xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 61c0377f)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30 
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37 
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43 	struct drm_i915_gem_object *obj;
44 	volatile u32 *cpu_page;
45 	u32 gtt_offset;
46 };
47 
48 static inline int ring_space(struct intel_ring_buffer *ring)
49 {
50 	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
51 	if (space < 0)
52 		space += ring->size;
53 	return space;
54 }
55 
56 static int
57 render_ring_flush(struct intel_ring_buffer *ring,
58 		  uint32_t	invalidate_domains,
59 		  uint32_t	flush_domains)
60 {
61 	struct drm_device *dev = ring->dev;
62 	uint32_t cmd;
63 	int ret;
64 
65 	/*
66 	 * read/write caches:
67 	 *
68 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
69 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
70 	 * also flushed at 2d versus 3d pipeline switches.
71 	 *
72 	 * read-only caches:
73 	 *
74 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
75 	 * MI_READ_FLUSH is set, and is always flushed on 965.
76 	 *
77 	 * I915_GEM_DOMAIN_COMMAND may not exist?
78 	 *
79 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
80 	 * invalidated when MI_EXE_FLUSH is set.
81 	 *
82 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
83 	 * invalidated with every MI_FLUSH.
84 	 *
85 	 * TLBs:
86 	 *
87 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
88 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
89 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
90 	 * are flushed at any MI_FLUSH.
91 	 */
92 
93 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
94 	if ((invalidate_domains|flush_domains) &
95 	    I915_GEM_DOMAIN_RENDER)
96 		cmd &= ~MI_NO_WRITE_FLUSH;
97 	if (INTEL_INFO(dev)->gen < 4) {
98 		/*
99 		 * On the 965, the sampler cache always gets flushed
100 		 * and this bit is reserved.
101 		 */
102 		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
103 			cmd |= MI_READ_FLUSH;
104 	}
105 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
106 		cmd |= MI_EXE_FLUSH;
107 
108 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
109 	    (IS_G4X(dev) || IS_GEN5(dev)))
110 		cmd |= MI_INVALIDATE_ISP;
111 
112 	ret = intel_ring_begin(ring, 2);
113 	if (ret)
114 		return ret;
115 
116 	intel_ring_emit(ring, cmd);
117 	intel_ring_emit(ring, MI_NOOP);
118 	intel_ring_advance(ring);
119 
120 	return 0;
121 }
122 
123 /**
124  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
125  * implementing two workarounds on gen6.  From section 1.4.7.1
126  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
127  *
128  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
129  * produced by non-pipelined state commands), software needs to first
130  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
131  * 0.
132  *
133  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
134  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
135  *
136  * And the workaround for these two requires this workaround first:
137  *
138  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
139  * BEFORE the pipe-control with a post-sync op and no write-cache
140  * flushes.
141  *
142  * And this last workaround is tricky because of the requirements on
143  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
144  * volume 2 part 1:
145  *
146  *     "1 of the following must also be set:
147  *      - Render Target Cache Flush Enable ([12] of DW1)
148  *      - Depth Cache Flush Enable ([0] of DW1)
149  *      - Stall at Pixel Scoreboard ([1] of DW1)
150  *      - Depth Stall ([13] of DW1)
151  *      - Post-Sync Operation ([13] of DW1)
152  *      - Notify Enable ([8] of DW1)"
153  *
154  * The cache flushes require the workaround flush that triggered this
155  * one, so we can't use it.  Depth stall would trigger the same.
156  * Post-sync nonzero is what triggered this second workaround, so we
157  * can't use that one either.  Notify enable is IRQs, which aren't
158  * really our business.  That leaves only stall at scoreboard.
