 		goto out;
629 	}
630 
631 	ringbuf->last_retired_head = -1;
632 	ringbuf->head = I915_READ_HEAD(engine);
633 	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
634 	intel_ring_update_space(ringbuf);
635 
636 	intel_engine_init_hangcheck(engine);
637 
638 out:
639 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
640 
641 	return ret;
642 }
643 
644 void
645 intel_fini_pipe_control(struct intel_engine_cs *engine)
646 {
647 	struct drm_device *dev = engine->dev;
648 
649 	if (engine->scratch.obj == NULL)
650 		return;
651 
652 	if (INTEL_INFO(dev)->gen >= 5) {
653 		kunmap(sg_page(engine->scratch.obj->pages->sgl));
654 		i915_gem_object_ggtt_unpin(engine->scratch.obj);
655 	}
656 
657 	drm_gem_object_unreference(&engine->scratch.obj->base);
658 	engine->scratch.obj = NULL;
659 }
660 
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664 	int ret;
665 
666 	WARN_ON(engine->scratch.obj);
667 
668 	engine->scratch.obj = i915_gem_alloc_object(engine->dev, 4096);
669 	if (engine->scratch.obj == NULL) {
670 		DRM_ERROR("Failed to allocate seqno page\n");
671 		ret = -ENOMEM;
672 		goto err;
673 	}
674 
675 	ret = i915_gem_object_set_cache_level(engine->scratch.obj,
676 					      I915_CACHE_LLC);
677 	if (ret)
678 		goto err_unref;
679 
680 	ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
681 	if (ret)
682 		goto err_unref;
683 
684 	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
685 	engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
686 	if (engine->scratch.cpu_page == NULL) {
687 		ret = -ENOMEM;
688 		goto err_unpin;
689 	}
690 
691 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
692 			 engine->name, engine->scratch.gtt_offset);
693 	return 0;
694 
695 err_unpin:
696 	i915_gem_object_ggtt_unpin(engine->scratch.obj);
697 err_unref:
698 	drm_gem_object_unreference(&engine->scratch.obj->base);
699 err:
700 	return ret;
701 }
702 
703 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
704 {
705 	int ret, i;
706 	struct intel_engine_cs *engine = req->engine;
707 	struct drm_device *dev = engine->dev;
708 	struct drm_i915_private *dev_priv = dev->dev_private;
709 	struct i915_workarounds *w = &dev_priv->workarounds;
710 
711 	if (w->count == 0)
712 		return 0;
713 
714 	engine->gpu_caches_dirty = true;
715 	ret = intel_ring_flush_all_caches(req);
716 	if (ret)
717 		return ret;
718 
719 	ret = intel_ring_begin(req, (w->count * 2 + 2));
720 	if (ret)
721 		return ret;
722 
723 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
724 	for (i = 0; i < w->count; i++) {
725 		intel_ring_emit_reg(engine, w->reg[i].addr);
726 		intel_ring_emit(engine, w->reg[i].value);
727 	}
728 	intel_ring_emit(engine, MI_NOOP);
729 
730 	intel_ring_advance(engine);
731 
732 	engine->gpu_caches_dirty = true;
733 	ret = intel_ring_flush_all_caches(req);
734 	if (ret)
735 		return ret;
736 
737 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
738 
739 	return 0;
740 }
741 
742 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
743 {
744 	int ret;
745 
746 	ret = intel_ring_workarounds_emit(req);
747 	if (ret != 0)
748 		return ret;
749 
750 	ret = i915_gem_render_state_init(req);
751 	if (ret)
752 		return ret;
753 
754 	return 0;
755 }
756 
757 static int wa_add(struct drm_i915_private *dev_priv,
758 		  i915_reg_t addr,
759 		  const u32 mask, const u32 val)
760 {
761 	const u32 idx = dev_priv->workarounds.count;
762 
763 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
764 		return -ENOSPC;
765 
766 	dev_priv->workarounds.reg[idx].addr = addr;
767 	dev_priv->workarounds.reg[idx].value = val;
768 	dev_priv->workarounds.reg[idx].mask = mask;
769 
770 	dev_priv->workarounds.count++;
771 
772 	return 0;
773 }
774 
775 #define WA_REG(addr, mask, val) do { \
776 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
777 		if (r) \
778 			return r; \
779 	} while (0)
780 
781 #define WA_SET_BIT_MASKED(addr, mask) \
782 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
783 
784 #define WA_CLR_BIT_MASKED(addr, mask) \
785 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
786 
787 #define WA_SET_FIELD_MASKED(addr, mask, value) \
788 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
789 
790 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
791 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
792 
793 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
794 
795 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
796 				 i915_reg_t reg)
797 {
798 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
799 	struct i915_workarounds *wa = &dev_priv->workarounds;
800 	const uint32_t index = wa->hw_whitelist_count[engine->id];
801 
802 	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
803 		return -EINVAL;
804 
805 	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
806 		 i915_mmio_reg_offset(reg));
807 	wa->hw_whitelist_count[engine->id]++;
808 
809 	return 0;
810 }
811 
812 static int gen8_init_workarounds(struct intel_engine_cs *engine)
813 {
814 	struct drm_device *dev = engine->dev;
815 	struct drm_i915_private *dev_priv = dev->dev_private;
816 
817 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
818 
819 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
820 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
821 
822 	/* WaDisablePartialInstShootdown:bdw,chv */
823 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
824 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
825 
826 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
827 	 * workaround for for a possible hang in the unlikely event a TLB
828 	 * invalidation occurs during a PSD flush.
829 	 */
830 	/* WaForceEnableNonCoherent:bdw,chv */
831 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
832 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
833 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
834 			  HDC_FORCE_NON_COHERENT);
835 
836 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
837 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
838 	 *  polygons in the same 8x4 pixel/sample area to be processed without
839 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
840 	 *  buffer."
841 	 *
842 	 * This optimization is off by default for BDW and CHV; turn it on.
843 	 */
844 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
845 
846 	/* Wa4x4STCOptimizationDisable:bdw,chv */
847 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
848 
849 	/*
850 	 * BSpec recommends 8x4 when MSAA is used,
851 	 * however in practice 16x4 seems fastest.
852 	 *
853 	 * Note that PS/WM thread counts depend on the WIZ hashing
854 	 * disable bit, which we don't touch here, but it's good
855 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
856 	 */
857 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
858 			    GEN6_WIZ_HASHING_MASK,
859 			    GEN6_WIZ_HASHING_16x4);
860 
861 	return 0;
862 }
863 
864 static int bdw_init_workarounds(struct intel_engine_cs *engine)
865 {
866 	int ret;
867 	struct drm_device *dev = engine->dev;
868 	struct drm_i915_private *dev_priv = dev->dev_private;
869 
870 	ret = gen8_init_workarounds(engine);
871 	if (ret)
872 		return ret;
873 
874 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
875 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
876 
877 	/* WaDisableDopClockGating:bdw */
878 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
879 			  DOP_CLOCK_GATING_DISABLE);
880 
881 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
882 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
883 
884 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
885 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
886 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
887 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
888 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
889 
890 	return 0;
891 }
892 
893 static int chv_init_workarounds(struct intel_engine_cs *engine)
894 {
895 	int ret;
896 	struct drm_device *dev = engine->dev;
897 	struct drm_i915_private *dev_priv = dev->dev_private;
898 
899 	ret = gen8_init_workarounds(engine);
900 	if (ret)
901 		return ret;
902 
903 	/* WaDisableThreadStallDopClockGating:chv */
904 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
905 
906 	/* Improve HiZ throughput on CHV. */
907 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908 
909 	return 0;
910 }
911 
912 static int gen9_init_workarounds(struct intel_engine_cs *engine)
913 {
914 	struct drm_device *dev = engine->dev;
915 	struct drm_i915_private *dev_priv = dev->dev_private;
916 	int ret;
917 
918 	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
919 	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
920 
921 	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
923 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
924 
925 	/* WaDisableKillLogic:bxt,skl,kbl */
926 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
927 		   ECOCHK_DIS_TLB);
928 
929 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
930 	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
931 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932 			  FLOW_CONTROL_ENABLE |
933 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
934 
935 	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
937 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
938 
939 	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940 	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
941 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
942 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943 				  GEN9_DG_MIRROR_FIX_ENABLE);
944 
945 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946 	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
947 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
948 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
950 		/*
951 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
952 		 * but we do that in per ctx batchbuffer as there is an issue
953 		 * with this register not getting restored on ctx restore
954 		 */
955 	}
956 
957 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
958 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959 	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960 			  GEN9_ENABLE_YV12_BUGFIX |
961 			  GEN9_ENABLE_GPGPU_PREEMPTION);
962 
963 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
964 	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
965 	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
966 					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967 
968 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
970 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
971 
972 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
973 	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
974 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
975 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
976 				  PIXEL_MASK_CAMMING_DISABLE);
977 
978 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
979 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
980 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
981 			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982 
983 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
984 	 * both tied to WaForceContextSaveRestoreNonCoherent
985 	 * in some hsds for skl. We keep the tie for all gen9. The
986 	 * documentation is a bit hazy and so we want to get common behaviour,
987 	 * even though there is no clear evidence we would need both on kbl/bxt.
988 	 * This area has been source of system hangs so we play it safe
989 	 * and mimic the skl regardless of what bspec says.
990 	 *
991 	 * Use Force Non-Coherent whenever executing a 3D context. This
992 	 * is a workaround for a possible hang in the unlikely event
993 	 * a TLB invalidation occurs during a PSD flush.
