xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 5f39c7e7)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30 
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37 
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43 	struct drm_i915_gem_object *obj;
44 	volatile u32 *cpu_page;
45 	u32 gtt_offset;
46 };
47 
48 static inline int ring_space(struct intel_ring_buffer *ring)
49 {
50 	int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
51 	if (space < 0)
52 		space += ring->size;
53 	return space;
54 }
55 
56 static int
57 render_ring_flush(struct intel_ring_buffer *ring,
58 		  uint32_t	invalidate_domains,
59 		  uint32_t	flush_domains)
60 {
61 	struct drm_device *dev = ring->dev;
62 	uint32_t cmd;
63 	int ret;
64 
65 	/*
66 	 * read/write caches:
67 	 *
68 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
69 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
70 	 * also flushed at 2d versus 3d pipeline switches.
71 	 *
72 	 * read-only caches:
73 	 *
74 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
75 	 * MI_READ_FLUSH is set, and is always flushed on 965.
76 	 *
77 	 * I915_GEM_DOMAIN_COMMAND may not exist?
78 	 *
79 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
80 	 * invalidated when MI_EXE_FLUSH is set.
81 	 *
82 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
83 	 * invalidated with every MI_FLUSH.
84 	 *
85 	 * TLBs:
86 	 *
87 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
88 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
89 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
90 	 * are flushed at any MI_FLUSH.
91 	 */
92 
93 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
94 	if ((invalidate_domains|flush_domains) &
95 	    I915_GEM_DOMAIN_RENDER)
96 		cmd &= ~MI_NO_WRITE_FLUSH;
97 	if (INTEL_INFO(dev)->gen < 4) {
98 		/*
99 		 * On the 965, the sampler cache always gets flushed
100 		 * and this bit is reserved.
101 		 */
102 		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
103 			cmd |= MI_READ_FLUSH;
104 	}
105 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
106 		cmd |= MI_EXE_FLUSH;
107 
108 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
109 	    (IS_G4X(dev) || IS_GEN5(dev)))
110 		cmd |= MI_INVALIDATE_ISP;
111 
112 	ret = intel_ring_begin(ring, 2);
113 	if (ret)
114 		return ret;
115 
116 	intel_ring_emit(ring, cmd);
117 	intel_ring_emit(ring, MI_NOOP);
118 	intel_ring_advance(ring);
119 
120 	return 0;
121 }
122 
123 /**
124  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
125  * implementing two workarounds on gen6.  From section 1.4.7.1
126  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
127  *
128  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
129  * produced by non-pipelined state commands), software needs to first
130  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
131  * 0.
132  *
133  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
134  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
135  *
136  * And the workaround for these two requires this workaround first:
137  *
138  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
139  * BEFORE the pipe-control with a post-sync op and no write-cache
140  * flushes.
141  *
142  * And this last workaround is tricky because of the requirements on
143  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
144  * volume 2 part 1:
145  *
146  *     "1 of the following must also be set:
147  *      - Render Target Cache Flush Enable ([12] of DW1)
148  *      - Depth Cache Flush Enable ([0] of DW1)
149  *      - Stall at Pixel Scoreboard ([1] of DW1)
150  *      - Depth Stall ([13] of DW1)
151  *      - Post-Sync Operation ([13] of DW1)
152  *      - Notify Enable ([8] of DW1)"
153  *
154  * The cache flushes require the workaround flush that triggered this
155  * one, so we can't use it.  Depth stall would trigger the same.
156  * Post-sync nonzero is what triggered this second workaround, so we
157  * can't use that one either.  Notify enable is IRQs, which aren't
158  * really our business.  That leaves only stall at scoreboard.
159  */
160 static int
161 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
162 {
163 	struct pipe_control *pc = ring->private;
164 	u32 scratch_addr = pc->gtt_offset + 128;
165 	int ret;
166 
167 
168 	ret = intel_ring_begin(ring, 6);
169 	if (ret)
170 		return ret;
171 
172 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
173 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
174 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
175 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
176 	intel_ring_emit(ring, 0); /* low dword */
177 	intel_ring_emit(ring, 0); /* high dword */
178 	intel_ring_emit(ring, MI_NOOP);
179 	intel_ring_advance(ring);
180 
181 	ret = intel_ring_begin(ring, 6);
182 	if (ret)
183 		return ret;
184 
185 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
187 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188 	intel_ring_emit(ring, 0);
189 	intel_ring_emit(ring, 0);
190 	intel_ring_emit(ring, MI_NOOP);
191 	intel_ring_advance(ring);
192 
193 	return 0;
194 }
195 
196 static int
197 gen6_render_ring_flush(struct intel_ring_buffer *ring,
198                          u32 invalidate_domains, u32 flush_domains)
199 {
200 	u32 flags = 0;
201 	struct pipe_control *pc = ring->private;
202 	u32 scratch_addr = pc->gtt_offset + 128;
203 	int ret;
204 
205 	/* Force SNB workarounds for PIPE_CONTROL flushes */
206 	intel_emit_post_sync_nonzero_flush(ring);
207 
208 	/* Just flush everything.  Experiments have shown that reducing the
209 	 * number of bits based on the write domains has little performance
210 	 * impact.