159  */
160 static int
161 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
162 {
163 	struct pipe_control *pc = ring->private;
164 	u32 scratch_addr = pc->gtt_offset + 128;
165 	int ret;
166 
167 
168 	ret = intel_ring_begin(ring, 6);
169 	if (ret)
170 		return ret;
171 
172 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
173 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
174 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
175 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
176 	intel_ring_emit(ring, 0); /* low dword */
177 	intel_ring_emit(ring, 0); /* high dword */
178 	intel_ring_emit(ring, MI_NOOP);
179 	intel_ring_advance(ring);
180 
181 	ret = intel_ring_begin(ring, 6);
182 	if (ret)
183 		return ret;
184 
185 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
187 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188 	intel_ring_emit(ring, 0);
189 	intel_ring_emit(ring, 0);
190 	intel_ring_emit(ring, MI_NOOP);
191 	intel_ring_advance(ring);
192 
193 	return 0;
194 }
195 
196 static int
197 gen6_render_ring_flush(struct intel_ring_buffer *ring,
198                          u32 invalidate_domains, u32 flush_domains)
199 {
200 	u32 flags = 0;
201 	struct pipe_control *pc = ring->private;
202 	u32 scratch_addr = pc->gtt_offset + 128;
203 	int ret;
204 
205 	/* Force SNB workarounds for PIPE_CONTROL flushes */
206 	intel_emit_post_sync_nonzero_flush(ring);
207 
208 	/* Just flush everything.  Experiments have shown that reducing the
209 	 * number of bits based on the write domains has little performance
210 	 * impact.
211 	 */
212 	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
213 	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
214 	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
215 	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
216 	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
217 	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
218 	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
219 
220 	ret = intel_ring_begin(ring, 6);
221 	if (ret)
222 		return ret;
223 
224 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 	intel_ring_emit(ring, flags);
226 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
227 	intel_ring_emit(ring, 0); /* lower dword */
228 	intel_ring_emit(ring, 0); /* uppwer dword */
229 	intel_ring_emit(ring, MI_NOOP);
230 	intel_ring_advance(ring);
231 
232 	return 0;
233 }
234 
235 static void ring_write_tail(struct intel_ring_buffer *ring,
236 			    uint32_t value)
237 {
238 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
239 	I915_WRITE_TAIL(ring, value);
240 }
241 
242 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
243 {
244 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
245 	uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
246 			RING_ACTHD(ring->mmio_base) : ACTHD;
247 
248 	return I915_READ(acthd_reg);
249 }
250 
251 static int init_ring_common(struct intel_ring_buffer *ring)
252 {
253 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
254 	struct drm_i915_gem_object *obj = ring->obj;
255 	uint32_t head;
256 
257 	/* Stop the ring if it's running. */
258 	I915_WRITE_CTL(ring, 0);
259 	I915_WRITE_HEAD(ring, 0);
260 	ring->write_tail(ring, 0);
261 
262 	/* Initialize the ring. */
263 	I915_WRITE_START(ring, obj->gtt_offset);
264 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
265 
266 	/* G45 ring initialization fails to reset head to zero */
267 	if (head != 0) {
268 		DRM_DEBUG("%s head not reset to zero "
269 			      "ctl %08x head %08x tail %08x start %08x\n",
270 			      ring->name,
271 			      I915_READ_CTL(ring),
272 			      I915_READ_HEAD(ring),
273 			      I915_READ_TAIL(ring),
274 			      I915_READ_START(ring));
275 
276 		I915_WRITE_HEAD(ring, 0);
277 
278 		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
279 			DRM_ERROR("failed to set %s head to zero "
280 				  "ctl %08x head %08x tail %08x start %08x\n",
281 				  ring->name,
282 				  I915_READ_CTL(ring),
283 				  I915_READ_HEAD(ring),