994 	 */
995 
996 	/* WaForceEnableNonCoherent:skl,bxt,kbl */
997 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
998 			  HDC_FORCE_NON_COHERENT);
999 
1000 	/* WaDisableHDCInvalidation:skl,bxt,kbl */
1001 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1002 		   BDW_DISABLE_HDC_INVALIDATION);
1003 
1004 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1005 	if (IS_SKYLAKE(dev_priv) ||
1006 	    IS_KABYLAKE(dev_priv) ||
1007 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008 		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1009 				  GEN8_SAMPLER_POWER_BYPASS_DIS);
1010 
1011 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1013 
1014 	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015 	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1016 				    GEN8_LQSC_FLUSH_COHERENT_LINES));
1017 
1018 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1019 	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1020 	if (ret)
1021 		return ret;
1022 
1023 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024 	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025 	if (ret)
1026 		return ret;
1027 
1028 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029 	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030 	if (ret)
1031 		return ret;
1032 
1033 	return 0;
1034 }
1035 
1036 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037 {
1038 	struct drm_device *dev = engine->dev;
1039 	struct drm_i915_private *dev_priv = dev->dev_private;
1040 	u8 vals[3] = { 0, 0, 0 };
1041 	unsigned int i;
1042 
1043 	for (i = 0; i < 3; i++) {
1044 		u8 ss;
1045 
1046 		/*
1047 		 * Only consider slices where one, and only one, subslice has 7
1048 		 * EUs
1049 		 */
1050 		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1051 			continue;
1052 
1053 		/*
1054 		 * subslice_7eu[i] != 0 (because of the check above) and
1055 		 * ss_max == 4 (maximum number of subslices possible per slice)
1056 		 *
1057 		 * ->    0 <= ss <= 3;
1058 		 */
1059 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1060 		vals[i] = 3 - ss;
1061 	}
1062 
1063 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1064 		return 0;
1065 
1066 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1067 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1068 			    GEN9_IZ_HASHING_MASK(2) |
1069 			    GEN9_IZ_HASHING_MASK(1) |
1070 			    GEN9_IZ_HASHING_MASK(0),
1071 			    GEN9_IZ_HASHING(2, vals[2]) |
1072 			    GEN9_IZ_HASHING(1, vals[1]) |
1073 			    GEN9_IZ_HASHING(0, vals[0]));
1074 
1075 	return 0;
1076 }
1077 
1078 static int skl_init_workarounds(struct intel_engine_cs *engine)
1079 {
1080 	int ret;
1081 	struct drm_device *dev = engine->dev;
1082 	struct drm_i915_private *dev_priv = dev->dev_private;
1083 
1084 	ret = gen9_init_workarounds(engine);
1085 	if (ret)
1086 		return ret;
1087 
1088 	/*
1089 	 * Actual WA is to disable percontext preemption granularity control
1090 	 * until D0 which is the default case so this is equivalent to
1091 	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1092 	 */
1093 	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1094 		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1095 			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1096 	}
1097 
1098 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1099 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1100 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1101 			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1102 	}
1103 
1104 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1105 	 * involving this register should also be added to WA batch as required.
1106 	 */
1107 	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1108 		/* WaDisableLSQCROPERFforOCL:skl */
1109 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1110 			   GEN8_LQSC_RO_PERF_DIS);
1111 
1112 	/* WaEnableGapsTsvCreditFix:skl */
1113 	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1114 		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1115 					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1116 	}
1117 
1118 	/* WaDisablePowerCompilerClockGating:skl */
1119 	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1120 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1121 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1122 
1123 	/* WaBarrierPerformanceFixDisable:skl */
1124 	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1125 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1126 				  HDC_FENCE_DEST_SLM_DISABLE |
1127 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1128 
1129 	/* WaDisableSbeCacheDispatchPortSharing:skl */
1130 	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1131 		WA_SET_BIT_MASKED(
1132 			GEN7_HALF_SLICE_CHICKEN1,
1133 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1134 
1135 	/* WaDisableGafsUnitClkGating:skl */
1136 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1137 
1138 	/* WaInPlaceDecompressionHang:skl */
1139 	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1140 		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1141 			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1142 
1143 	/* WaDisableLSQCROPERFforOCL:skl */
1144 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1145 	if (ret)
1146 		return ret;
1147 
1148 	return skl_tune_iz_hashing(engine);
1149 }
1150 
1151 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1152 {
1153 	int ret;
1154 	struct drm_device *dev = engine->dev;
1155 	struct drm_i915_private *dev_priv = dev->dev_private;
1156 
1157 	ret = gen9_init_workarounds(engine);
1158 	if (ret)
1159 		return ret;
1160 
1161 	/* WaStoreMultiplePTEenable:bxt */
1162 	/* This is a requirement according to Hardware specification */
1163 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1164 		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1165 
1166 	/* WaSetClckGatingDisableMedia:bxt */
1167 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1168 		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1169 					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1170 	}
1171 
1172 	/* WaDisableThreadStallDopClockGating:bxt */
1173 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1174 			  STALL_DOP_GATING_DISABLE);
1175 
1176 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1177 	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1178 		WA_SET_BIT_MASKED(
1179 			GEN7_HALF_SLICE_CHICKEN1,
1180 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1181 	}
1182 
1183 	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1184 	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1185 	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1186 	/* WaDisableLSQCROPERFforOCL:bxt */
1187 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1188 		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1189 		if (ret)
1190 			return ret;
1191 
1192 		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1193 		if (ret)
1194 			return ret;
1195 	}
1196 
1197 	/* WaInsertDummyPushConstPs:bxt */
1198 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1199 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1200 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1201 
1202 	/* WaInPlaceDecompressionHang:bxt */
1203 	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1204 		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1205 			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1206 
1207 	return 0;
1208 }
1209 
1210 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1211 {
1212 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1213 	int ret;
1214 
1215 	ret = gen9_init_workarounds(engine);
1216 	if (ret)
1217 		return ret;
1218 
1219 	/* WaEnableGapsTsvCreditFix:kbl */
1220 	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1221 				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1222 
1223 	/* WaDisableDynamicCreditSharing:kbl */
1224 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1225 		WA_SET_BIT(GAMT_CHKN_BIT_REG,
1226 			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1227 
1228 	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1229 	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1230 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1231 				  HDC_FENCE_DEST_SLM_DISABLE);
1232 
1233 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1234 	 * involving this register should also be added to WA batch as required.
1235 	 */
1236 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1237 		/* WaDisableLSQCROPERFforOCL:kbl */
1238 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1239 			   GEN8_LQSC_RO_PERF_DIS);
1240 
1241 	/* WaInsertDummyPushConstPs:kbl */
1242 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1243 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1244 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1245 
1246 	/* WaDisableGafsUnitClkGating:kbl */
1247 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1248 
1249 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
1250 	WA_SET_BIT_MASKED(
1251 		GEN7_HALF_SLICE_CHICKEN1,
1252 		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1253 
1254 	/* WaInPlaceDecompressionHang:kbl */
1255 	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1256 		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1257 
1258 	/* WaDisableLSQCROPERFforOCL:kbl */
1259 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1260 	if (ret)
1261 		return ret;
1262 
1263 	return 0;
1264 }
1265 
1266 int init_workarounds_ring(struct intel_engine_cs *engine)
1267 {
1268 	struct drm_device *dev = engine->dev;
1269 	struct drm_i915_private *dev_priv = dev->dev_private;
1270 
1271 	WARN_ON(engine->id != RCS);
1272 
1273 	dev_priv->workarounds.count = 0;
1274 	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1275 
1276 	if (IS_BROADWELL(dev))
1277 		return bdw_init_workarounds(engine);
1278 
1279 	if (IS_CHERRYVIEW(dev))
1280 		return chv_init_workarounds(engine);
1281 
1282 	if (IS_SKYLAKE(dev))
1283 		return skl_init_workarounds(engine);
1284 
1285 	if (IS_BROXTON(dev))
1286 		return bxt_init_workarounds(engine);
1287 
1288 	if (IS_KABYLAKE(dev_priv))
1289 		return kbl_init_workarounds(engine);
1290 
1291 	return 0;
1292 }
1293 
1294 static int init_render_ring(struct intel_engine_cs *engine)
1295 {
1296 	struct drm_device *dev = engine->dev;
1297 	struct drm_i915_private *dev_priv = dev->dev_private;
1298 	int ret = init_ring_common(engine);
1299 	if (ret)
1300 		return ret;
1301 
1302 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1303 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1304 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1305 
1306 	/* We need to disable the AsyncFlip performance optimisations in order
1307 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1308 	 * programmed to '1' on all products.
1309 	 *
1310 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1311 	 */
1312 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1313 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1314 
1315 	/* Required for the hardware to program scanline values for waiting */
1316 	/* WaEnableFlushTlbInvalidationMode:snb */
1317 	if (INTEL_INFO(dev)->gen == 6)
1318 		I915_WRITE(GFX_MODE,
1319 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1320 
1321 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1322 	if (IS_GEN7(dev))
1323 		I915_WRITE(GFX_MODE_GEN7,
1324 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1325 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1326 
1327 	if (IS_GEN6(dev)) {
1328 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1329 		 * "If this bit is set, STCunit will have LRA as replacement
1330 		 *  policy. [...] This bit must be reset.  LRA replacement
1331 		 *  policy is not supported."
