xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 40657594)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41 
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 	int space = head - tail;
45 	if (space <= 0)
46 		space += size;
47 	return space - I915_RING_FREE_SPACE;
48 }
49 
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52 	if (ringbuf->last_retired_head != -1) {
53 		ringbuf->head = ringbuf->last_retired_head;
54 		ringbuf->last_retired_head = -1;
55 	}
56 
57 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 					    ringbuf->tail, ringbuf->size);
59 }
60 
61 static void __intel_ring_advance(struct intel_engine_cs *engine)
62 {
63 	struct intel_ringbuffer *ringbuf = engine->buffer;
64 	ringbuf->tail &= ringbuf->size - 1;
65 	engine->write_tail(engine, ringbuf->tail);
66 }
67 
68 static int
69 gen2_render_ring_flush(struct drm_i915_gem_request *req,
70 		       u32	invalidate_domains,
71 		       u32	flush_domains)
72 {
73 	struct intel_engine_cs *engine = req->engine;
74 	u32 cmd;
75 	int ret;
76 
77 	cmd = MI_FLUSH;
78 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
79 		cmd |= MI_NO_WRITE_FLUSH;
80 
81 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
82 		cmd |= MI_READ_FLUSH;
83 
84 	ret = intel_ring_begin(req, 2);
85 	if (ret)
86 		return ret;
87 
88 	intel_ring_emit(engine, cmd);
89 	intel_ring_emit(engine, MI_NOOP);
90 	intel_ring_advance(engine);
91 
92 	return 0;
93 }
94 
95 static int
96 gen4_render_ring_flush(struct drm_i915_gem_request *req,
97 		       u32	invalidate_domains,
98 		       u32	flush_domains)
99 {
100 	struct intel_engine_cs *engine = req->engine;
101 	u32 cmd;
102 	int ret;
103 
104 	/*
105 	 * read/write caches:
106 	 *
107 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
108 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
109 	 * also flushed at 2d versus 3d pipeline switches.
110 	 *
111 	 * read-only caches:
112 	 *
113 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
114 	 * MI_READ_FLUSH is set, and is always flushed on 965.
115 	 *
116 	 * I915_GEM_DOMAIN_COMMAND may not exist?
117 	 *
118 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
119 	 * invalidated when MI_EXE_FLUSH is set.
120 	 *
121 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
122 	 * invalidated with every MI_FLUSH.
123 	 *
124 	 * TLBs:
125 	 *
126 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
127 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
128 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
129 	 * are flushed at any MI_FLUSH.
130 	 */
131 
132 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
133 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
134 		cmd &= ~MI_NO_WRITE_FLUSH;
135 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
136 		cmd |= MI_EXE_FLUSH;
137 
138 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
139 	    (IS_G4X(req->i915) || IS_GEN5(req->i915)))
140 		cmd |= MI_INVALIDATE_ISP;
141 
142 	ret = intel_ring_begin(req, 2);
143 	if (ret)
144 		return ret;
145 
146 	intel_ring_emit(engine, cmd);
147 	intel_ring_emit(engine, MI_NOOP);
148 	intel_ring_advance(engine);
149 
150 	return 0;
151 }
152 
153 /**
154  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
155  * implementing two workarounds on gen6.  From section 1.4.7.1
156  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
157  *
158  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
159  * produced by non-pipelined state commands), software needs to first
160  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
161  * 0.
162  *
163  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
164  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
165  *
166  * And the workaround for these two requires this workaround first:
167  *
168  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
169  * BEFORE the pipe-control with a post-sync op and no write-cache
170  * flushes.
171  *
172  * And this last workaround is tricky because of the requirements on
173  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
174  * volume 2 part 1:
175  *
176  *     "1 of the following must also be set:
177  *      - Render Target Cache Flush Enable ([12] of DW1)
178  *      - Depth Cache Flush Enable ([0] of DW1)
179  *      - Stall at Pixel Scoreboard ([1] of DW1)
180  *      - Depth Stall ([13] of DW1)
181  *      - Post-Sync Operation ([13] of DW1)
182  *      - Notify Enable ([8] of DW1)"
183  *
184  * The cache flushes require the workaround flush that triggered this
185  * one, so we can't use it.  Depth stall would trigger the same.
186  * Post-sync nonzero is what triggered this second workaround, so we
187  * can't use that one either.  Notify enable is IRQs, which aren't
188  * really our business.  That leaves only stall at scoreboard.
189  */
190 static int
191 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
192 {
193 	struct intel_engine_cs *engine = req->engine;
194 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
195 	int ret;
196 
197 	ret = intel_ring_begin(req, 6);
198 	if (ret)
199 		return ret;
200 
201 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
202 	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
203 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
204 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
205 	intel_ring_emit(engine, 0); /* low dword */
206 	intel_ring_emit(engine, 0); /* high dword */
207 	intel_ring_emit(engine, MI_NOOP);
208 	intel_ring_advance(engine);
209 
210 	ret = intel_ring_begin(req, 6);
211 	if (ret)
212 		return ret;
213 
214 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
215 	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
216 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
217 	intel_ring_emit(engine, 0);
218 	intel_ring_emit(engine, 0);
219 	intel_ring_emit(engine, MI_NOOP);
220 	intel_ring_advance(engine);
221 
222 	return 0;
223 }
224 
225 static int
226 gen6_render_ring_flush(struct drm_i915_gem_request *req,
227 		       u32 invalidate_domains, u32 flush_domains)
228 {
229 	struct intel_engine_cs *engine = req->engine;
230 	u32 flags = 0;
231 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
232 	int ret;
233 
234 	/* Force SNB workarounds for PIPE_CONTROL flushes */
235 	ret = intel_emit_post_sync_nonzero_flush(req);
236 	if (ret)
237 		return ret;
238 
239 	/* Just flush everything.  Experiments have shown that reducing the
240 	 * number of bits based on the write domains has little performance
241 	 * impact.
242 	 */
243 	if (flush_domains) {
244 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
245 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
246 		/*
247 		 * Ensure that any following seqno writes only happen
248 		 * when the render cache is indeed flushed.
249 		 */
250 		flags |= PIPE_CONTROL_CS_STALL;
251 	}
252 	if (invalidate_domains) {
253 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
254 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
255 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
256 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
257 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
258 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
259 		/*
260 		 * TLB invalidate requires a post-sync write.
261 		 */
262 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263 	}
264 
265 	ret = intel_ring_begin(req, 4);
266 	if (ret)
267 		return ret;
268 
269 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
270 	intel_ring_emit(engine, flags);
271 	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
272 	intel_ring_emit(engine, 0);
273 	intel_ring_advance(engine);
274 
275 	return 0;
276 }
277 
278 static int
279 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280 {
281 	struct intel_engine_cs *engine = req->engine;
282 	int ret;
283 
284 	ret = intel_ring_begin(req, 4);
285 	if (ret)
286 		return ret;
287 
288 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
289 	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
290 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 	intel_ring_emit(engine, 0);
292 	intel_ring_emit(engine, 0);
293 	intel_ring_advance(engine);
294 
295 	return 0;
296 }
297 
298 static int
299 gen7_render_ring_flush(struct drm_i915_gem_request *req,
300 		       u32 invalidate_domains, u32 flush_domains)
301 {
302 	struct intel_engine_cs *engine = req->engine;
303 	u32 flags = 0;
304 	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
305 	int ret;
306 
307 	/*
308 	 * Ensure that any following seqno writes only happen when the render
309 	 * cache is indeed flushed.
310 	 *
311 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
312 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
313 	 * don't try to be clever and just set it unconditionally.
314 	 */
315 	flags |= PIPE_CONTROL_CS_STALL;
316 
317 	/* Just flush everything.  Experiments have shown that reducing the
318 	 * number of bits based on the write domains has little performance
319 	 * impact.
320 	 */
321 	if (flush_domains) {
322 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
323 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
324 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
325 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
326 	}
327 	if (invalidate_domains) {
328 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
329 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
330 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
331 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
332 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
333 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
334 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
335 		/*
336 		 * TLB invalidate requires a post-sync write.
337 		 */
338 		flags |= PIPE_CONTROL_QW_WRITE;
339 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340 
341 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
342 
343 		/* Workaround: we must issue a pipe_control with CS-stall bit
344 		 * set before a pipe_control command that has the state cache
345 		 * invalidate bit set. */
346 		gen7_render_ring_cs_stall_wa(req);
347 	}
348 
349 	ret = intel_ring_begin(req, 4);
350 	if (ret)
351 		return ret;
352 
353 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
354 	intel_ring_emit(engine, flags);
355 	intel_ring_emit(engine, scratch_addr);
356 	intel_ring_emit(engine, 0);
357 	intel_ring_advance(engine);
358 
359 	return 0;
360 }
361 
362 static int
363 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
364 		       u32 flags, u32 scratch_addr)
365 {
366 	struct intel_engine_cs *engine = req->engine;
367 	int ret;
368 
369 	ret = intel_ring_begin(req, 6);
370 	if (ret)
371 		return ret;
372 
373 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
374 	intel_ring_emit(engine, flags);
375 	intel_ring_emit(engine, scratch_addr);
376 	intel_ring_emit(engine, 0);
377 	intel_ring_emit(engine, 0);
378 	intel_ring_emit(engine, 0);
379 	intel_ring_advance(engine);
380 
381 	return 0;
382 }
383 
384 static int
385 gen8_render_ring_flush(struct drm_i915_gem_request *req,
386 		       u32 invalidate_domains, u32 flush_domains)
387 {
388 	u32 flags = 0;
389 	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
390 	int ret;
391 
392 	flags |= PIPE_CONTROL_CS_STALL;
393 
394 	if (flush_domains) {
395 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
396 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
398 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
399 	}
400 	if (invalidate_domains) {
401 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
402 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
403 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
404 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
405 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
406 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
407 		flags |= PIPE_CONTROL_QW_WRITE;
408 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
409 
410 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
411 		ret = gen8_emit_pipe_control(req,
412 					     PIPE_CONTROL_CS_STALL |
413 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
414 					     0);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	return gen8_emit_pipe_control(req, flags, scratch_addr);
420 }
421 
422 static void ring_write_tail(struct intel_engine_cs *engine,
423 			    u32 value)
424 {
425 	struct drm_i915_private *dev_priv = engine->i915;
426 	I915_WRITE_TAIL(engine, value);
427 }
428 
429 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
430 {
431 	struct drm_i915_private *dev_priv = engine->i915;
432 	u64 acthd;
433 
434 	if (INTEL_GEN(dev_priv) >= 8)
435 		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
436 					 RING_ACTHD_UDW(engine->mmio_base));
437 	else if (INTEL_GEN(dev_priv) >= 4)
438 		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
439 	else
440 		acthd = I915_READ(ACTHD);
441 
442 	return acthd;
443 }
444 
445 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
446 {
447 	struct drm_i915_private *dev_priv = engine->i915;
448 	u32 addr;
449 
450 	addr = dev_priv->status_page_dmah->busaddr;
451 	if (INTEL_GEN(dev_priv) >= 4)
452 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
453 	I915_WRITE(HWS_PGA, addr);
454 }
455 
456 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
457 {
458 	struct drm_i915_private *dev_priv = engine->i915;
459 	i915_reg_t mmio;
460 
461 	/* The ring status page addresses are no longer next to the rest of
462 	 * the ring registers as of gen7.