284 				  I915_READ_TAIL(ring),
285 				  I915_READ_START(ring));
286 		}
287 	}
288 
289 	I915_WRITE_CTL(ring,
290 			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
291 			| RING_VALID);
292 
293 	/* If the head is still not zero, the ring is dead */
294 	if (_intel_wait_for(ring->dev,
295 	    (I915_READ_CTL(ring) & RING_VALID) != 0 &&
296 	     I915_READ_START(ring) == obj->gtt_offset &&
297 	     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
298 	    50, 1, "915rii")) {
299 		DRM_ERROR("%s initialization failed "
300 				"ctl %08x head %08x tail %08x start %08x\n",
301 				ring->name,
302 				I915_READ_CTL(ring),
303 				I915_READ_HEAD(ring),
304 				I915_READ_TAIL(ring),
305 				I915_READ_START(ring));
306 		return -EIO;
307 	}
308 
309 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
310 		i915_kernel_lost_context(ring->dev);
311 	else {
312 		ring->head = I915_READ_HEAD(ring);
313 		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
314 		ring->space = ring_space(ring);
315 	}
316 
317 	return 0;
318 }
319 
320 static int
321 init_pipe_control(struct intel_ring_buffer *ring)
322 {
323 	struct pipe_control *pc;
324 	struct drm_i915_gem_object *obj;
325 	int ret;
326 
327 	if (ring->private)
328 		return 0;
329 
330 	pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
331 	if (!pc)
332 		return -ENOMEM;
333 
334 	obj = i915_gem_alloc_object(ring->dev, 4096);
335 	if (obj == NULL) {
336 		DRM_ERROR("Failed to allocate seqno page\n");
337 		ret = -ENOMEM;
338 		goto err;
339 	}
340 
341 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
342 
343 	ret = i915_gem_object_pin(obj, 4096, true);
344 	if (ret)
345 		goto err_unref;
346 
347 	pc->gtt_offset = obj->gtt_offset;
348 	pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
349 	if (pc->cpu_page == NULL)
350 		goto err_unpin;
351 	pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
352 	pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
353 	    (vm_offset_t)pc->cpu_page + PAGE_SIZE);
354 
355 	pc->obj = obj;
356 	ring->private = pc;
357 	return 0;
358 
359 err_unpin:
360 	i915_gem_object_unpin(obj);
361 err_unref:
362 	drm_gem_object_unreference(&obj->base);
363 err:
364 	drm_free(pc, DRM_I915_GEM);
365 	return ret;
366 }
367 
368 static void
369 cleanup_pipe_control(struct intel_ring_buffer *ring)
370 {
371 	struct pipe_control *pc = ring->private;
372 	struct drm_i915_gem_object *obj;
373 
374 	if (!ring->private)
375 		return;
376 
377 	obj = pc->obj;
378 	pmap_qremove((vm_offset_t)pc->cpu_page, 1);
379 	kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
380 	i915_gem_object_unpin(obj);
381 	drm_gem_object_unreference(&obj->base);
382 
383 	drm_free(pc, DRM_I915_GEM);
384 	ring->private = NULL;
385 }
386 
387 static int init_render_ring(struct intel_ring_buffer *ring)
388 {
389 	struct drm_device *dev = ring->dev;
390 	struct drm_i915_private *dev_priv = dev->dev_private;
391 	int ret = init_ring_common(ring);
392 
393 	if (INTEL_INFO(dev)->gen > 3)
394 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
395 
396 	/* We need to disable the AsyncFlip performance optimisations in order
397 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
398 	 * programmed to '1' on all products.
399 	 */
400 	if (INTEL_INFO(dev)->gen >= 6)
401 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
402 
403 	/* Required for the hardware to program scanline values for waiting */
404 	if (INTEL_INFO(dev)->gen == 6)
405 		I915_WRITE(GFX_MODE,
406 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
407 
408 	if (IS_GEN7(dev))
409 		I915_WRITE(GFX_MODE_GEN7,
410 			   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
412 
413 	if (INTEL_INFO(dev)->gen >= 5) {
414 		ret = init_pipe_control(ring);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	if (IS_GEN6(dev)) {
420 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
421 		 * "If this bit is set, STCunit will have LRA as replacement
422 		 *  policy. [...] This bit must be reset.  LRA replacement
423 		 *  policy is not supported."