1332 		 */
1333 		I915_WRITE(CACHE_MODE_0,
1334 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1335 	}
1336 
1337 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1338 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1339 
1340 	if (HAS_L3_DPF(dev))
1341 		I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1342 
1343 	return init_workarounds_ring(engine);
1344 }
1345 
1346 static void render_ring_cleanup(struct intel_engine_cs *engine)
1347 {
1348 	struct drm_device *dev = engine->dev;
1349 	struct drm_i915_private *dev_priv = dev->dev_private;
1350 
1351 	if (dev_priv->semaphore_obj) {
1352 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1353 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1354 		dev_priv->semaphore_obj = NULL;
1355 	}
1356 
1357 	intel_fini_pipe_control(engine);
1358 }
1359 
1360 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1361 			   unsigned int num_dwords)
1362 {
1363 #define MBOX_UPDATE_DWORDS 8
1364 	struct intel_engine_cs *signaller = signaller_req->engine;
1365 	struct drm_device *dev = signaller->dev;
1366 	struct drm_i915_private *dev_priv = dev->dev_private;
1367 	struct intel_engine_cs *waiter;
1368 	enum intel_engine_id id;
1369 	int ret, num_rings;
1370 
1371 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1372 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1373 #undef MBOX_UPDATE_DWORDS
1374 
1375 	ret = intel_ring_begin(signaller_req, num_dwords);
1376 	if (ret)
1377 		return ret;
1378 
1379 	for_each_engine_id(waiter, dev_priv, id) {
1380 		u32 seqno;
1381 		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1382 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1383 			continue;
1384 
1385 		seqno = i915_gem_request_get_seqno(signaller_req);
1386 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1387 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1388 					   PIPE_CONTROL_QW_WRITE |
1389 					   PIPE_CONTROL_FLUSH_ENABLE);
1390 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1391 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1392 		intel_ring_emit(signaller, seqno);
1393 		intel_ring_emit(signaller, 0);
1394 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1395 					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1396 		intel_ring_emit(signaller, 0);
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1403 			   unsigned int num_dwords)
1404 {
1405 #define MBOX_UPDATE_DWORDS 6
1406 	struct intel_engine_cs *signaller = signaller_req->engine;
1407 	struct drm_device *dev = signaller->dev;
1408 	struct drm_i915_private *dev_priv = dev->dev_private;
1409 	struct intel_engine_cs *waiter;
1410 	enum intel_engine_id id;
1411 	int ret, num_rings;
1412 
1413 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1414 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1415 #undef MBOX_UPDATE_DWORDS
1416 
1417 	ret = intel_ring_begin(signaller_req, num_dwords);
1418 	if (ret)
1419 		return ret;
1420 
1421 	for_each_engine_id(waiter, dev_priv, id) {
1422 		u32 seqno;
1423 		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1424 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1425 			continue;
1426 
1427 		seqno = i915_gem_request_get_seqno(signaller_req);
1428 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1429 					   MI_FLUSH_DW_OP_STOREDW);
1430 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1431 					   MI_FLUSH_DW_USE_GTT);
1432 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1433 		intel_ring_emit(signaller, seqno);
1434 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1435 					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1436 		intel_ring_emit(signaller, 0);
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1443 		       unsigned int num_dwords)
1444 {
1445 	struct intel_engine_cs *signaller = signaller_req->engine;
1446 	struct drm_device *dev = signaller->dev;
1447 	struct drm_i915_private *dev_priv = dev->dev_private;
1448 	struct intel_engine_cs *useless;
1449 	enum intel_engine_id id;
1450 	int ret, num_rings;
1451 
1452 #define MBOX_UPDATE_DWORDS 3
1453 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1454 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1455 #undef MBOX_UPDATE_DWORDS
1456 
1457 	ret = intel_ring_begin(signaller_req, num_dwords);
1458 	if (ret)
1459 		return ret;
1460 
1461 	for_each_engine_id(useless, dev_priv, id) {
1462 		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1463 
1464 		if (i915_mmio_reg_valid(mbox_reg)) {
1465 			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1466 
1467 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1468 			intel_ring_emit_reg(signaller, mbox_reg);
1469 			intel_ring_emit(signaller, seqno);
1470 		}
1471 	}
1472 
1473 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1474 	if (num_rings % 2 == 0)
1475 		intel_ring_emit(signaller, MI_NOOP);
1476 
1477 	return 0;
1478 }
1479 
1480 /**
1481  * gen6_add_request - Update the semaphore mailbox registers
1482  *
1483  * @request - request to write to the ring
1484  *
1485  * Update the mailbox registers in the *other* rings with the current seqno.
1486  * This acts like a signal in the canonical semaphore.
1487  */
1488 static int
1489 gen6_add_request(struct drm_i915_gem_request *req)
1490 {
1491 	struct intel_engine_cs *engine = req->engine;
1492 	int ret;
1493 
1494 	if (engine->semaphore.signal)
1495 		ret = engine->semaphore.signal(req, 4);
1496 	else
1497 		ret = intel_ring_begin(req, 4);
1498 
1499 	if (ret)
1500 		return ret;
1501 
1502 	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1503 	intel_ring_emit(engine,
1504 			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1505 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1506 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1507 	__intel_ring_advance(engine);
1508 
1509 	return 0;
1510 }
1511 
1512 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1513 					      u32 seqno)
1514 {
1515 	struct drm_i915_private *dev_priv = dev->dev_private;
1516 	return dev_priv->last_seqno < seqno;
1517 }
1518 
1519 /**
1520  * intel_ring_sync - sync the waiter to the signaller on seqno
1521  *
1522  * @waiter - ring that is waiting
1523  * @signaller - ring which has, or will signal
1524  * @seqno - seqno which the waiter will block on
1525  */
1526 
1527 static int
1528 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1529 	       struct intel_engine_cs *signaller,
1530 	       u32 seqno)
1531 {
1532 	struct intel_engine_cs *waiter = waiter_req->engine;
1533 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1534 	int ret;
1535 
1536 	ret = intel_ring_begin(waiter_req, 4);
1537 	if (ret)
1538 		return ret;
1539 
1540 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1541 				MI_SEMAPHORE_GLOBAL_GTT |
1542 				MI_SEMAPHORE_POLL |
1543 				MI_SEMAPHORE_SAD_GTE_SDD);
1544 	intel_ring_emit(waiter, seqno);
1545 	intel_ring_emit(waiter,
1546 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1547 	intel_ring_emit(waiter,
1548 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1549 	intel_ring_advance(waiter);
1550 	return 0;
1551 }
1552 
1553 static int
1554 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1555 	       struct intel_engine_cs *signaller,
1556 	       u32 seqno)
1557 {
1558 	struct intel_engine_cs *waiter = waiter_req->engine;
1559 	u32 dw1 = MI_SEMAPHORE_MBOX |
1560 		  MI_SEMAPHORE_COMPARE |
1561 		  MI_SEMAPHORE_REGISTER;
1562 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1563 	int ret;
1564 
1565 	/* Throughout all of the GEM code, seqno passed implies our current
1566 	 * seqno is >= the last seqno executed. However for hardware the
1567 	 * comparison is strictly greater than.
1568 	 */
1569 	seqno -= 1;
1570 
1571 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1572 
1573 	ret = intel_ring_begin(waiter_req, 4);
1574 	if (ret)
1575 		return ret;
1576 
1577 	/* If seqno wrap happened, omit the wait with no-ops */
1578 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1579 		intel_ring_emit(waiter, dw1 | wait_mbox);
1580 		intel_ring_emit(waiter, seqno);
1581 		intel_ring_emit(waiter, 0);
1582 		intel_ring_emit(waiter, MI_NOOP);
1583 	} else {
1584 		intel_ring_emit(waiter, MI_NOOP);
1585 		intel_ring_emit(waiter, MI_NOOP);
1586 		intel_ring_emit(waiter, MI_NOOP);
1587 		intel_ring_emit(waiter, MI_NOOP);
1588 	}
1589 	intel_ring_advance(waiter);
1590 
1591 	return 0;
1592 }
1593 
1594 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1595 do {									\
1596 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1597 		 PIPE_CONTROL_DEPTH_STALL);				\
1598 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1599 	intel_ring_emit(ring__, 0);							\
1600 	intel_ring_emit(ring__, 0);							\
1601 } while (0)
1602 
1603 static int
1604 pc_render_add_request(struct drm_i915_gem_request *req)
1605 {
1606 	struct intel_engine_cs *engine = req->engine;
1607 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1608 	int ret;
1609 
1610 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1611 	 * incoherent with writes to memory, i.e. completely fubar,
1612 	 * so we need to use PIPE_NOTIFY instead.
1613 	 *
1614 	 * However, we also need to workaround the qword write
1615 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1616 	 * memory before requesting an interrupt.
1617 	 */
1618 	ret = intel_ring_begin(req, 32);
1619 	if (ret)
1620 		return ret;
1621 
1622 	intel_ring_emit(engine,
1623 			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1624 			PIPE_CONTROL_WRITE_FLUSH |
1625 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1626 	intel_ring_emit(engine,
1627 			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1628 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1629 	intel_ring_emit(engine, 0);
1630 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1631 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1632 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1633 	scratch_addr += 2 * CACHELINE_BYTES;
1634 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1635 	scratch_addr += 2 * CACHELINE_BYTES;
1636 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1637 	scratch_addr += 2 * CACHELINE_BYTES;
1638 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1639 	scratch_addr += 2 * CACHELINE_BYTES;
1640 	PIPE_CONTROL_FLUSH(engine, scratch_addr);
1641 
1642 	intel_ring_emit(engine,
1643 			GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1644 			PIPE_CONTROL_WRITE_FLUSH |
1645 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1646 			PIPE_CONTROL_NOTIFY);
1647 	intel_ring_emit(engine,
1648 			engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1649 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1650 	intel_ring_emit(engine, 0);
1651 	__intel_ring_advance(engine);
1652 
1653 	return 0;
1654 }
1655 
1656 static void
1657 gen6_seqno_barrier(struct intel_engine_cs *engine)
1658 {
1659 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1660 
1661 	/* Workaround to force correct ordering between irq and seqno writes on
1662 	 * ivb (and maybe also on snb) by reading from a CS register (like
1663 	 * ACTHD) before reading the status page.
1664 	 *
1665 	 * Note that this effectively stalls the read by the time it takes to
1666 	 * do a memory transaction, which more or less ensures that the write
1667 	 * from the GPU has sufficient time to invalidate the CPU cacheline.
1668 	 * Alternatively we could delay the interrupt from the CS ring to give
1669 	 * the write time to land, but that would incur a delay after every
1670 	 * batch i.e. much more frequent than a delay when waiting for the
1671 	 * interrupt (with the same net latency).
1672 	 *
1673 	 * Also note that to prevent whole machine hangs on gen7, we have to
1674 	 * take the spinlock to guard against concurrent cacheline access.