463 	 */
464 	if (IS_GEN7(dev_priv)) {
465 		switch (engine->id) {
466 		case RCS:
467 			mmio = RENDER_HWS_PGA_GEN7;
468 			break;
469 		case BCS:
470 			mmio = BLT_HWS_PGA_GEN7;
471 			break;
472 		/*
473 		 * VCS2 actually doesn't exist on Gen7. Only shut up
474 		 * gcc switch check warning
475 		 */
476 		case VCS2:
477 		case VCS:
478 			mmio = BSD_HWS_PGA_GEN7;
479 			break;
480 		case VECS:
481 			mmio = VEBOX_HWS_PGA_GEN7;
482 			break;
483 		}
484 	} else if (IS_GEN6(dev_priv)) {
485 		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
486 	} else {
487 		/* XXX: gen8 returns to sanity */
488 		mmio = RING_HWS_PGA(engine->mmio_base);
489 	}
490 
491 	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
492 	POSTING_READ(mmio);
493 
494 	/*
495 	 * Flush the TLB for this page
496 	 *
497 	 * FIXME: These two bits have disappeared on gen8, so a question
498 	 * arises: do we still need this and if so how should we go about
499 	 * invalidating the TLB?
500 	 */
501 	if (IS_GEN(dev_priv, 6, 7)) {
502 		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
503 
504 		/* ring should be idle before issuing a sync flush*/
505 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
506 
507 		I915_WRITE(reg,
508 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
509 					      INSTPM_SYNC_FLUSH));
510 		if (intel_wait_for_register(dev_priv,
511 					    reg, INSTPM_SYNC_FLUSH, 0,
512 					    1000))
513 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
514 				  engine->name);
515 	}
516 }
517 
518 static bool stop_ring(struct intel_engine_cs *engine)
519 {
520 	struct drm_i915_private *dev_priv = engine->i915;
521 
522 	if (!IS_GEN2(dev_priv)) {
523 		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
524 		if (intel_wait_for_register(dev_priv,
525 					    RING_MI_MODE(engine->mmio_base),
526 					    MODE_IDLE,
527 					    MODE_IDLE,
528 					    1000)) {
529 			DRM_ERROR("%s : timed out trying to stop ring\n",
530 				  engine->name);
531 			/* Sometimes we observe that the idle flag is not
532 			 * set even though the ring is empty. So double
533 			 * check before giving up.
534 			 */
535 			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536 				return false;
537 		}
538 	}
539 
540 	I915_WRITE_CTL(engine, 0);
541 	I915_WRITE_HEAD(engine, 0);
542 	engine->write_tail(engine, 0);
543 
544 	if (!IS_GEN2(dev_priv)) {
545 		(void)I915_READ_CTL(engine);
546 		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547 	}
548 
549 	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551 
552 static int init_ring_common(struct intel_engine_cs *engine)
553 {
554 	struct drm_i915_private *dev_priv = engine->i915;
555 	struct intel_ringbuffer *ringbuf = engine->buffer;
556 	struct drm_i915_gem_object *obj = ringbuf->obj;
557 	int ret = 0;
558 
559 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
560 
561 	if (!stop_ring(engine)) {
562 		/* G45 ring initialization often fails to reset head to zero */
563 		DRM_DEBUG_KMS("%s head not reset to zero "
564 			      "ctl %08x head %08x tail %08x start %08x\n",
565 			      engine->name,
566 			      I915_READ_CTL(engine),
567 			      I915_READ_HEAD(engine),
568 			      I915_READ_TAIL(engine),
569 			      I915_READ_START(engine));
570 
571 		if (!stop_ring(engine)) {
572 			DRM_ERROR("failed to set %s head to zero "
573 				  "ctl %08x head %08x tail %08x start %08x\n",
574 				  engine->name,
575 				  I915_READ_CTL(engine),
576 				  I915_READ_HEAD(engine),
577 				  I915_READ_TAIL(engine),
578 				  I915_READ_START(engine));
579 			ret = -EIO;
580 			goto out;
581 		}
582 	}
583 
584 	if (I915_NEED_GFX_HWS(dev_priv))
585 		intel_ring_setup_status_page(engine);
586 	else
587 		ring_setup_phys_status_page(engine);
588 
589 	/* Enforce ordering by reading HEAD register back */
590 	I915_READ_HEAD(engine);
591 
592 	/* Initialize the ring. This must happen _after_ we've cleared the ring
593 	 * registers with the above sequence (the readback of the HEAD registers
594 	 * also enforces ordering), otherwise the hw might lose the new ring
595 	 * register values. */
596 	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
597 
598 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
599 	if (I915_READ_HEAD(engine))
600 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
601 			  engine->name, I915_READ_HEAD(engine));
602 	I915_WRITE_HEAD(engine, 0);
603 	(void)I915_READ_HEAD(engine);
604 
605 	I915_WRITE_CTL(engine,
606 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
607 			| RING_VALID);
608 
609 	/* If the head is still not zero, the ring is dead */
610 	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
611 		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
612 		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
613 		DRM_ERROR("%s initialization failed "
614 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
615 			  engine->name,
616 			  I915_READ_CTL(engine),
617 			  I915_READ_CTL(engine) & RING_VALID,
618 			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
619 			  I915_READ_START(engine),
620 			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
621 		ret = -EIO;
622 		goto out;
623 	}
624 
625 	ringbuf->last_retired_head = -1;
626 	ringbuf->head = I915_READ_HEAD(engine);
627 	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
628 	intel_ring_update_space(ringbuf);
629 
630 	intel_engine_init_hangcheck(engine);
631 
632 out:
633 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
634 
635 	return ret;
636 }
637 
638 void intel_fini_pipe_control(struct intel_engine_cs *engine)
639 {
640 	if (engine->scratch.obj == NULL)
641 		return;
642 
643 	i915_gem_object_ggtt_unpin(engine->scratch.obj);
644 	i915_gem_object_put(engine->scratch.obj);
645 	engine->scratch.obj = NULL;
646 }
647 
648 int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
649 {
650 	struct drm_i915_gem_object *obj;
651 	int ret;
652 
653 	WARN_ON(engine->scratch.obj);
654 
655 	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
656 	if (!obj)
657 		obj = i915_gem_object_create(&engine->i915->drm, size);
658 	if (IS_ERR(obj)) {
659 		DRM_ERROR("Failed to allocate scratch page\n");
660 		ret = PTR_ERR(obj);
661 		goto err;
662 	}
663 
664 	ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
665 	if (ret)
666 		goto err_unref;
667 
668 	engine->scratch.obj = obj;
669 	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
670 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
671 			 engine->name, engine->scratch.gtt_offset);
672 	return 0;
673 
674 err_unref:
675 	i915_gem_object_put(engine->scratch.obj);
676 err:
677 	return ret;
678 }
679 
680 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
681 {
682 	struct intel_engine_cs *engine = req->engine;
683 	struct i915_workarounds *w = &req->i915->workarounds;
684 	int ret, i;
685 
686 	if (w->count == 0)
687 		return 0;
688 
689 	engine->gpu_caches_dirty = true;
690 	ret = intel_ring_flush_all_caches(req);
691 	if (ret)
692 		return ret;
693 
694 	ret = intel_ring_begin(req, (w->count * 2 + 2));
695 	if (ret)
696 		return ret;
697 
698 	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
699 	for (i = 0; i < w->count; i++) {
700 		intel_ring_emit_reg(engine, w->reg[i].addr);
701 		intel_ring_emit(engine, w->reg[i].value);
702 	}
703 	intel_ring_emit(engine, MI_NOOP);
704 
705 	intel_ring_advance(engine);
706 
707 	engine->gpu_caches_dirty = true;
708 	ret = intel_ring_flush_all_caches(req);
709 	if (ret)
710 		return ret;
711 
712 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
713 
714 	return 0;
715 }
716 
717 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
718 {
719 	int ret;
720 
721 	ret = intel_ring_workarounds_emit(req);
722 	if (ret != 0)
723 		return ret;
724 
725 	ret = i915_gem_render_state_init(req);
726 	if (ret)
727 		return ret;
728 
729 	return 0;
730 }
731 
732 static int wa_add(struct drm_i915_private *dev_priv,
733 		  i915_reg_t addr,
734 		  const u32 mask, const u32 val)
735 {
736 	const u32 idx = dev_priv->workarounds.count;
737 
738 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
739 		return -ENOSPC;
740 
741 	dev_priv->workarounds.reg[idx].addr = addr;
742 	dev_priv->workarounds.reg[idx].value = val;
743 	dev_priv->workarounds.reg[idx].mask = mask;
744 
745 	dev_priv->workarounds.count++;
746 
747 	return 0;
748 }
749 
750 #define WA_REG(addr, mask, val) do { \
751 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
752 		if (r) \
753 			return r; \
754 	} while (0)
755 
756 #define WA_SET_BIT_MASKED(addr, mask) \
757 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
758 
759 #define WA_CLR_BIT_MASKED(addr, mask) \
760 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
761 
762 #define WA_SET_FIELD_MASKED(addr, mask, value) \
763 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
764 
765 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
766 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
767 
768 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
769 
770 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
771 				 i915_reg_t reg)
772 {
773 	struct drm_i915_private *dev_priv = engine->i915;
774 	struct i915_workarounds *wa = &dev_priv->workarounds;
775 	const uint32_t index = wa->hw_whitelist_count[engine->id];
776 
777 	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
778 		return -EINVAL;
779 
780 	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
781 		 i915_mmio_reg_offset(reg));
782 	wa->hw_whitelist_count[engine->id]++;
783 
784 	return 0;
785 }
786 
787 static int gen8_init_workarounds(struct intel_engine_cs *engine)
788 {
789 	struct drm_i915_private *dev_priv = engine->i915;
790 
791 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
792 
793 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
794 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
795 
796 	/* WaDisablePartialInstShootdown:bdw,chv */
797 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
798 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
799 
800 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
801 	 * workaround for for a possible hang in the unlikely event a TLB
802 	 * invalidation occurs during a PSD flush.
803 	 */
804 	/* WaForceEnableNonCoherent:bdw,chv */
805 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
806 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
807 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
808 			  HDC_FORCE_NON_COHERENT);
809 
810 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
811 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
812 	 *  polygons in the same 8x4 pixel/sample area to be processed without
813 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
814 	 *  buffer."
815 	 *
816 	 * This optimization is off by default for BDW and CHV; turn it on.
817 	 */
818 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
819 
820 	/* Wa4x4STCOptimizationDisable:bdw,chv */
821 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
822 
823 	/*
824 	 * BSpec recommends 8x4 when MSAA is used,
825 	 * however in practice 16x4 seems fastest.
