xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 38b5d46c)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 	int space = head - tail;
40 	if (space <= 0)
41 		space += size;
42 	return space - I915_RING_FREE_SPACE;
43 }
44 
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 	if (ringbuf->last_retired_head != -1) {
48 		ringbuf->head = ringbuf->last_retired_head;
49 		ringbuf->last_retired_head = -1;
50 	}
51 
52 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 					    ringbuf->tail, ringbuf->size);
54 }
55 
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 	intel_ring_update_space(ringbuf);
59 	return ringbuf->space;
60 }
61 
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
63 {
64 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
65 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66 }
67 
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
69 {
70 	struct intel_ringbuffer *ringbuf = ring->buffer;
71 	ringbuf->tail &= ringbuf->size - 1;
72 	if (intel_ring_stopped(ring))
73 		return;
74 	ring->write_tail(ring, ringbuf->tail);
75 }
76 
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 		       u32	invalidate_domains,
80 		       u32	flush_domains)
81 {
82 	struct intel_engine_cs *ring = req->ring;
83 	u32 cmd;
84 	int ret;
85 
86 	cmd = MI_FLUSH;
87 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 		cmd |= MI_NO_WRITE_FLUSH;
89 
90 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 		cmd |= MI_READ_FLUSH;
92 
93 	ret = intel_ring_begin(req, 2);
94 	if (ret)
95 		return ret;
96 
97 	intel_ring_emit(ring, cmd);
98 	intel_ring_emit(ring, MI_NOOP);
99 	intel_ring_advance(ring);
100 
101 	return 0;
102 }
103 
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 		       u32	invalidate_domains,
107 		       u32	flush_domains)
108 {
109 	struct intel_engine_cs *ring = req->ring;
110 	struct drm_device *dev = ring->dev;
111 	u32 cmd;
112 	int ret;
113 
114 	/*
115 	 * read/write caches:
116 	 *
117 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
119 	 * also flushed at 2d versus 3d pipeline switches.
120 	 *
121 	 * read-only caches:
122 	 *
123 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 	 * MI_READ_FLUSH is set, and is always flushed on 965.
125 	 *
126 	 * I915_GEM_DOMAIN_COMMAND may not exist?
127 	 *
128 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 	 * invalidated when MI_EXE_FLUSH is set.
130 	 *
131 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 	 * invalidated with every MI_FLUSH.
133 	 *
134 	 * TLBs:
135 	 *
136 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 	 * are flushed at any MI_FLUSH.
140 	 */
141 
142 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 		cmd &= ~MI_NO_WRITE_FLUSH;
145 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 		cmd |= MI_EXE_FLUSH;
147 
148 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 	    (IS_G4X(dev) || IS_GEN5(dev)))
150 		cmd |= MI_INVALIDATE_ISP;
151 
152 	ret = intel_ring_begin(req, 2);
153 	if (ret)
154 		return ret;
155 
156 	intel_ring_emit(ring, cmd);
157 	intel_ring_emit(ring, MI_NOOP);
158 	intel_ring_advance(ring);
159 
160 	return 0;
161 }
162 
163 /**
164  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165  * implementing two workarounds on gen6.  From section 1.4.7.1
166  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167  *
168  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169  * produced by non-pipelined state commands), software needs to first
170  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171  * 0.
172  *
173  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175  *
176  * And the workaround for these two requires this workaround first:
177  *
178  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179  * BEFORE the pipe-control with a post-sync op and no write-cache
180  * flushes.
181  *
182  * And this last workaround is tricky because of the requirements on
183  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184  * volume 2 part 1:
185  *
186  *     "1 of the following must also be set:
187  *      - Render Target Cache Flush Enable ([12] of DW1)
188  *      - Depth Cache Flush Enable ([0] of DW1)
189  *      - Stall at Pixel Scoreboard ([1] of DW1)
190  *      - Depth Stall ([13] of DW1)
191  *      - Post-Sync Operation ([13] of DW1)
192  *      - Notify Enable ([8] of DW1)"
193  *
194  * The cache flushes require the workaround flush that triggered this
195  * one, so we can't use it.  Depth stall would trigger the same.
196  * Post-sync nonzero is what triggered this second workaround, so we
197  * can't use that one either.  Notify enable is IRQs, which aren't
198  * really our business.  That leaves only stall at scoreboard.
199  */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 	struct intel_engine_cs *ring = req->ring;
204 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 	int ret;
206 
207 	ret = intel_ring_begin(req, 6);
208 	if (ret)
209 		return ret;
210 
211 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 	intel_ring_emit(ring, 0); /* low dword */
216 	intel_ring_emit(ring, 0); /* high dword */
217 	intel_ring_emit(ring, MI_NOOP);
218 	intel_ring_advance(ring);
219 
220 	ret = intel_ring_begin(req, 6);
221 	if (ret)
222 		return ret;
223 
224 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 	intel_ring_emit(ring, 0);
228 	intel_ring_emit(ring, 0);
229 	intel_ring_emit(ring, MI_NOOP);
230 	intel_ring_advance(ring);
231 
232 	return 0;
233 }
234 
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 		       u32 invalidate_domains, u32 flush_domains)
238 {
239 	struct intel_engine_cs *ring = req->ring;
240 	u32 flags = 0;
241 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 	int ret;
243 
244 	/* Force SNB workarounds for PIPE_CONTROL flushes */
245 	ret = intel_emit_post_sync_nonzero_flush(req);
246 	if (ret)
247 		return ret;
248 
249 	/* Just flush everything.  Experiments have shown that reducing the
250 	 * number of bits based on the write domains has little performance
251 	 * impact.
252 	 */
253 	if (flush_domains) {
254 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 		/*
257 		 * Ensure that any following seqno writes only happen
258 		 * when the render cache is indeed flushed.
259 		 */
260 		flags |= PIPE_CONTROL_CS_STALL;
261 	}
262 	if (invalidate_domains) {
263 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 		/*
270 		 * TLB invalidate requires a post-sync write.
271 		 */
272 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 	}
274 
275 	ret = intel_ring_begin(req, 4);
276 	if (ret)
277 		return ret;
278 
279 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280 	intel_ring_emit(ring, flags);
281 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 	intel_ring_emit(ring, 0);
283 	intel_ring_advance(ring);
284 
285 	return 0;
286 }
287 
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 	struct intel_engine_cs *ring = req->ring;
292 	int ret;
293 
294 	ret = intel_ring_begin(req, 4);
295 	if (ret)
296 		return ret;
297 
298 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 	intel_ring_emit(ring, 0);
302 	intel_ring_emit(ring, 0);
303 	intel_ring_advance(ring);
304 
305 	return 0;
306 }
307 
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 		       u32 invalidate_domains, u32 flush_domains)
311 {
312 	struct intel_engine_cs *ring = req->ring;
313 	u32 flags = 0;
314 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 	int ret;
316 
317 	/*
318 	 * Ensure that any following seqno writes only happen when the render
319 	 * cache is indeed flushed.
320 	 *
321 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 	 * don't try to be clever and just set it unconditionally.
324 	 */
325 	flags |= PIPE_CONTROL_CS_STALL;
326 
327 	/* Just flush everything.  Experiments have shown that reducing the
328 	 * number of bits based on the write domains has little performance
329 	 * impact.
330 	 */
331 	if (flush_domains) {
332 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 	}
337 	if (invalidate_domains) {
338 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 		/*
346 		 * TLB invalidate requires a post-sync write.
347 		 */
348 		flags |= PIPE_CONTROL_QW_WRITE;
349 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350 
351 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352 
353 		/* Workaround: we must issue a pipe_control with CS-stall bit
354 		 * set before a pipe_control command that has the state cache
355 		 * invalidate bit set. */
356 		gen7_render_ring_cs_stall_wa(req);
357 	}
358 
359 	ret = intel_ring_begin(req, 4);
360 	if (ret)
361 		return ret;
362 
363 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364 	intel_ring_emit(ring, flags);
365 	intel_ring_emit(ring, scratch_addr);
366 	intel_ring_emit(ring, 0);
367 	intel_ring_advance(ring);
368 
369 	return 0;
370 }
371 
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 		       u32 flags, u32 scratch_addr)
375 {
376 	struct intel_engine_cs *ring = req->ring;
377 	int ret;
378 
379 	ret = intel_ring_begin(req, 6);
380 	if (ret)
381 		return ret;
382 
383 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384 	intel_ring_emit(ring, flags);
385 	intel_ring_emit(ring, scratch_addr);
386 	intel_ring_emit(ring, 0);
387 	intel_ring_emit(ring, 0);
388 	intel_ring_emit(ring, 0);
389 	intel_ring_advance(ring);
390 
391 	return 0;
392 }
393 
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 		       u32 invalidate_domains, u32 flush_domains)
397 {
398 	u32 flags = 0;
399 	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 	int ret;
401 
402 	flags |= PIPE_CONTROL_CS_STALL;
403 
404 	if (flush_domains) {
405 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 	}
410 	if (invalidate_domains) {
411 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 		flags |= PIPE_CONTROL_QW_WRITE;
418 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419 
420 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 		ret = gen8_emit_pipe_control(req,
422 					     PIPE_CONTROL_CS_STALL |
423 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 					     0);
425 		if (ret)
426 			return ret;
427 	}
428 
429 	return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431 
432 static void ring_write_tail(struct intel_engine_cs *ring,
433 			    u32 value)
434 {
435 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
436 	I915_WRITE_TAIL(ring, value);
437 }
438 
439 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440 {
441 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 	u64 acthd;
443 
444 	if (INTEL_INFO(ring->dev)->gen >= 8)
445 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446 					 RING_ACTHD_UDW(ring->mmio_base));
447 	else if (INTEL_INFO(ring->dev)->gen >= 4)
448 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449 	else
450 		acthd = I915_READ(ACTHD);
451 
452 	return acthd;
453 }
454 
455 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456 {
457 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 	u32 addr;
459 
460 	addr = dev_priv->status_page_dmah->busaddr;
461 	if (INTEL_INFO(ring->dev)->gen >= 4)
462 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 	I915_WRITE(HWS_PGA, addr);
464 }
465 
466 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467 {
468 	struct drm_device *dev = ring->dev;
469 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 	i915_reg_t mmio;
471 
472 	/* The ring status page addresses are no longer next to the rest of
473 	 * the ring registers as of gen7.
474 	 */
475 	if (IS_GEN7(dev)) {
476 		switch (ring->id) {
477 		case RCS:
478 			mmio = RENDER_HWS_PGA_GEN7;
479 			break;
480 		case BCS:
481 			mmio = BLT_HWS_PGA_GEN7;
482 			break;
483 		/*
484 		 * VCS2 actually doesn't exist on Gen7. Only shut up
485 		 * gcc switch check warning
486 		 */
487 		case VCS2:
488 		case VCS:
489 			mmio = BSD_HWS_PGA_GEN7;
490 			break;
491 		case VECS:
492 			mmio = VEBOX_HWS_PGA_GEN7;
493 			break;
494 		}
495 	} else if (IS_GEN6(ring->dev)) {
496 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497 	} else {
498 		/* XXX: gen8 returns to sanity */
499 		mmio = RING_HWS_PGA(ring->mmio_base);
500 	}
501 
502 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503 	POSTING_READ(mmio);
504 
505 	/*
506 	 * Flush the TLB for this page
507 	 *
508 	 * FIXME: These two bits have disappeared on gen8, so a question
509 	 * arises: do we still need this and if so how should we go about
510 	 * invalidating the TLB?