211 	 */
212 	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
213 	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
214 	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
215 	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
216 	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
217 	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
218 	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
219 
220 	ret = intel_ring_begin(ring, 6);
221 	if (ret)
222 		return ret;
223 
224 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 	intel_ring_emit(ring, flags);
226 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
227 	intel_ring_emit(ring, 0); /* lower dword */
228 	intel_ring_emit(ring, 0); /* uppwer dword */
229 	intel_ring_emit(ring, MI_NOOP);
230 	intel_ring_advance(ring);
231 
232 	return 0;
233 }
234 
235 static void ring_write_tail(struct intel_ring_buffer *ring,
236 			    uint32_t value)
237 {
238 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
239 	I915_WRITE_TAIL(ring, value);
240 }
241 
242 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
243 {
244 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
245 	uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
246 			RING_ACTHD(ring->mmio_base) : ACTHD;
247 
248 	return I915_READ(acthd_reg);
249 }
250 
251 static int init_ring_common(struct intel_ring_buffer *ring)
252 {
253 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
254 	struct drm_i915_gem_object *obj = ring->obj;
255 	uint32_t head;
256 
257 	/* Stop the ring if it's running. */
258 	I915_WRITE_CTL(ring, 0);
259 	I915_WRITE_HEAD(ring, 0);
260 	ring->write_tail(ring, 0);
261 
262 	/* Initialize the ring. */
263 	I915_WRITE_START(ring, obj->gtt_offset);
264 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
265 
266 	/* G45 ring initialization fails to reset head to zero */
267 	if (head != 0) {
268 		DRM_DEBUG("%s head not reset to zero "
269 			      "ctl %08x head %08x tail %08x start %08x\n",
270 			      ring->name,
271 			      I915_READ_CTL(ring),
272 			      I915_READ_HEAD(ring),
273 			      I915_READ_TAIL(ring),
274 			      I915_READ_START(ring));
275 
276 		I915_WRITE_HEAD(ring, 0);
277 
278 		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
279 			DRM_ERROR("failed to set %s head to zero "
280 				  "ctl %08x head %08x tail %08x start %08x\n",
281 				  ring->name,
282 				  I915_READ_CTL(ring),
283 				  I915_READ_HEAD(ring),
284 				  I915_READ_TAIL(ring),
285 				  I915_READ_START(ring));
286 		}
287 	}
288 
289 	I915_WRITE_CTL(ring,
290 			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
291 			| RING_VALID);
292 
293 	/* If the head is still not zero, the ring is dead */
294 	if (_intel_wait_for(ring->dev,
295 	    (I915_READ_CTL(ring) & RING_VALID) != 0 &&
296 	     I915_READ_START(ring) == obj->gtt_offset &&
297 	     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
298 	    50, 1, "915rii")) {
299 		DRM_ERROR("%s initialization failed "
300 				"ctl %08x head %08x tail %08x start %08x\n",
301 				ring->name,
302 				I915_READ_CTL(ring),
303 				I915_READ_HEAD(ring),
304 				I915_READ_TAIL(ring),
305 				I915_READ_START(ring));
306 		return -EIO;
307 	}
308 
309 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
310 		i915_kernel_lost_context(ring->dev);
311 	else {
312 		ring->head = I915_READ_HEAD(ring);
313 		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
314 		ring->space = ring_space(ring);
315 	}
316 
317 	return 0;
318 }
319 
320 static int
321 init_pipe_control(struct intel_ring_buffer *ring)
322 {
323 	struct pipe_control *pc;
324 	struct drm_i915_gem_object *obj;
325 	int ret;
326 
327 	if (ring->private)
328 		return 0;
329 
330 	pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
331 	if (!pc)
332 		return -ENOMEM;
333 
334 	obj = i915_gem_alloc_object(ring->dev, 4096);
335 	if (obj == NULL) {
336 		DRM_ERROR("Failed to allocate seqno page\n");
337 		ret = -ENOMEM;
338 		goto err;
339 	}
340 
341 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
342 
343 	ret = i915_gem_object_pin(obj, 4096, true);
344 	if (ret)
345 		goto err_unref;
346 
347 	pc->gtt_offset = obj->gtt_offset;
348 	pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
349 	if (pc->cpu_page == NULL)
350 		goto err_unpin;
351 	pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
352 	pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
353 	    (vm_offset_t)pc->cpu_page + PAGE_SIZE);
354 
355 	pc->obj = obj;
356 	ring->private = pc;
357 	return 0;
358 
359 err_unpin:
360 	i915_gem_object_unpin(obj);
361 err_unref:
362 	drm_gem_object_unreference(&obj->base);
363 err:
364 	drm_free(pc, DRM_I915_GEM);
365 	return ret;
366 }
367 
368 static void
369 cleanup_pipe_control(struct intel_ring_buffer *ring)
370 {
371 	struct pipe_control *pc = ring->private;
372 	struct drm_i915_gem_object *obj;
373 
374 	if (!ring->private)
375 		return;
376 
377 	obj = pc->obj;
378 	pmap_qremove((vm_offset_t)pc->cpu_page, 1);
379 	kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
380 	i915_gem_object_unpin(obj);
381 	drm_gem_object_unreference(&obj->base);
382 
383 	drm_free(pc, DRM_I915_GEM);
384 	ring->private = NULL;
385 }
386 
387 static int init_render_ring(struct intel_ring_buffer *ring)
388 {
389 	struct drm_device *dev = ring->dev;
390 	struct drm_i915_private *dev_priv = dev->dev_private;
391 	int ret = init_ring_common(ring);
392 
393 	if (INTEL_INFO(dev)->gen > 3)
394 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
395 
396 	/* We need to disable the AsyncFlip performance optimisations in order
397 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
398 	 * programmed to '1' on all products.
399 	 */
400 	if (INTEL_INFO(dev)->gen >= 6)
401 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
402 
403 	/* Required for the hardware to program scanline values for waiting */
404 	if (INTEL_INFO(dev)->gen == 6)
405 		I915_WRITE(GFX_MODE,
406 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
407 
408 	if (IS_GEN7(dev))
409 		I915_WRITE(GFX_MODE_GEN7,
410 			   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
412 
413 	if (INTEL_INFO(dev)->gen >= 5) {
414 		ret = init_pipe_control(ring);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	if (IS_GEN6(dev)) {
420 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
421 		 * "If this bit is set, STCunit will have LRA as replacement
422 		 *  policy. [...] This bit must be reset.  LRA replacement
423 		 *  policy is not supported."
424 		 */
425 		I915_WRITE(CACHE_MODE_0,
426 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
427 	}
428 
429 	if (INTEL_INFO(dev)->gen >= 6)
430 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
431 
432 	if (HAS_L3_GPU_CACHE(dev))
433 		I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
434 
435 	return ret;
436 }
437 
438 static void render_ring_cleanup(struct intel_ring_buffer *ring)
439 {
440 	if (!ring->private)
441 		return;
442 
443 	cleanup_pipe_control(ring);
444 }
445 
446 static void
447 update_mboxes(struct intel_ring_buffer *ring,
448 	    u32 seqno,
449 	    u32 mmio_offset)
450 {
451 	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
452 			      MI_SEMAPHORE_GLOBAL_GTT |
453 			      MI_SEMAPHORE_REGISTER |
454 			      MI_SEMAPHORE_UPDATE);
455 	intel_ring_emit(ring, seqno);
456 	intel_ring_emit(ring, mmio_offset);
457 }
458 
459 /**
460  * gen6_add_request - Update the semaphore mailbox registers
461  *
462  * @ring - ring that is adding a request
463  * @seqno - return seqno stuck into the ring
464  *
465  * Update the mailbox registers in the *other* rings with the current seqno.