826 	 *
827 	 * Note that PS/WM thread counts depend on the WIZ hashing
828 	 * disable bit, which we don't touch here, but it's good
829 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
830 	 */
831 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
832 			    GEN6_WIZ_HASHING_MASK,
833 			    GEN6_WIZ_HASHING_16x4);
834 
835 	return 0;
836 }
837 
838 static int bdw_init_workarounds(struct intel_engine_cs *engine)
839 {
840 	struct drm_i915_private *dev_priv = engine->i915;
841 	int ret;
842 
843 	ret = gen8_init_workarounds(engine);
844 	if (ret)
845 		return ret;
846 
847 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
848 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
849 
850 	/* WaDisableDopClockGating:bdw */
851 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
852 			  DOP_CLOCK_GATING_DISABLE);
853 
854 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
855 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
856 
857 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
858 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
859 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
860 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
861 			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
862 
863 	return 0;
864 }
865 
866 static int chv_init_workarounds(struct intel_engine_cs *engine)
867 {
868 	struct drm_i915_private *dev_priv = engine->i915;
869 	int ret;
870 
871 	ret = gen8_init_workarounds(engine);
872 	if (ret)
873 		return ret;
874 
875 	/* WaDisableThreadStallDopClockGating:chv */
876 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
877 
878 	/* Improve HiZ throughput on CHV. */
879 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
880 
881 	return 0;
882 }
883 
884 static int gen9_init_workarounds(struct intel_engine_cs *engine)
885 {
886 	struct drm_i915_private *dev_priv = engine->i915;
887 	int ret;
888 
889 	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
890 	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
891 
892 	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
893 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
894 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
895 
896 	/* WaDisableKillLogic:bxt,skl,kbl */
897 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
898 		   ECOCHK_DIS_TLB);
899 
900 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
901 	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
902 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
903 			  FLOW_CONTROL_ENABLE |
904 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
905 
906 	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
907 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
908 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
909 
910 	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
911 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
912 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
913 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
914 				  GEN9_DG_MIRROR_FIX_ENABLE);
915 
916 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
917 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
918 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
919 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
920 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
921 		/*
922 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
923 		 * but we do that in per ctx batchbuffer as there is an issue
924 		 * with this register not getting restored on ctx restore
925 		 */
926 	}
927 
928 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
929 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
930 	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
931 			  GEN9_ENABLE_YV12_BUGFIX |
932 			  GEN9_ENABLE_GPGPU_PREEMPTION);
933 
934 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
935 	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
936 	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
937 					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
938 
939 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
940 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
941 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
942 
943 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
944 	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
945 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
946 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
947 				  PIXEL_MASK_CAMMING_DISABLE);
948 
949 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
950 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
951 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
952 			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
953 
954 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
955 	 * both tied to WaForceContextSaveRestoreNonCoherent
956 	 * in some hsds for skl. We keep the tie for all gen9. The
957 	 * documentation is a bit hazy and so we want to get common behaviour,
958 	 * even though there is no clear evidence we would need both on kbl/bxt.
959 	 * This area has been source of system hangs so we play it safe
960 	 * and mimic the skl regardless of what bspec says.
961 	 *
962 	 * Use Force Non-Coherent whenever executing a 3D context. This
963 	 * is a workaround for a possible hang in the unlikely event
964 	 * a TLB invalidation occurs during a PSD flush.
965 	 */
966 
967 	/* WaForceEnableNonCoherent:skl,bxt,kbl */
968 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
969 			  HDC_FORCE_NON_COHERENT);
970 
971 	/* WaDisableHDCInvalidation:skl,bxt,kbl */
972 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
973 		   BDW_DISABLE_HDC_INVALIDATION);
974 
975 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
976 	if (IS_SKYLAKE(dev_priv) ||
977 	    IS_KABYLAKE(dev_priv) ||
978 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
979 		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
980 				  GEN8_SAMPLER_POWER_BYPASS_DIS);
981 
982 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
983 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
984 
985 	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
986 	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
987 				    GEN8_LQSC_FLUSH_COHERENT_LINES));
988 
989 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
990 	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
991 	if (ret)
992 		return ret;
993 
994 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
995 	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
996 	if (ret)
997 		return ret;
998 
999 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1000 	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1001 	if (ret)
1002 		return ret;
1003 
1004 	return 0;
1005 }
1006 
1007 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1008 {
1009 	struct drm_i915_private *dev_priv = engine->i915;
1010 	u8 vals[3] = { 0, 0, 0 };
1011 	unsigned int i;
1012 
1013 	for (i = 0; i < 3; i++) {
1014 		u8 ss;
1015 
1016 		/*
1017 		 * Only consider slices where one, and only one, subslice has 7
1018 		 * EUs
1019 		 */
1020 		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1021 			continue;
1022 
1023 		/*
1024 		 * subslice_7eu[i] != 0 (because of the check above) and
1025 		 * ss_max == 4 (maximum number of subslices possible per slice)
1026 		 *
1027 		 * ->    0 <= ss <= 3;
1028 		 */
1029 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1030 		vals[i] = 3 - ss;
1031 	}
1032 
1033 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1034 		return 0;
1035 
1036 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1037 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1038 			    GEN9_IZ_HASHING_MASK(2) |
1039 			    GEN9_IZ_HASHING_MASK(1) |
1040 			    GEN9_IZ_HASHING_MASK(0),
1041 			    GEN9_IZ_HASHING(2, vals[2]) |
1042 			    GEN9_IZ_HASHING(1, vals[1]) |
1043 			    GEN9_IZ_HASHING(0, vals[0]));
1044 
1045 	return 0;
1046 }
1047 
1048 static int skl_init_workarounds(struct intel_engine_cs *engine)
1049 {
1050 	struct drm_i915_private *dev_priv = engine->i915;
1051 	int ret;
1052 
1053 	ret = gen9_init_workarounds(engine);
1054 	if (ret)
1055 		return ret;
1056 
1057 	/*
1058 	 * Actual WA is to disable percontext preemption granularity control
1059 	 * until D0 which is the default case so this is equivalent to
1060 	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1061 	 */
1062 	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1063 		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1064 			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1065 	}
1066 
1067 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1068 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1069 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1070 			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1071 	}
1072 
1073 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1074 	 * involving this register should also be added to WA batch as required.
1075 	 */
1076 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1077 		/* WaDisableLSQCROPERFforOCL:skl */
1078 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1079 			   GEN8_LQSC_RO_PERF_DIS);
1080 
1081 	/* WaEnableGapsTsvCreditFix:skl */
1082 	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1083 		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1084 					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1085 	}
1086 
1087 	/* WaDisablePowerCompilerClockGating:skl */
1088 	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1089 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1090 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1091 
1092 	/* WaBarrierPerformanceFixDisable:skl */
1093 	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1094 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1095 				  HDC_FENCE_DEST_SLM_DISABLE |
1096 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1097 
1098 	/* WaDisableSbeCacheDispatchPortSharing:skl */
1099 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1100 		WA_SET_BIT_MASKED(
1101 			GEN7_HALF_SLICE_CHICKEN1,
1102 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1103 
1104 	/* WaDisableGafsUnitClkGating:skl */
1105 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1106 
1107 	/* WaInPlaceDecompressionHang:skl */
1108 	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1109 		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1110 			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1111 
1112 	/* WaDisableLSQCROPERFforOCL:skl */
1113 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1114 	if (ret)
1115 		return ret;
1116 
1117 	return skl_tune_iz_hashing(engine);
1118 }
1119 
1120 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1121 {
1122 	struct drm_i915_private *dev_priv = engine->i915;
1123 	int ret;
1124 
1125 	ret = gen9_init_workarounds(engine);
1126 	if (ret)
1127 		return ret;
1128 
1129 	/* WaStoreMultiplePTEenable:bxt */
1130 	/* This is a requirement according to Hardware specification */
1131 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1132 		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1133 
1134 	/* WaSetClckGatingDisableMedia:bxt */
1135 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1136 		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1137 					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1138 	}
1139 
1140 	/* WaDisableThreadStallDopClockGating:bxt */
1141 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1142 			  STALL_DOP_GATING_DISABLE);
1143 
1144 	/* WaDisablePooledEuLoadBalancingFix:bxt */
1145 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1146 		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1147 				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1148 	}
1149 
1150 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1151 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1152 		WA_SET_BIT_MASKED(
1153 			GEN7_HALF_SLICE_CHICKEN1,
1154 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1155 	}
1156 
1157 	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1158 	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1159 	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1160 	/* WaDisableLSQCROPERFforOCL:bxt */
1161 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1162 		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1163 		if (ret)
1164 			return ret;
1165 
1166 		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1167 		if (ret)
1168 			return ret;
1169 	}
1170 
1171 	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1172 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1173 		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1174 					   L3_HIGH_PRIO_CREDITS(2));
1175 
1176 	/* WaToEnableHwFixForPushConstHWBug:bxt */
1177 	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1178 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1179 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1180 
1181 	/* WaInPlaceDecompressionHang:bxt */
1182 	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1183 		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1184 			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1185 
1186 	return 0;
1187 }
1188 
1189 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1190 {
1191 	struct drm_i915_private *dev_priv = engine->i915;
1192 	int ret;
1193 
1194 	ret = gen9_init_workarounds(engine);
1195 	if (ret)
1196 		return ret;
1197 
1198 	/* WaEnableGapsTsvCreditFix:kbl */
1199 	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1200 				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1201 
1202 	/* WaDisableDynamicCreditSharing:kbl */
1203 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1204 		WA_SET_BIT(GAMT_CHKN_BIT_REG,
1205 			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1206 
1207 	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1208 	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1209 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1210 				  HDC_FENCE_DEST_SLM_DISABLE);
1211 
1212 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1213 	 * involving this register should also be added to WA batch as required.
1214 	 */
1215 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1216 		/* WaDisableLSQCROPERFforOCL:kbl */
1217 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1218 			   GEN8_LQSC_RO_PERF_DIS);
1219 
1220 	/* WaToEnableHwFixForPushConstHWBug:kbl */
1221 	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1222 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1223 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1224 
1225 	/* WaDisableGafsUnitClkGating:kbl */
1226 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1227 
1228 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
1229 	WA_SET_BIT_MASKED(
1230 		GEN7_HALF_SLICE_CHICKEN1,
1231 		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1232 
1233 	/* WaInPlaceDecompressionHang:kbl */
1234 	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1235 		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1236 
1237 	/* WaDisableLSQCROPERFforOCL:kbl */
1238 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1239 	if (ret)
1240 		return ret;
1241 
1242 	return 0;
1243 }
1244 
1245 int init_workarounds_ring(struct intel_engine_cs *engine)
1246 {
1247 	struct drm_i915_private *dev_priv = engine->i915;
1248 
1249 	WARN_ON(engine->id != RCS);
1250 
1251 	dev_priv->workarounds.count = 0;
1252 	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1253 
1254 	if (IS_BROADWELL(dev_priv))
1255 		return bdw_init_workarounds(engine);
1256 
1257 	if (IS_CHERRYVIEW(dev_priv))
1258 		return chv_init_workarounds(engine);
1259 
1260 	if (IS_SKYLAKE(dev_priv))
1261 		return skl_init_workarounds(engine);
1262 
1263 	if (IS_BROXTON(dev_priv))
1264 		return bxt_init_workarounds(engine);
1265 
1266 	if (IS_KABYLAKE(dev_priv))
1267 		return kbl_init_workarounds(engine);
1268 
1269 	return 0;
1270 }
1271 
1272 static int init_render_ring(struct intel_engine_cs *engine)
1273 {
1274 	struct drm_i915_private *dev_priv = engine->i915;
1275 	int ret = init_ring_common(engine);
1276 	if (ret)
1277 		return ret;
1278 
1279 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1280 	if (IS_GEN(dev_priv, 4, 6))
1281 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1282 
1283 	/* We need to disable the AsyncFlip performance optimisations in order
1284 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1285 	 * programmed to '1' on all products.