511 	 */
512 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 		i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514 
515 		/* ring should be idle before issuing a sync flush*/
516 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517 
518 		I915_WRITE(reg,
519 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 					      INSTPM_SYNC_FLUSH));
521 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 			     1000))
523 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 				  ring->name);
525 	}
526 }
527 
528 static bool stop_ring(struct intel_engine_cs *ring)
529 {
530 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
531 
532 	if (!IS_GEN2(ring->dev)) {
533 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536 			/* Sometimes we observe that the idle flag is not
537 			 * set even though the ring is empty. So double
538 			 * check before giving up.
539 			 */
540 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541 				return false;
542 		}
543 	}
544 
545 	I915_WRITE_CTL(ring, 0);
546 	I915_WRITE_HEAD(ring, 0);
547 	ring->write_tail(ring, 0);
548 
549 	if (!IS_GEN2(ring->dev)) {
550 		(void)I915_READ_CTL(ring);
551 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552 	}
553 
554 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555 }
556 
557 static int init_ring_common(struct intel_engine_cs *ring)
558 {
559 	struct drm_device *dev = ring->dev;
560 	struct drm_i915_private *dev_priv = dev->dev_private;
561 	struct intel_ringbuffer *ringbuf = ring->buffer;
562 	struct drm_i915_gem_object *obj = ringbuf->obj;
563 	int ret = 0;
564 
565 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566 
567 	if (!stop_ring(ring)) {
568 		/* G45 ring initialization often fails to reset head to zero */
569 		DRM_DEBUG_KMS("%s head not reset to zero "
570 			      "ctl %08x head %08x tail %08x start %08x\n",
571 			      ring->name,
572 			      I915_READ_CTL(ring),
573 			      I915_READ_HEAD(ring),
574 			      I915_READ_TAIL(ring),
575 			      I915_READ_START(ring));
576 
577 		if (!stop_ring(ring)) {
578 			DRM_ERROR("failed to set %s head to zero "
579 				  "ctl %08x head %08x tail %08x start %08x\n",
580 				  ring->name,
581 				  I915_READ_CTL(ring),
582 				  I915_READ_HEAD(ring),
583 				  I915_READ_TAIL(ring),
584 				  I915_READ_START(ring));
585 			ret = -EIO;
586 			goto out;
587 		}
588 	}
589 
590 	if (I915_NEED_GFX_HWS(dev))
591 		intel_ring_setup_status_page(ring);
592 	else
593 		ring_setup_phys_status_page(ring);
594 
595 	/* Enforce ordering by reading HEAD register back */
596 	I915_READ_HEAD(ring);
597 
598 	/* Initialize the ring. This must happen _after_ we've cleared the ring
599 	 * registers with the above sequence (the readback of the HEAD registers
600 	 * also enforces ordering), otherwise the hw might lose the new ring
601 	 * register values. */
602 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603 
604 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
605 	if (I915_READ_HEAD(ring))
606 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 			  ring->name, I915_READ_HEAD(ring));
608 	I915_WRITE_HEAD(ring, 0);
609 	(void)I915_READ_HEAD(ring);
610 
611 	I915_WRITE_CTL(ring,
612 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 			| RING_VALID);
614 
615 	/* If the head is still not zero, the ring is dead */
616 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619 		DRM_ERROR("%s initialization failed "
620 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 			  ring->name,
622 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625 		ret = -EIO;
626 		goto out;
627 	}
628 
629 	ringbuf->last_retired_head = -1;
630 	ringbuf->head = I915_READ_HEAD(ring);
631 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632 	intel_ring_update_space(ringbuf);
633 
634 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635 
636 out:
637 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638 
639 	return ret;
640 }
641 
642 void
643 intel_fini_pipe_control(struct intel_engine_cs *ring)
644 {
645 	struct drm_device *dev = ring->dev;
646 
647 	if (ring->scratch.obj == NULL)
648 		return;
649 
650 	if (INTEL_INFO(dev)->gen >= 5) {
651 		kunmap(sg_page(ring->scratch.obj->pages->sgl));
652 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
653 	}
654 
655 	drm_gem_object_unreference(&ring->scratch.obj->base);
656 	ring->scratch.obj = NULL;
657 }
658 
659 int
660 intel_init_pipe_control(struct intel_engine_cs *ring)
661 {
662 	int ret;
663 
664 	WARN_ON(ring->scratch.obj);
665 
666 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667 	if (ring->scratch.obj == NULL) {
668 		DRM_ERROR("Failed to allocate seqno page\n");
669 		ret = -ENOMEM;
670 		goto err;
671 	}
672 
673 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674 	if (ret)
675 		goto err_unref;
676 
677 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678 	if (ret)
679 		goto err_unref;
680 
681 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682 	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683 	if (ring->scratch.cpu_page == NULL) {
684 		ret = -ENOMEM;
685 		goto err_unpin;
686 	}
687 
688 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689 			 ring->name, ring->scratch.gtt_offset);
690 	return 0;
691 
692 err_unpin:
693 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
694 err_unref:
695 	drm_gem_object_unreference(&ring->scratch.obj->base);
696 err:
697 	return ret;
698 }
699 
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701 {
702 	int ret, i;
703 	struct intel_engine_cs *ring = req->ring;
704 	struct drm_device *dev = ring->dev;
705 	struct drm_i915_private *dev_priv = dev->dev_private;
706 	struct i915_workarounds *w = &dev_priv->workarounds;
707 
708 	if (w->count == 0)
709 		return 0;
710 
711 	ring->gpu_caches_dirty = true;
712 	ret = intel_ring_flush_all_caches(req);
713 	if (ret)
714 		return ret;
715 
716 	ret = intel_ring_begin(req, (w->count * 2 + 2));
717 	if (ret)
718 		return ret;
719 
720 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721 	for (i = 0; i < w->count; i++) {
722 		intel_ring_emit_reg(ring, w->reg[i].addr);
723 		intel_ring_emit(ring, w->reg[i].value);
724 	}
725 	intel_ring_emit(ring, MI_NOOP);
726 
727 	intel_ring_advance(ring);
728 
729 	ring->gpu_caches_dirty = true;
730 	ret = intel_ring_flush_all_caches(req);
731 	if (ret)
732 		return ret;
733 
734 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735 
736 	return 0;
737 }
738 
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740 {
741 	int ret;
742 
743 	ret = intel_ring_workarounds_emit(req);
744 	if (ret != 0)
745 		return ret;
746 
747 	ret = i915_gem_render_state_init(req);
748 	if (ret)
749 		DRM_ERROR("init render state: %d\n", ret);
750 
751 	return ret;
752 }
753 
754 static int wa_add(struct drm_i915_private *dev_priv,
755 		  i915_reg_t addr,
756 		  const u32 mask, const u32 val)
757 {
758 	const u32 idx = dev_priv->workarounds.count;
759 
760 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
761 		return -ENOSPC;
762 
763 	dev_priv->workarounds.reg[idx].addr = addr;
764 	dev_priv->workarounds.reg[idx].value = val;
765 	dev_priv->workarounds.reg[idx].mask = mask;
766 
767 	dev_priv->workarounds.count++;
768 
769 	return 0;
770 }
771 
772 #define WA_REG(addr, mask, val) do { \
773 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774 		if (r) \
775 			return r; \
776 	} while (0)
777 
778 #define WA_SET_BIT_MASKED(addr, mask) \
779 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780 
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783 
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786 
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789 
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791 
792 static int gen8_init_workarounds(struct intel_engine_cs *ring)
793 {
794 	struct drm_device *dev = ring->dev;
795 	struct drm_i915_private *dev_priv = dev->dev_private;
796 
797 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
798 
799 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
800 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
801 
802 	/* WaDisablePartialInstShootdown:bdw,chv */
803 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
804 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
805 
806 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
807 	 * workaround for for a possible hang in the unlikely event a TLB
808 	 * invalidation occurs during a PSD flush.
809 	 */
810 	/* WaForceEnableNonCoherent:bdw,chv */
811 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
812 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
813 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
814 			  HDC_FORCE_NON_COHERENT);
815 
816 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
817 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
818 	 *  polygons in the same 8x4 pixel/sample area to be processed without
819 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
820 	 *  buffer."
821 	 *
822 	 * This optimization is off by default for BDW and CHV; turn it on.
823 	 */
824 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
825 
826 	/* Wa4x4STCOptimizationDisable:bdw,chv */
827 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
828 
829 	/*
830 	 * BSpec recommends 8x4 when MSAA is used,
831 	 * however in practice 16x4 seems fastest.