1675 	 */
1676 	spin_lock_irq(&dev_priv->uncore.lock);
1677 	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1678 	spin_unlock_irq(&dev_priv->uncore.lock);
1679 }
1680 
1681 static u32
1682 ring_get_seqno(struct intel_engine_cs *engine)
1683 {
1684 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1685 }
1686 
1687 static void
1688 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1689 {
1690 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1691 }
1692 
1693 static u32
1694 pc_render_get_seqno(struct intel_engine_cs *engine)
1695 {
1696 	return engine->scratch.cpu_page[0];
1697 }
1698 
1699 static void
1700 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1701 {
1702 	engine->scratch.cpu_page[0] = seqno;
1703 }
1704 
1705 static bool
1706 gen5_ring_get_irq(struct intel_engine_cs *engine)
1707 {
1708 	struct drm_device *dev = engine->dev;
1709 	struct drm_i915_private *dev_priv = dev->dev_private;
1710 	unsigned long flags;
1711 
1712 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1713 		return false;
1714 
1715 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1716 	if (engine->irq_refcount++ == 0)
1717 		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1718 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1719 
1720 	return true;
1721 }
1722 
1723 static void
1724 gen5_ring_put_irq(struct intel_engine_cs *engine)
1725 {
1726 	struct drm_device *dev = engine->dev;
1727 	struct drm_i915_private *dev_priv = dev->dev_private;
1728 	unsigned long flags;
1729 
1730 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1731 	if (--engine->irq_refcount == 0)
1732 		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1733 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1734 }
1735 
1736 static bool
1737 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1738 {
1739 	struct drm_device *dev = engine->dev;
1740 	struct drm_i915_private *dev_priv = dev->dev_private;
1741 	unsigned long flags;
1742 
1743 	if (!intel_irqs_enabled(dev_priv))
1744 		return false;
1745 
1746 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1747 	if (engine->irq_refcount++ == 0) {
1748 		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1749 		I915_WRITE(IMR, dev_priv->irq_mask);
1750 		POSTING_READ(IMR);
1751 	}
1752 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753 
1754 	return true;
1755 }
1756 
1757 static void
1758 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1759 {
1760 	struct drm_device *dev = engine->dev;
1761 	struct drm_i915_private *dev_priv = dev->dev_private;
1762 	unsigned long flags;
1763 
1764 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1765 	if (--engine->irq_refcount == 0) {
1766 		dev_priv->irq_mask |= engine->irq_enable_mask;
1767 		I915_WRITE(IMR, dev_priv->irq_mask);
1768 		POSTING_READ(IMR);
1769 	}
1770 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1771 }
1772 
1773 static bool
1774 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1775 {
1776 	struct drm_device *dev = engine->dev;
1777 	struct drm_i915_private *dev_priv = dev->dev_private;
1778 	unsigned long flags;
1779 
1780 	if (!intel_irqs_enabled(dev_priv))
1781 		return false;
1782 
1783 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1784 	if (engine->irq_refcount++ == 0) {
1785 		dev_priv->irq_mask &= ~engine->irq_enable_mask;
1786 		I915_WRITE16(IMR, dev_priv->irq_mask);
1787 		POSTING_READ16(IMR);
1788 	}
1789 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1790 
1791 	return true;
1792 }
1793 
1794 static void
1795 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1796 {
1797 	struct drm_device *dev = engine->dev;
1798 	struct drm_i915_private *dev_priv = dev->dev_private;
1799 	unsigned long flags;
1800 
1801 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1802 	if (--engine->irq_refcount == 0) {
1803 		dev_priv->irq_mask |= engine->irq_enable_mask;
1804 		I915_WRITE16(IMR, dev_priv->irq_mask);
1805 		POSTING_READ16(IMR);
1806 	}
1807 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1808 }
1809 
1810 static int
1811 bsd_ring_flush(struct drm_i915_gem_request *req,
1812 	       u32     invalidate_domains,
1813 	       u32     flush_domains)
1814 {
1815 	struct intel_engine_cs *engine = req->engine;
1816 	int ret;
1817 
1818 	ret = intel_ring_begin(req, 2);
1819 	if (ret)
1820 		return ret;
1821 
1822 	intel_ring_emit(engine, MI_FLUSH);
1823 	intel_ring_emit(engine, MI_NOOP);
1824 	intel_ring_advance(engine);
1825 	return 0;
1826 }
1827 
1828 static int
1829 i9xx_add_request(struct drm_i915_gem_request *req)
1830 {
1831 	struct intel_engine_cs *engine = req->engine;
1832 	int ret;
1833 
1834 	ret = intel_ring_begin(req, 4);
1835 	if (ret)
1836 		return ret;
1837 
1838 	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1839 	intel_ring_emit(engine,
1840 			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1841 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1842 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1843 	__intel_ring_advance(engine);
1844 
1845 	return 0;
1846 }
1847 
1848 static bool
1849 gen6_ring_get_irq(struct intel_engine_cs *engine)
1850 {
1851 	struct drm_device *dev = engine->dev;
1852 	struct drm_i915_private *dev_priv = dev->dev_private;
1853 	unsigned long flags;
1854 
1855 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1856 		return false;
1857 
1858 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1859 	if (engine->irq_refcount++ == 0) {
1860 		if (HAS_L3_DPF(dev) && engine->id == RCS)
1861 			I915_WRITE_IMR(engine,
1862 				       ~(engine->irq_enable_mask |
1863 					 GT_PARITY_ERROR(dev)));
1864 		else
1865 			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1866 		gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1867 	}
1868 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1869 
1870 	return true;
1871 }
1872 
1873 static void
1874 gen6_ring_put_irq(struct intel_engine_cs *engine)
1875 {
1876 	struct drm_device *dev = engine->dev;
1877 	struct drm_i915_private *dev_priv = dev->dev_private;
1878 	unsigned long flags;
1879 
1880 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1881 	if (--engine->irq_refcount == 0) {
1882 		if (HAS_L3_DPF(dev) && engine->id == RCS)
1883 			I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev));
1884 		else
1885 			I915_WRITE_IMR(engine, ~0);
1886 		gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1887 	}
1888 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1889 }
1890 
1891 static bool
1892 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1893 {
1894 	struct drm_device *dev = engine->dev;
1895 	struct drm_i915_private *dev_priv = dev->dev_private;
1896 	unsigned long flags;
1897 
1898 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1899 		return false;
1900 
1901 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1902 	if (engine->irq_refcount++ == 0) {
1903 		I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1904 		gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1905 	}
1906 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1907 
1908 	return true;
1909 }
1910 
1911 static void
1912 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1913 {
1914 	struct drm_device *dev = engine->dev;
1915 	struct drm_i915_private *dev_priv = dev->dev_private;
1916 	unsigned long flags;
1917 
1918 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1919 	if (--engine->irq_refcount == 0) {
1920 		I915_WRITE_IMR(engine, ~0);
1921 		gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1922 	}
1923 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1924 }
1925 
1926 static bool
1927 gen8_ring_get_irq(struct intel_engine_cs *engine)
1928 {
1929 	struct drm_device *dev = engine->dev;
1930 	struct drm_i915_private *dev_priv = dev->dev_private;
1931 	unsigned long flags;
1932 
1933 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1934 		return false;
1935 
1936 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1937 	if (engine->irq_refcount++ == 0) {
1938 		if (HAS_L3_DPF(dev) && engine->id == RCS) {
1939 			I915_WRITE_IMR(engine,
1940 				       ~(engine->irq_enable_mask |
1941 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1942 		} else {
1943 			I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1944 		}
1945 		POSTING_READ(RING_IMR(engine->mmio_base));
1946 	}
1947 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1948 
1949 	return true;
1950 }
1951 
1952 static void
1953 gen8_ring_put_irq(struct intel_engine_cs *engine)
1954 {
1955 	struct drm_device *dev = engine->dev;
1956 	struct drm_i915_private *dev_priv = dev->dev_private;
1957 	unsigned long flags;
1958 
1959 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1960 	if (--engine->irq_refcount == 0) {
1961 		if (HAS_L3_DPF(dev) && engine->id == RCS) {
1962 			I915_WRITE_IMR(engine,
1963 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1964 		} else {
1965 			I915_WRITE_IMR(engine, ~0);
1966 		}
1967 		POSTING_READ(RING_IMR(engine->mmio_base));
1968 	}
1969 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1970 }
1971 
1972 static int
1973 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1974 			 u64 offset, u32 length,
1975 			 unsigned dispatch_flags)
1976 {
1977 	struct intel_engine_cs *engine = req->engine;
1978 	int ret;
1979 
1980 	ret = intel_ring_begin(req, 2);
1981 	if (ret)
1982 		return ret;
1983 
1984 	intel_ring_emit(engine,
1985 			MI_BATCH_BUFFER_START |
1986 			MI_BATCH_GTT |
1987 			(dispatch_flags & I915_DISPATCH_SECURE ?
1988 			 0 : MI_BATCH_NON_SECURE_I965));
1989 	intel_ring_emit(engine, offset);
1990 	intel_ring_advance(engine);
1991 
1992 	return 0;
1993 }
1994 
1995 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1996 #define I830_BATCH_LIMIT (256*1024)
1997 #define I830_TLB_ENTRIES (2)
1998 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1999 static int
2000 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
2001 			 u64 offset, u32 len,
2002 			 unsigned dispatch_flags)
2003 {
2004 	struct intel_engine_cs *engine = req->engine;
2005 	u32 cs_offset = engine->scratch.gtt_offset;
2006 	int ret;
2007 
2008 	ret = intel_ring_begin(req, 6);
2009 	if (ret)
2010 		return ret;
2011 
2012 	/* Evict the invalid PTE TLBs */
2013 	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2014 	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2015 	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2016 	intel_ring_emit(engine, cs_offset);
2017 	intel_ring_emit(engine, 0xdeadbeef);
2018 	intel_ring_emit(engine, MI_NOOP);
2019 	intel_ring_advance(engine);
2020 
2021 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2022 		if (len > I830_BATCH_LIMIT)
2023 			return -ENOSPC;
2024 
2025 		ret = intel_ring_begin(req, 6 + 2);
2026 		if (ret)
2027 			return ret;
2028 
2029 		/* Blit the batch (which has now all relocs applied) to the
2030 		 * stable batch scratch bo area (so that the CS never
2031 		 * stumbles over its tlb invalidation bug) ...