1286 	 *
1287 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1288 	 */
1289 	if (IS_GEN(dev_priv, 6, 7))
1290 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1291 
1292 	/* Required for the hardware to program scanline values for waiting */
1293 	/* WaEnableFlushTlbInvalidationMode:snb */
1294 	if (IS_GEN6(dev_priv))
1295 		I915_WRITE(GFX_MODE,
1296 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1297 
1298 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1299 	if (IS_GEN7(dev_priv))
1300 		I915_WRITE(GFX_MODE_GEN7,
1301 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1302 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1303 
1304 	if (IS_GEN6(dev_priv)) {
1305 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1306 		 * "If this bit is set, STCunit will have LRA as replacement
1307 		 *  policy. [...] This bit must be reset.  LRA replacement
1308 		 *  policy is not supported."
1309 		 */
1310 		I915_WRITE(CACHE_MODE_0,
1311 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1312 	}
1313 
1314 	if (IS_GEN(dev_priv, 6, 7))
1315 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1316 
1317 	if (INTEL_INFO(dev_priv)->gen >= 6)
1318 		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1319 
1320 	return init_workarounds_ring(engine);
1321 }
1322 
1323 static void render_ring_cleanup(struct intel_engine_cs *engine)
1324 {
1325 	struct drm_i915_private *dev_priv = engine->i915;
1326 
1327 	if (dev_priv->semaphore_obj) {
1328 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1329 		i915_gem_object_put(dev_priv->semaphore_obj);
1330 		dev_priv->semaphore_obj = NULL;
1331 	}
1332 
1333 	intel_fini_pipe_control(engine);
1334 }
1335 
1336 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1337 			   unsigned int num_dwords)
1338 {
1339 #define MBOX_UPDATE_DWORDS 8
1340 	struct intel_engine_cs *signaller = signaller_req->engine;
1341 	struct drm_i915_private *dev_priv = signaller_req->i915;
1342 	struct intel_engine_cs *waiter;
1343 	enum intel_engine_id id;
1344 	int ret, num_rings;
1345 
1346 	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1347 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1348 #undef MBOX_UPDATE_DWORDS
1349 
1350 	ret = intel_ring_begin(signaller_req, num_dwords);
1351 	if (ret)
1352 		return ret;
1353 
1354 	for_each_engine_id(waiter, dev_priv, id) {
1355 		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1356 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1357 			continue;
1358 
1359 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1360 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1361 					   PIPE_CONTROL_QW_WRITE |
1362 					   PIPE_CONTROL_CS_STALL);
1363 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1364 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1365 		intel_ring_emit(signaller, signaller_req->fence.seqno);
1366 		intel_ring_emit(signaller, 0);
1367 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1368 					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1369 		intel_ring_emit(signaller, 0);
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1376 			   unsigned int num_dwords)
1377 {
1378 #define MBOX_UPDATE_DWORDS 6
1379 	struct intel_engine_cs *signaller = signaller_req->engine;
1380 	struct drm_i915_private *dev_priv = signaller_req->i915;
1381 	struct intel_engine_cs *waiter;
1382 	enum intel_engine_id id;
1383 	int ret, num_rings;
1384 
1385 	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1386 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1387 #undef MBOX_UPDATE_DWORDS
1388 
1389 	ret = intel_ring_begin(signaller_req, num_dwords);
1390 	if (ret)
1391 		return ret;
1392 
1393 	for_each_engine_id(waiter, dev_priv, id) {
1394 		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1395 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1396 			continue;
1397 
1398 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1399 					   MI_FLUSH_DW_OP_STOREDW);
1400 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1401 					   MI_FLUSH_DW_USE_GTT);
1402 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1403 		intel_ring_emit(signaller, signaller_req->fence.seqno);
1404 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1405 					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1406 		intel_ring_emit(signaller, 0);
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1413 		       unsigned int num_dwords)
1414 {
1415 	struct intel_engine_cs *signaller = signaller_req->engine;
1416 	struct drm_i915_private *dev_priv = signaller_req->i915;
1417 	struct intel_engine_cs *useless;
1418 	enum intel_engine_id id;
1419 	int ret, num_rings;
1420 
1421 #define MBOX_UPDATE_DWORDS 3
1422 	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1423 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1424 #undef MBOX_UPDATE_DWORDS
1425 
1426 	ret = intel_ring_begin(signaller_req, num_dwords);
1427 	if (ret)
1428 		return ret;
1429 
1430 	for_each_engine_id(useless, dev_priv, id) {
1431 		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1432 
1433 		if (i915_mmio_reg_valid(mbox_reg)) {
1434 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1435 			intel_ring_emit_reg(signaller, mbox_reg);
1436 			intel_ring_emit(signaller, signaller_req->fence.seqno);
1437 		}
1438 	}
1439 
1440 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1441 	if (num_rings % 2 == 0)
1442 		intel_ring_emit(signaller, MI_NOOP);
1443 
1444 	return 0;
1445 }
1446 
1447 /**
1448  * gen6_add_request - Update the semaphore mailbox registers
1449  *
1450  * @request - request to write to the ring
1451  *
1452  * Update the mailbox registers in the *other* rings with the current seqno.
1453  * This acts like a signal in the canonical semaphore.
1454  */
1455 static int
1456 gen6_add_request(struct drm_i915_gem_request *req)
1457 {
1458 	struct intel_engine_cs *engine = req->engine;
1459 	int ret;
1460 
1461 	if (engine->semaphore.signal)
1462 		ret = engine->semaphore.signal(req, 4);
1463 	else
1464 		ret = intel_ring_begin(req, 4);
1465 
1466 	if (ret)
1467 		return ret;
1468 
1469 	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1470 	intel_ring_emit(engine,
1471 			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1472 	intel_ring_emit(engine, req->fence.seqno);
1473 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1474 	__intel_ring_advance(engine);
1475 
1476 	return 0;
1477 }
1478 
1479 static int
1480 gen8_render_add_request(struct drm_i915_gem_request *req)
1481 {
1482 	struct intel_engine_cs *engine = req->engine;
1483 	int ret;
1484 
1485 	if (engine->semaphore.signal)
1486 		ret = engine->semaphore.signal(req, 8);
1487 	else
1488 		ret = intel_ring_begin(req, 8);
1489 	if (ret)
1490 		return ret;
1491 
1492 	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1493 	intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1494 				 PIPE_CONTROL_CS_STALL |
1495 				 PIPE_CONTROL_QW_WRITE));
1496 	intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1497 	intel_ring_emit(engine, 0);
1498 	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1499 	/* We're thrashing one dword of HWS. */
1500 	intel_ring_emit(engine, 0);
1501 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1502 	intel_ring_emit(engine, MI_NOOP);
1503 	__intel_ring_advance(engine);
1504 
1505 	return 0;
1506 }
1507 
1508 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1509 					      u32 seqno)
1510 {
1511 	return dev_priv->last_seqno < seqno;
1512 }
1513 
1514 /**
1515  * intel_ring_sync - sync the waiter to the signaller on seqno
1516  *
1517  * @waiter - ring that is waiting
1518  * @signaller - ring which has, or will signal
1519  * @seqno - seqno which the waiter will block on
1520  */
1521 
1522 static int
1523 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1524 	       struct intel_engine_cs *signaller,
1525 	       u32 seqno)
1526 {
1527 	struct intel_engine_cs *waiter = waiter_req->engine;
1528 	struct drm_i915_private *dev_priv = waiter_req->i915;
1529 	u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1530 	struct i915_hw_ppgtt *ppgtt;
1531 	int ret;
1532 
1533 	ret = intel_ring_begin(waiter_req, 4);
1534 	if (ret)
1535 		return ret;
1536 
1537 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1538 				MI_SEMAPHORE_GLOBAL_GTT |
1539 				MI_SEMAPHORE_SAD_GTE_SDD);
1540 	intel_ring_emit(waiter, seqno);
1541 	intel_ring_emit(waiter, lower_32_bits(offset));
1542 	intel_ring_emit(waiter, upper_32_bits(offset));
1543 	intel_ring_advance(waiter);
1544 
1545 	/* When the !RCS engines idle waiting upon a semaphore, they lose their
1546 	 * pagetables and we must reload them before executing the batch.
1547 	 * We do this on the i915_switch_context() following the wait and
1548 	 * before the dispatch.
1549 	 */
1550 	ppgtt = waiter_req->ctx->ppgtt;
1551 	if (ppgtt && waiter_req->engine->id != RCS)
1552 		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1553 	return 0;
1554 }
1555 
1556 static int
1557 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1558 	       struct intel_engine_cs *signaller,
1559 	       u32 seqno)
1560 {
1561 	struct intel_engine_cs *waiter = waiter_req->engine;
1562 	u32 dw1 = MI_SEMAPHORE_MBOX |
1563 		  MI_SEMAPHORE_COMPARE |
1564 		  MI_SEMAPHORE_REGISTER;
1565 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1566 	int ret;
1567 
1568 	/* Throughout all of the GEM code, seqno passed implies our current
1569 	 * seqno is >= the last seqno executed. However for hardware the
1570 	 * comparison is strictly greater than.
1571 	 */
1572 	seqno -= 1;
1573 
1574 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1575 
1576 	ret = intel_ring_begin(waiter_req, 4);
1577 	if (ret)
1578 		return ret;
1579 
1580 	/* If seqno wrap happened, omit the wait with no-ops */
1581 	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1582 		intel_ring_emit(waiter, dw1 | wait_mbox);
1583 		intel_ring_emit(waiter, seqno);
1584 		intel_ring_emit(waiter, 0);
1585 		intel_ring_emit(waiter, MI_NOOP);
1586 	} else {
1587 		intel_ring_emit(waiter, MI_NOOP);
1588 		intel_ring_emit(waiter, MI_NOOP);
1589 		intel_ring_emit(waiter, MI_NOOP);
1590 		intel_ring_emit(waiter, MI_NOOP);
1591 	}
1592 	intel_ring_advance(waiter);
1593 
1594 	return 0;
1595 }
1596 
1597 static void
1598 gen5_seqno_barrier(struct intel_engine_cs *engine)
1599 {
1600 	/* MI_STORE are internally buffered by the GPU and not flushed
1601 	 * either by MI_FLUSH or SyncFlush or any other combination of
1602 	 * MI commands.
1603 	 *
1604 	 * "Only the submission of the store operation is guaranteed.
1605 	 * The write result will be complete (coherent) some time later
1606 	 * (this is practically a finite period but there is no guaranteed
1607 	 * latency)."
1608 	 *
1609 	 * Empirically, we observe that we need a delay of at least 75us to
1610 	 * be sure that the seqno write is visible by the CPU.