424 		 */
425 		I915_WRITE(CACHE_MODE_0,
426 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
427 	}
428 
429 	if (INTEL_INFO(dev)->gen >= 6)
430 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
431 
432 	if (HAS_L3_GPU_CACHE(dev))
433 		I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
434 
435 	return ret;
436 }
437 
438 static void render_ring_cleanup(struct intel_ring_buffer *ring)
439 {
440 	if (!ring->private)
441 		return;
442 
443 	cleanup_pipe_control(ring);
444 }
445 
446 static void
447 update_mboxes(struct intel_ring_buffer *ring,
448 	    u32 seqno,
449 	    u32 mmio_offset)
450 {
451 	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
452 			      MI_SEMAPHORE_GLOBAL_GTT |
453 			      MI_SEMAPHORE_REGISTER |
454 			      MI_SEMAPHORE_UPDATE);
455 	intel_ring_emit(ring, seqno);
456 	intel_ring_emit(ring, mmio_offset);
457 }
458 
459 /**
460  * gen6_add_request - Update the semaphore mailbox registers
461  *
462  * @ring - ring that is adding a request
463  * @seqno - return seqno stuck into the ring
464  *
465  * Update the mailbox registers in the *other* rings with the current seqno.
466  * This acts like a signal in the canonical semaphore.
467  */
468 static int
469 gen6_add_request(struct intel_ring_buffer *ring,
470 		 u32 *seqno)
471 {
472 	u32 mbox1_reg;
473 	u32 mbox2_reg;
474 	int ret;
475 
476 	ret = intel_ring_begin(ring, 10);
477 	if (ret)
478 		return ret;
479 
480 	mbox1_reg = ring->signal_mbox[0];
481 	mbox2_reg = ring->signal_mbox[1];
482 
483 	*seqno = i915_gem_next_request_seqno(ring);
484 
485 	update_mboxes(ring, *seqno, mbox1_reg);
486 	update_mboxes(ring, *seqno, mbox2_reg);
487 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
488 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
489 	intel_ring_emit(ring, *seqno);
490 	intel_ring_emit(ring, MI_USER_INTERRUPT);
491 	intel_ring_advance(ring);
492 
493 	return 0;
494 }
495 
496 /**
497  * intel_ring_sync - sync the waiter to the signaller on seqno
498  *
499  * @waiter - ring that is waiting
500  * @signaller - ring which has, or will signal
501  * @seqno - seqno which the waiter will block on
502  */
503 static int
504 intel_ring_sync(struct intel_ring_buffer *waiter,
505 		struct intel_ring_buffer *signaller,
506 		int ring,
507 		u32 seqno)
508 {
509 	int ret;
510 	u32 dw1 = MI_SEMAPHORE_MBOX |
511 		  MI_SEMAPHORE_COMPARE |
512 		  MI_SEMAPHORE_REGISTER;
513 
514 	ret = intel_ring_begin(waiter, 4);
515 	if (ret)
516 		return ret;
517 
518 	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
519 	intel_ring_emit(waiter, seqno);
520 	intel_ring_emit(waiter, 0);
521 	intel_ring_emit(waiter, MI_NOOP);
522 	intel_ring_advance(waiter);
523 
524 	return 0;
525 }
526 
527 int render_ring_sync_to(struct intel_ring_buffer *waiter,
528     struct intel_ring_buffer *signaller, u32 seqno);
529 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
530     struct intel_ring_buffer *signaller, u32 seqno);
531 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
532     struct intel_ring_buffer *signaller, u32 seqno);
533 
534 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
535 int
536 render_ring_sync_to(struct intel_ring_buffer *waiter,
537 		    struct intel_ring_buffer *signaller,
538 		    u32 seqno)
539 {
540 	KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
541 	    ("valid RCS semaphore"));
542 	return intel_ring_sync(waiter,
543 			       signaller,
544 			       RCS,
545 			       seqno);
546 }
547 
548 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
549 int
550 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
551 		      struct intel_ring_buffer *signaller,
552 		      u32 seqno)
553 {
554 	KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
555 	    ("Valid VCS semaphore"));
556 	return intel_ring_sync(waiter,
557 			       signaller,
558 			       VCS,
559 			       seqno);
560 }
561 
562 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
563 int
564 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
565 		      struct intel_ring_buffer *signaller,
566 		      u32 seqno)
567 {
568 	KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
569 	    ("Valid BCS semaphore"));
570 	return intel_ring_sync(waiter,
571 			       signaller,
572 			       BCS,
573 			       seqno);
574 }
575 
576 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
577 do {									\
578 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
579 		 PIPE_CONTROL_DEPTH_STALL);				\
580 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
581 	intel_ring_emit(ring__, 0);							\
582 	intel_ring_emit(ring__, 0);							\
583 } while (0)
584 
585 static int
586 pc_render_add_request(struct intel_ring_buffer *ring,
587 		      uint32_t *result)
588 {
589 	u32 seqno = i915_gem_next_request_seqno(ring);
590 	struct pipe_control *pc = ring->private;
591 	u32 scratch_addr = pc->gtt_offset + 128;
592 	int ret;
593 
594 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
595 	 * incoherent with writes to memory, i.e. completely fubar,
596 	 * so we need to use PIPE_NOTIFY instead.