832 	 *
833 	 * Note that PS/WM thread counts depend on the WIZ hashing
834 	 * disable bit, which we don't touch here, but it's good
835 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
836 	 */
837 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
838 			    GEN6_WIZ_HASHING_MASK,
839 			    GEN6_WIZ_HASHING_16x4);
840 
841 	return 0;
842 }
843 
844 static int bdw_init_workarounds(struct intel_engine_cs *ring)
845 {
846 	int ret;
847 	struct drm_device *dev = ring->dev;
848 	struct drm_i915_private *dev_priv = dev->dev_private;
849 
850 	ret = gen8_init_workarounds(ring);
851 	if (ret)
852 		return ret;
853 
854 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
855 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
856 
857 	/* WaDisableDopClockGating:bdw */
858 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
859 			  DOP_CLOCK_GATING_DISABLE);
860 
861 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
862 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
863 
864 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
865 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
866 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
867 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
868 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
869 
870 	return 0;
871 }
872 
873 static int chv_init_workarounds(struct intel_engine_cs *ring)
874 {
875 	int ret;
876 	struct drm_device *dev = ring->dev;
877 	struct drm_i915_private *dev_priv = dev->dev_private;
878 
879 	ret = gen8_init_workarounds(ring);
880 	if (ret)
881 		return ret;
882 
883 	/* WaDisableThreadStallDopClockGating:chv */
884 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
885 
886 	/* Improve HiZ throughput on CHV. */
887 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
888 
889 	return 0;
890 }
891 
892 static int gen9_init_workarounds(struct intel_engine_cs *ring)
893 {
894 	struct drm_device *dev = ring->dev;
895 	struct drm_i915_private *dev_priv = dev->dev_private;
896 	uint32_t tmp;
897 
898 	/* WaEnableLbsSlaRetryTimerDecrement:skl */
899 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
900 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
901 
902 	/* WaDisableKillLogic:bxt,skl */
903 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
904 		   ECOCHK_DIS_TLB);
905 
906 	/* WaDisablePartialInstShootdown:skl,bxt */
907 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
909 
910 	/* Syncing dependencies between camera and graphics:skl,bxt */
911 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
912 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
913 
914 	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
915 	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
916 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
917 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
918 				  GEN9_DG_MIRROR_FIX_ENABLE);
919 
920 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
921 	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
922 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
923 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
924 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
925 		/*
926 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
927 		 * but we do that in per ctx batchbuffer as there is an issue
928 		 * with this register not getting restored on ctx restore
929 		 */
930 	}
931 
932 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
933 	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
934 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
935 				  GEN9_ENABLE_YV12_BUGFIX);
936 
937 	/* Wa4x4STCOptimizationDisable:skl,bxt */
938 	/* WaDisablePartialResolveInVc:skl,bxt */
939 	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
940 					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
941 
942 	/* WaCcsTlbPrefetchDisable:skl,bxt */
943 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
944 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
945 
946 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
947 	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
948 	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
949 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
950 				  PIXEL_MASK_CAMMING_DISABLE);
951 
952 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
953 	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
954 	if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
955 	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
956 		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
957 	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
958 
959 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
960 	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
961 		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
962 				  GEN8_SAMPLER_POWER_BYPASS_DIS);
963 
964 	/* WaDisableSTUnitPowerOptimization:skl,bxt */
965 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
966 
967 	return 0;
968 }
969 
970 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
971 {
972 	struct drm_device *dev = ring->dev;
973 	struct drm_i915_private *dev_priv = dev->dev_private;
974 	u8 vals[3] = { 0, 0, 0 };
975 	unsigned int i;
976 
977 	for (i = 0; i < 3; i++) {
978 		u8 ss;
979 
980 		/*
981 		 * Only consider slices where one, and only one, subslice has 7
982 		 * EUs
983 		 */
984 		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
985 			continue;
986 
987 		/*
988 		 * subslice_7eu[i] != 0 (because of the check above) and
989 		 * ss_max == 4 (maximum number of subslices possible per slice)
990 		 *
991 		 * ->    0 <= ss <= 3;
992 		 */
993 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
994 		vals[i] = 3 - ss;
995 	}
996 
997 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
998 		return 0;
999 
1000 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1001 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1002 			    GEN9_IZ_HASHING_MASK(2) |
1003 			    GEN9_IZ_HASHING_MASK(1) |
1004 			    GEN9_IZ_HASHING_MASK(0),
1005 			    GEN9_IZ_HASHING(2, vals[2]) |
1006 			    GEN9_IZ_HASHING(1, vals[1]) |
1007 			    GEN9_IZ_HASHING(0, vals[0]));
1008 
1009 	return 0;
1010 }
1011 
1012 static int skl_init_workarounds(struct intel_engine_cs *ring)
1013 {
1014 	int ret;
1015 	struct drm_device *dev = ring->dev;
1016 	struct drm_i915_private *dev_priv = dev->dev_private;
1017 
1018 	ret = gen9_init_workarounds(ring);
1019 	if (ret)
1020 		return ret;
1021 
1022 	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1023 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1024 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1025 			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1026 	}
1027 
1028 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1029 	 * involving this register should also be added to WA batch as required.
1030 	 */
1031 	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1032 		/* WaDisableLSQCROPERFforOCL:skl */
1033 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1034 			   GEN8_LQSC_RO_PERF_DIS);
1035 
1036 	/* WaEnableGapsTsvCreditFix:skl */
1037 	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1038 		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1039 					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1040 	}
1041 
1042 	/* WaDisablePowerCompilerClockGating:skl */
1043 	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1044 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1045 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1046 
1047 	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1048 		/*
1049 		 *Use Force Non-Coherent whenever executing a 3D context. This
1050 		 * is a workaround for a possible hang in the unlikely event
1051 		 * a TLB invalidation occurs during a PSD flush.
1052 		 */
1053 		/* WaForceEnableNonCoherent:skl */
1054 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1055 				  HDC_FORCE_NON_COHERENT);
1056 
1057 		/* WaDisableHDCInvalidation:skl */
1058 		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1059 			   BDW_DISABLE_HDC_INVALIDATION);
1060 	}
1061 
1062 	/* WaBarrierPerformanceFixDisable:skl */
1063 	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1064 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1065 				  HDC_FENCE_DEST_SLM_DISABLE |
1066 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1067 
1068 	/* WaDisableSbeCacheDispatchPortSharing:skl */
1069 	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1070 		WA_SET_BIT_MASKED(
1071 			GEN7_HALF_SLICE_CHICKEN1,
1072 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1073 
1074 	return skl_tune_iz_hashing(ring);
1075 }
1076 
1077 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1078 {
1079 	int ret;
1080 	struct drm_device *dev = ring->dev;
1081 	struct drm_i915_private *dev_priv = dev->dev_private;
1082 
1083 	ret = gen9_init_workarounds(ring);
1084 	if (ret)
1085 		return ret;
1086 
1087 	/* WaStoreMultiplePTEenable:bxt */
1088 	/* This is a requirement according to Hardware specification */
1089 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1090 		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1091 
1092 	/* WaSetClckGatingDisableMedia:bxt */
1093 	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1094 		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1095 					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1096 	}
1097 
1098 	/* WaDisableThreadStallDopClockGating:bxt */
1099 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1100 			  STALL_DOP_GATING_DISABLE);
1101 
1102 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1103 	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1104 		WA_SET_BIT_MASKED(
1105 			GEN7_HALF_SLICE_CHICKEN1,
1106 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 int init_workarounds_ring(struct intel_engine_cs *ring)
1113 {
1114 	struct drm_device *dev = ring->dev;
1115 	struct drm_i915_private *dev_priv = dev->dev_private;
1116 
1117 	WARN_ON(ring->id != RCS);
1118 
1119 	dev_priv->workarounds.count = 0;
1120 
1121 	if (IS_BROADWELL(dev))
1122 		return bdw_init_workarounds(ring);
1123 
1124 	if (IS_CHERRYVIEW(dev))
1125 		return chv_init_workarounds(ring);
1126 
1127 	if (IS_SKYLAKE(dev))
1128 		return skl_init_workarounds(ring);
1129 
1130 	if (IS_BROXTON(dev))
1131 		return bxt_init_workarounds(ring);
1132 
1133 	return 0;
1134 }
1135 
1136 static int init_render_ring(struct intel_engine_cs *ring)
1137 {
1138 	struct drm_device *dev = ring->dev;
1139 	struct drm_i915_private *dev_priv = dev->dev_private;
1140 	int ret = init_ring_common(ring);
1141 	if (ret)
1142 		return ret;
1143 
1144 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1145 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1146 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1147 
1148 	/* We need to disable the AsyncFlip performance optimisations in order
1149 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1150 	 * programmed to '1' on all products.
1151 	 *
1152 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1153 	 */
1154 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1155 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1156 
1157 	/* Required for the hardware to program scanline values for waiting */
1158 	/* WaEnableFlushTlbInvalidationMode:snb */
1159 	if (INTEL_INFO(dev)->gen == 6)
1160 		I915_WRITE(GFX_MODE,
1161 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1162 
1163 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1164 	if (IS_GEN7(dev))
1165 		I915_WRITE(GFX_MODE_GEN7,
1166 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1167 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1168 
1169 	if (IS_GEN6(dev)) {
1170 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1171 		 * "If this bit is set, STCunit will have LRA as replacement
1172 		 *  policy. [...] This bit must be reset.  LRA replacement
1173 		 *  policy is not supported."
1174 		 */
1175 		I915_WRITE(CACHE_MODE_0,
1176 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1177 	}
1178 
1179 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1180 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1181 
1182 	if (HAS_L3_DPF(dev))
1183 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1184 
1185 	return init_workarounds_ring(ring);
1186 }
1187 
1188 static void render_ring_cleanup(struct intel_engine_cs *ring)
1189 {
1190 	struct drm_device *dev = ring->dev;
1191 	struct drm_i915_private *dev_priv = dev->dev_private;
1192 
1193 	if (dev_priv->semaphore_obj) {
1194 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1195 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1196 		dev_priv->semaphore_obj = NULL;
1197 	}
1198 
1199 	intel_fini_pipe_control(ring);
1200 }
1201 
1202 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1203 			   unsigned int num_dwords)
1204 {
1205 #define MBOX_UPDATE_DWORDS 8
1206 	struct intel_engine_cs *signaller = signaller_req->ring;
1207 	struct drm_device *dev = signaller->dev;
1208 	struct drm_i915_private *dev_priv = dev->dev_private;
1209 	struct intel_engine_cs *waiter;
1210 	int i, ret, num_rings;
1211 
1212 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1213 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1214 #undef MBOX_UPDATE_DWORDS
1215 
1216 	ret = intel_ring_begin(signaller_req, num_dwords);
1217 	if (ret)
1218 		return ret;
1219 
1220 	for_each_ring(waiter, dev_priv, i) {
1221 		u32 seqno;
1222 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1223 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1224 			continue;
1225 
1226 		seqno = i915_gem_request_get_seqno(signaller_req);
1227 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1228 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1229 					   PIPE_CONTROL_QW_WRITE |
1230 					   PIPE_CONTROL_FLUSH_ENABLE);
1231 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1232 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1233 		intel_ring_emit(signaller, seqno);
1234 		intel_ring_emit(signaller, 0);
1235 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1236 					   MI_SEMAPHORE_TARGET(waiter->id));
1237 		intel_ring_emit(signaller, 0);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1244 			   unsigned int num_dwords)
1245 {
1246 #define MBOX_UPDATE_DWORDS 6
1247 	struct intel_engine_cs *signaller = signaller_req->ring;
1248 	struct drm_device *dev = signaller->dev;
1249 	struct drm_i915_private *dev_priv = dev->dev_private;
1250 	struct intel_engine_cs *waiter;
1251 	int i, ret, num_rings;
1252 
1253 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1254 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1255 #undef MBOX_UPDATE_DWORDS
1256 
1257 	ret = intel_ring_begin(signaller_req, num_dwords);
1258 	if (ret)
1259 		return ret;
1260 
1261 	for_each_ring(waiter, dev_priv, i) {
1262 		u32 seqno;
1263 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1264 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1265 			continue;
1266 
1267 		seqno = i915_gem_request_get_seqno(signaller_req);
1268 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1269 					   MI_FLUSH_DW_OP_STOREDW);
1270 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1271 					   MI_FLUSH_DW_USE_GTT);
1272 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1273 		intel_ring_emit(signaller, seqno);
1274 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1275 					   MI_SEMAPHORE_TARGET(waiter->id));
1276 		intel_ring_emit(signaller, 0);
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1283 		       unsigned int num_dwords)
1284 {
1285 	struct intel_engine_cs *signaller = signaller_req->ring;
1286 	struct drm_device *dev = signaller->dev;
1287 	struct drm_i915_private *dev_priv = dev->dev_private;
1288 	struct intel_engine_cs *useless;
1289 	int i, ret, num_rings;
1290 
1291 #define MBOX_UPDATE_DWORDS 3
1292 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1293 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1294 #undef MBOX_UPDATE_DWORDS
1295 
1296 	ret = intel_ring_begin(signaller_req, num_dwords);
1297 	if (ret)
1298 		return ret;
1299 
1300 	for_each_ring(useless, dev_priv, i) {
1301 		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1302 
1303 		if (i915_mmio_reg_valid(mbox_reg)) {
1304 			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1305 
1306 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1307 			intel_ring_emit_reg(signaller, mbox_reg);
1308 			intel_ring_emit(signaller, seqno);
1309 		}
1310 	}
1311 
1312 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1313 	if (num_rings % 2 == 0)
1314 		intel_ring_emit(signaller, MI_NOOP);
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * gen6_add_request - Update the semaphore mailbox registers
1321  *
1322  * @request - request to write to the ring
1323  *
1324  * Update the mailbox registers in the *other* rings with the current seqno.