2032 		 */
2033 		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2034 		intel_ring_emit(engine,
2035 				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2036 		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2037 		intel_ring_emit(engine, cs_offset);
2038 		intel_ring_emit(engine, 4096);
2039 		intel_ring_emit(engine, offset);
2040 
2041 		intel_ring_emit(engine, MI_FLUSH);
2042 		intel_ring_emit(engine, MI_NOOP);
2043 		intel_ring_advance(engine);
2044 
2045 		/* ... and execute it. */
2046 		offset = cs_offset;
2047 	}
2048 
2049 	ret = intel_ring_begin(req, 2);
2050 	if (ret)
2051 		return ret;
2052 
2053 	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2054 	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2055 					  0 : MI_BATCH_NON_SECURE));
2056 	intel_ring_advance(engine);
2057 
2058 	return 0;
2059 }
2060 
2061 static int
2062 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2063 			 u64 offset, u32 len,
2064 			 unsigned dispatch_flags)
2065 {
2066 	struct intel_engine_cs *engine = req->engine;
2067 	int ret;
2068 
2069 	ret = intel_ring_begin(req, 2);
2070 	if (ret)
2071 		return ret;
2072 
2073 	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2074 	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2075 					  0 : MI_BATCH_NON_SECURE));
2076 	intel_ring_advance(engine);
2077 
2078 	return 0;
2079 }
2080 
2081 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2082 {
2083 	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2084 
2085 	if (!dev_priv->status_page_dmah)
2086 		return;
2087 
2088 	drm_pci_free(engine->dev, dev_priv->status_page_dmah);
2089 	engine->status_page.page_addr = NULL;
2090 }
2091 
2092 static void cleanup_status_page(struct intel_engine_cs *engine)
2093 {
2094 	struct drm_i915_gem_object *obj;
2095 
2096 	obj = engine->status_page.obj;
2097 	if (obj == NULL)
2098 		return;
2099 
2100 	kunmap(sg_page(obj->pages->sgl));
2101 	i915_gem_object_ggtt_unpin(obj);
2102 	drm_gem_object_unreference(&obj->base);
2103 	engine->status_page.obj = NULL;
2104 }
2105 
2106 static int init_status_page(struct intel_engine_cs *engine)
2107 {
2108 	struct drm_i915_gem_object *obj = engine->status_page.obj;
2109 
2110 	if (obj == NULL) {
2111 		unsigned flags;
2112 		int ret;
2113 
2114 		obj = i915_gem_alloc_object(engine->dev, 4096);
2115 		if (obj == NULL) {
2116 			DRM_ERROR("Failed to allocate status page\n");
2117 			return -ENOMEM;
2118 		}
2119 
2120 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2121 		if (ret)
2122 			goto err_unref;
2123 
2124 		flags = 0;
2125 		if (!HAS_LLC(engine->dev))
2126 			/* On g33, we cannot place HWS above 256MiB, so
2127 			 * restrict its pinning to the low mappable arena.
2128 			 * Though this restriction is not documented for
2129 			 * gen4, gen5, or byt, they also behave similarly
2130 			 * and hang if the HWS is placed at the top of the
2131 			 * GTT. To generalise, it appears that all !llc
2132 			 * platforms have issues with us placing the HWS
2133 			 * above the mappable region (even though we never
2134 			 * actualy map it).
2135 			 */
2136 			flags |= PIN_MAPPABLE;
2137 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2138 		if (ret) {
2139 err_unref:
2140 			drm_gem_object_unreference(&obj->base);
2141 			return ret;
2142 		}
2143 
2144 		engine->status_page.obj = obj;
2145 	}
2146 
2147 	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2148 	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2149 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2150 
2151 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2152 			engine->name, engine->status_page.gfx_addr);
2153 
2154 	return 0;
2155 }
2156 
2157 static int init_phys_status_page(struct intel_engine_cs *engine)
2158 {
2159 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2160 
2161 	if (!dev_priv->status_page_dmah) {
2162 		dev_priv->status_page_dmah =
2163 			drm_pci_alloc(engine->dev, PAGE_SIZE, PAGE_SIZE);
2164 		if (!dev_priv->status_page_dmah)
2165 			return -ENOMEM;
2166 	}
2167 
2168 	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2169 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2170 
2171 	return 0;
2172 }
2173 
2174 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2175 {
2176 	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2177 		i915_gem_object_unpin_map(ringbuf->obj);
2178 	else
2179 		iounmap(ringbuf->virtual_start);
2180 	ringbuf->virtual_start = NULL;
2181 	ringbuf->vma = NULL;
2182 	i915_gem_object_ggtt_unpin(ringbuf->obj);
2183 }
2184 
2185 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2186 				     struct intel_ringbuffer *ringbuf)
2187 {
2188 	struct drm_i915_private *dev_priv = to_i915(dev);
2189 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2190 	struct drm_i915_gem_object *obj = ringbuf->obj;
2191 	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2192 	unsigned flags = PIN_OFFSET_BIAS | 4096;
2193 	void *addr;
2194 	int ret;
2195 
2196 	if (HAS_LLC(dev_priv) && !obj->stolen) {
2197 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2198 		if (ret)
2199 			return ret;
2200 
2201 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2202 		if (ret)
2203 			goto err_unpin;
2204 
2205 		addr = i915_gem_object_pin_map(obj);
2206 		if (IS_ERR(addr)) {
2207 			ret = PTR_ERR(addr);
2208 			goto err_unpin;
2209 		}
2210 	} else {
2211 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2212 					    flags | PIN_MAPPABLE);
2213 		if (ret)
2214 			return ret;
2215 
2216 		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2217 		if (ret)
2218 			goto err_unpin;
2219 
2220 		/* Access through the GTT requires the device to be awake. */
2221 		assert_rpm_wakelock_held(dev_priv);
2222 
2223 		addr = ioremap_wc(ggtt->mappable_base +
2224 				  i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2225 		if (addr == NULL) {
2226 			ret = -ENOMEM;
2227 			goto err_unpin;
2228 		}
2229 	}
2230 
2231 	ringbuf->virtual_start = addr;
2232 	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2233 	return 0;
2234 
2235 err_unpin:
2236 	i915_gem_object_ggtt_unpin(obj);
2237 	return ret;
2238 }
2239 
2240 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2241 {
2242 	drm_gem_object_unreference(&ringbuf->obj->base);
2243 	ringbuf->obj = NULL;
2244 }
2245 
2246 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2247 				      struct intel_ringbuffer *ringbuf)
2248 {
2249 	struct drm_i915_gem_object *obj;
2250 
2251 	obj = NULL;
2252 	if (!HAS_LLC(dev))
2253 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2254 	if (obj == NULL)
2255 		obj = i915_gem_alloc_object(dev, ringbuf->size);
2256 	if (obj == NULL)
2257 		return -ENOMEM;
2258 
2259 	/* mark ring buffers as read-only from GPU side by default */
2260 	obj->gt_ro = 1;
2261 
2262 	ringbuf->obj = obj;
2263 
2264 	return 0;
2265 }
2266 
2267 struct intel_ringbuffer *
2268 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2269 {
2270 	struct intel_ringbuffer *ring;
2271 	int ret;
2272 
2273 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2274 	if (ring == NULL) {
2275 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2276 				 engine->name);
2277 		return ERR_PTR(-ENOMEM);
2278 	}
2279 
2280 	ring->engine = engine;
2281 	list_add(&ring->link, &engine->buffers);
2282 
2283 	ring->size = size;
2284 	/* Workaround an erratum on the i830 which causes a hang if
2285 	 * the TAIL pointer points to within the last 2 cachelines
2286 	 * of the buffer.
2287 	 */
2288 	ring->effective_size = size;
2289 	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2290 		ring->effective_size -= 2 * CACHELINE_BYTES;
2291 
2292 	ring->last_retired_head = -1;
2293 	intel_ring_update_space(ring);
2294 
2295 	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2296 	if (ret) {
2297 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2298 				 engine->name, ret);
2299 		list_del(&ring->link);
2300 		kfree(ring);
2301 		return ERR_PTR(ret);
2302 	}
2303 
2304 	return ring;
2305 }
2306 
2307 void
2308 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2309 {
2310 	intel_destroy_ringbuffer_obj(ring);
2311 	list_del(&ring->link);
2312 	kfree(ring);
2313 }
2314 
2315 static int intel_init_ring_buffer(struct drm_device *dev,
2316 				  struct intel_engine_cs *engine)
2317 {
2318 	struct intel_ringbuffer *ringbuf;
2319 	int ret;
2320 
2321 	WARN_ON(engine->buffer);
2322 
2323 	engine->dev = dev;
2324 	INIT_LIST_HEAD(&engine->active_list);
2325 	INIT_LIST_HEAD(&engine->request_list);
2326 	INIT_LIST_HEAD(&engine->execlist_queue);
2327 	INIT_LIST_HEAD(&engine->buffers);
2328 	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2329 	memset(engine->semaphore.sync_seqno, 0,
2330 	       sizeof(engine->semaphore.sync_seqno));
2331 
2332 	init_waitqueue_head(&engine->irq_queue);
2333 
2334 	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2335 	if (IS_ERR(ringbuf)) {
2336 		ret = PTR_ERR(ringbuf);
2337 		goto error;
2338 	}
2339 	engine->buffer = ringbuf;
2340 
2341 	if (I915_NEED_GFX_HWS(dev)) {
2342 		ret = init_status_page(engine);
2343 		if (ret)
2344 			goto error;
2345 	} else {
2346 		WARN_ON(engine->id != RCS);
2347 		ret = init_phys_status_page(engine);
2348 		if (ret)
2349 			goto error;
2350 	}
2351 
2352 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2353 	if (ret) {
2354 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2355 				engine->name, ret);
2356 		intel_destroy_ringbuffer_obj(ringbuf);
2357 		goto error;
2358 	}
2359 
2360 	ret = i915_cmd_parser_init_ring(engine);
2361 	if (ret)
2362 		goto error;
2363 
2364 	return 0;
2365 
2366 error:
2367 	intel_cleanup_engine(engine);
2368 	return ret;
2369 }
2370 
2371 void intel_cleanup_engine(struct intel_engine_cs *engine)
2372 {
2373 	struct drm_i915_private *dev_priv;
2374 
2375 	if (!intel_engine_initialized(engine))
2376 		return;
2377 
2378 	dev_priv = to_i915(engine->dev);
2379 
2380 	if (engine->buffer) {
2381 		intel_stop_engine(engine);
2382 		WARN_ON(!IS_GEN2(engine->dev) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2383 
2384 		intel_unpin_ringbuffer_obj(engine->buffer);
2385 		intel_ringbuffer_free(engine->buffer);
2386 		engine->buffer = NULL;
2387 	}
2388 
2389 	if (engine->cleanup)
2390 		engine->cleanup(engine);
2391 
2392 	if (I915_NEED_GFX_HWS(engine->dev)) {
2393 		cleanup_status_page(engine);
2394 	} else {
2395 		WARN_ON(engine->id != RCS);
2396 		cleanup_phys_status_page(engine);
2397 	}
2398 
2399 	i915_cmd_parser_fini_ring(engine);
2400 	i915_gem_batch_pool_fini(&engine->batch_pool);
2401 	engine->dev = NULL;
2402 }
2403 
2404 int intel_engine_idle(struct intel_engine_cs *engine)
2405 {
2406 	struct drm_i915_gem_request *req;
2407 
2408 	/* Wait upon the last request to be completed */
2409 	if (list_empty(&engine->request_list))
2410 		return 0;
2411 
2412 	req = list_entry(engine->request_list.prev,
2413 			 struct drm_i915_gem_request,
2414 			 list);
2415 
2416 	/* Make sure we do not trigger any retires */
2417 	return __i915_wait_request(req,
2418 				   req->i915->mm.interruptible,
2419 				   NULL, NULL);
2420 }
2421 
2422 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2423 {
2424 	request->ringbuf = request->engine->buffer;
2425 	return 0;
2426 }
2427 
2428 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2429 {
2430 	/*
2431 	 * The first call merely notes the reserve request and is common for
2432 	 * all back ends. The subsequent localised _begin() call actually
2433 	 * ensures that the reservation is available. Without the begin, if
2434 	 * the request creator immediately submitted the request without
2435 	 * adding any commands to it then there might not actually be
2436 	 * sufficient room for the submission commands.