597 	 *
598 	 * However, we also need to workaround the qword write
599 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
600 	 * memory before requesting an interrupt.
601 	 */
602 	ret = intel_ring_begin(ring, 32);
603 	if (ret)
604 		return ret;
605 
606 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
607 			PIPE_CONTROL_WRITE_FLUSH |
608 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
609 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
610 	intel_ring_emit(ring, seqno);
611 	intel_ring_emit(ring, 0);
612 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
613 	scratch_addr += 128; /* write to separate cachelines */
614 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
615 	scratch_addr += 128;
616 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
617 	scratch_addr += 128;
618 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
619 	scratch_addr += 128;
620 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
621 	scratch_addr += 128;
622 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
623 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
624 			PIPE_CONTROL_WRITE_FLUSH |
625 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
626 			PIPE_CONTROL_NOTIFY);
627 	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
628 	intel_ring_emit(ring, seqno);
629 	intel_ring_emit(ring, 0);
630 	intel_ring_advance(ring);
631 
632 	*result = seqno;
633 	return 0;
634 }
635 
636 static int
637 render_ring_add_request(struct intel_ring_buffer *ring,
638 			uint32_t *result)
639 {
640 	u32 seqno = i915_gem_next_request_seqno(ring);
641 	int ret;
642 
643 	ret = intel_ring_begin(ring, 4);
644 	if (ret)
645 		return ret;
646 
647 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
648 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
649 	intel_ring_emit(ring, seqno);
650 	intel_ring_emit(ring, MI_USER_INTERRUPT);
651 	intel_ring_advance(ring);
652 
653 	*result = seqno;
654 	return 0;
655 }
656 
657  static u32
658 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
659 {
660 	struct drm_device *dev = ring->dev;
661 
662 	/* Workaround to force correct ordering between irq and seqno writes on
663 	 * ivb (and maybe also on snb) by reading from a CS register (like
664 	 * ACTHD) before reading the status page. */
665 	if (/* IS_GEN6(dev) || */IS_GEN7(dev))
666 		intel_ring_get_active_head(ring);
667 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
668 }
669 
670 static uint32_t
671 ring_get_seqno(struct intel_ring_buffer *ring)
672 {
673 	if (ring->status_page.page_addr == NULL)
674 		return (-1);
675 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
676 }
677 
678 static uint32_t
679 pc_render_get_seqno(struct intel_ring_buffer *ring)
680 {
681 	struct pipe_control *pc = ring->private;
682 	if (pc != NULL)
683 		return pc->cpu_page[0];
684 	else
685 		return (-1);
686 }
687 
688 static void
689 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
690 {
691 	dev_priv->gt_irq_mask &= ~mask;
692 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
693 	POSTING_READ(GTIMR);
694 }
695 
696 static void
697 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
698 {
699 	dev_priv->gt_irq_mask |= mask;
700 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
701 	POSTING_READ(GTIMR);
702 }
703 
704 static void
705 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
706 {
707 	dev_priv->irq_mask &= ~mask;
708 	I915_WRITE(IMR, dev_priv->irq_mask);
709 	POSTING_READ(IMR);
710 }
711 
712 static void
713 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
714 {
715 	dev_priv->irq_mask |= mask;
716 	I915_WRITE(IMR, dev_priv->irq_mask);
717 	POSTING_READ(IMR);
718 }
719 
720 static bool
721 render_ring_get_irq(struct intel_ring_buffer *ring)
722 {
723 	struct drm_device *dev = ring->dev;