1325  * This acts like a signal in the canonical semaphore.
1326  */
1327 static int
1328 gen6_add_request(struct drm_i915_gem_request *req)
1329 {
1330 	struct intel_engine_cs *ring = req->ring;
1331 	int ret;
1332 
1333 	if (ring->semaphore.signal)
1334 		ret = ring->semaphore.signal(req, 4);
1335 	else
1336 		ret = intel_ring_begin(req, 4);
1337 
1338 	if (ret)
1339 		return ret;
1340 
1341 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1342 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1343 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1344 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1345 	__intel_ring_advance(ring);
1346 
1347 	return 0;
1348 }
1349 
1350 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1351 					      u32 seqno)
1352 {
1353 	struct drm_i915_private *dev_priv = dev->dev_private;
1354 	return dev_priv->last_seqno < seqno;
1355 }
1356 
1357 /**
1358  * intel_ring_sync - sync the waiter to the signaller on seqno
1359  *
1360  * @waiter - ring that is waiting
1361  * @signaller - ring which has, or will signal
1362  * @seqno - seqno which the waiter will block on
1363  */
1364 
1365 static int
1366 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1367 	       struct intel_engine_cs *signaller,
1368 	       u32 seqno)
1369 {
1370 	struct intel_engine_cs *waiter = waiter_req->ring;
1371 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1372 	int ret;
1373 
1374 	ret = intel_ring_begin(waiter_req, 4);
1375 	if (ret)
1376 		return ret;
1377 
1378 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1379 				MI_SEMAPHORE_GLOBAL_GTT |
1380 				MI_SEMAPHORE_POLL |
1381 				MI_SEMAPHORE_SAD_GTE_SDD);
1382 	intel_ring_emit(waiter, seqno);
1383 	intel_ring_emit(waiter,
1384 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1385 	intel_ring_emit(waiter,
1386 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1387 	intel_ring_advance(waiter);
1388 	return 0;
1389 }
1390 
1391 static int
1392 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1393 	       struct intel_engine_cs *signaller,
1394 	       u32 seqno)
1395 {
1396 	struct intel_engine_cs *waiter = waiter_req->ring;
1397 	u32 dw1 = MI_SEMAPHORE_MBOX |
1398 		  MI_SEMAPHORE_COMPARE |
1399 		  MI_SEMAPHORE_REGISTER;
1400 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1401 	int ret;
1402 
1403 	/* Throughout all of the GEM code, seqno passed implies our current
1404 	 * seqno is >= the last seqno executed. However for hardware the
1405 	 * comparison is strictly greater than.
1406 	 */
1407 	seqno -= 1;
1408 
1409 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1410 
1411 	ret = intel_ring_begin(waiter_req, 4);
1412 	if (ret)
1413 		return ret;
1414 
1415 	/* If seqno wrap happened, omit the wait with no-ops */
1416 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1417 		intel_ring_emit(waiter, dw1 | wait_mbox);
1418 		intel_ring_emit(waiter, seqno);
1419 		intel_ring_emit(waiter, 0);
1420 		intel_ring_emit(waiter, MI_NOOP);
1421 	} else {
1422 		intel_ring_emit(waiter, MI_NOOP);
1423 		intel_ring_emit(waiter, MI_NOOP);
1424 		intel_ring_emit(waiter, MI_NOOP);
1425 		intel_ring_emit(waiter, MI_NOOP);
1426 	}
1427 	intel_ring_advance(waiter);
1428 
1429 	return 0;
1430 }
1431 
1432 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1433 do {									\
1434 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1435 		 PIPE_CONTROL_DEPTH_STALL);				\
1436 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1437 	intel_ring_emit(ring__, 0);							\
1438 	intel_ring_emit(ring__, 0);							\
1439 } while (0)
1440 
1441 static int
1442 pc_render_add_request(struct drm_i915_gem_request *req)
1443 {
1444 	struct intel_engine_cs *ring = req->ring;
1445 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1446 	int ret;
1447 
1448 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1449 	 * incoherent with writes to memory, i.e. completely fubar,
1450 	 * so we need to use PIPE_NOTIFY instead.
1451 	 *
1452 	 * However, we also need to workaround the qword write
1453 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1454 	 * memory before requesting an interrupt.
1455 	 */
1456 	ret = intel_ring_begin(req, 32);
1457 	if (ret)
1458 		return ret;
1459 
1460 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1461 			PIPE_CONTROL_WRITE_FLUSH |
1462 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1463 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465 	intel_ring_emit(ring, 0);
1466 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1467 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1468 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1469 	scratch_addr += 2 * CACHELINE_BYTES;
1470 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1471 	scratch_addr += 2 * CACHELINE_BYTES;
1472 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1473 	scratch_addr += 2 * CACHELINE_BYTES;
1474 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1475 	scratch_addr += 2 * CACHELINE_BYTES;
1476 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1477 
1478 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1479 			PIPE_CONTROL_WRITE_FLUSH |
1480 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1481 			PIPE_CONTROL_NOTIFY);
1482 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1483 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1484 	intel_ring_emit(ring, 0);
1485 	__intel_ring_advance(ring);
1486 
1487 	return 0;
1488 }
1489 
1490 static u32
1491 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1492 {
1493 	/* Workaround to force correct ordering between irq and seqno writes on
1494 	 * ivb (and maybe also on snb) by reading from a CS register (like
1495 	 * ACTHD) before reading the status page. */
1496 	if (!lazy_coherency) {
1497 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1498 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1499 	}
1500 
1501 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1502 }
1503 
1504 static u32
1505 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1506 {
1507 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1508 }
1509 
1510 static void
1511 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1512 {
1513 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1514 }
1515 
1516 static u32
1517 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1518 {
1519 	return ring->scratch.cpu_page[0];
1520 }
1521 
1522 static void
1523 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1524 {
1525 	ring->scratch.cpu_page[0] = seqno;
1526 }
1527 
1528 static bool
1529 gen5_ring_get_irq(struct intel_engine_cs *ring)
1530 {
1531 	struct drm_device *dev = ring->dev;
1532 	struct drm_i915_private *dev_priv = dev->dev_private;
1533 	unsigned long flags;
1534 
1535 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1536 		return false;
1537 
1538 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1539 	if (ring->irq_refcount++ == 0)
1540 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1541 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1542 
1543 	return true;
1544 }
1545 
1546 static void
1547 gen5_ring_put_irq(struct intel_engine_cs *ring)
1548 {
1549 	struct drm_device *dev = ring->dev;
1550 	struct drm_i915_private *dev_priv = dev->dev_private;
1551 	unsigned long flags;
1552 
1553 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1554 	if (--ring->irq_refcount == 0)
1555 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1556 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1557 }
1558 
1559 static bool
1560 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1561 {
1562 	struct drm_device *dev = ring->dev;
1563 	struct drm_i915_private *dev_priv = dev->dev_private;
1564 	unsigned long flags;
1565 
1566 	if (!intel_irqs_enabled(dev_priv))
1567 		return false;
1568 
1569 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1570 	if (ring->irq_refcount++ == 0) {
1571 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1572 		I915_WRITE(IMR, dev_priv->irq_mask);
1573 		POSTING_READ(IMR);
1574 	}
1575 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1576 
1577 	return true;
1578 }
1579 
1580 static void
1581 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1582 {
1583 	struct drm_device *dev = ring->dev;
1584 	struct drm_i915_private *dev_priv = dev->dev_private;
1585 	unsigned long flags;
1586 
1587 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1588 	if (--ring->irq_refcount == 0) {
1589 		dev_priv->irq_mask |= ring->irq_enable_mask;
1590 		I915_WRITE(IMR, dev_priv->irq_mask);
1591 		POSTING_READ(IMR);
1592 	}
1593 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1594 }
1595 
1596 static bool
1597 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1598 {
1599 	struct drm_device *dev = ring->dev;
1600 	struct drm_i915_private *dev_priv = dev->dev_private;
1601 	unsigned long flags;
1602 
1603 	if (!intel_irqs_enabled(dev_priv))
1604 		return false;
1605 
1606 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1607 	if (ring->irq_refcount++ == 0) {
1608 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1609 		I915_WRITE16(IMR, dev_priv->irq_mask);
1610 		POSTING_READ16(IMR);
1611 	}
1612 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1613 
1614 	return true;
1615 }
1616 
1617 static void
1618 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1619 {
1620 	struct drm_device *dev = ring->dev;
1621 	struct drm_i915_private *dev_priv = dev->dev_private;
1622 	unsigned long flags;
1623 
1624 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1625 	if (--ring->irq_refcount == 0) {
1626 		dev_priv->irq_mask |= ring->irq_enable_mask;
1627 		I915_WRITE16(IMR, dev_priv->irq_mask);
1628 		POSTING_READ16(IMR);
1629 	}
1630 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1631 }
1632 
1633 static int
1634 bsd_ring_flush(struct drm_i915_gem_request *req,
1635 	       u32     invalidate_domains,
1636 	       u32     flush_domains)
1637 {
1638 	struct intel_engine_cs *ring = req->ring;
1639 	int ret;
1640 
1641 	ret = intel_ring_begin(req, 2);
1642 	if (ret)
1643 		return ret;
1644 
1645 	intel_ring_emit(ring, MI_FLUSH);
1646 	intel_ring_emit(ring, MI_NOOP);
1647 	intel_ring_advance(ring);
1648 	return 0;
1649 }
1650 
1651 static int
1652 i9xx_add_request(struct drm_i915_gem_request *req)
1653 {
1654 	struct intel_engine_cs *ring = req->ring;
1655 	int ret;
1656 
1657 	ret = intel_ring_begin(req, 4);
1658 	if (ret)
1659 		return ret;
1660 
1661 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1662 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1663 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1664 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1665 	__intel_ring_advance(ring);
1666 
1667 	return 0;
1668 }
1669 
1670 static bool
1671 gen6_ring_get_irq(struct intel_engine_cs *ring)
1672 {
1673 	struct drm_device *dev = ring->dev;
1674 	struct drm_i915_private *dev_priv = dev->dev_private;
1675 	unsigned long flags;
1676 
1677 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1678 		return false;
1679 
1680 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1681 	if (ring->irq_refcount++ == 0) {
1682 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1683 			I915_WRITE_IMR(ring,
1684 				       ~(ring->irq_enable_mask |
1685 					 GT_PARITY_ERROR(dev)));
1686 		else
1687 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1688 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1689 	}
1690 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1691 
1692 	return true;
1693 }
1694 
1695 static void
1696 gen6_ring_put_irq(struct intel_engine_cs *ring)
1697 {
1698 	struct drm_device *dev = ring->dev;
1699 	struct drm_i915_private *dev_priv = dev->dev_private;
1700 	unsigned long flags;
1701 
1702 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1703 	if (--ring->irq_refcount == 0) {
1704 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1705 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1706 		else
1707 			I915_WRITE_IMR(ring, ~0);
1708 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1709 	}
1710 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1711 }
1712 
1713 static bool
1714 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1715 {
1716 	struct drm_device *dev = ring->dev;
1717 	struct drm_i915_private *dev_priv = dev->dev_private;
1718 	unsigned long flags;
1719 
1720 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1721 		return false;
1722 
1723 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724 	if (ring->irq_refcount++ == 0) {
1725 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1726 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1727 	}
1728 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1729 
1730 	return true;
1731 }
1732 
1733 static void
1734 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1735 {
1736 	struct drm_device *dev = ring->dev;
1737 	struct drm_i915_private *dev_priv = dev->dev_private;
1738 	unsigned long flags;
1739 
1740 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1741 	if (--ring->irq_refcount == 0) {
1742 		I915_WRITE_IMR(ring, ~0);
1743 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1744 	}
1745 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1746 }
1747 
1748 static bool
1749 gen8_ring_get_irq(struct intel_engine_cs *ring)
1750 {
1751 	struct drm_device *dev = ring->dev;
1752 	struct drm_i915_private *dev_priv = dev->dev_private;
1753 	unsigned long flags;
1754 
1755 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1756 		return false;
1757 
1758 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1759 	if (ring->irq_refcount++ == 0) {
1760 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1761 			I915_WRITE_IMR(ring,
1762 				       ~(ring->irq_enable_mask |
1763 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1764 		} else {
1765 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1766 		}
1767 		POSTING_READ(RING_IMR(ring->mmio_base));
1768 	}
1769 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1770 
1771 	return true;
1772 }
1773 
1774 static void
1775 gen8_ring_put_irq(struct intel_engine_cs *ring)
1776 {
1777 	struct drm_device *dev = ring->dev;
1778 	struct drm_i915_private *dev_priv = dev->dev_private;
1779 	unsigned long flags;
1780 
1781 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1782 	if (--ring->irq_refcount == 0) {
1783 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1784 			I915_WRITE_IMR(ring,
1785 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1786 		} else {
1787 			I915_WRITE_IMR(ring, ~0);
1788 		}
1789 		POSTING_READ(RING_IMR(ring->mmio_base));
1790 	}
1791 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1792 }
1793 
1794 static int
1795 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1796 			 u64 offset, u32 length,
1797 			 unsigned dispatch_flags)
1798 {
1799 	struct intel_engine_cs *ring = req->ring;
1800 	int ret;
1801 
1802 	ret = intel_ring_begin(req, 2);
1803 	if (ret)
1804 		return ret;
1805 
1806 	intel_ring_emit(ring,
1807 			MI_BATCH_BUFFER_START |
1808 			MI_BATCH_GTT |
1809 			(dispatch_flags & I915_DISPATCH_SECURE ?