2437 	 */
2438 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2439 
2440 	return intel_ring_begin(request, 0);
2441 }
2442 
2443 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2444 {
2445 	GEM_BUG_ON(ringbuf->reserved_size);
2446 	ringbuf->reserved_size = size;
2447 }
2448 
2449 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2450 {
2451 	GEM_BUG_ON(!ringbuf->reserved_size);
2452 	ringbuf->reserved_size   = 0;
2453 }
2454 
2455 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2456 {
2457 	GEM_BUG_ON(!ringbuf->reserved_size);
2458 	ringbuf->reserved_size   = 0;
2459 }
2460 
2461 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2462 {
2463 	GEM_BUG_ON(ringbuf->reserved_size);
2464 }
2465 
2466 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2467 {
2468 	struct intel_ringbuffer *ringbuf = req->ringbuf;
2469 	struct intel_engine_cs *engine = req->engine;
2470 	struct drm_i915_gem_request *target;
2471 
2472 	intel_ring_update_space(ringbuf);
2473 	if (ringbuf->space >= bytes)
2474 		return 0;
2475 
2476 	/*
2477 	 * Space is reserved in the ringbuffer for finalising the request,
2478 	 * as that cannot be allowed to fail. During request finalisation,
2479 	 * reserved_space is set to 0 to stop the overallocation and the
2480 	 * assumption is that then we never need to wait (which has the
2481 	 * risk of failing with EINTR).
2482 	 *
2483 	 * See also i915_gem_request_alloc() and i915_add_request().
2484 	 */
2485 	GEM_BUG_ON(!ringbuf->reserved_size);
2486 
2487 	list_for_each_entry(target, &engine->request_list, list) {
2488 		unsigned space;
2489 
2490 		/*
2491 		 * The request queue is per-engine, so can contain requests
2492 		 * from multiple ringbuffers. Here, we must ignore any that
2493 		 * aren't from the ringbuffer we're considering.
2494 		 */
2495 		if (target->ringbuf != ringbuf)
2496 			continue;
2497 
2498 		/* Would completion of this request free enough space? */
2499 		space = __intel_ring_space(target->postfix, ringbuf->tail,
2500 					   ringbuf->size);
2501 		if (space >= bytes)
2502 			break;
2503 	}
2504 
2505 	if (WARN_ON(&target->list == &engine->request_list))
2506 		return -ENOSPC;
2507 
2508 	return i915_wait_request(target);
2509 }
2510 
2511 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2512 {
2513 	struct intel_ringbuffer *ringbuf = req->ringbuf;
2514 	int remain_actual = ringbuf->size - ringbuf->tail;
2515 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2516 	int bytes = num_dwords * sizeof(u32);
2517 	int total_bytes, wait_bytes;
2518 	bool need_wrap = false;
2519 
2520 	total_bytes = bytes + ringbuf->reserved_size;
2521 
2522 	if (unlikely(bytes > remain_usable)) {
2523 		/*
2524 		 * Not enough space for the basic request. So need to flush
2525 		 * out the remainder and then wait for base + reserved.
2526 		 */
2527 		wait_bytes = remain_actual + total_bytes;
2528 		need_wrap = true;
2529 	} else if (unlikely(total_bytes > remain_usable)) {
2530 		/*
2531 		 * The base request will fit but the reserved space
2532 		 * falls off the end. So we don't need an immediate wrap
2533 		 * and only need to effectively wait for the reserved
2534 		 * size space from the start of ringbuffer.
2535 		 */
2536 		wait_bytes = remain_actual + ringbuf->reserved_size;
2537 	} else {
2538 		/* No wrapping required, just waiting. */
2539 		wait_bytes = total_bytes;
2540 	}
2541 
2542 	if (wait_bytes > ringbuf->space) {
2543 		int ret = wait_for_space(req, wait_bytes);
2544 		if (unlikely(ret))
2545 			return ret;
2546 
2547 		intel_ring_update_space(ringbuf);
2548 		if (unlikely(ringbuf->space < wait_bytes))
2549 			return -EAGAIN;
2550 	}
2551 
2552 	if (unlikely(need_wrap)) {
2553 		GEM_BUG_ON(remain_actual > ringbuf->space);
2554 		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2555 
2556 		/* Fill the tail with MI_NOOP */
2557 		memset(ringbuf->virtual_start + ringbuf->tail,
2558 		       0, remain_actual);
2559 		ringbuf->tail = 0;
2560 		ringbuf->space -= remain_actual;
2561 	}
2562 
2563 	ringbuf->space -= bytes;
2564 	GEM_BUG_ON(ringbuf->space < 0);
2565 	return 0;
2566 }
2567 
2568 /* Align the ring tail to a cacheline boundary */
2569 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2570 {
2571 	struct intel_engine_cs *engine = req->engine;
2572 	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2573 	int ret;
2574 
2575 	if (num_dwords == 0)
2576 		return 0;
2577 
2578 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2579 	ret = intel_ring_begin(req, num_dwords);
2580 	if (ret)
2581 		return ret;
2582 
2583 	while (num_dwords--)
2584 		intel_ring_emit(engine, MI_NOOP);
2585 
2586 	intel_ring_advance(engine);
2587 
2588 	return 0;
2589 }
2590 
2591 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2592 {
2593 	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2594 
2595 	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
2596 	 * so long as the semaphore value in the register/page is greater
2597 	 * than the sync value), so whenever we reset the seqno,
2598 	 * so long as we reset the tracking semaphore value to 0, it will
2599 	 * always be before the next request's seqno. If we don't reset
2600 	 * the semaphore value, then when the seqno moves backwards all
2601 	 * future waits will complete instantly (causing rendering corruption).
2602 	 */
2603 	if (INTEL_INFO(dev_priv)->gen == 6 || INTEL_INFO(dev_priv)->gen == 7) {
2604 		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2605 		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2606 		if (HAS_VEBOX(dev_priv))
2607 			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2608 	}
2609 	if (dev_priv->semaphore_obj) {
2610 		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2611 		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2612 		char *semaphores = kmap(page);
2613 		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2614 		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2615 		kunmap(page);
2616 	}
2617 	memset(engine->semaphore.sync_seqno, 0,
2618 	       sizeof(engine->semaphore.sync_seqno));
2619 
2620 	engine->set_seqno(engine, seqno);
2621 	engine->last_submitted_seqno = seqno;
2622 
2623 	engine->hangcheck.seqno = seqno;
2624 }
2625 
2626 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2627 				     u32 value)
2628 {
2629 	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2630 
2631        /* Every tail move must follow the sequence below */
2632 
2633 	/* Disable notification that the ring is IDLE. The GT
2634 	 * will then assume that it is busy and bring it out of rc6.
2635 	 */
2636 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2637 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2638 
2639 	/* Clear the context id. Here be magic! */
2640 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2641 
2642 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2643 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2644 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2645 		     50))
2646 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2647 
2648 	/* Now that the ring is fully powered up, update the tail */
2649 	I915_WRITE_TAIL(engine, value);
2650 	POSTING_READ(RING_TAIL(engine->mmio_base));
2651 
2652 	/* Let the ring send IDLE messages to the GT again,
2653 	 * and so let it sleep to conserve power when idle.
2654 	 */
2655 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2656 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2657 }
2658 
2659 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2660 			       u32 invalidate, u32 flush)
2661 {
2662 	struct intel_engine_cs *engine = req->engine;
2663 	uint32_t cmd;
2664 	int ret;
2665 
2666 	ret = intel_ring_begin(req, 4);
2667 	if (ret)
2668 		return ret;
2669 
2670 	cmd = MI_FLUSH_DW;
2671 	if (INTEL_INFO(engine->dev)->gen >= 8)
2672 		cmd += 1;
2673 
2674 	/* We always require a command barrier so that subsequent
2675 	 * commands, such as breadcrumb interrupts, are strictly ordered
2676 	 * wrt the contents of the write cache being flushed to memory
2677 	 * (and thus being coherent from the CPU).
2678 	 */
2679 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2680 
2681 	/*
2682 	 * Bspec vol 1c.5 - video engine command streamer:
2683 	 * "If ENABLED, all TLBs will be invalidated once the flush
2684 	 * operation is complete. This bit is only valid when the
2685 	 * Post-Sync Operation field is a value of 1h or 3h."
2686 	 */
2687 	if (invalidate & I915_GEM_GPU_DOMAINS)
2688 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2689 
2690 	intel_ring_emit(engine, cmd);
2691 	intel_ring_emit(engine,
2692 			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2693 	if (INTEL_INFO(engine->dev)->gen >= 8) {
2694 		intel_ring_emit(engine, 0); /* upper addr */
2695 		intel_ring_emit(engine, 0); /* value */
2696 	} else  {
2697 		intel_ring_emit(engine, 0);
2698 		intel_ring_emit(engine, MI_NOOP);
2699 	}
2700 	intel_ring_advance(engine);
2701 	return 0;
2702 }
2703 
2704 static int
2705 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2706 			      u64 offset, u32 len,
2707 			      unsigned dispatch_flags)
2708 {
2709 	struct intel_engine_cs *engine = req->engine;
2710 	bool ppgtt = USES_PPGTT(engine->dev) &&
2711 			!(dispatch_flags & I915_DISPATCH_SECURE);
2712 	int ret;
2713 
2714 	ret = intel_ring_begin(req, 4);
2715 	if (ret)
2716 		return ret;
2717 
2718 	/* FIXME(BDW): Address space and security selectors. */
2719 	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2720 			(dispatch_flags & I915_DISPATCH_RS ?