466  * This acts like a signal in the canonical semaphore.
467  */
468 static int
469 gen6_add_request(struct intel_ring_buffer *ring,
470 		 u32 *seqno)
471 {
472 	u32 mbox1_reg;
473 	u32 mbox2_reg;
474 	int ret;
475 
476 	ret = intel_ring_begin(ring, 10);
477 	if (ret)
478 		return ret;
479 
480 	mbox1_reg = ring->signal_mbox[0];
481 	mbox2_reg = ring->signal_mbox[1];
482 
483 	*seqno = i915_gem_next_request_seqno(ring);
484 
485 	update_mboxes(ring, *seqno, mbox1_reg);
486 	update_mboxes(ring, *seqno, mbox2_reg);
487 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
488 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
489 	intel_ring_emit(ring, *seqno);
490 	intel_ring_emit(ring, MI_USER_INTERRUPT);
491 	intel_ring_advance(ring);
492 
493 	return 0;
494 }
495 
496 /**
497  * intel_ring_sync - sync the waiter to the signaller on seqno
498  *
499  * @waiter - ring that is waiting
500  * @signaller - ring which has, or will signal
501  * @seqno - seqno which the waiter will block on
502  */
503 static int
504 intel_ring_sync(struct intel_ring_buffer *waiter,
505 		struct intel_ring_buffer *signaller,
506 		int ring,
507 		u32 seqno)
508 {
509 	int ret;
510 	u32 dw1 = MI_SEMAPHORE_MBOX |
511 		  MI_SEMAPHORE_COMPARE |
512 		  MI_SEMAPHORE_REGISTER;
513 
514 	ret = intel_ring_begin(waiter, 4);
515 	if (ret)
516 		return ret;
517 
518 	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
519 	intel_ring_emit(waiter, seqno);
520 	intel_ring_emit(waiter, 0);
521 	intel_ring_emit(waiter, MI_NOOP);
522 	intel_ring_advance(waiter);
523 
524 	return 0;
525 }
526 
527 int render_ring_sync_to(struct intel_ring_buffer *waiter,
528     struct intel_ring_buffer *signaller, u32 seqno);
529 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
530     struct intel_ring_buffer *signaller, u32 seqno);
531 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
532     struct intel_ring_buffer *signaller, u32 seqno);
533 
534 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
535 int
536 render_ring_sync_to(struct intel_ring_buffer *waiter,
537 		    struct intel_ring_buffer *signaller,
538 		    u32 seqno)
539 {
540 	KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
541 	    ("valid RCS semaphore"));
542 	return intel_ring_sync(waiter,
543 			       signaller,
544 			       RCS,
545 			       seqno);
546 }
547 
548 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
549 int
550 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
551 		      struct intel_ring_buffer *signaller,
552 		      u32 seqno)
553 {
554 	KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
555 	    ("Valid VCS semaphore"));
556 	return intel_ring_sync(waiter,
557 			       signaller,
558 			       VCS,
559 			       seqno);
560 }
561 
562 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
563 int
564 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
565 		      struct intel_ring_buffer *signaller,
566 		      u32 seqno)
567 {
568 	KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
569 	    ("Valid BCS semaphore"));
570 	return intel_ring_sync(waiter,
571 			       signaller,
572 			       BCS,
573 			       seqno);
574 }
575 
576 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
577 do {									\
578 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
579 		 PIPE_CONTROL_DEPTH_STALL);				\
580 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
581 	intel_ring_emit(ring__, 0);							\
582 	intel_ring_emit(ring__, 0);							\
583 } while (0)
584 
585 static int
586 pc_render_add_request(struct intel_ring_buffer *ring,
587 		      uint32_t *result)
588 {
589 	u32 seqno = i915_gem_next_request_seqno(ring);
590 	struct pipe_control *pc = ring->private;
591 	u32 scratch_addr = pc->gtt_offset + 128;
592 	int ret;
593 
594 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
595 	 * incoherent with writes to memory, i.e. completely fubar,
596 	 * so we need to use PIPE_NOTIFY instead.
597 	 *
598 	 * However, we also need to workaround the qword write
599 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
600 	 * memory before requesting an interrupt.