1810 			 0 : MI_BATCH_NON_SECURE_I965));
1811 	intel_ring_emit(ring, offset);
1812 	intel_ring_advance(ring);
1813 
1814 	return 0;
1815 }
1816 
1817 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1818 #define I830_BATCH_LIMIT (256*1024)
1819 #define I830_TLB_ENTRIES (2)
1820 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1821 static int
1822 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1823 			 u64 offset, u32 len,
1824 			 unsigned dispatch_flags)
1825 {
1826 	struct intel_engine_cs *ring = req->ring;
1827 	u32 cs_offset = ring->scratch.gtt_offset;
1828 	int ret;
1829 
1830 	ret = intel_ring_begin(req, 6);
1831 	if (ret)
1832 		return ret;
1833 
1834 	/* Evict the invalid PTE TLBs */
1835 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1836 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1837 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1838 	intel_ring_emit(ring, cs_offset);
1839 	intel_ring_emit(ring, 0xdeadbeef);
1840 	intel_ring_emit(ring, MI_NOOP);
1841 	intel_ring_advance(ring);
1842 
1843 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1844 		if (len > I830_BATCH_LIMIT)
1845 			return -ENOSPC;
1846 
1847 		ret = intel_ring_begin(req, 6 + 2);
1848 		if (ret)
1849 			return ret;
1850 
1851 		/* Blit the batch (which has now all relocs applied) to the
1852 		 * stable batch scratch bo area (so that the CS never
1853 		 * stumbles over its tlb invalidation bug) ...
1854 		 */
1855 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1856 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1857 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1858 		intel_ring_emit(ring, cs_offset);
1859 		intel_ring_emit(ring, 4096);
1860 		intel_ring_emit(ring, offset);
1861 
1862 		intel_ring_emit(ring, MI_FLUSH);
1863 		intel_ring_emit(ring, MI_NOOP);
1864 		intel_ring_advance(ring);
1865 
1866 		/* ... and execute it. */
1867 		offset = cs_offset;
1868 	}
1869 
1870 	ret = intel_ring_begin(req, 4);
1871 	if (ret)
1872 		return ret;
1873 
1874 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1875 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1876 					0 : MI_BATCH_NON_SECURE));
1877 	intel_ring_emit(ring, offset + len - 8);
1878 	intel_ring_emit(ring, MI_NOOP);
1879 	intel_ring_advance(ring);
1880 
1881 	return 0;
1882 }
1883 
1884 static int
1885 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1886 			 u64 offset, u32 len,
1887 			 unsigned dispatch_flags)
1888 {
1889 	struct intel_engine_cs *ring = req->ring;
1890 	int ret;
1891 
1892 	ret = intel_ring_begin(req, 2);
1893 	if (ret)
1894 		return ret;
1895 
1896 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1897 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1898 					0 : MI_BATCH_NON_SECURE));
1899 	intel_ring_advance(ring);
1900 
1901 	return 0;
1902 }
1903 
1904 static void cleanup_status_page(struct intel_engine_cs *ring)
1905 {
1906 	struct drm_i915_gem_object *obj;
1907 
1908 	obj = ring->status_page.obj;
1909 	if (obj == NULL)
1910 		return;
1911 
1912 	kunmap(sg_page(obj->pages->sgl));
1913 	i915_gem_object_ggtt_unpin(obj);
1914 	drm_gem_object_unreference(&obj->base);
1915 	ring->status_page.obj = NULL;
1916 }
1917 
1918 static int init_status_page(struct intel_engine_cs *ring)
1919 {
1920 	struct drm_i915_gem_object *obj;
1921 
1922 	if ((obj = ring->status_page.obj) == NULL) {
1923 		unsigned flags;
1924 		int ret;
1925 
1926 		obj = i915_gem_alloc_object(ring->dev, 4096);
1927 		if (obj == NULL) {
1928 			DRM_ERROR("Failed to allocate status page\n");
1929 			return -ENOMEM;
1930 		}
1931 
1932 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1933 		if (ret)
1934 			goto err_unref;
1935 
1936 		flags = 0;
1937 		if (!HAS_LLC(ring->dev))
1938 			/* On g33, we cannot place HWS above 256MiB, so
1939 			 * restrict its pinning to the low mappable arena.
1940 			 * Though this restriction is not documented for
1941 			 * gen4, gen5, or byt, they also behave similarly
1942 			 * and hang if the HWS is placed at the top of the
1943 			 * GTT. To generalise, it appears that all !llc
1944 			 * platforms have issues with us placing the HWS
1945 			 * above the mappable region (even though we never
1946 			 * actualy map it).
1947 			 */
1948 			flags |= PIN_MAPPABLE;
1949 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1950 		if (ret) {
1951 err_unref:
1952 			drm_gem_object_unreference(&obj->base);
1953 			return ret;
1954 		}
1955 
1956 		ring->status_page.obj = obj;
1957 	}
1958 
1959 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1960 	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1961 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1962 
1963 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1964 			ring->name, ring->status_page.gfx_addr);
1965 
1966 	return 0;
1967 }
1968 
1969 static int init_phys_status_page(struct intel_engine_cs *ring)
1970 {
1971 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1972 
1973 	if (!dev_priv->status_page_dmah) {
1974 		dev_priv->status_page_dmah =
1975 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1976 		if (!dev_priv->status_page_dmah)
1977 			return -ENOMEM;
1978 	}
1979 
1980 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1981 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1982 
1983 	return 0;
1984 }
1985 
1986 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1987 {
1988 	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1989 		vunmap(ringbuf->virtual_start, ringbuf->virtual_count);
1990 	else
1991 		iounmap(ringbuf->virtual_start);
1992 	ringbuf->virtual_start = NULL;
1993 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1994 }
1995 
1996 static u32 *vmap_obj(struct drm_i915_gem_object *obj, unsigned int *countp)
1997 {
1998 	struct sg_page_iter sg_iter;
1999 	struct vm_page **pages;
2000 	void *addr;
2001 	int i;
2002 
2003 	pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2004 	if (pages == NULL)
2005 		return NULL;
2006 
2007 	i = 0;
2008 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2009 		pages[i++] = sg_page_iter_page(&sg_iter);
2010 	*countp = i;
2011 
2012 	addr = vmap(pages, i, 0, PAGE_KERNEL);
2013 	drm_free_large(pages);
2014 
2015 	return addr;
2016 }
2017 
2018 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2019 				     struct intel_ringbuffer *ringbuf)
2020 {
2021 	struct drm_i915_private *dev_priv = to_i915(dev);
2022 	struct drm_i915_gem_object *obj = ringbuf->obj;
2023 	int ret;
2024 
2025 	if (HAS_LLC(dev_priv) && !obj->stolen) {
2026 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2027 		if (ret)
2028 			return ret;
2029 
2030 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2031 		if (ret) {
2032 			i915_gem_object_ggtt_unpin(obj);
2033 			return ret;
2034 		}
2035 
2036 		ringbuf->virtual_start = (char *)vmap_obj(obj,
2037 						    &ringbuf->virtual_count);
2038 		if (ringbuf->virtual_start == NULL) {
2039 			i915_gem_object_ggtt_unpin(obj);
2040 			return -ENOMEM;
2041 		}
2042 	} else {
2043 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2044 		if (ret)
2045 			return ret;
2046 
2047 		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2048 		if (ret) {
2049 			i915_gem_object_ggtt_unpin(obj);
2050 			return ret;
2051 		}
2052 
2053 		ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2054 						    i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2055 		if (ringbuf->virtual_start == NULL) {
2056 			i915_gem_object_ggtt_unpin(obj);
2057 			return -EINVAL;
2058 		}
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2065 {
2066 	drm_gem_object_unreference(&ringbuf->obj->base);
2067 	ringbuf->obj = NULL;
2068 }
2069 
2070 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2071 				      struct intel_ringbuffer *ringbuf)
2072 {
2073 	struct drm_i915_gem_object *obj;
2074 
2075 	obj = NULL;
2076 	if (!HAS_LLC(dev))
2077 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2078 	if (obj == NULL)
2079 		obj = i915_gem_alloc_object(dev, ringbuf->size);
2080 	if (obj == NULL)
2081 		return -ENOMEM;
2082 
2083 	/* mark ring buffers as read-only from GPU side by default */
2084 	obj->gt_ro = 1;
2085 
2086 	ringbuf->obj = obj;
2087 
2088 	return 0;
2089 }
2090 
2091 struct intel_ringbuffer *
2092 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2093 {
2094 	struct intel_ringbuffer *ring;
2095 	int ret;
2096 
2097 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2098 	if (ring == NULL) {
2099 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2100 				 engine->name);
2101 		return ERR_PTR(-ENOMEM);
2102 	}
2103 
2104 	ring->ring = engine;
2105 	list_add(&ring->link, &engine->buffers);
2106 
2107 	ring->size = size;
2108 	/* Workaround an erratum on the i830 which causes a hang if
2109 	 * the TAIL pointer points to within the last 2 cachelines
2110 	 * of the buffer.