2721 			 MI_BATCH_RESOURCE_STREAMER : 0));
2722 	intel_ring_emit(engine, lower_32_bits(offset));
2723 	intel_ring_emit(engine, upper_32_bits(offset));
2724 	intel_ring_emit(engine, MI_NOOP);
2725 	intel_ring_advance(engine);
2726 
2727 	return 0;
2728 }
2729 
2730 static int
2731 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2732 			     u64 offset, u32 len,
2733 			     unsigned dispatch_flags)
2734 {
2735 	struct intel_engine_cs *engine = req->engine;
2736 	int ret;
2737 
2738 	ret = intel_ring_begin(req, 2);
2739 	if (ret)
2740 		return ret;
2741 
2742 	intel_ring_emit(engine,
2743 			MI_BATCH_BUFFER_START |
2744 			(dispatch_flags & I915_DISPATCH_SECURE ?
2745 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2746 			(dispatch_flags & I915_DISPATCH_RS ?
2747 			 MI_BATCH_RESOURCE_STREAMER : 0));
2748 	/* bit0-7 is the length on GEN6+ */
2749 	intel_ring_emit(engine, offset);
2750 	intel_ring_advance(engine);
2751 
2752 	return 0;
2753 }
2754 
2755 static int
2756 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2757 			      u64 offset, u32 len,
2758 			      unsigned dispatch_flags)
2759 {
2760 	struct intel_engine_cs *engine = req->engine;
2761 	int ret;
2762 
2763 	ret = intel_ring_begin(req, 2);
2764 	if (ret)
2765 		return ret;
2766 
2767 	intel_ring_emit(engine,
2768 			MI_BATCH_BUFFER_START |
2769 			(dispatch_flags & I915_DISPATCH_SECURE ?
2770 			 0 : MI_BATCH_NON_SECURE_I965));
2771 	/* bit0-7 is the length on GEN6+ */
2772 	intel_ring_emit(engine, offset);
2773 	intel_ring_advance(engine);
2774 
2775 	return 0;
2776 }
2777 
2778 /* Blitter support (SandyBridge+) */
2779 
2780 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2781 			   u32 invalidate, u32 flush)
2782 {
2783 	struct intel_engine_cs *engine = req->engine;
2784 	struct drm_device *dev = engine->dev;
2785 	uint32_t cmd;
2786 	int ret;
2787 
2788 	ret = intel_ring_begin(req, 4);
2789 	if (ret)
2790 		return ret;
2791 
2792 	cmd = MI_FLUSH_DW;
2793 	if (INTEL_INFO(dev)->gen >= 8)
2794 		cmd += 1;
2795 
2796 	/* We always require a command barrier so that subsequent
2797 	 * commands, such as breadcrumb interrupts, are strictly ordered
2798 	 * wrt the contents of the write cache being flushed to memory
2799 	 * (and thus being coherent from the CPU).
2800 	 */
2801 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2802 
2803 	/*
2804 	 * Bspec vol 1c.3 - blitter engine command streamer:
2805 	 * "If ENABLED, all TLBs will be invalidated once the flush
2806 	 * operation is complete. This bit is only valid when the
2807 	 * Post-Sync Operation field is a value of 1h or 3h."
2808 	 */
2809 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2810 		cmd |= MI_INVALIDATE_TLB;
2811 	intel_ring_emit(engine, cmd);
2812 	intel_ring_emit(engine,
2813 			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2814 	if (INTEL_INFO(dev)->gen >= 8) {
2815 		intel_ring_emit(engine, 0); /* upper addr */
2816 		intel_ring_emit(engine, 0); /* value */
2817 	} else  {
2818 		intel_ring_emit(engine, 0);
2819 		intel_ring_emit(engine, MI_NOOP);
2820 	}
2821 	intel_ring_advance(engine);
2822 
2823 	return 0;
2824 }
2825 
2826 int intel_init_render_ring_buffer(struct drm_device *dev)
2827 {
2828 	struct drm_i915_private *dev_priv = dev->dev_private;
2829 	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2830 	struct drm_i915_gem_object *obj;
2831 	int ret;
2832 
2833 	engine->name = "render ring";
2834 	engine->id = RCS;
2835 	engine->exec_id = I915_EXEC_RENDER;
2836 	engine->hw_id = 0;
2837 	engine->mmio_base = RENDER_RING_BASE;
2838 
2839 	if (INTEL_INFO(dev)->gen >= 8) {
2840 		if (i915_semaphore_is_enabled(dev)) {
2841 			obj = i915_gem_alloc_object(dev, 4096);
2842 			if (obj == NULL) {
2843 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2844 				i915.semaphores = 0;
2845 			} else {
2846 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2847 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2848 				if (ret != 0) {
2849 					drm_gem_object_unreference(&obj->base);
2850 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2851 					i915.semaphores = 0;
2852 				} else
2853 					dev_priv->semaphore_obj = obj;
2854 			}
2855 		}
2856 
2857 		engine->init_context = intel_rcs_ctx_init;
2858 		engine->add_request = gen6_add_request;
2859 		engine->flush = gen8_render_ring_flush;
2860 		engine->irq_get = gen8_ring_get_irq;
2861 		engine->irq_put = gen8_ring_put_irq;
2862 		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2863 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2864 		engine->get_seqno = ring_get_seqno;
2865 		engine->set_seqno = ring_set_seqno;
2866 		if (i915_semaphore_is_enabled(dev)) {
2867 			WARN_ON(!dev_priv->semaphore_obj);
2868 			engine->semaphore.sync_to = gen8_ring_sync;
2869 			engine->semaphore.signal = gen8_rcs_signal;
2870 			GEN8_RING_SEMAPHORE_INIT(engine);
2871 		}
2872 	} else if (INTEL_INFO(dev)->gen >= 6) {
2873 		engine->init_context = intel_rcs_ctx_init;
2874 		engine->add_request = gen6_add_request;
2875 		engine->flush = gen7_render_ring_flush;
2876 		if (INTEL_INFO(dev)->gen == 6)
2877 			engine->flush = gen6_render_ring_flush;
2878 		engine->irq_get = gen6_ring_get_irq;
2879 		engine->irq_put = gen6_ring_put_irq;
2880 		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2881 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2882 		engine->get_seqno = ring_get_seqno;
2883 		engine->set_seqno = ring_set_seqno;
2884 		if (i915_semaphore_is_enabled(dev)) {
2885 			engine->semaphore.sync_to = gen6_ring_sync;
2886 			engine->semaphore.signal = gen6_signal;
2887 			/*
2888 			 * The current semaphore is only applied on pre-gen8
2889 			 * platform.  And there is no VCS2 ring on the pre-gen8
2890 			 * platform. So the semaphore between RCS and VCS2 is
2891 			 * initialized as INVALID.  Gen8 will initialize the
2892 			 * sema between VCS2 and RCS later.