601 	 */
602 	ret = intel_ring_begin(ring, 32);
603 	if (ret)
604 		return ret;
605 
606 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
607 			PIPE_CONTROL_WRITE_FLUSH |
608 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
609 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
610 	intel_ring_emit(ring, seqno);
611 	intel_ring_emit(ring, 0);
612 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
613 	scratch_addr += 128; /* write to separate cachelines */
614 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
615 	scratch_addr += 128;
616 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
617 	scratch_addr += 128;
618 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
619 	scratch_addr += 128;
620 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
621 	scratch_addr += 128;
622 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
623 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
624 			PIPE_CONTROL_WRITE_FLUSH |
625 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
626 			PIPE_CONTROL_NOTIFY);
627 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
628 	intel_ring_emit(ring, seqno);
629 	intel_ring_emit(ring, 0);
630 	intel_ring_advance(ring);
631 
632 	*result = seqno;
633 	return 0;
634 }
635 
636 static int
637 render_ring_add_request(struct intel_ring_buffer *ring,
638 			uint32_t *result)
639 {
640 	u32 seqno = i915_gem_next_request_seqno(ring);
641 	int ret;
642 
643 	ret = intel_ring_begin(ring, 4);
644 	if (ret)
645 		return ret;
646 
647 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
648 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
649 	intel_ring_emit(ring, seqno);
650 	intel_ring_emit(ring, MI_USER_INTERRUPT);
651 	intel_ring_advance(ring);
652 
653 	*result = seqno;
654 	return 0;
655 }
656 
657 static u32
658 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
659 {
660 	/* Workaround to force correct ordering between irq and seqno writes on
661 	 * ivb (and maybe also on snb) by reading from a CS register (like
662 	 * ACTHD) before reading the status page. */
663 	if (!lazy_coherency)
664 		intel_ring_get_active_head(ring);
665 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
666 }
667 
668 static u32
669 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
670 {
671 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
672 }
673 
674 static u32
675 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
676 {
677 	struct pipe_control *pc = ring->private;
678 	return pc->cpu_page[0];
679 }
680 
681 static void
682 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
683 {
684 	dev_priv->gt_irq_mask &= ~mask;
685 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
686 	POSTING_READ(GTIMR);
687 }
688 
689 static void
690 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
691 {
692 	dev_priv->gt_irq_mask |= mask;
693 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
694 	POSTING_READ(GTIMR);
695 }
696 
697 static void
698 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
699 {
700 	dev_priv->irq_mask &= ~mask;
701 	I915_WRITE(IMR, dev_priv->irq_mask);
702 	POSTING_READ(IMR);
703 }
704 
705 static void
706 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
707 {
708 	dev_priv->irq_mask |= mask;
709 	I915_WRITE(IMR, dev_priv->irq_mask);
710 	POSTING_READ(IMR);
711 }
712 
713 static bool
714 render_ring_get_irq(struct intel_ring_buffer *ring)
715 {
716 	struct drm_device *dev = ring->dev;
717 	drm_i915_private_t *dev_priv = dev->dev_private;
718 
719 	if (!dev->irq_enabled)
720 		return false;
721 
722 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
723 	if (ring->irq_refcount++ == 0) {
724 		if (HAS_PCH_SPLIT(dev))
725 			ironlake_enable_irq(dev_priv,
726 					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
727 		else
728 			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
729 	}
730 
731 	return true;
732 }
733 
734 static void
735 render_ring_put_irq(struct intel_ring_buffer *ring)
736 {
737 	struct drm_device *dev = ring->dev;
738 	drm_i915_private_t *dev_priv = dev->dev_private;
739 
740 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
741 	if (--ring->irq_refcount == 0) {
742 		if (HAS_PCH_SPLIT(dev))
743 			ironlake_disable_irq(dev_priv,
744 					     GT_USER_INTERRUPT |
745 					     GT_PIPE_NOTIFY);
746 		else
747 			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
748 	}
749 }
750 
751 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
752 {
753 	struct drm_device *dev = ring->dev;
754 	drm_i915_private_t *dev_priv = dev->dev_private;
755 	uint32_t mmio = 0;
756 
757 	/* The ring status page addresses are no longer next to the rest of
758 	 * the ring registers as of gen7.
759 	 */
760 	if (IS_GEN7(dev)) {
761 		switch (ring->id) {
762 		case RCS:
763 			mmio = RENDER_HWS_PGA_GEN7;
764 			break;
765 		case BCS:
766 			mmio = BLT_HWS_PGA_GEN7;
767 			break;
768 		case VCS:
769 			mmio = BSD_HWS_PGA_GEN7;
770 			break;
771 		}
772 	} else if (IS_GEN6(dev)) {
773 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
774 	} else {
775 		mmio = RING_HWS_PGA(ring->mmio_base);
776 	}
777 
778 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
779 	POSTING_READ(mmio);
780 }
781 
782 static int
783 bsd_ring_flush(struct intel_ring_buffer *ring,
784 	       uint32_t     invalidate_domains,
785 	       uint32_t     flush_domains)
786 {
787 	int ret;
788 
789 	ret = intel_ring_begin(ring, 2);
790 	if (ret)
791 		return ret;
792 
793 	intel_ring_emit(ring, MI_FLUSH);
794 	intel_ring_emit(ring, MI_NOOP);
795 	intel_ring_advance(ring);
796 	return 0;
797 }
798 
799 static int
800 ring_add_request(struct intel_ring_buffer *ring,
801 		 uint32_t *result)
802 {
803 	uint32_t seqno;
804 	int ret;
805 
806 	ret = intel_ring_begin(ring, 4);
807 	if (ret)
808 		return ret;
809 
810 	seqno = i915_gem_next_request_seqno(ring);
811 
812 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
813 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
814 	intel_ring_emit(ring, seqno);
815 	intel_ring_emit(ring, MI_USER_INTERRUPT);
816 	intel_ring_advance(ring);
817 
818 	*result = seqno;
819 	return 0;
820 }
821 
822 static bool
823 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
824 {
825 	struct drm_device *dev = ring->dev;
826 	drm_i915_private_t *dev_priv = dev->dev_private;
827 
828 	if (!dev->irq_enabled)
829 	       return false;
830 
831 	gen6_gt_force_wake_get(dev_priv);
832 
833 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
834 	if (ring->irq_refcount++ == 0) {
835 		ring->irq_mask &= ~rflag;