2111 	 */
2112 	ring->effective_size = size;
2113 	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2114 		ring->effective_size -= 2 * CACHELINE_BYTES;
2115 
2116 	ring->last_retired_head = -1;
2117 	intel_ring_update_space(ring);
2118 
2119 	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2120 	if (ret) {
2121 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2122 				 engine->name, ret);
2123 		list_del(&ring->link);
2124 		kfree(ring);
2125 		return ERR_PTR(ret);
2126 	}
2127 
2128 	return ring;
2129 }
2130 
2131 void
2132 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2133 {
2134 	intel_destroy_ringbuffer_obj(ring);
2135 	list_del(&ring->link);
2136 	kfree(ring);
2137 }
2138 
2139 static int intel_init_ring_buffer(struct drm_device *dev,
2140 				  struct intel_engine_cs *ring)
2141 {
2142 	struct intel_ringbuffer *ringbuf;
2143 	int ret;
2144 
2145 	WARN_ON(ring->buffer);
2146 
2147 	ring->dev = dev;
2148 	INIT_LIST_HEAD(&ring->active_list);
2149 	INIT_LIST_HEAD(&ring->request_list);
2150 	INIT_LIST_HEAD(&ring->execlist_queue);
2151 	INIT_LIST_HEAD(&ring->buffers);
2152 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2153 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2154 
2155 	init_waitqueue_head(&ring->irq_queue);
2156 
2157 	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2158 	if (IS_ERR(ringbuf)) {
2159 		ret = PTR_ERR(ringbuf);
2160 		goto error;
2161 	}
2162 	ring->buffer = ringbuf;
2163 
2164 	if (I915_NEED_GFX_HWS(dev)) {
2165 		ret = init_status_page(ring);
2166 		if (ret)
2167 			goto error;
2168 	} else {
2169 		BUG_ON(ring->id != RCS);
2170 		ret = init_phys_status_page(ring);
2171 		if (ret)
2172 			goto error;
2173 	}
2174 
2175 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2176 	if (ret) {
2177 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2178 				ring->name, ret);
2179 		intel_destroy_ringbuffer_obj(ringbuf);
2180 		goto error;
2181 	}
2182 
2183 	ret = i915_cmd_parser_init_ring(ring);
2184 	if (ret)
2185 		goto error;
2186 
2187 	return 0;
2188 
2189 error:
2190 	intel_cleanup_ring_buffer(ring);
2191 	return ret;
2192 }
2193 
2194 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2195 {
2196 	struct drm_i915_private *dev_priv;
2197 
2198 	if (!intel_ring_initialized(ring))
2199 		return;
2200 
2201 	dev_priv = to_i915(ring->dev);
2202 
2203 	if (ring->buffer) {
2204 		intel_stop_ring_buffer(ring);
2205 		WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2206 
2207 		intel_unpin_ringbuffer_obj(ring->buffer);
2208 		intel_ringbuffer_free(ring->buffer);
2209 		ring->buffer = NULL;
2210 	}
2211 
2212 	if (ring->cleanup)
2213 		ring->cleanup(ring);
2214 
2215 	cleanup_status_page(ring);
2216 
2217 	i915_cmd_parser_fini_ring(ring);
2218 	i915_gem_batch_pool_fini(&ring->batch_pool);
2219 	ring->dev = NULL;
2220 }
2221 
2222 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2223 {
2224 	struct intel_ringbuffer *ringbuf = ring->buffer;
2225 	struct drm_i915_gem_request *request;
2226 	unsigned space;
2227 	int ret;
2228 
2229 	if (intel_ring_space(ringbuf) >= n)
2230 		return 0;
2231 
2232 	/* The whole point of reserving space is to not wait! */
2233 	WARN_ON(ringbuf->reserved_in_use);
2234 
2235 	list_for_each_entry(request, &ring->request_list, list) {
2236 		space = __intel_ring_space(request->postfix, ringbuf->tail,
2237 					   ringbuf->size);
2238 		if (space >= n)
2239 			break;
2240 	}
2241 
2242 	if (WARN_ON(&request->list == &ring->request_list))
2243 		return -ENOSPC;
2244 
2245 	ret = i915_wait_request(request);
2246 	if (ret)
2247 		return ret;
2248 
2249 	ringbuf->space = space;
2250 	return 0;
2251 }
2252 
2253 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2254 {
2255 	uint32_t __iomem *virt;
2256 	int rem = ringbuf->size - ringbuf->tail;
2257 
2258 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2259 	rem /= 4;
2260 	while (rem--)
2261 		iowrite32(MI_NOOP, virt++);
2262 
2263 	ringbuf->tail = 0;
2264 	intel_ring_update_space(ringbuf);
2265 }
2266 
2267 int intel_ring_idle(struct intel_engine_cs *ring)
2268 {
2269 	struct drm_i915_gem_request *req;
2270 
2271 	/* Wait upon the last request to be completed */
2272 	if (list_empty(&ring->request_list))
2273 		return 0;
2274 
2275 	req = list_entry(ring->request_list.prev,
2276 			struct drm_i915_gem_request,
2277 			list);
2278 
2279 	/* Make sure we do not trigger any retires */
2280 	return __i915_wait_request(req,
2281 				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2282 				   to_i915(ring->dev)->mm.interruptible,
2283 				   NULL, NULL);
2284 }
2285 
2286 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2287 {
2288 	request->ringbuf = request->ring->buffer;
2289 	return 0;
2290 }
2291 
2292 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2293 {
2294 	/*
2295 	 * The first call merely notes the reserve request and is common for
2296 	 * all back ends. The subsequent localised _begin() call actually
2297 	 * ensures that the reservation is available. Without the begin, if
2298 	 * the request creator immediately submitted the request without
2299 	 * adding any commands to it then there might not actually be
2300 	 * sufficient room for the submission commands.
2301 	 */
2302 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2303 
2304 	return intel_ring_begin(request, 0);
2305 }
2306 
2307 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2308 {
2309 	WARN_ON(ringbuf->reserved_size);
2310 	WARN_ON(ringbuf->reserved_in_use);
2311 
2312 	ringbuf->reserved_size = size;
2313 }
2314 
2315 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2316 {
2317 	WARN_ON(ringbuf->reserved_in_use);
2318 
2319 	ringbuf->reserved_size   = 0;
2320 	ringbuf->reserved_in_use = false;
2321 }
2322 
2323 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2324 {
2325 	WARN_ON(ringbuf->reserved_in_use);
2326 
2327 	ringbuf->reserved_in_use = true;
2328 	ringbuf->reserved_tail   = ringbuf->tail;
2329 }
2330 
2331 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2332 {
2333 	WARN_ON(!ringbuf->reserved_in_use);
2334 	if (ringbuf->tail > ringbuf->reserved_tail) {
2335 		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2336 		     "request reserved size too small: %d vs %d!\n",
2337 		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2338 	} else {
2339 		/*
2340 		 * The ring was wrapped while the reserved space was in use.
2341 		 * That means that some unknown amount of the ring tail was
2342 		 * no-op filled and skipped. Thus simply adding the ring size
2343 		 * to the tail and doing the above space check will not work.
2344 		 * Rather than attempt to track how much tail was skipped,
2345 		 * it is much simpler to say that also skipping the sanity
2346 		 * check every once in a while is not a big issue.
2347 		 */
2348 	}
2349 
2350 	ringbuf->reserved_size   = 0;
2351 	ringbuf->reserved_in_use = false;
2352 }
2353 
2354 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2355 {
2356 	struct intel_ringbuffer *ringbuf = ring->buffer;
2357 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2358 	int remain_actual = ringbuf->size - ringbuf->tail;
2359 	int ret, total_bytes, wait_bytes = 0;
2360 	bool need_wrap = false;
2361 
2362 	if (ringbuf->reserved_in_use)
2363 		total_bytes = bytes;
2364 	else
2365 		total_bytes = bytes + ringbuf->reserved_size;
2366 
2367 	if (unlikely(bytes > remain_usable)) {
2368 		/*
2369 		 * Not enough space for the basic request. So need to flush
2370 		 * out the remainder and then wait for base + reserved.
2371 		 */
2372 		wait_bytes = remain_actual + total_bytes;
2373 		need_wrap = true;
2374 	} else {
2375 		if (unlikely(total_bytes > remain_usable)) {
2376 			/*
2377 			 * The base request will fit but the reserved space
2378 			 * falls off the end. So only need to to wait for the
2379 			 * reserved size after flushing out the remainder.
2380 			 */
2381 			wait_bytes = remain_actual + ringbuf->reserved_size;
2382 			need_wrap = true;
2383 		} else if (total_bytes > ringbuf->space) {
2384 			/* No wrapping required, just waiting. */
2385 			wait_bytes = total_bytes;
2386 		}
2387 	}
2388 
2389 	if (wait_bytes) {
2390 		ret = ring_wait_for_space(ring, wait_bytes);
2391 		if (unlikely(ret))
2392 			return ret;
2393 
2394 		if (need_wrap)
2395 			__wrap_ring_buffer(ringbuf);
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 int intel_ring_begin(struct drm_i915_gem_request *req,
2402 		     int num_dwords)
2403 {
2404 	struct intel_engine_cs *ring;
2405 	struct drm_i915_private *dev_priv;
2406 	int ret;
2407 
2408 	WARN_ON(req == NULL);
2409 	ring = req->ring;
2410 	dev_priv = ring->dev->dev_private;
2411 
2412 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2413 				   dev_priv->mm.interruptible);
2414 	if (ret)
2415 		return ret;
2416 
2417 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2418 	if (ret)
2419 		return ret;
2420 
2421 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2422 	return 0;
2423 }
2424 
2425 /* Align the ring tail to a cacheline boundary */
2426 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2427 {
2428 	struct intel_engine_cs *ring = req->ring;
2429 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2430 	int ret;
2431 
2432 	if (num_dwords == 0)
2433 		return 0;
2434 
2435 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2436 	ret = intel_ring_begin(req, num_dwords);
2437 	if (ret)
2438 		return ret;
2439 
2440 	while (num_dwords--)
2441 		intel_ring_emit(ring, MI_NOOP);
2442 
2443 	intel_ring_advance(ring);
2444 
2445 	return 0;
2446 }
2447 
2448 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2449 {
2450 	struct drm_device *dev = ring->dev;
2451 	struct drm_i915_private *dev_priv = dev->dev_private;
2452 
2453 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2454 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2455 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2456 		if (HAS_VEBOX(dev))
2457 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2458 	}
2459 
2460 	ring->set_seqno(ring, seqno);
2461 	ring->hangcheck.seqno = seqno;
2462 }
2463 
2464 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2465 				     u32 value)
2466 {
2467 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2468 
2469        /* Every tail move must follow the sequence below */
2470 
2471 	/* Disable notification that the ring is IDLE. The GT
2472 	 * will then assume that it is busy and bring it out of rc6.