2893 			 */
2894 			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2895 			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2896 			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2897 			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2898 			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2899 			engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2900 			engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2901 			engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2902 			engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2903 			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2904 		}
2905 	} else if (IS_GEN5(dev)) {
2906 		engine->add_request = pc_render_add_request;
2907 		engine->flush = gen4_render_ring_flush;
2908 		engine->get_seqno = pc_render_get_seqno;
2909 		engine->set_seqno = pc_render_set_seqno;
2910 		engine->irq_get = gen5_ring_get_irq;
2911 		engine->irq_put = gen5_ring_put_irq;
2912 		engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2913 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2914 	} else {
2915 		engine->add_request = i9xx_add_request;
2916 		if (INTEL_INFO(dev)->gen < 4)
2917 			engine->flush = gen2_render_ring_flush;
2918 		else
2919 			engine->flush = gen4_render_ring_flush;
2920 		engine->get_seqno = ring_get_seqno;
2921 		engine->set_seqno = ring_set_seqno;
2922 		if (IS_GEN2(dev)) {
2923 			engine->irq_get = i8xx_ring_get_irq;
2924 			engine->irq_put = i8xx_ring_put_irq;
2925 		} else {
2926 			engine->irq_get = i9xx_ring_get_irq;
2927 			engine->irq_put = i9xx_ring_put_irq;
2928 		}
2929 		engine->irq_enable_mask = I915_USER_INTERRUPT;
2930 	}
2931 	engine->write_tail = ring_write_tail;
2932 
2933 	if (IS_HASWELL(dev))
2934 		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2935 	else if (IS_GEN8(dev))
2936 		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2937 	else if (INTEL_INFO(dev)->gen >= 6)
2938 		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2939 	else if (INTEL_INFO(dev)->gen >= 4)
2940 		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2941 	else if (IS_I830(dev) || IS_845G(dev))
2942 		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2943 	else
2944 		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2945 	engine->init_hw = init_render_ring;
2946 	engine->cleanup = render_ring_cleanup;
2947 
2948 	/* Workaround batchbuffer to combat CS tlb bug. */
2949 	if (HAS_BROKEN_CS_TLB(dev)) {
2950 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2951 		if (obj == NULL) {
2952 			DRM_ERROR("Failed to allocate batch bo\n");
2953 			return -ENOMEM;
2954 		}
2955 
2956 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2957 		if (ret != 0) {
2958 			drm_gem_object_unreference(&obj->base);
2959 			DRM_ERROR("Failed to ping batch bo\n");
2960 			return ret;
2961 		}
2962 
2963 		engine->scratch.obj = obj;
2964 		engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2965 	}
2966 
2967 	ret = intel_init_ring_buffer(dev, engine);
2968 	if (ret)
2969 		return ret;
2970 
2971 	if (INTEL_INFO(dev)->gen >= 5) {
2972 		ret = intel_init_pipe_control(engine);
2973 		if (ret)
2974 			return ret;
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2981 {
2982 	struct drm_i915_private *dev_priv = dev->dev_private;
2983 	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2984 
2985 	engine->name = "bsd ring";
2986 	engine->id = VCS;
2987 	engine->exec_id = I915_EXEC_BSD;
2988 	engine->hw_id = 1;
2989 
2990 	engine->write_tail = ring_write_tail;
2991 	if (INTEL_INFO(dev)->gen >= 6) {
2992 		engine->mmio_base = GEN6_BSD_RING_BASE;
2993 		/* gen6 bsd needs a special wa for tail updates */
2994 		if (IS_GEN6(dev))
2995 			engine->write_tail = gen6_bsd_ring_write_tail;
2996 		engine->flush = gen6_bsd_ring_flush;
2997 		engine->add_request = gen6_add_request;
2998 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2999 		engine->get_seqno = ring_get_seqno;
3000 		engine->set_seqno = ring_set_seqno;
3001 		if (INTEL_INFO(dev)->gen >= 8) {
3002 			engine->irq_enable_mask =
3003 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
3004 			engine->irq_get = gen8_ring_get_irq;
3005 			engine->irq_put = gen8_ring_put_irq;
3006 			engine->dispatch_execbuffer =
3007 				gen8_ring_dispatch_execbuffer;
3008 			if (i915_semaphore_is_enabled(dev)) {
3009 				engine->semaphore.sync_to = gen8_ring_sync;
3010 				engine->semaphore.signal = gen8_xcs_signal;
3011 				GEN8_RING_SEMAPHORE_INIT(engine);
3012 			}
3013 		} else {
3014 			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3015 			engine->irq_get = gen6_ring_get_irq;
3016 			engine->irq_put = gen6_ring_put_irq;
3017 			engine->dispatch_execbuffer =
3018 				gen6_ring_dispatch_execbuffer;
3019 			if (i915_semaphore_is_enabled(dev)) {
3020 				engine->semaphore.sync_to = gen6_ring_sync;
3021 				engine->semaphore.signal = gen6_signal;
3022 				engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
3023 				engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
3024 				engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
3025 				engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
3026 				engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3027 				engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
3028 				engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
3029 				engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
3030 				engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
3031 				engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3032 			}
3033 		}
3034 	} else {
3035 		engine->mmio_base = BSD_RING_BASE;
3036 		engine->flush = bsd_ring_flush;
3037 		engine->add_request = i9xx_add_request;
3038 		engine->get_seqno = ring_get_seqno;
3039 		engine->set_seqno = ring_set_seqno;
3040 		if (IS_GEN5(dev)) {
3041 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3042 			engine->irq_get = gen5_ring_get_irq;
3043 			engine->irq_put = gen5_ring_put_irq;
3044 		} else {
3045 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3046 			engine->irq_get = i9xx_ring_get_irq;
3047 			engine->irq_put = i9xx_ring_put_irq;
3048 		}
3049 		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3050 	}
3051 	engine->init_hw = init_ring_common;
3052 
3053 	return intel_init_ring_buffer(dev, engine);
3054 }
3055 
3056 /**
3057  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3058  */
3059 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3060 {
3061 	struct drm_i915_private *dev_priv = dev->dev_private;
3062 	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3063 
3064 	engine->name = "bsd2 ring";
3065 	engine->id = VCS2;
3066 	engine->exec_id = I915_EXEC_BSD;
3067 	engine->hw_id = 4;
3068 
3069 	engine->write_tail = ring_write_tail;
3070 	engine->mmio_base = GEN8_BSD2_RING_BASE;
3071 	engine->flush = gen6_bsd_ring_flush;
3072 	engine->add_request = gen6_add_request;
3073 	engine->irq_seqno_barrier = gen6_seqno_barrier;
3074 	engine->get_seqno = ring_get_seqno;
3075 	engine->set_seqno = ring_set_seqno;
3076 	engine->irq_enable_mask =
3077 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3078 	engine->irq_get = gen8_ring_get_irq;
3079 	engine->irq_put = gen8_ring_put_irq;
3080 	engine->dispatch_execbuffer =
3081 			gen8_ring_dispatch_execbuffer;
3082 	if (i915_semaphore_is_enabled(dev)) {
3083 		engine->semaphore.sync_to = gen8_ring_sync;
3084 		engine->semaphore.signal = gen8_xcs_signal;
3085 		GEN8_RING_SEMAPHORE_INIT(engine);
3086 	}
3087 	engine->init_hw = init_ring_common;
3088 
3089 	return intel_init_ring_buffer(dev, engine);
3090 }
3091 
3092 int intel_init_blt_ring_buffer(struct drm_device *dev)
3093 {
3094 	struct drm_i915_private *dev_priv = dev->dev_private;
3095 	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3096 
3097 	engine->name = "blitter ring";
3098 	engine->id = BCS;
3099 	engine->exec_id = I915_EXEC_BLT;
3100 	engine->hw_id = 2;
3101 
3102 	engine->mmio_base = BLT_RING_BASE;
3103 	engine->write_tail = ring_write_tail;
3104 	engine->flush = gen6_ring_flush;
3105 	engine->add_request = gen6_add_request;
3106 	engine->irq_seqno_barrier = gen6_seqno_barrier;
3107 	engine->get_seqno = ring_get_seqno;
3108 	engine->set_seqno = ring_set_seqno;
3109 	if (INTEL_INFO(dev)->gen >= 8) {
3110 		engine->irq_enable_mask =
3111 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3112 		engine->irq_get = gen8_ring_get_irq;
3113 		engine->irq_put = gen8_ring_put_irq;
3114 		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3115 		if (i915_semaphore_is_enabled(dev)) {
3116 			engine->semaphore.sync_to = gen8_ring_sync;
3117 			engine->semaphore.signal = gen8_xcs_signal;
3118 			GEN8_RING_SEMAPHORE_INIT(engine);
3119 		}
3120 	} else {
3121 		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3122 		engine->irq_get = gen6_ring_get_irq;
3123 		engine->irq_put = gen6_ring_put_irq;
3124 		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3125 		if (i915_semaphore_is_enabled(dev)) {
3126 			engine->semaphore.signal = gen6_signal;
3127 			engine->semaphore.sync_to = gen6_ring_sync;
3128 			/*
3129 			 * The current semaphore is only applied on pre-gen8
3130 			 * platform.  And there is no VCS2 ring on the pre-gen8
3131 			 * platform. So the semaphore between BCS and VCS2 is
3132 			 * initialized as INVALID.  Gen8 will initialize the
3133 			 * sema between BCS and VCS2 later.
3134 			 */
3135 			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3136 			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3137 			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3138 			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3139 			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3140 			engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3141 			engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3142 			engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3143 			engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3144 			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3145 		}
3146 	}
3147 	engine->init_hw = init_ring_common;
3148 
3149 	return intel_init_ring_buffer(dev, engine);
3150 }
3151 
3152 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3153 {
3154 	struct drm_i915_private *dev_priv = dev->dev_private;
3155 	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3156 
3157 	engine->name = "video enhancement ring";
3158 	engine->id = VECS;
3159 	engine->exec_id = I915_EXEC_VEBOX;
3160 	engine->hw_id = 3;
3161 
3162 	engine->mmio_base = VEBOX_RING_BASE;
3163 	engine->write_tail = ring_write_tail;
3164 	engine->flush = gen6_ring_flush;
3165 	engine->add_request = gen6_add_request;
3166 	engine->irq_seqno_barrier = gen6_seqno_barrier;
3167 	engine->get_seqno = ring_get_seqno;
3168 	engine->set_seqno = ring_set_seqno;
3169 
3170 	if (INTEL_INFO(dev)->gen >= 8) {
3171 		engine->irq_enable_mask =
3172 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3173 		engine->irq_get = gen8_ring_get_irq;
3174 		engine->irq_put = gen8_ring_put_irq;
3175 		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3176 		if (i915_semaphore_is_enabled(dev)) {
3177 			engine->semaphore.sync_to = gen8_ring_sync;
3178 			engine->semaphore.signal = gen8_xcs_signal;
3179 			GEN8_RING_SEMAPHORE_INIT(engine);
3180 		}
3181 	} else {
3182 		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3183 		engine->irq_get = hsw_vebox_get_irq;
3184 		engine->irq_put = hsw_vebox_put_irq;
3185 		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3186 		if (i915_semaphore_is_enabled(dev)) {
3187 			engine->semaphore.sync_to = gen6_ring_sync;
3188 			engine->semaphore.signal = gen6_signal;
3189 			engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3190 			engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3191 			engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3192 			engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3193 			engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3194 			engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3195 			engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3196 			engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3197 			engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3198 			engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3199 		}
3200 	}
3201 	engine->init_hw = init_ring_common;
3202 
3203 	return intel_init_ring_buffer(dev, engine);
3204 }
3205 
3206 int
3207 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3208 {
3209 	struct intel_engine_cs *engine = req->engine;
3210 	int ret;
3211 
3212 	if (!engine->gpu_caches_dirty)
3213 		return 0;
3214 
3215 	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3216 	if (ret)
3217 		return ret;
3218 
3219 	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3220 
3221 	engine->gpu_caches_dirty = false;
3222 	return 0;
3223 }
3224 
3225 int
3226 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3227 {
3228 	struct intel_engine_cs *engine = req->engine;
3229 	uint32_t flush_domains;
3230 	int ret;
3231 
3232 	flush_domains = 0;
3233 	if (engine->gpu_caches_dirty)
3234 		flush_domains = I915_GEM_GPU_DOMAINS;
3235 
3236 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3237 	if (ret)
3238 		return ret;
3239 
3240 	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3241 
3242 	engine->gpu_caches_dirty = false;
3243 	return 0;
3244 }
3245 
3246 void
3247 intel_stop_engine(struct intel_engine_cs *engine)
3248 {
3249 	int ret;
3250 
3251 	if (!intel_engine_initialized(engine))
3252 		return;
3253 
3254 	ret = intel_engine_idle(engine);
3255 	if (ret)
3256 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3257 			  engine->name, ret);
3258 
3259 	stop_ring(engine);
3260 }
3261