836 		I915_WRITE_IMR(ring, ring->irq_mask);
837 		ironlake_enable_irq(dev_priv, gflag);
838 	}
839 
840 	return true;
841 }
842 
843 static void
844 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
845 {
846 	struct drm_device *dev = ring->dev;
847 	drm_i915_private_t *dev_priv = dev->dev_private;
848 
849 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
850 	if (--ring->irq_refcount == 0) {
851 		ring->irq_mask |= rflag;
852 		I915_WRITE_IMR(ring, ring->irq_mask);
853 		ironlake_disable_irq(dev_priv, gflag);
854 	}
855 
856 	gen6_gt_force_wake_put(dev_priv);
857 }
858 
859 static bool
860 bsd_ring_get_irq(struct intel_ring_buffer *ring)
861 {
862 	struct drm_device *dev = ring->dev;
863 	drm_i915_private_t *dev_priv = dev->dev_private;
864 
865 	if (!dev->irq_enabled)
866 		return false;
867 
868 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
869 	if (ring->irq_refcount++ == 0) {
870 		if (IS_G4X(dev))
871 			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
872 		else
873 			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
874 	}
875 
876 	return true;
877 }
878 static void
879 bsd_ring_put_irq(struct intel_ring_buffer *ring)
880 {
881 	struct drm_device *dev = ring->dev;
882 	drm_i915_private_t *dev_priv = dev->dev_private;
883 
884 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
885 	if (--ring->irq_refcount == 0) {
886 		if (IS_G4X(dev))
887 			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
888 		else
889 			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
890 	}
891 }
892 
893 static int
894 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
895     uint32_t length)
896 {
897 	int ret;
898 
899 	ret = intel_ring_begin(ring, 2);
900 	if (ret)
901 		return ret;
902 
903 	intel_ring_emit(ring,
904 			MI_BATCH_BUFFER_START | (2 << 6) |
905 			MI_BATCH_NON_SECURE_I965);
906 	intel_ring_emit(ring, offset);
907 	intel_ring_advance(ring);
908 
909 	return 0;
910 }
911 
912 static int
913 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
914 				uint32_t offset, uint32_t len)
915 {
916 	struct drm_device *dev = ring->dev;
917 	int ret;
918 
919 	if (IS_I830(dev) || IS_845G(dev)) {
920 		ret = intel_ring_begin(ring, 4);
921 		if (ret)
922 			return ret;
923 
924 		intel_ring_emit(ring, MI_BATCH_BUFFER);
925 		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
926 		intel_ring_emit(ring, offset + len - 8);
927 		intel_ring_emit(ring, 0);
928 	} else {
929 		ret = intel_ring_begin(ring, 2);
930 		if (ret)
931 			return ret;
932 
933 		if (INTEL_INFO(dev)->gen >= 4) {
934 			intel_ring_emit(ring,
935 					MI_BATCH_BUFFER_START | (2 << 6) |
936 					MI_BATCH_NON_SECURE_I965);
937 			intel_ring_emit(ring, offset);
938 		} else {
939 			intel_ring_emit(ring,
940 					MI_BATCH_BUFFER_START | (2 << 6));
941 			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
942 		}
943 	}
944 	intel_ring_advance(ring);
945 
946 	return 0;
947 }
948 
949 static void cleanup_status_page(struct intel_ring_buffer *ring)
950 {
951 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
952 	struct drm_i915_gem_object *obj;
953 
954 	obj = ring->status_page.obj;
955 	if (obj == NULL)
956 		return;
957 
958 	pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
959 	kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
960 	    PAGE_SIZE);
961 	i915_gem_object_unpin(obj);
962 	drm_gem_object_unreference(&obj->base);
963 	ring->status_page.obj = NULL;
964 
965 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
966 }
967 
968 static int init_status_page(struct intel_ring_buffer *ring)
969 {
970 	struct drm_device *dev = ring->dev;
971 	drm_i915_private_t *dev_priv = dev->dev_private;
972 	struct drm_i915_gem_object *obj;
973 	int ret;
974 
975 	obj = i915_gem_alloc_object(dev, 4096);
976 	if (obj == NULL) {
977 		DRM_ERROR("Failed to allocate status page\n");
978 		ret = -ENOMEM;
979 		goto err;
980 	}
981 
982 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
983 
984 	ret = i915_gem_object_pin(obj, 4096, true);
985 	if (ret != 0) {
986 		goto err_unref;
987 	}
988 
989 	ring->status_page.gfx_addr = obj->gtt_offset;
990 	ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
991 	    PAGE_SIZE, PAGE_SIZE);
992 	if (ring->status_page.page_addr == NULL) {
993 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
994 		goto err_unpin;
995 	}
996 	pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
997 	    1);
998 	pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
999 	    (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1000 	ring->status_page.obj = obj;
1001 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1002 
1003 	intel_ring_setup_status_page(ring);
1004 	DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1005 			ring->name, ring->status_page.gfx_addr);
1006 
1007 	return 0;
1008 
1009 err_unpin:
1010 	i915_gem_object_unpin(obj);
1011 err_unref:
1012 	drm_gem_object_unreference(&obj->base);
1013 err:
1014 	return ret;
1015 }
1016 
1017 static int intel_init_ring_buffer(struct drm_device *dev,
1018 				  struct intel_ring_buffer *ring)
1019 {
1020 	struct drm_i915_gem_object *obj;
1021 	int ret;
1022 
1023 	ring->dev = dev;
1024 	INIT_LIST_HEAD(&ring->active_list);
1025 	INIT_LIST_HEAD(&ring->request_list);
1026 	INIT_LIST_HEAD(&ring->gpu_write_list);
1027 
1028 	lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1029 	ring->irq_mask = ~0;
1030 
1031 	init_waitqueue_head(&ring->irq_queue);
1032 
1033 	if (I915_NEED_GFX_HWS(dev)) {
1034 		ret = init_status_page(ring);
1035 		if (ret)
1036 			return ret;
1037 	}
1038 
1039 	obj = i915_gem_alloc_object(dev, ring->size);
1040 	if (obj == NULL) {
1041 		DRM_ERROR("Failed to allocate ringbuffer\n");
1042 		ret = -ENOMEM;
1043 		goto err_hws;
1044 	}
1045 
1046 	ring->obj = obj;
1047 
1048 	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1049 	if (ret)
1050 		goto err_unref;
1051 
1052 	ring->map.size = ring->size;
1053 	ring->map.offset = dev->agp->base + obj->gtt_offset;
1054 	ring->map.type = 0;
1055 	ring->map.flags = 0;
1056 	ring->map.mtrr = 0;
1057 
1058 	drm_core_ioremap_wc(&ring->map, dev);
1059 	if (ring->map.virtual == NULL) {
1060 		DRM_ERROR("Failed to map ringbuffer.\n");
1061 		ret = -EINVAL;
1062 		goto err_unpin;
1063 	}
1064 
1065 	ring->virtual_start = ring->map.virtual;
1066 	ret = ring->init(ring);
1067 	if (ret)
1068 		goto err_unmap;
1069 
1070 	/* Workaround an erratum on the i830 which causes a hang if
1071 	 * the TAIL pointer points to within the last 2 cachelines
1072 	 * of the buffer.