1611 	 */
1612 	usleep_range(125, 250);
1613 }
1614 
1615 static void
1616 gen6_seqno_barrier(struct intel_engine_cs *engine)
1617 {
1618 	struct drm_i915_private *dev_priv = engine->i915;
1619 
1620 	/* Workaround to force correct ordering between irq and seqno writes on
1621 	 * ivb (and maybe also on snb) by reading from a CS register (like
1622 	 * ACTHD) before reading the status page.
1623 	 *
1624 	 * Note that this effectively stalls the read by the time it takes to
1625 	 * do a memory transaction, which more or less ensures that the write
1626 	 * from the GPU has sufficient time to invalidate the CPU cacheline.
1627 	 * Alternatively we could delay the interrupt from the CS ring to give
1628 	 * the write time to land, but that would incur a delay after every
1629 	 * batch i.e. much more frequent than a delay when waiting for the
1630 	 * interrupt (with the same net latency).
1631 	 *
1632 	 * Also note that to prevent whole machine hangs on gen7, we have to
1633 	 * take the spinlock to guard against concurrent cacheline access.
1634 	 */
1635 	spin_lock_irq(&dev_priv->uncore.lock);
1636 	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1637 	spin_unlock_irq(&dev_priv->uncore.lock);
1638 }
1639 
1640 static void
1641 gen5_irq_enable(struct intel_engine_cs *engine)
1642 {
1643 	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1644 }
1645 
1646 static void
1647 gen5_irq_disable(struct intel_engine_cs *engine)
1648 {
1649 	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1650 }
1651 
1652 static void
1653 i9xx_irq_enable(struct intel_engine_cs *engine)
1654 {
1655 	struct drm_i915_private *dev_priv = engine->i915;
1656 
1657 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1658 	I915_WRITE(IMR, dev_priv->irq_mask);
1659 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1660 }
1661 
1662 static void
1663 i9xx_irq_disable(struct intel_engine_cs *engine)
1664 {
1665 	struct drm_i915_private *dev_priv = engine->i915;
1666 
1667 	dev_priv->irq_mask |= engine->irq_enable_mask;
1668 	I915_WRITE(IMR, dev_priv->irq_mask);
1669 }
1670 
1671 static void
1672 i8xx_irq_enable(struct intel_engine_cs *engine)
1673 {
1674 	struct drm_i915_private *dev_priv = engine->i915;
1675 
1676 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1677 	I915_WRITE16(IMR, dev_priv->irq_mask);
1678 	POSTING_READ16(RING_IMR(engine->mmio_base));
1679 }
1680 
1681 static void
1682 i8xx_irq_disable(struct intel_engine_cs *engine)
1683 {
1684 	struct drm_i915_private *dev_priv = engine->i915;
1685 
1686 	dev_priv->irq_mask |= engine->irq_enable_mask;
1687 	I915_WRITE16(IMR, dev_priv->irq_mask);
1688 }
1689 
1690 static int
1691 bsd_ring_flush(struct drm_i915_gem_request *req,
1692 	       u32     invalidate_domains,
1693 	       u32     flush_domains)
1694 {
1695 	struct intel_engine_cs *engine = req->engine;
1696 	int ret;
1697 
1698 	ret = intel_ring_begin(req, 2);
1699 	if (ret)
1700 		return ret;
1701 
1702 	intel_ring_emit(engine, MI_FLUSH);
1703 	intel_ring_emit(engine, MI_NOOP);
1704 	intel_ring_advance(engine);
1705 	return 0;
1706 }
1707 
1708 static int
1709 i9xx_add_request(struct drm_i915_gem_request *req)
1710 {
1711 	struct intel_engine_cs *engine = req->engine;
1712 	int ret;
1713 
1714 	ret = intel_ring_begin(req, 4);
1715 	if (ret)
1716 		return ret;
1717 
1718 	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1719 	intel_ring_emit(engine,
1720 			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1721 	intel_ring_emit(engine, req->fence.seqno);
1722 	intel_ring_emit(engine, MI_USER_INTERRUPT);
1723 	__intel_ring_advance(engine);
1724 
1725 	return 0;
1726 }
1727 
1728 static void
1729 gen6_irq_enable(struct intel_engine_cs *engine)
1730 {
1731 	struct drm_i915_private *dev_priv = engine->i915;
1732 
1733 	I915_WRITE_IMR(engine,
1734 		       ~(engine->irq_enable_mask |
1735 			 engine->irq_keep_mask));
1736 	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1737 }
1738 
1739 static void
1740 gen6_irq_disable(struct intel_engine_cs *engine)
1741 {
1742 	struct drm_i915_private *dev_priv = engine->i915;
1743 
1744 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1745 	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1746 }
1747 
1748 static void
1749 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1750 {
1751 	struct drm_i915_private *dev_priv = engine->i915;
1752 
1753 	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1754 	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1755 }
1756 
1757 static void
1758 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1759 {
1760 	struct drm_i915_private *dev_priv = engine->i915;
1761 
1762 	I915_WRITE_IMR(engine, ~0);
1763 	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1764 }
1765 
1766 static void
1767 gen8_irq_enable(struct intel_engine_cs *engine)
1768 {
1769 	struct drm_i915_private *dev_priv = engine->i915;
1770 
1771 	I915_WRITE_IMR(engine,
1772 		       ~(engine->irq_enable_mask |
1773 			 engine->irq_keep_mask));
1774 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1775 }
1776 
1777 static void
1778 gen8_irq_disable(struct intel_engine_cs *engine)
1779 {
1780 	struct drm_i915_private *dev_priv = engine->i915;
1781 
1782 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1783 }
1784 
1785 static int
1786 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1787 			 u64 offset, u32 length,
1788 			 unsigned dispatch_flags)
1789 {
1790 	struct intel_engine_cs *engine = req->engine;
1791 	int ret;
1792 
1793 	ret = intel_ring_begin(req, 2);
1794 	if (ret)
1795 		return ret;
1796 
1797 	intel_ring_emit(engine,
1798 			MI_BATCH_BUFFER_START |
1799 			MI_BATCH_GTT |
1800 			(dispatch_flags & I915_DISPATCH_SECURE ?
1801 			 0 : MI_BATCH_NON_SECURE_I965));
1802 	intel_ring_emit(engine, offset);
1803 	intel_ring_advance(engine);
1804 
1805 	return 0;
1806 }
1807 
1808 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1809 #define I830_BATCH_LIMIT (256*1024)
1810 #define I830_TLB_ENTRIES (2)
1811 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1812 static int
1813 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1814 			 u64 offset, u32 len,
1815 			 unsigned dispatch_flags)
1816 {
1817 	struct intel_engine_cs *engine = req->engine;
1818 	u32 cs_offset = engine->scratch.gtt_offset;
1819 	int ret;
1820 
1821 	ret = intel_ring_begin(req, 6);
1822 	if (ret)
1823 		return ret;
1824 
1825 	/* Evict the invalid PTE TLBs */
1826 	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1827 	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1828 	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1829 	intel_ring_emit(engine, cs_offset);
1830 	intel_ring_emit(engine, 0xdeadbeef);
1831 	intel_ring_emit(engine, MI_NOOP);
1832 	intel_ring_advance(engine);
1833 
1834 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1835 		if (len > I830_BATCH_LIMIT)
1836 			return -ENOSPC;
1837 
1838 		ret = intel_ring_begin(req, 6 + 2);
1839 		if (ret)
1840 			return ret;
1841 
1842 		/* Blit the batch (which has now all relocs applied) to the
1843 		 * stable batch scratch bo area (so that the CS never
1844 		 * stumbles over its tlb invalidation bug) ...
1845 		 */
1846 		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1847 		intel_ring_emit(engine,
1848 				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1849 		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1850 		intel_ring_emit(engine, cs_offset);
1851 		intel_ring_emit(engine, 4096);
1852 		intel_ring_emit(engine, offset);
1853 
1854 		intel_ring_emit(engine, MI_FLUSH);
1855 		intel_ring_emit(engine, MI_NOOP);
1856 		intel_ring_advance(engine);
1857 
1858 		/* ... and execute it. */
1859 		offset = cs_offset;
1860 	}
1861 
1862 	ret = intel_ring_begin(req, 2);
1863 	if (ret)
1864 		return ret;
1865 
1866 	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1867 	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1868 					  0 : MI_BATCH_NON_SECURE));
1869 	intel_ring_advance(engine);
1870 
1871 	return 0;
1872 }
1873 
1874 static int
1875 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1876 			 u64 offset, u32 len,
1877 			 unsigned dispatch_flags)
1878 {
1879 	struct intel_engine_cs *engine = req->engine;
1880 	int ret;
1881 
1882 	ret = intel_ring_begin(req, 2);
1883 	if (ret)
1884 		return ret;
1885 
1886 	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1887 	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1888 					  0 : MI_BATCH_NON_SECURE));
1889 	intel_ring_advance(engine);
1890 
1891 	return 0;
1892 }
1893 
1894 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1895 {
1896 	struct drm_i915_private *dev_priv = engine->i915;
1897 
1898 	if (!dev_priv->status_page_dmah)
1899 		return;
1900 
1901 	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1902 	engine->status_page.page_addr = NULL;
1903 }
1904 
1905 static void cleanup_status_page(struct intel_engine_cs *engine)
1906 {
1907 	struct drm_i915_gem_object *obj;
1908 
1909 	obj = engine->status_page.obj;
1910 	if (obj == NULL)
1911 		return;
1912 
1913 	kunmap(sg_page(obj->pages->sgl));
1914 	i915_gem_object_ggtt_unpin(obj);
1915 	i915_gem_object_put(obj);
1916 	engine->status_page.obj = NULL;
1917 }
1918 
1919 static int init_status_page(struct intel_engine_cs *engine)
1920 {
1921 	struct drm_i915_gem_object *obj = engine->status_page.obj;
1922 
1923 	if (obj == NULL) {
1924 		unsigned flags;
1925 		int ret;
1926 
1927 		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1928 		if (IS_ERR(obj)) {
1929 			DRM_ERROR("Failed to allocate status page\n");
1930 			return PTR_ERR(obj);
1931 		}
1932 
1933 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1934 		if (ret)
1935 			goto err_unref;
1936 
1937 		flags = 0;
1938 		if (!HAS_LLC(engine->i915))
1939 			/* On g33, we cannot place HWS above 256MiB, so
1940 			 * restrict its pinning to the low mappable arena.
1941 			 * Though this restriction is not documented for
1942 			 * gen4, gen5, or byt, they also behave similarly
1943 			 * and hang if the HWS is placed at the top of the
1944 			 * GTT. To generalise, it appears that all !llc
1945 			 * platforms have issues with us placing the HWS
1946 			 * above the mappable region (even though we never
1947 			 * actualy map it).