2473 	 */
2474 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2475 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2476 
2477 	/* Clear the context id. Here be magic! */
2478 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2479 
2480 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2481 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2482 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2483 		     50))
2484 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2485 
2486 	/* Now that the ring is fully powered up, update the tail */
2487 	I915_WRITE_TAIL(ring, value);
2488 	POSTING_READ(RING_TAIL(ring->mmio_base));
2489 
2490 	/* Let the ring send IDLE messages to the GT again,
2491 	 * and so let it sleep to conserve power when idle.
2492 	 */
2493 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2494 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2495 }
2496 
2497 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2498 			       u32 invalidate, u32 flush)
2499 {
2500 	struct intel_engine_cs *ring = req->ring;
2501 	uint32_t cmd;
2502 	int ret;
2503 
2504 	ret = intel_ring_begin(req, 4);
2505 	if (ret)
2506 		return ret;
2507 
2508 	cmd = MI_FLUSH_DW;
2509 	if (INTEL_INFO(ring->dev)->gen >= 8)
2510 		cmd += 1;
2511 
2512 	/* We always require a command barrier so that subsequent
2513 	 * commands, such as breadcrumb interrupts, are strictly ordered
2514 	 * wrt the contents of the write cache being flushed to memory
2515 	 * (and thus being coherent from the CPU).
2516 	 */
2517 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2518 
2519 	/*
2520 	 * Bspec vol 1c.5 - video engine command streamer:
2521 	 * "If ENABLED, all TLBs will be invalidated once the flush
2522 	 * operation is complete. This bit is only valid when the
2523 	 * Post-Sync Operation field is a value of 1h or 3h."
2524 	 */
2525 	if (invalidate & I915_GEM_GPU_DOMAINS)
2526 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2527 
2528 	intel_ring_emit(ring, cmd);
2529 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2530 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2531 		intel_ring_emit(ring, 0); /* upper addr */
2532 		intel_ring_emit(ring, 0); /* value */
2533 	} else  {
2534 		intel_ring_emit(ring, 0);
2535 		intel_ring_emit(ring, MI_NOOP);
2536 	}
2537 	intel_ring_advance(ring);
2538 	return 0;
2539 }
2540 
2541 static int
2542 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2543 			      u64 offset, u32 len,
2544 			      unsigned dispatch_flags)
2545 {
2546 	struct intel_engine_cs *ring = req->ring;
2547 	bool ppgtt = USES_PPGTT(ring->dev) &&
2548 			!(dispatch_flags & I915_DISPATCH_SECURE);
2549 	int ret;
2550 
2551 	ret = intel_ring_begin(req, 4);
2552 	if (ret)
2553 		return ret;
2554 
2555 	/* FIXME(BDW): Address space and security selectors. */
2556 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2557 			(dispatch_flags & I915_DISPATCH_RS ?
2558 			 MI_BATCH_RESOURCE_STREAMER : 0));
2559 	intel_ring_emit(ring, lower_32_bits(offset));
2560 	intel_ring_emit(ring, upper_32_bits(offset));
2561 	intel_ring_emit(ring, MI_NOOP);
2562 	intel_ring_advance(ring);
2563 
2564 	return 0;
2565 }
2566 
2567 static int
2568 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2569 			     u64 offset, u32 len,
2570 			     unsigned dispatch_flags)
2571 {
2572 	struct intel_engine_cs *ring = req->ring;
2573 	int ret;
2574 
2575 	ret = intel_ring_begin(req, 2);
2576 	if (ret)
2577 		return ret;
2578 
2579 	intel_ring_emit(ring,
2580 			MI_BATCH_BUFFER_START |
2581 			(dispatch_flags & I915_DISPATCH_SECURE ?
2582 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2583 			(dispatch_flags & I915_DISPATCH_RS ?
2584 			 MI_BATCH_RESOURCE_STREAMER : 0));
2585 	/* bit0-7 is the length on GEN6+ */
2586 	intel_ring_emit(ring, offset);
2587 	intel_ring_advance(ring);
2588 
2589 	return 0;
2590 }
2591 
2592 static int
2593 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2594 			      u64 offset, u32 len,
2595 			      unsigned dispatch_flags)
2596 {
2597 	struct intel_engine_cs *ring = req->ring;
2598 	int ret;
2599 
2600 	ret = intel_ring_begin(req, 2);
2601 	if (ret)
2602 		return ret;
2603 
2604 	intel_ring_emit(ring,
2605 			MI_BATCH_BUFFER_START |
2606 			(dispatch_flags & I915_DISPATCH_SECURE ?
2607 			 0 : MI_BATCH_NON_SECURE_I965));
2608 	/* bit0-7 is the length on GEN6+ */
2609 	intel_ring_emit(ring, offset);
2610 	intel_ring_advance(ring);
2611 
2612 	return 0;
2613 }
2614 
2615 /* Blitter support (SandyBridge+) */
2616 
2617 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2618 			   u32 invalidate, u32 flush)
2619 {
2620 	struct intel_engine_cs *ring = req->ring;
2621 	struct drm_device *dev = ring->dev;
2622 	uint32_t cmd;
2623 	int ret;
2624 
2625 	ret = intel_ring_begin(req, 4);
2626 	if (ret)
2627 		return ret;
2628 
2629 	cmd = MI_FLUSH_DW;
2630 	if (INTEL_INFO(dev)->gen >= 8)
2631 		cmd += 1;
2632 
2633 	/* We always require a command barrier so that subsequent
2634 	 * commands, such as breadcrumb interrupts, are strictly ordered
2635 	 * wrt the contents of the write cache being flushed to memory
2636 	 * (and thus being coherent from the CPU).
2637 	 */
2638 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2639 
2640 	/*
2641 	 * Bspec vol 1c.3 - blitter engine command streamer:
2642 	 * "If ENABLED, all TLBs will be invalidated once the flush
2643 	 * operation is complete. This bit is only valid when the
2644 	 * Post-Sync Operation field is a value of 1h or 3h."
2645 	 */
2646 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2647 		cmd |= MI_INVALIDATE_TLB;
2648 	intel_ring_emit(ring, cmd);
2649 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2650 	if (INTEL_INFO(dev)->gen >= 8) {
2651 		intel_ring_emit(ring, 0); /* upper addr */
2652 		intel_ring_emit(ring, 0); /* value */
2653 	} else  {
2654 		intel_ring_emit(ring, 0);
2655 		intel_ring_emit(ring, MI_NOOP);
2656 	}
2657 	intel_ring_advance(ring);
2658 
2659 	return 0;
2660 }
2661 
2662 int intel_init_render_ring_buffer(struct drm_device *dev)
2663 {
2664 	struct drm_i915_private *dev_priv = dev->dev_private;
2665 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2666 	struct drm_i915_gem_object *obj;
2667 	int ret;
2668 
2669 	ring->name = "render ring";
2670 	ring->id = RCS;
2671 	ring->mmio_base = RENDER_RING_BASE;
2672 
2673 	if (INTEL_INFO(dev)->gen >= 8) {
2674 		if (i915_semaphore_is_enabled(dev)) {
2675 			obj = i915_gem_alloc_object(dev, 4096);
2676 			if (obj == NULL) {
2677 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2678 				i915.semaphores = 0;
2679 			} else {
2680 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2681 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2682 				if (ret != 0) {
2683 					drm_gem_object_unreference(&obj->base);
2684 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2685 					i915.semaphores = 0;
2686 				} else
2687 					dev_priv->semaphore_obj = obj;
2688 			}
2689 		}
2690 
2691 		ring->init_context = intel_rcs_ctx_init;
2692 		ring->add_request = gen6_add_request;
2693 		ring->flush = gen8_render_ring_flush;
2694 		ring->irq_get = gen8_ring_get_irq;
2695 		ring->irq_put = gen8_ring_put_irq;
2696 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2697 		ring->get_seqno = gen6_ring_get_seqno;
2698 		ring->set_seqno = ring_set_seqno;
2699 		if (i915_semaphore_is_enabled(dev)) {
2700 			WARN_ON(!dev_priv->semaphore_obj);
2701 			ring->semaphore.sync_to = gen8_ring_sync;
2702 			ring->semaphore.signal = gen8_rcs_signal;
2703 			GEN8_RING_SEMAPHORE_INIT;
2704 		}
2705 	} else if (INTEL_INFO(dev)->gen >= 6) {
2706 		ring->init_context = intel_rcs_ctx_init;
2707 		ring->add_request = gen6_add_request;
2708 		ring->flush = gen7_render_ring_flush;
2709 		if (INTEL_INFO(dev)->gen == 6)
2710 			ring->flush = gen6_render_ring_flush;
2711 		ring->irq_get = gen6_ring_get_irq;
2712 		ring->irq_put = gen6_ring_put_irq;
2713 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2714 		ring->get_seqno = gen6_ring_get_seqno;
2715 		ring->set_seqno = ring_set_seqno;
2716 		if (i915_semaphore_is_enabled(dev)) {
2717 			ring->semaphore.sync_to = gen6_ring_sync;
2718 			ring->semaphore.signal = gen6_signal;
2719 			/*
2720 			 * The current semaphore is only applied on pre-gen8
2721 			 * platform.  And there is no VCS2 ring on the pre-gen8
2722 			 * platform. So the semaphore between RCS and VCS2 is
2723 			 * initialized as INVALID.  Gen8 will initialize the
2724 			 * sema between VCS2 and RCS later.