1073 	 */
1074 	ring->effective_size = ring->size;
1075 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1076 		ring->effective_size -= 128;
1077 
1078 	return 0;
1079 
1080 err_unmap:
1081 	drm_core_ioremapfree(&ring->map, dev);
1082 err_unpin:
1083 	i915_gem_object_unpin(obj);
1084 err_unref:
1085 	drm_gem_object_unreference(&obj->base);
1086 	ring->obj = NULL;
1087 err_hws:
1088 	cleanup_status_page(ring);
1089 	return ret;
1090 }
1091 
1092 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1093 {
1094 	struct drm_i915_private *dev_priv;
1095 	int ret;
1096 
1097 	if (ring->obj == NULL)
1098 		return;
1099 
1100 	/* Disable the ring buffer. The ring must be idle at this point */
1101 	dev_priv = ring->dev->dev_private;
1102 	ret = intel_ring_idle(ring);
1103 	if (ret)
1104 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1105 			  ring->name, ret);
1106 
1107 	I915_WRITE_CTL(ring, 0);
1108 
1109 	drm_core_ioremapfree(&ring->map, ring->dev);
1110 
1111 	i915_gem_object_unpin(ring->obj);
1112 	drm_gem_object_unreference(&ring->obj->base);
1113 	ring->obj = NULL;
1114 
1115 	if (ring->cleanup)
1116 		ring->cleanup(ring);
1117 
1118 	cleanup_status_page(ring);
1119 }
1120 
1121 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1122 {
1123 	int ret;
1124 
1125 	ret = i915_wait_seqno(ring, seqno);
1126 	if (!ret)
1127 		i915_gem_retire_requests_ring(ring);
1128 
1129 	return ret;
1130 }
1131 
1132 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1133 {
1134 	struct drm_i915_gem_request *request;
1135 	u32 seqno = 0;
1136 	int ret;
1137 
1138 	i915_gem_retire_requests_ring(ring);
1139 
1140 	if (ring->last_retired_head != -1) {
1141 		ring->head = ring->last_retired_head;
1142 		ring->last_retired_head = -1;
1143 		ring->space = ring_space(ring);
1144 		if (ring->space >= n)
1145 			return 0;
1146 	}
1147 
1148 	list_for_each_entry(request, &ring->request_list, list) {
1149 		int space;
1150 
1151 		if (request->tail == -1)
1152 			continue;
1153 
1154 		space = request->tail - (ring->tail + 8);
1155 		if (space < 0)
1156 			space += ring->size;
1157 		if (space >= n) {
1158 			seqno = request->seqno;
1159 			break;
1160 		}
1161 
1162 		/* Consume this request in case we need more space than
1163 		 * is available and so need to prevent a race between
1164 		 * updating last_retired_head and direct reads of
1165 		 * I915_RING_HEAD. It also provides a nice sanity check.
1166 		 */
1167 		request->tail = -1;
1168 	}
1169 
1170 	if (seqno == 0)
1171 		return -ENOSPC;
1172 
1173 	ret = intel_ring_wait_seqno(ring, seqno);
1174 	if (ret)
1175 		return ret;
1176 
1177 	if (ring->last_retired_head == -1)
1178 		return -ENOSPC;
1179 
1180 	ring->head = ring->last_retired_head;
1181 	ring->last_retired_head = -1;
1182 	ring->space = ring_space(ring);
1183 	if (ring->space < n)
1184 		return -ENOSPC;
1185 
1186 	return 0;
1187 }
1188 
1189 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1190 {
1191 	struct drm_device *dev = ring->dev;
1192 	struct drm_i915_private *dev_priv = dev->dev_private;
1193 	int end;
1194 	int ret;
1195 
1196 	ret = intel_ring_wait_request(ring, n);
1197 	if (ret != -ENOSPC)
1198 		return ret;
1199 
1200 	if (drm_core_check_feature(dev, DRIVER_GEM))
1201 		/* With GEM the hangcheck timer should kick us out of the loop,
1202 		 * leaving it early runs the risk of corrupting GEM state (due
1203 		 * to running on almost untested codepaths). But on resume
1204 		 * timers don't work yet, so prevent a complete hang in that
1205 		 * case by choosing an insanely large timeout. */
1206 		end = ticks + hz * 60;
1207 	else
1208 		end = ticks + hz * 3;
1209 	do {
1210 		ring->head = I915_READ_HEAD(ring);
1211 		ring->space = ring_space(ring);
1212 		if (ring->space >= n) {
1213 			return 0;
1214 		}
1215 
1216 #if 0
1217 		if (dev->primary->master) {
1218 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1219 			if (master_priv->sarea_priv)
1220 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1221 		}
1222 #else
1223 		if (dev_priv->sarea_priv)
1224 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1225 #endif
1226 
1227 		DELAY(1000);
1228 		if (atomic_read(&dev_priv->mm.wedged) != 0) {
1229 			return -EAGAIN;
1230 		}
1231 	} while (!time_after(ticks, end));
1232 	return -EBUSY;
1233 }
1234 
1235 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1236 {
1237 	uint32_t __iomem *virt;
1238 	int rem = ring->size - ring->tail;
1239 
1240 	if (ring->space < rem) {
1241 		int ret = ring_wait_for_space(ring, rem);
1242 		if (ret)
1243 			return ret;
1244 	}
1245 
1246 	virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1247 	rem /= 4;
1248 	while (rem--)
1249 		*virt++ = MI_NOOP;
1250 
1251 	ring->tail = 0;
1252 	ring->space = ring_space(ring);
1253 
1254 	return 0;
1255 }
1256 
1257 int intel_ring_idle(struct intel_ring_buffer *ring)
1258 {
1259 	return ring_wait_for_space(ring, ring->size - 8);
1260 }
1261 
1262 int intel_ring_begin(struct intel_ring_buffer *ring,
1263 		     int num_dwords)
1264 {
1265 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1266 	int n = 4*num_dwords;
1267 	int ret;
1268 
1269 	if (atomic_read(&dev_priv->mm.wedged))
1270 		return -EIO;
1271 
1272 	if (ring->tail + n > ring->effective_size) {
1273 		ret = intel_wrap_ring_buffer(ring);
1274 		if (ret != 0)
1275 			return ret;
1276 	}
1277 
1278 	if (unlikely(ring->space < n)) {