1948 			 */
1949 			flags |= PIN_MAPPABLE;
1950 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1951 		if (ret) {
1952 err_unref:
1953 			i915_gem_object_put(obj);
1954 			return ret;
1955 		}
1956 
1957 		engine->status_page.obj = obj;
1958 	}
1959 
1960 	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1961 	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1962 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1963 
1964 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1965 			engine->name, engine->status_page.gfx_addr);
1966 
1967 	return 0;
1968 }
1969 
1970 static int init_phys_status_page(struct intel_engine_cs *engine)
1971 {
1972 	struct drm_i915_private *dev_priv = engine->i915;
1973 
1974 	if (!dev_priv->status_page_dmah) {
1975 		dev_priv->status_page_dmah =
1976 			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1977 		if (!dev_priv->status_page_dmah)
1978 			return -ENOMEM;
1979 	}
1980 
1981 	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1982 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1983 
1984 	return 0;
1985 }
1986 
1987 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1988 {
1989 	GEM_BUG_ON(!ringbuf->vma);
1990 	GEM_BUG_ON(!ringbuf->vaddr);
1991 
1992 	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1993 		i915_gem_object_unpin_map(ringbuf->obj);
1994 	else
1995 		i915_vma_unpin_iomap(ringbuf->vma);
1996 	ringbuf->vaddr = NULL;
1997 
1998 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1999 	ringbuf->vma = NULL;
2000 }
2001 
2002 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2003 				     struct intel_ringbuffer *ringbuf)
2004 {
2005 	struct drm_i915_gem_object *obj = ringbuf->obj;
2006 	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2007 	unsigned flags = PIN_OFFSET_BIAS | 4096;
2008 	void *addr;
2009 	int ret;
2010 
2011 	if (HAS_LLC(dev_priv) && !obj->stolen) {
2012 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2013 		if (ret)
2014 			return ret;
2015 
2016 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2017 		if (ret)
2018 			goto err_unpin;
2019 
2020 		addr = i915_gem_object_pin_map(obj);
2021 		if (IS_ERR(addr)) {
2022 			ret = PTR_ERR(addr);
2023 			goto err_unpin;
2024 		}
2025 	} else {
2026 		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2027 					    flags | PIN_MAPPABLE);
2028 		if (ret)
2029 			return ret;
2030 
2031 		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2032 		if (ret)
2033 			goto err_unpin;
2034 
2035 		/* Access through the GTT requires the device to be awake. */
2036 		assert_rpm_wakelock_held(dev_priv);
2037 
2038 		addr = (void __force *)
2039 			i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2040 		if (IS_ERR(addr)) {
2041 			ret = PTR_ERR(addr);
2042 			goto err_unpin;
2043 		}
2044 	}
2045 
2046 	ringbuf->vaddr = addr;
2047 	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2048 	return 0;
2049 
2050 err_unpin:
2051 	i915_gem_object_ggtt_unpin(obj);
2052 	return ret;
2053 }
2054 
2055 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2056 {
2057 	i915_gem_object_put(ringbuf->obj);
2058 	ringbuf->obj = NULL;
2059 }
2060 
2061 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2062 				      struct intel_ringbuffer *ringbuf)
2063 {
2064 	struct drm_i915_gem_object *obj;
2065 
2066 	obj = NULL;
2067 	if (!HAS_LLC(dev))
2068 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2069 	if (obj == NULL)
2070 		obj = i915_gem_object_create(dev, ringbuf->size);
2071 	if (IS_ERR(obj))
2072 		return PTR_ERR(obj);
2073 
2074 	/* mark ring buffers as read-only from GPU side by default */
2075 	obj->gt_ro = 1;
2076 
2077 	ringbuf->obj = obj;
2078 
2079 	return 0;
2080 }
2081 
2082 struct intel_ringbuffer *
2083 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2084 {
2085 	struct intel_ringbuffer *ring;
2086 	int ret;
2087 
2088 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2089 	if (ring == NULL) {
2090 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2091 				 engine->name);
2092 		return ERR_PTR(-ENOMEM);
2093 	}
2094 
2095 	ring->engine = engine;
2096 	list_add(&ring->link, &engine->buffers);
2097 
2098 	ring->size = size;
2099 	/* Workaround an erratum on the i830 which causes a hang if
2100 	 * the TAIL pointer points to within the last 2 cachelines
2101 	 * of the buffer.
2102 	 */
2103 	ring->effective_size = size;
2104 	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2105 		ring->effective_size -= 2 * CACHELINE_BYTES;
2106 
2107 	ring->last_retired_head = -1;
2108 	intel_ring_update_space(ring);
2109 
2110 	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2111 	if (ret) {
2112 		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2113 				 engine->name, ret);
2114 		list_del(&ring->link);
2115 		kfree(ring);
2116 		return ERR_PTR(ret);
2117 	}
2118 
2119 	return ring;
2120 }
2121 
2122 void
2123 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2124 {
2125 	intel_destroy_ringbuffer_obj(ring);
2126 	list_del(&ring->link);
2127 	kfree(ring);
2128 }
2129 
2130 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2131 				  struct intel_engine_cs *engine)
2132 {
2133 	struct intel_context *ce = &ctx->engine[engine->id];
2134 	int ret;
2135 
2136 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2137 
2138 	if (ce->pin_count++)
2139 		return 0;
2140 
2141 	if (ce->state) {
2142 		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2143 		if (ret)
2144 			goto error;
2145 	}
2146 
2147 	/* The kernel context is only used as a placeholder for flushing the
2148 	 * active context. It is never used for submitting user rendering and
2149 	 * as such never requires the golden render context, and so we can skip
2150 	 * emitting it when we switch to the kernel context. This is required
2151 	 * as during eviction we cannot allocate and pin the renderstate in
2152 	 * order to initialise the context.
2153 	 */
2154 	if (ctx == ctx->i915->kernel_context)
2155 		ce->initialised = true;
2156 
2157 	i915_gem_context_get(ctx);
2158 	return 0;
2159 
2160 error:
2161 	ce->pin_count = 0;
2162 	return ret;
2163 }
2164 
2165 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2166 				     struct intel_engine_cs *engine)
2167 {
2168 	struct intel_context *ce = &ctx->engine[engine->id];
2169 
2170 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2171 
2172 	if (--ce->pin_count)
2173 		return;
2174 
2175 	if (ce->state)
2176 		i915_gem_object_ggtt_unpin(ce->state);
2177 
2178 	i915_gem_context_put(ctx);
2179 }
2180 
2181 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2182 {
2183 	struct drm_i915_private *dev_priv = engine->i915;
2184 	struct intel_ringbuffer *ringbuf;
2185 	int ret;
2186 
2187 	WARN_ON(engine->buffer);
2188 
2189 	intel_engine_setup_common(engine);
2190 
2191 	memset(engine->semaphore.sync_seqno, 0,
2192 	       sizeof(engine->semaphore.sync_seqno));
2193 
2194 	ret = intel_engine_init_common(engine);
2195 	if (ret)
2196 		goto error;
2197 
2198 	/* We may need to do things with the shrinker which
2199 	 * require us to immediately switch back to the default
2200 	 * context. This can cause a problem as pinning the
2201 	 * default context also requires GTT space which may not
2202 	 * be available. To avoid this we always pin the default
2203 	 * context.
2204 	 */
2205 	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2206 	if (ret)
2207 		goto error;
2208 
2209 	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2210 	if (IS_ERR(ringbuf)) {
2211 		ret = PTR_ERR(ringbuf);
2212 		goto error;
2213 	}
2214 	engine->buffer = ringbuf;
2215 
2216 	if (I915_NEED_GFX_HWS(dev_priv)) {
2217 		ret = init_status_page(engine);
2218 		if (ret)
2219 			goto error;
2220 	} else {
2221 		WARN_ON(engine->id != RCS);
2222 		ret = init_phys_status_page(engine);
2223 		if (ret)
2224 			goto error;
2225 	}
2226 
2227 	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2228 	if (ret) {
2229 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2230 				engine->name, ret);
2231 		intel_destroy_ringbuffer_obj(ringbuf);
2232 		goto error;
2233 	}
2234 
2235 	return 0;
2236 
2237 error:
2238 	intel_cleanup_engine(engine);
2239 	return ret;
2240 }
2241 
2242 void intel_cleanup_engine(struct intel_engine_cs *engine)
2243 {
2244 	struct drm_i915_private *dev_priv;
2245 
2246 	if (!intel_engine_initialized(engine))
2247 		return;
2248 
2249 	dev_priv = engine->i915;
2250 
2251 	if (engine->buffer) {
2252 		intel_stop_engine(engine);
2253 		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2254 
2255 		intel_unpin_ringbuffer_obj(engine->buffer);
2256 		intel_ringbuffer_free(engine->buffer);
2257 		engine->buffer = NULL;
2258 	}
2259 
2260 	if (engine->cleanup)
2261 		engine->cleanup(engine);
2262 
2263 	if (I915_NEED_GFX_HWS(dev_priv)) {
2264 		cleanup_status_page(engine);
2265 	} else {
2266 		WARN_ON(engine->id != RCS);
2267 		cleanup_phys_status_page(engine);
2268 	}
2269 
2270 	i915_cmd_parser_fini_ring(engine);
2271 	i915_gem_batch_pool_fini(&engine->batch_pool);
2272 	intel_engine_fini_breadcrumbs(engine);
2273 
2274 	intel_ring_context_unpin(dev_priv->kernel_context, engine);
2275 
2276 	engine->i915 = NULL;
2277 }
2278 
2279 int intel_engine_idle(struct intel_engine_cs *engine)
2280 {
2281 	struct drm_i915_gem_request *req;
2282 
2283 	/* Wait upon the last request to be completed */
2284 	if (list_empty(&engine->request_list))
2285 		return 0;
2286 
2287 	req = list_entry(engine->request_list.prev,
2288 			 struct drm_i915_gem_request,
2289 			 list);
2290 
2291 	/* Make sure we do not trigger any retires */
2292 	return __i915_wait_request(req,
2293 				   req->i915->mm.interruptible,
2294 				   NULL, NULL);
2295 }
2296 
2297 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2298 {
2299 	int ret;
2300 
2301 	/* Flush enough space to reduce the likelihood of waiting after
2302 	 * we start building the request - in which case we will just
2303 	 * have to repeat work.
2304 	 */
2305 	request->reserved_space += LEGACY_REQUEST_SIZE;
2306 
2307 	request->ringbuf = request->engine->buffer;
2308 
2309 	ret = intel_ring_begin(request, 0);
2310 	if (ret)
2311 		return ret;
2312 
2313 	request->reserved_space -= LEGACY_REQUEST_SIZE;
2314 	return 0;
2315 }
2316 
2317 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2318 {
2319 	struct intel_ringbuffer *ringbuf = req->ringbuf;
2320 	struct intel_engine_cs *engine = req->engine;
2321 	struct drm_i915_gem_request *target;
2322 
2323 	intel_ring_update_space(ringbuf);
2324 	if (ringbuf->space >= bytes)
2325 		return 0;
2326 
2327 	/*
2328 	 * Space is reserved in the ringbuffer for finalising the request,
2329 	 * as that cannot be allowed to fail. During request finalisation,
2330 	 * reserved_space is set to 0 to stop the overallocation and the
2331 	 * assumption is that then we never need to wait (which has the
2332 	 * risk of failing with EINTR).
2333 	 *
2334 	 * See also i915_gem_request_alloc() and i915_add_request().