2725 			 */
2726 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2727 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2728 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2729 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2730 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2731 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2732 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2733 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2734 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2735 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2736 		}
2737 	} else if (IS_GEN5(dev)) {
2738 		ring->add_request = pc_render_add_request;
2739 		ring->flush = gen4_render_ring_flush;
2740 		ring->get_seqno = pc_render_get_seqno;
2741 		ring->set_seqno = pc_render_set_seqno;
2742 		ring->irq_get = gen5_ring_get_irq;
2743 		ring->irq_put = gen5_ring_put_irq;
2744 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2745 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2746 	} else {
2747 		ring->add_request = i9xx_add_request;
2748 		if (INTEL_INFO(dev)->gen < 4)
2749 			ring->flush = gen2_render_ring_flush;
2750 		else
2751 			ring->flush = gen4_render_ring_flush;
2752 		ring->get_seqno = ring_get_seqno;
2753 		ring->set_seqno = ring_set_seqno;
2754 		if (IS_GEN2(dev)) {
2755 			ring->irq_get = i8xx_ring_get_irq;
2756 			ring->irq_put = i8xx_ring_put_irq;
2757 		} else {
2758 			ring->irq_get = i9xx_ring_get_irq;
2759 			ring->irq_put = i9xx_ring_put_irq;
2760 		}
2761 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2762 	}
2763 	ring->write_tail = ring_write_tail;
2764 
2765 	if (IS_HASWELL(dev))
2766 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2767 	else if (IS_GEN8(dev))
2768 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2769 	else if (INTEL_INFO(dev)->gen >= 6)
2770 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2771 	else if (INTEL_INFO(dev)->gen >= 4)
2772 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2773 	else if (IS_I830(dev) || IS_845G(dev))
2774 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2775 	else
2776 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2777 	ring->init_hw = init_render_ring;
2778 	ring->cleanup = render_ring_cleanup;
2779 
2780 	/* Workaround batchbuffer to combat CS tlb bug. */
2781 	if (HAS_BROKEN_CS_TLB(dev)) {
2782 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2783 		if (obj == NULL) {
2784 			DRM_ERROR("Failed to allocate batch bo\n");
2785 			return -ENOMEM;
2786 		}
2787 
2788 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2789 		if (ret != 0) {
2790 			drm_gem_object_unreference(&obj->base);
2791 			DRM_ERROR("Failed to ping batch bo\n");
2792 			return ret;
2793 		}
2794 
2795 		ring->scratch.obj = obj;
2796 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2797 	}
2798 
2799 	ret = intel_init_ring_buffer(dev, ring);
2800 	if (ret)
2801 		return ret;
2802 
2803 	if (INTEL_INFO(dev)->gen >= 5) {
2804 		ret = intel_init_pipe_control(ring);
2805 		if (ret)
2806 			return ret;
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2813 {
2814 	struct drm_i915_private *dev_priv = dev->dev_private;
2815 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2816 
2817 	ring->name = "bsd ring";
2818 	ring->id = VCS;
2819 
2820 	ring->write_tail = ring_write_tail;
2821 	if (INTEL_INFO(dev)->gen >= 6) {
2822 		ring->mmio_base = GEN6_BSD_RING_BASE;
2823 		/* gen6 bsd needs a special wa for tail updates */
2824 		if (IS_GEN6(dev))
2825 			ring->write_tail = gen6_bsd_ring_write_tail;
2826 		ring->flush = gen6_bsd_ring_flush;
2827 		ring->add_request = gen6_add_request;
2828 		ring->get_seqno = gen6_ring_get_seqno;
2829 		ring->set_seqno = ring_set_seqno;
2830 		if (INTEL_INFO(dev)->gen >= 8) {
2831 			ring->irq_enable_mask =
2832 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2833 			ring->irq_get = gen8_ring_get_irq;
2834 			ring->irq_put = gen8_ring_put_irq;
2835 			ring->dispatch_execbuffer =
2836 				gen8_ring_dispatch_execbuffer;
2837 			if (i915_semaphore_is_enabled(dev)) {
2838 				ring->semaphore.sync_to = gen8_ring_sync;
2839 				ring->semaphore.signal = gen8_xcs_signal;
2840 				GEN8_RING_SEMAPHORE_INIT;
2841 			}
2842 		} else {
2843 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2844 			ring->irq_get = gen6_ring_get_irq;
2845 			ring->irq_put = gen6_ring_put_irq;
2846 			ring->dispatch_execbuffer =
2847 				gen6_ring_dispatch_execbuffer;
2848 			if (i915_semaphore_is_enabled(dev)) {
2849 				ring->semaphore.sync_to = gen6_ring_sync;
2850 				ring->semaphore.signal = gen6_signal;
2851 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2852 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2853 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2854 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2855 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2856 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2857 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2858 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2859 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2860 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2861 			}
2862 		}
2863 	} else {
2864 		ring->mmio_base = BSD_RING_BASE;
2865 		ring->flush = bsd_ring_flush;
2866 		ring->add_request = i9xx_add_request;
2867 		ring->get_seqno = ring_get_seqno;
2868 		ring->set_seqno = ring_set_seqno;
2869 		if (IS_GEN5(dev)) {
2870 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2871 			ring->irq_get = gen5_ring_get_irq;
2872 			ring->irq_put = gen5_ring_put_irq;
2873 		} else {
2874 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2875 			ring->irq_get = i9xx_ring_get_irq;
2876 			ring->irq_put = i9xx_ring_put_irq;
2877 		}
2878 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2879 	}
2880 	ring->init_hw = init_ring_common;
2881 
2882 	return intel_init_ring_buffer(dev, ring);
2883 }
2884 
2885 /**
2886  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2887  */
2888 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2889 {
2890 	struct drm_i915_private *dev_priv = dev->dev_private;
2891 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2892 
2893 	ring->name = "bsd2 ring";
2894 	ring->id = VCS2;
2895 
2896 	ring->write_tail = ring_write_tail;
2897 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2898 	ring->flush = gen6_bsd_ring_flush;
2899 	ring->add_request = gen6_add_request;
2900 	ring->get_seqno = gen6_ring_get_seqno;
2901 	ring->set_seqno = ring_set_seqno;
2902 	ring->irq_enable_mask =
2903 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2904 	ring->irq_get = gen8_ring_get_irq;
2905 	ring->irq_put = gen8_ring_put_irq;
2906 	ring->dispatch_execbuffer =
2907 			gen8_ring_dispatch_execbuffer;
2908 	if (i915_semaphore_is_enabled(dev)) {
2909 		ring->semaphore.sync_to = gen8_ring_sync;
2910 		ring->semaphore.signal = gen8_xcs_signal;
2911 		GEN8_RING_SEMAPHORE_INIT;
2912 	}
2913 	ring->init_hw = init_ring_common;
2914 
2915 	return intel_init_ring_buffer(dev, ring);
2916 }
2917 
2918 int intel_init_blt_ring_buffer(struct drm_device *dev)
2919 {
2920 	struct drm_i915_private *dev_priv = dev->dev_private;
2921 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2922 
2923 	ring->name = "blitter ring";
2924 	ring->id = BCS;
2925 
2926 	ring->mmio_base = BLT_RING_BASE;
2927 	ring->write_tail = ring_write_tail;
2928 	ring->flush = gen6_ring_flush;
2929 	ring->add_request = gen6_add_request;
2930 	ring->get_seqno = gen6_ring_get_seqno;
2931 	ring->set_seqno = ring_set_seqno;
2932 	if (INTEL_INFO(dev)->gen >= 8) {
2933 		ring->irq_enable_mask =
2934 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2935 		ring->irq_get = gen8_ring_get_irq;
2936 		ring->irq_put = gen8_ring_put_irq;
2937 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2938 		if (i915_semaphore_is_enabled(dev)) {
2939 			ring->semaphore.sync_to = gen8_ring_sync;
2940 			ring->semaphore.signal = gen8_xcs_signal;
2941 			GEN8_RING_SEMAPHORE_INIT;
2942 		}
2943 	} else {
2944 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2945 		ring->irq_get = gen6_ring_get_irq;
2946 		ring->irq_put = gen6_ring_put_irq;
2947 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2948 		if (i915_semaphore_is_enabled(dev)) {
2949 			ring->semaphore.signal = gen6_signal;
2950 			ring->semaphore.sync_to = gen6_ring_sync;
2951 			/*
2952 			 * The current semaphore is only applied on pre-gen8
2953 			 * platform.  And there is no VCS2 ring on the pre-gen8
2954 			 * platform. So the semaphore between BCS and VCS2 is
2955 			 * initialized as INVALID.  Gen8 will initialize the
2956 			 * sema between BCS and VCS2 later.
2957 			 */
2958 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2959 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2960 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2961 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2962 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2963 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2964 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2965 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2966 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2967 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2968 		}
2969 	}
2970 	ring->init_hw = init_ring_common;
2971 
2972 	return intel_init_ring_buffer(dev, ring);
2973 }
2974 
2975 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2976 {
2977 	struct drm_i915_private *dev_priv = dev->dev_private;
2978 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2979 
2980 	ring->name = "video enhancement ring";
2981 	ring->id = VECS;
2982 
2983 	ring->mmio_base = VEBOX_RING_BASE;
2984 	ring->write_tail = ring_write_tail;
2985 	ring->flush = gen6_ring_flush;
2986 	ring->add_request = gen6_add_request;
2987 	ring->get_seqno = gen6_ring_get_seqno;
2988 	ring->set_seqno = ring_set_seqno;
2989 
2990 	if (INTEL_INFO(dev)->gen >= 8) {
2991 		ring->irq_enable_mask =
2992 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2993 		ring->irq_get = gen8_ring_get_irq;
2994 		ring->irq_put = gen8_ring_put_irq;
2995 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2996 		if (i915_semaphore_is_enabled(dev)) {
2997 			ring->semaphore.sync_to = gen8_ring_sync;
2998 			ring->semaphore.signal = gen8_xcs_signal;
2999 			GEN8_RING_SEMAPHORE_INIT;
3000 		}
3001 	} else {
3002 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3003 		ring->irq_get = hsw_vebox_get_irq;
3004 		ring->irq_put = hsw_vebox_put_irq;
3005 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3006 		if (i915_semaphore_is_enabled(dev)) {
3007 			ring->semaphore.sync_to = gen6_ring_sync;
3008 			ring->semaphore.signal = gen6_signal;
3009 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3010 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3011 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3012 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3013 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3014 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3015 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3016 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3017 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3018 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3019 		}
3020 	}
3021 	ring->init_hw = init_ring_common;
3022 
3023 	return intel_init_ring_buffer(dev, ring);
3024 }
3025 
3026 int
3027 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3028 {
3029 	struct intel_engine_cs *ring = req->ring;
3030 	int ret;
3031 
3032 	if (!ring->gpu_caches_dirty)
3033 		return 0;
3034 
3035 	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3036 	if (ret)
3037 		return ret;
3038 
3039 	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3040 
3041 	ring->gpu_caches_dirty = false;
3042 	return 0;
3043 }
3044 
3045 int
3046 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3047 {
3048 	struct intel_engine_cs *ring = req->ring;
3049 	uint32_t flush_domains;
3050 	int ret;
3051 
3052 	flush_domains = 0;
3053 	if (ring->gpu_caches_dirty)
3054 		flush_domains = I915_GEM_GPU_DOMAINS;
3055 
3056 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3057 	if (ret)
3058 		return ret;
3059 
3060 	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3061 
3062 	ring->gpu_caches_dirty = false;
3063 	return 0;
3064 }
3065 
3066 void
3067 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3068 {
3069 	int ret;
3070 
3071 	if (!intel_ring_initialized(ring))
3072 		return;
3073 
3074 	ret = intel_ring_idle(ring);
3075 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3076 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3077 			  ring->name, ret);
3078 
3079 	stop_ring(ring);
3080 }
3081