724 	drm_i915_private_t *dev_priv = dev->dev_private;
725 
726 	if (!dev->irq_enabled)
727 		return false;
728 
729 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
730 	if (ring->irq_refcount++ == 0) {
731 		if (HAS_PCH_SPLIT(dev))
732 			ironlake_enable_irq(dev_priv,
733 					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
734 		else
735 			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
736 	}
737 
738 	return true;
739 }
740 
741 static void
742 render_ring_put_irq(struct intel_ring_buffer *ring)
743 {
744 	struct drm_device *dev = ring->dev;
745 	drm_i915_private_t *dev_priv = dev->dev_private;
746 
747 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
748 	if (--ring->irq_refcount == 0) {
749 		if (HAS_PCH_SPLIT(dev))
750 			ironlake_disable_irq(dev_priv,
751 					     GT_USER_INTERRUPT |
752 					     GT_PIPE_NOTIFY);
753 		else
754 			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
755 	}
756 }
757 
758 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
759 {
760 	struct drm_device *dev = ring->dev;
761 	drm_i915_private_t *dev_priv = dev->dev_private;
762 	uint32_t mmio = 0;
763 
764 	/* The ring status page addresses are no longer next to the rest of
765 	 * the ring registers as of gen7.
766 	 */
767 	if (IS_GEN7(dev)) {
768 		switch (ring->id) {
769 		case RCS:
770 			mmio = RENDER_HWS_PGA_GEN7;
771 			break;
772 		case BCS:
773 			mmio = BLT_HWS_PGA_GEN7;
774 			break;
775 		case VCS:
776 			mmio = BSD_HWS_PGA_GEN7;
777 			break;
778 		}
779 	} else if (IS_GEN6(dev)) {
780 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
781 	} else {
782 		mmio = RING_HWS_PGA(ring->mmio_base);
783 	}
784 
785 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
786 	POSTING_READ(mmio);
787 }
788 
789 static int
790 bsd_ring_flush(struct intel_ring_buffer *ring,
791 	       uint32_t     invalidate_domains,
792 	       uint32_t     flush_domains)
793 {
794 	int ret;
795 
796 	ret = intel_ring_begin(ring, 2);
797 	if (ret)
798 		return ret;
799 
800 	intel_ring_emit(ring, MI_FLUSH);
801 	intel_ring_emit(ring, MI_NOOP);
802 	intel_ring_advance(ring);
803 	return 0;
804 }
805 
806 static int
807 ring_add_request(struct intel_ring_buffer *ring,
808 		 uint32_t *result)
809 {
810 	uint32_t seqno;
811 	int ret;
812 
813 	ret = intel_ring_begin(ring, 4);
814 	if (ret)
815 		return ret;
816 
817 	seqno = i915_gem_next_request_seqno(ring);
818 
819 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
820 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
821 	intel_ring_emit(ring, seqno);
822 	intel_ring_emit(ring, MI_USER_INTERRUPT);
823 	intel_ring_advance(ring);
824 
825 	*result = seqno;
826 	return 0;
827 }
828 
829 static bool
830 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
831 {
832 	struct drm_device *dev = ring->dev;
833 	drm_i915_private_t *dev_priv = dev->dev_private;
834 
835 	if (!dev->irq_enabled)
836 	       return false;
837 
838 	gen6_gt_force_wake_get(dev_priv);
839 
840 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
841 	if (ring->irq_refcount++ == 0) {
842 		ring->irq_mask &= ~rflag;
843 		I915_WRITE_IMR(ring, ring->irq_mask);
844 		ironlake_enable_irq(dev_priv, gflag);
845 	}
846 
847 	return true;
848 }
849 
850 static void
851 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
852 {
853 	struct drm_device *dev = ring->dev;
854 	drm_i915_private_t *dev_priv = dev->dev_private;
855 
856 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
857 	if (--ring->irq_refcount == 0) {
858 		ring->irq_mask |= rflag;
859 		I915_WRITE_IMR(ring, ring->irq_mask);
860 		ironlake_disable_irq(dev_priv, gflag);
861 	}
862 
863 	gen6_gt_force_wake_put(dev_priv);
864 }
865 
866 static bool
867 bsd_ring_get_irq(struct intel_ring_buffer *ring)