2335 	 */
2336 	GEM_BUG_ON(!req->reserved_space);
2337 
2338 	list_for_each_entry(target, &engine->request_list, list) {
2339 		unsigned space;
2340 
2341 		/*
2342 		 * The request queue is per-engine, so can contain requests
2343 		 * from multiple ringbuffers. Here, we must ignore any that
2344 		 * aren't from the ringbuffer we're considering.
2345 		 */
2346 		if (target->ringbuf != ringbuf)
2347 			continue;
2348 
2349 		/* Would completion of this request free enough space? */
2350 		space = __intel_ring_space(target->postfix, ringbuf->tail,
2351 					   ringbuf->size);
2352 		if (space >= bytes)
2353 			break;
2354 	}
2355 
2356 	if (WARN_ON(&target->list == &engine->request_list))
2357 		return -ENOSPC;
2358 
2359 	return i915_wait_request(target);
2360 }
2361 
2362 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2363 {
2364 	struct intel_ringbuffer *ringbuf = req->ringbuf;
2365 	int remain_actual = ringbuf->size - ringbuf->tail;
2366 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2367 	int bytes = num_dwords * sizeof(u32);
2368 	int total_bytes, wait_bytes;
2369 	bool need_wrap = false;
2370 
2371 	total_bytes = bytes + req->reserved_space;
2372 
2373 	if (unlikely(bytes > remain_usable)) {
2374 		/*
2375 		 * Not enough space for the basic request. So need to flush
2376 		 * out the remainder and then wait for base + reserved.
2377 		 */
2378 		wait_bytes = remain_actual + total_bytes;
2379 		need_wrap = true;
2380 	} else if (unlikely(total_bytes > remain_usable)) {
2381 		/*
2382 		 * The base request will fit but the reserved space
2383 		 * falls off the end. So we don't need an immediate wrap
2384 		 * and only need to effectively wait for the reserved
2385 		 * size space from the start of ringbuffer.
2386 		 */
2387 		wait_bytes = remain_actual + req->reserved_space;
2388 	} else {
2389 		/* No wrapping required, just waiting. */
2390 		wait_bytes = total_bytes;
2391 	}
2392 
2393 	if (wait_bytes > ringbuf->space) {
2394 		int ret = wait_for_space(req, wait_bytes);
2395 		if (unlikely(ret))
2396 			return ret;
2397 
2398 		intel_ring_update_space(ringbuf);
2399 		if (unlikely(ringbuf->space < wait_bytes))
2400 			return -EAGAIN;
2401 	}
2402 
2403 	if (unlikely(need_wrap)) {
2404 		GEM_BUG_ON(remain_actual > ringbuf->space);
2405 		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2406 
2407 		/* Fill the tail with MI_NOOP */
2408 		memset(ringbuf->vaddr + ringbuf->tail, 0, remain_actual);
2409 		ringbuf->tail = 0;
2410 		ringbuf->space -= remain_actual;
2411 	}
2412 
2413 	ringbuf->space -= bytes;
2414 	GEM_BUG_ON(ringbuf->space < 0);
2415 	return 0;
2416 }
2417 
2418 /* Align the ring tail to a cacheline boundary */
2419 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2420 {
2421 	struct intel_engine_cs *engine = req->engine;
2422 	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2423 	int ret;
2424 
2425 	if (num_dwords == 0)
2426 		return 0;
2427 
2428 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2429 	ret = intel_ring_begin(req, num_dwords);
2430 	if (ret)
2431 		return ret;
2432 
2433 	while (num_dwords--)
2434 		intel_ring_emit(engine, MI_NOOP);
2435 
2436 	intel_ring_advance(engine);
2437 
2438 	return 0;
2439 }
2440 
2441 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2442 {
2443 	struct drm_i915_private *dev_priv = engine->i915;
2444 
2445 	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
2446 	 * so long as the semaphore value in the register/page is greater
2447 	 * than the sync value), so whenever we reset the seqno,
2448 	 * so long as we reset the tracking semaphore value to 0, it will
2449 	 * always be before the next request's seqno. If we don't reset
2450 	 * the semaphore value, then when the seqno moves backwards all
2451 	 * future waits will complete instantly (causing rendering corruption).
2452 	 */
2453 	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2454 		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2455 		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2456 		if (HAS_VEBOX(dev_priv))
2457 			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2458 	}
2459 	if (dev_priv->semaphore_obj) {
2460 		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2461 		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2462 		void *semaphores = kmap(page);
2463 		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2464 		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2465 		kunmap(page);
2466 	}
2467 	memset(engine->semaphore.sync_seqno, 0,
2468 	       sizeof(engine->semaphore.sync_seqno));
2469 
2470 	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
2471 	if (engine->irq_seqno_barrier)
2472 		engine->irq_seqno_barrier(engine);
2473 	engine->last_submitted_seqno = seqno;
2474 
2475 	engine->hangcheck.seqno = seqno;
2476 
2477 	/* After manually advancing the seqno, fake the interrupt in case
2478 	 * there are any waiters for that seqno.
2479 	 */
2480 	rcu_read_lock();
2481 	intel_engine_wakeup(engine);
2482 	rcu_read_unlock();
2483 }
2484 
2485 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2486 				     u32 value)
2487 {
2488 	struct drm_i915_private *dev_priv = engine->i915;
2489 
2490 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2491 
2492        /* Every tail move must follow the sequence below */
2493 
2494 	/* Disable notification that the ring is IDLE. The GT
2495 	 * will then assume that it is busy and bring it out of rc6.
2496 	 */
2497 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2498 		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2499 
2500 	/* Clear the context id. Here be magic! */
2501 	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2502 
2503 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2504 	if (intel_wait_for_register_fw(dev_priv,
2505 				       GEN6_BSD_SLEEP_PSMI_CONTROL,
2506 				       GEN6_BSD_SLEEP_INDICATOR,
2507 				       0,
2508 				       50))
2509 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2510 
2511 	/* Now that the ring is fully powered up, update the tail */
2512 	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2513 	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2514 
2515 	/* Let the ring send IDLE messages to the GT again,
2516 	 * and so let it sleep to conserve power when idle.
2517 	 */
2518 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2519 		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2520 
2521 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2522 }
2523 
2524 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2525 			       u32 invalidate, u32 flush)
2526 {
2527 	struct intel_engine_cs *engine = req->engine;
2528 	uint32_t cmd;
2529 	int ret;
2530 
2531 	ret = intel_ring_begin(req, 4);
2532 	if (ret)
2533 		return ret;
2534 
2535 	cmd = MI_FLUSH_DW;
2536 	if (INTEL_GEN(req->i915) >= 8)
2537 		cmd += 1;
2538 
2539 	/* We always require a command barrier so that subsequent
2540 	 * commands, such as breadcrumb interrupts, are strictly ordered
2541 	 * wrt the contents of the write cache being flushed to memory
2542 	 * (and thus being coherent from the CPU).
2543 	 */
2544 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2545 
2546 	/*
2547 	 * Bspec vol 1c.5 - video engine command streamer:
2548 	 * "If ENABLED, all TLBs will be invalidated once the flush
2549 	 * operation is complete. This bit is only valid when the
2550 	 * Post-Sync Operation field is a value of 1h or 3h."
2551 	 */
2552 	if (invalidate & I915_GEM_GPU_DOMAINS)
2553 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2554 
2555 	intel_ring_emit(engine, cmd);
2556 	intel_ring_emit(engine,
2557 			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2558 	if (INTEL_GEN(req->i915) >= 8) {
2559 		intel_ring_emit(engine, 0); /* upper addr */
2560 		intel_ring_emit(engine, 0); /* value */
2561 	} else  {
2562 		intel_ring_emit(engine, 0);
2563 		intel_ring_emit(engine, MI_NOOP);
2564 	}
2565 	intel_ring_advance(engine);
2566 	return 0;
2567 }
2568 
2569 static int
2570 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2571 			      u64 offset, u32 len,
2572 			      unsigned dispatch_flags)
2573 {
2574 	struct intel_engine_cs *engine = req->engine;
2575 	bool ppgtt = USES_PPGTT(engine->dev) &&
2576 			!(dispatch_flags & I915_DISPATCH_SECURE);
2577 	int ret;
2578 
2579 	ret = intel_ring_begin(req, 4);
2580 	if (ret)
2581 		return ret;
2582 
2583 	/* FIXME(BDW): Address space and security selectors. */
2584 	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2585 			(dispatch_flags & I915_DISPATCH_RS ?
2586 			 MI_BATCH_RESOURCE_STREAMER : 0));
2587 	intel_ring_emit(engine, lower_32_bits(offset));
2588 	intel_ring_emit(engine, upper_32_bits(offset));
2589 	intel_ring_emit(engine, MI_NOOP);
2590 	intel_ring_advance(engine);
2591 
2592 	return 0;
2593 }
2594 
2595 static int
2596 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2597 			     u64 offset, u32 len,
2598 			     unsigned dispatch_flags)
2599 {
2600 	struct intel_engine_cs *engine = req->engine;
2601 	int ret;
2602 
2603 	ret = intel_ring_begin(req, 2);
2604 	if (ret)
2605 		return ret;
2606 
2607 	intel_ring_emit(engine,
2608 			MI_BATCH_BUFFER_START |
2609 			(dispatch_flags & I915_DISPATCH_SECURE ?
2610 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2611 			(dispatch_flags & I915_DISPATCH_RS ?
2612 			 MI_BATCH_RESOURCE_STREAMER : 0));
2613 	/* bit0-7 is the length on GEN6+ */
2614 	intel_ring_emit(engine, offset);
2615 	intel_ring_advance(engine);
2616 
2617 	return 0;
2618 }
2619 
2620 static int
2621 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2622 			      u64 offset, u32 len,
2623 			      unsigned dispatch_flags)
2624 {
2625 	struct intel_engine_cs *engine = req->engine;
2626 	int ret;
2627 
2628 	ret = intel_ring_begin(req, 2);
2629 	if (ret)
2630 		return ret;
2631 
2632 	intel_ring_emit(engine,
2633 			MI_BATCH_BUFFER_START |
2634 			(dispatch_flags & I915_DISPATCH_SECURE ?
2635 			 0 : MI_BATCH_NON_SECURE_I965));
2636 	/* bit0-7 is the length on GEN6+ */
2637 	intel_ring_emit(engine, offset);
2638 	intel_ring_advance(engine);
2639 
2640 	return 0;
2641 }
2642 
2643 /* Blitter support (SandyBridge+) */
2644 
2645 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2646 			   u32 invalidate, u32 flush)
2647 {
2648 	struct intel_engine_cs *engine = req->engine;
2649 	uint32_t cmd;
2650 	int ret;
2651 
2652 	ret = intel_ring_begin(req, 4);
2653 	if (ret)
2654 		return ret;
2655 
2656 	cmd = MI_FLUSH_DW;
2657 	if (INTEL_GEN(req->i915) >= 8)
2658 		cmd += 1;
2659 
2660 	/* We always require a command barrier so that subsequent
2661 	 * commands, such as breadcrumb interrupts, are strictly ordered
2662 	 * wrt the contents of the write cache being flushed to memory
2663 	 * (and thus being coherent from the CPU).