1279 		ret = ring_wait_for_space(ring, n);
1280 		if (unlikely(ret))
1281 			return ret;
1282 	}
1283 
1284 	ring->space -= n;
1285 	return 0;
1286 }
1287 
1288 void intel_ring_advance(struct intel_ring_buffer *ring)
1289 {
1290 	ring->tail &= ring->size - 1;
1291 	ring->write_tail(ring, ring->tail);
1292 }
1293 
1294 static const struct intel_ring_buffer render_ring = {
1295 	.name			= "render ring",
1296 	.id			= RCS,
1297 	.mmio_base		= RENDER_RING_BASE,
1298 	.size			= 32 * PAGE_SIZE,
1299 	.init			= init_render_ring,
1300 	.write_tail		= ring_write_tail,
1301 	.flush			= render_ring_flush,
1302 	.add_request		= render_ring_add_request,
1303 	.get_seqno		= ring_get_seqno,
1304 	.irq_get		= render_ring_get_irq,
1305 	.irq_put		= render_ring_put_irq,
1306 	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1307 	.cleanup		= render_ring_cleanup,
1308 	.sync_to		= render_ring_sync_to,
1309 	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
1310 				   MI_SEMAPHORE_SYNC_RV,
1311 				   MI_SEMAPHORE_SYNC_RB},
1312 	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1313 };
1314 
1315 /* ring buffer for bit-stream decoder */
1316 
1317 static const struct intel_ring_buffer bsd_ring = {
1318 	.name                   = "bsd ring",
1319 	.id			= VCS,
1320 	.mmio_base		= BSD_RING_BASE,
1321 	.size			= 32 * PAGE_SIZE,
1322 	.init			= init_ring_common,
1323 	.write_tail		= ring_write_tail,
1324 	.flush			= bsd_ring_flush,
1325 	.add_request		= ring_add_request,
1326 	.get_seqno		= ring_get_seqno,
1327 	.irq_get		= bsd_ring_get_irq,
1328 	.irq_put		= bsd_ring_put_irq,
1329 	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1330 };
1331 
1332 
1333 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1334 				     u32 value)
1335 {
1336 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1337 
1338        /* Every tail move must follow the sequence below */
1339 
1340 	/* Disable notification that the ring is IDLE. The GT
1341 	 * will then assume that it is busy and bring it out of rc6.
1342 	 */
1343 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1344 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1345 
1346 	/* Clear the context id. Here be magic! */
1347 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1348 
1349 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1350 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1351 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1352 		     50))
1353 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1354 
1355 	/* Now that the ring is fully powered up, update the tail */
1356 	I915_WRITE_TAIL(ring, value);
1357 	POSTING_READ(RING_TAIL(ring->mmio_base));
1358 
1359 	/* Let the ring send IDLE messages to the GT again,
1360 	 * and so let it sleep to conserve power when idle.
1361 	 */
1362 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1363 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1364 }
1365 
1366 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1367 			   uint32_t invalidate, uint32_t flush)
1368 {
1369 	uint32_t cmd;
1370 	int ret;
1371 
1372 	ret = intel_ring_begin(ring, 4);
1373 	if (ret)
1374 		return ret;
1375 
1376 	cmd = MI_FLUSH_DW;
1377 	if (invalidate & I915_GEM_GPU_DOMAINS)
1378 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1379 	intel_ring_emit(ring, cmd);
1380 	intel_ring_emit(ring, 0);
1381 	intel_ring_emit(ring, 0);
1382 	intel_ring_emit(ring, MI_NOOP);
1383 	intel_ring_advance(ring);
1384 	return 0;
1385 }
1386 
1387 static int
1388 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1389 			      uint32_t offset, uint32_t len)
1390 {
1391 	int ret;
1392 
1393 	ret = intel_ring_begin(ring, 2);
1394 	if (ret)
1395 		return ret;
1396 
1397 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1398 	/* bit0-7 is the length on GEN6+ */
1399 	intel_ring_emit(ring, offset);
1400 	intel_ring_advance(ring);
1401 
1402 	return 0;
1403 }
1404 
1405 static bool
1406 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1407 {
1408 	return gen6_ring_get_irq(ring,
1409 				 GT_USER_INTERRUPT,
1410 				 GEN6_RENDER_USER_INTERRUPT);
1411 }
1412 
1413 static void
1414 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1415 {
1416 	return gen6_ring_put_irq(ring,
1417 				 GT_USER_INTERRUPT,
1418 				 GEN6_RENDER_USER_INTERRUPT);
1419 }
1420 
1421 static bool
1422 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1423 {
1424 	return gen6_ring_get_irq(ring,
1425 				 GT_GEN6_BSD_USER_INTERRUPT,
1426 				 GEN6_BSD_USER_INTERRUPT);
1427 }
1428 
1429 static void
1430 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1431 {
1432 	return gen6_ring_put_irq(ring,
1433 				 GT_GEN6_BSD_USER_INTERRUPT,
1434 				 GEN6_BSD_USER_INTERRUPT);
1435 }
1436 
1437 /* ring buffer for Video Codec for Gen6+ */
1438 static const struct intel_ring_buffer gen6_bsd_ring = {
1439 	.name			= "gen6 bsd ring",
1440 	.id			= VCS,
1441 	.mmio_base		= GEN6_BSD_RING_BASE,
1442 	.size			= 32 * PAGE_SIZE,
1443 	.init			= init_ring_common,
1444 	.write_tail		= gen6_bsd_ring_write_tail,
1445 	.flush			= gen6_ring_flush,
1446 	.add_request		= gen6_add_request,
1447 	.get_seqno		= gen6_ring_get_seqno,
1448 	.irq_get		= gen6_bsd_ring_get_irq,
1449 	.irq_put		= gen6_bsd_ring_put_irq,
1450 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1451 	.sync_to		= gen6_bsd_ring_sync_to,
1452 	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