2664 	 */
2665 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2666 
2667 	/*
2668 	 * Bspec vol 1c.3 - blitter engine command streamer:
2669 	 * "If ENABLED, all TLBs will be invalidated once the flush
2670 	 * operation is complete. This bit is only valid when the
2671 	 * Post-Sync Operation field is a value of 1h or 3h."
2672 	 */
2673 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2674 		cmd |= MI_INVALIDATE_TLB;
2675 	intel_ring_emit(engine, cmd);
2676 	intel_ring_emit(engine,
2677 			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2678 	if (INTEL_GEN(req->i915) >= 8) {
2679 		intel_ring_emit(engine, 0); /* upper addr */
2680 		intel_ring_emit(engine, 0); /* value */
2681 	} else  {
2682 		intel_ring_emit(engine, 0);
2683 		intel_ring_emit(engine, MI_NOOP);
2684 	}
2685 	intel_ring_advance(engine);
2686 
2687 	return 0;
2688 }
2689 
2690 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2691 				       struct intel_engine_cs *engine)
2692 {
2693 	struct drm_i915_gem_object *obj;
2694 	int ret, i;
2695 
2696 	if (!i915.semaphores)
2697 		return;
2698 
2699 	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2700 		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2701 		if (IS_ERR(obj)) {
2702 			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2703 			i915.semaphores = 0;
2704 		} else {
2705 			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2706 			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2707 			if (ret != 0) {
2708 				i915_gem_object_put(obj);
2709 				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2710 				i915.semaphores = 0;
2711 			} else {
2712 				dev_priv->semaphore_obj = obj;
2713 			}
2714 		}
2715 	}
2716 
2717 	if (!i915.semaphores)
2718 		return;
2719 
2720 	if (INTEL_GEN(dev_priv) >= 8) {
2721 		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2722 
2723 		engine->semaphore.sync_to = gen8_ring_sync;
2724 		engine->semaphore.signal = gen8_xcs_signal;
2725 
2726 		for (i = 0; i < I915_NUM_ENGINES; i++) {
2727 			u64 ring_offset;
2728 
2729 			if (i != engine->id)
2730 				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2731 			else
2732 				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2733 
2734 			engine->semaphore.signal_ggtt[i] = ring_offset;
2735 		}
2736 	} else if (INTEL_GEN(dev_priv) >= 6) {
2737 		engine->semaphore.sync_to = gen6_ring_sync;
2738 		engine->semaphore.signal = gen6_signal;
2739 
2740 		/*
2741 		 * The current semaphore is only applied on pre-gen8
2742 		 * platform.  And there is no VCS2 ring on the pre-gen8
2743 		 * platform. So the semaphore between RCS and VCS2 is
2744 		 * initialized as INVALID.  Gen8 will initialize the
2745 		 * sema between VCS2 and RCS later.
2746 		 */
2747 		for (i = 0; i < I915_NUM_ENGINES; i++) {
2748 			static const struct {
2749 				u32 wait_mbox;
2750 				i915_reg_t mbox_reg;
2751 			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2752 				[RCS] = {
2753 					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2754 					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2755 					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2756 				},
2757 				[VCS] = {
2758 					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2759 					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2760 					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2761 				},
2762 				[BCS] = {
2763 					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2764 					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2765 					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2766 				},
2767 				[VECS] = {
2768 					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2769 					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2770 					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2771 				},
2772 			};
2773 			u32 wait_mbox;
2774 			i915_reg_t mbox_reg;
2775 
2776 			if (i == engine->id || i == VCS2) {
2777 				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2778 				mbox_reg = GEN6_NOSYNC;
2779 			} else {
2780 				wait_mbox = sem_data[engine->id][i].wait_mbox;
2781 				mbox_reg = sem_data[engine->id][i].mbox_reg;
2782 			}
2783 
2784 			engine->semaphore.mbox.wait[i] = wait_mbox;
2785 			engine->semaphore.mbox.signal[i] = mbox_reg;
2786 		}
2787 	}
2788 }
2789 
2790 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2791 				struct intel_engine_cs *engine)
2792 {
2793 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2794 
2795 	if (INTEL_GEN(dev_priv) >= 8) {
2796 		engine->irq_enable = gen8_irq_enable;
2797 		engine->irq_disable = gen8_irq_disable;
2798 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2799 	} else if (INTEL_GEN(dev_priv) >= 6) {
2800 		engine->irq_enable = gen6_irq_enable;
2801 		engine->irq_disable = gen6_irq_disable;
2802 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2803 	} else if (INTEL_GEN(dev_priv) >= 5) {
2804 		engine->irq_enable = gen5_irq_enable;
2805 		engine->irq_disable = gen5_irq_disable;
2806 		engine->irq_seqno_barrier = gen5_seqno_barrier;
2807 	} else if (INTEL_GEN(dev_priv) >= 3) {
2808 		engine->irq_enable = i9xx_irq_enable;
2809 		engine->irq_disable = i9xx_irq_disable;
2810 	} else {
2811 		engine->irq_enable = i8xx_irq_enable;
2812 		engine->irq_disable = i8xx_irq_disable;
2813 	}
2814 }
2815 
2816 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2817 				      struct intel_engine_cs *engine)
2818 {
2819 	engine->init_hw = init_ring_common;
2820 	engine->write_tail = ring_write_tail;
2821 
2822 	engine->add_request = i9xx_add_request;
2823 	if (INTEL_GEN(dev_priv) >= 6)
2824 		engine->add_request = gen6_add_request;
2825 
2826 	if (INTEL_GEN(dev_priv) >= 8)
2827 		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2828 	else if (INTEL_GEN(dev_priv) >= 6)
2829 		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2830 	else if (INTEL_GEN(dev_priv) >= 4)
2831 		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2832 	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2833 		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2834 	else
2835 		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2836 
2837 	intel_ring_init_irq(dev_priv, engine);
2838 	intel_ring_init_semaphores(dev_priv, engine);
2839 }
2840 
2841 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2842 {
2843 	struct drm_i915_private *dev_priv = engine->i915;
2844 	int ret;
2845 
2846 	intel_ring_default_vfuncs(dev_priv, engine);
2847 
2848 	if (HAS_L3_DPF(dev_priv))
2849 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2850 
2851 	if (INTEL_GEN(dev_priv) >= 8) {
2852 		engine->init_context = intel_rcs_ctx_init;
2853 		engine->add_request = gen8_render_add_request;
2854 		engine->flush = gen8_render_ring_flush;
2855 		if (i915.semaphores)
2856 			engine->semaphore.signal = gen8_rcs_signal;
2857 	} else if (INTEL_GEN(dev_priv) >= 6) {
2858 		engine->init_context = intel_rcs_ctx_init;
2859 		engine->flush = gen7_render_ring_flush;
2860 		if (IS_GEN6(dev_priv))
2861 			engine->flush = gen6_render_ring_flush;
2862 	} else if (IS_GEN5(dev_priv)) {
2863 		engine->flush = gen4_render_ring_flush;
2864 	} else {
2865 		if (INTEL_GEN(dev_priv) < 4)
2866 			engine->flush = gen2_render_ring_flush;
2867 		else
2868 			engine->flush = gen4_render_ring_flush;
2869 		engine->irq_enable_mask = I915_USER_INTERRUPT;
2870 	}
2871 
2872 	if (IS_HASWELL(dev_priv))
2873 		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2874 
2875 	engine->init_hw = init_render_ring;
2876 	engine->cleanup = render_ring_cleanup;
2877 
2878 	ret = intel_init_ring_buffer(engine);
2879 	if (ret)
2880 		return ret;
2881 
2882 	if (INTEL_GEN(dev_priv) >= 6) {
2883 		ret = intel_init_pipe_control(engine, 4096);
2884 		if (ret)
2885 			return ret;
2886 	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2887 		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2888 		if (ret)
2889 			return ret;
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2896 {
2897 	struct drm_i915_private *dev_priv = engine->i915;
2898 
2899 	intel_ring_default_vfuncs(dev_priv, engine);
2900 
2901 	if (INTEL_GEN(dev_priv) >= 6) {
2902 		/* gen6 bsd needs a special wa for tail updates */
2903 		if (IS_GEN6(dev_priv))
2904 			engine->write_tail = gen6_bsd_ring_write_tail;
2905 		engine->flush = gen6_bsd_ring_flush;
2906 		if (INTEL_GEN(dev_priv) < 8)
2907 			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2908 	} else {
2909 		engine->mmio_base = BSD_RING_BASE;
2910 		engine->flush = bsd_ring_flush;
2911 		if (IS_GEN5(dev_priv))
2912 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2913 		else
2914 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2915 	}
2916 
2917 	return intel_init_ring_buffer(engine);
2918 }
2919 
2920 /**
2921  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2922  */
2923 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2924 {
2925 	struct drm_i915_private *dev_priv = engine->i915;
2926 
2927 	intel_ring_default_vfuncs(dev_priv, engine);
2928 
2929 	engine->flush = gen6_bsd_ring_flush;
2930 
2931 	return intel_init_ring_buffer(engine);
2932 }
2933 
2934 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2935 {
2936 	struct drm_i915_private *dev_priv = engine->i915;
2937 
2938 	intel_ring_default_vfuncs(dev_priv, engine);
2939 
2940 	engine->flush = gen6_ring_flush;
2941 	if (INTEL_GEN(dev_priv) < 8)
2942 		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2943 
2944 	return intel_init_ring_buffer(engine);
2945 }
2946 
2947 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2948 {
2949 	struct drm_i915_private *dev_priv = engine->i915;
2950 
2951 	intel_ring_default_vfuncs(dev_priv, engine);
2952 
2953 	engine->flush = gen6_ring_flush;
2954 
2955 	if (INTEL_GEN(dev_priv) < 8) {
2956 		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2957 		engine->irq_enable = hsw_vebox_irq_enable;
2958 		engine->irq_disable = hsw_vebox_irq_disable;
2959 	}
2960 
2961 	return intel_init_ring_buffer(engine);
2962 }
2963 
2964 int
2965 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2966 {
2967 	struct intel_engine_cs *engine = req->engine;
2968 	int ret;
2969 
2970 	if (!engine->gpu_caches_dirty)
2971 		return 0;
2972 
2973 	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
2974 	if (ret)
2975 		return ret;
2976 
2977 	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2978 
2979 	engine->gpu_caches_dirty = false;
2980 	return 0;
2981 }
2982 
2983 int
2984 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2985 {
2986 	struct intel_engine_cs *engine = req->engine;
2987 	uint32_t flush_domains;
2988 	int ret;
2989 
2990 	flush_domains = 0;
2991 	if (engine->gpu_caches_dirty)
2992 		flush_domains = I915_GEM_GPU_DOMAINS;
2993 
2994 	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2995 	if (ret)
2996 		return ret;
2997 
2998 	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2999 
3000 	engine->gpu_caches_dirty = false;
3001 	return 0;
3002 }
3003 
3004 void
3005 intel_stop_engine(struct intel_engine_cs *engine)
3006 {
3007 	int ret;
3008 
3009 	if (!intel_engine_initialized(engine))
3010 		return;
3011 
3012 	ret = intel_engine_idle(engine);
3013 	if (ret)
3014 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3015 			  engine->name, ret);
3016 
3017 	stop_ring(engine);
3018 }
3019