1453 				   MI_SEMAPHORE_SYNC_INVALID,
1454 				   MI_SEMAPHORE_SYNC_VB},
1455 	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1456 };
1457 
1458 /* Blitter support (SandyBridge+) */
1459 
1460 static bool
1461 blt_ring_get_irq(struct intel_ring_buffer *ring)
1462 {
1463 	return gen6_ring_get_irq(ring,
1464 				 GT_GEN6_BLT_USER_INTERRUPT,
1465 				 GEN6_BLITTER_USER_INTERRUPT);
1466 }
1467 
1468 static void
1469 blt_ring_put_irq(struct intel_ring_buffer *ring)
1470 {
1471 	gen6_ring_put_irq(ring,
1472 			  GT_GEN6_BLT_USER_INTERRUPT,
1473 			  GEN6_BLITTER_USER_INTERRUPT);
1474 }
1475 
1476 static int blt_ring_flush(struct intel_ring_buffer *ring,
1477 			  uint32_t invalidate, uint32_t flush)
1478 {
1479 	uint32_t cmd;
1480 	int ret;
1481 
1482 	ret = intel_ring_begin(ring, 4);
1483 	if (ret)
1484 		return ret;
1485 
1486 	cmd = MI_FLUSH_DW;
1487 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1488 		cmd |= MI_INVALIDATE_TLB;
1489 	intel_ring_emit(ring, cmd);
1490 	intel_ring_emit(ring, 0);
1491 	intel_ring_emit(ring, 0);
1492 	intel_ring_emit(ring, MI_NOOP);
1493 	intel_ring_advance(ring);
1494 	return 0;
1495 }
1496 
1497 static const struct intel_ring_buffer gen6_blt_ring = {
1498 	.name			= "blt ring",
1499 	.id			= BCS,
1500 	.mmio_base		= BLT_RING_BASE,
1501 	.size			= 32 * PAGE_SIZE,
1502 	.init			= init_ring_common,
1503 	.write_tail		= ring_write_tail,
1504 	.flush			= blt_ring_flush,
1505 	.add_request		= gen6_add_request,
1506 	.get_seqno		= gen6_ring_get_seqno,
1507 	.irq_get		= blt_ring_get_irq,
1508 	.irq_put		= blt_ring_put_irq,
1509 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1510 	.sync_to		= gen6_blt_ring_sync_to,
1511 	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
1512 				   MI_SEMAPHORE_SYNC_BV,
1513 				   MI_SEMAPHORE_SYNC_INVALID},
1514 	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1515 };
1516 
1517 int intel_init_render_ring_buffer(struct drm_device *dev)
1518 {
1519 	drm_i915_private_t *dev_priv = dev->dev_private;
1520 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1521 
1522 	*ring = render_ring;
1523 	if (INTEL_INFO(dev)->gen >= 6) {
1524 		ring->add_request = gen6_add_request;
1525 		ring->flush = gen6_render_ring_flush;
1526 		ring->irq_get = gen6_render_ring_get_irq;
1527 		ring->irq_put = gen6_render_ring_put_irq;
1528 		ring->get_seqno = gen6_ring_get_seqno;
1529 	} else if (IS_GEN5(dev)) {
1530 		ring->add_request = pc_render_add_request;
1531 		ring->get_seqno = pc_render_get_seqno;
1532 	}
1533 
1534 	if (!I915_NEED_GFX_HWS(dev)) {
1535 		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1536 		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1537 	}
1538 
1539 	return intel_init_ring_buffer(dev, ring);
1540 }
1541 
1542 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1543     uint32_t size)
1544 {
1545 	drm_i915_private_t *dev_priv = dev->dev_private;
1546 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1547 
1548 	*ring = render_ring;
1549 	if (INTEL_INFO(dev)->gen >= 6) {
1550 		ring->add_request = gen6_add_request;
1551 		ring->irq_get = gen6_render_ring_get_irq;
1552 		ring->irq_put = gen6_render_ring_put_irq;
1553 	} else if (IS_GEN5(dev)) {
1554 		ring->add_request = pc_render_add_request;
1555 		ring->get_seqno = pc_render_get_seqno;
1556 	}
1557 
1558 	ring->dev = dev;
1559 	INIT_LIST_HEAD(&ring->active_list);
1560 	INIT_LIST_HEAD(&ring->request_list);
1561 	INIT_LIST_HEAD(&ring->gpu_write_list);
1562 
1563 	ring->size = size;
1564 	ring->effective_size = ring->size;
1565 	if (IS_I830(ring->dev))
1566 		ring->effective_size -= 128;
1567 
1568 	ring->map.offset = start;
1569 	ring->map.size = size;
1570 	ring->map.type = 0;
1571 	ring->map.flags = 0;
1572 	ring->map.mtrr = 0;
1573 
1574 	drm_core_ioremap_wc(&ring->map, dev);
1575 	if (ring->map.virtual == NULL) {
1576 		DRM_ERROR("can not ioremap virtual address for"
1577 			  " ring buffer\n");
1578 		return -ENOMEM;
1579 	}
1580 
1581 	ring->virtual_start = (void *)ring->map.virtual;
1582 	return 0;
1583 }
1584 
1585 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1586 {
1587 	drm_i915_private_t *dev_priv = dev->dev_private;
1588 	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1589 
1590 	if (IS_GEN6(dev) || IS_GEN7(dev))
1591 		*ring = gen6_bsd_ring;
1592 	else
1593 		*ring = bsd_ring;
1594 
1595 	return intel_init_ring_buffer(dev, ring);
1596 }
1597 
1598 int intel_init_blt_ring_buffer(struct drm_device *dev)
1599 {
1600 	drm_i915_private_t *dev_priv = dev->dev_private;
1601 	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1602 
1603 	*ring = gen6_blt_ring;
1604 
1605 	return intel_init_ring_buffer(dev, ring);
1606 }
1607 
1608 int
1609 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1610 {
1611 	int ret;
1612 
1613 	if (!ring->gpu_caches_dirty)
1614 		return 0;
1615 
1616 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1617 	if (ret)
1618 		return ret;
1619 
1620 	ring->gpu_caches_dirty = false;
1621 	return 0;
1622 }
1623 
1624 int
1625 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1626 {
1627 	uint32_t flush_domains;
1628 	int ret;
1629 
1630 	flush_domains = 0;
1631 	if (ring->gpu_caches_dirty)
1632 		flush_domains = I915_GEM_GPU_DOMAINS;
1633 
1634 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1635 	if (ret)
1636 		return ret;
1637 
1638 	ring->gpu_caches_dirty = false;
1639 	return 0;
1640 }
1641