868 {
869 	struct drm_device *dev = ring->dev;
870 	drm_i915_private_t *dev_priv = dev->dev_private;
871 
872 	if (!dev->irq_enabled)
873 		return false;
874 
875 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
876 	if (ring->irq_refcount++ == 0) {
877 		if (IS_G4X(dev))
878 			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
879 		else
880 			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
881 	}
882 
883 	return true;
884 }
885 static void
886 bsd_ring_put_irq(struct intel_ring_buffer *ring)
887 {
888 	struct drm_device *dev = ring->dev;
889 	drm_i915_private_t *dev_priv = dev->dev_private;
890 
891 	KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
892 	if (--ring->irq_refcount == 0) {
893 		if (IS_G4X(dev))
894 			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
895 		else
896 			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
897 	}
898 }
899 
900 static int
901 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
902     uint32_t length)
903 {
904 	int ret;
905 
906 	ret = intel_ring_begin(ring, 2);
907 	if (ret)
908 		return ret;
909 
910 	intel_ring_emit(ring,
911 			MI_BATCH_BUFFER_START | (2 << 6) |
912 			MI_BATCH_NON_SECURE_I965);
913 	intel_ring_emit(ring, offset);
914 	intel_ring_advance(ring);
915 
916 	return 0;
917 }
918 
919 static int
920 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
921 				uint32_t offset, uint32_t len)
922 {
923 	struct drm_device *dev = ring->dev;
924 	int ret;
925 
926 	if (IS_I830(dev) || IS_845G(dev)) {
927 		ret = intel_ring_begin(ring, 4);
928 		if (ret)
929 			return ret;
930 
931 		intel_ring_emit(ring, MI_BATCH_BUFFER);
932 		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
933 		intel_ring_emit(ring, offset + len - 8);
934 		intel_ring_emit(ring, 0);
935 	} else {
936 		ret = intel_ring_begin(ring, 2);
937 		if (ret)
938 			return ret;
939 
940 		if (INTEL_INFO(dev)->gen >= 4) {
941 			intel_ring_emit(ring,
942 					MI_BATCH_BUFFER_START | (2 << 6) |
943 					MI_BATCH_NON_SECURE_I965);
944 			intel_ring_emit(ring, offset);
945 		} else {
946 			intel_ring_emit(ring,
947 					MI_BATCH_BUFFER_START | (2 << 6));
948 			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
949 		}
950 	}
951 	intel_ring_advance(ring);
952 
953 	return 0;
954 }
955 
956 static void cleanup_status_page(struct intel_ring_buffer *ring)
957 {
958 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
959 	struct drm_i915_gem_object *obj;
960 
961 	obj = ring->status_page.obj;
962 	if (obj == NULL)
963 		return;
964 
965 	pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
966 	kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
967 	    PAGE_SIZE);
968 	i915_gem_object_unpin(obj);
969 	drm_gem_object_unreference(&obj->base);
970 	ring->status_page.obj = NULL;
971 
972 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
973 }
974 
975 static int init_status_page(struct intel_ring_buffer *ring)
976 {
977 	struct drm_device *dev = ring->dev;
978 	drm_i915_private_t *dev_priv = dev->dev_private;
979 	struct drm_i915_gem_object *obj;
980 	int ret;
981 
982 	obj = i915_gem_alloc_object(dev, 4096);
983 	if (obj == NULL) {
984 		DRM_ERROR("Failed to allocate status page\n");
985 		ret = -ENOMEM;
986 		goto err;
987 	}
988 
989 	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
990 
991 	ret = i915_gem_object_pin(obj, 4096, true);
992 	if (ret != 0) {
993 		goto err_unref;
994 	}
995 
996 	ring->status_page.gfx_addr = obj->gtt_offset;
997 	ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
998 	    PAGE_SIZE, PAGE_SIZE);
999 	if (ring->status_page.page_addr == NULL) {
1000 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1001 		goto err_unpin;
1002 	}
1003 	pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1004 	    1);
1005 	pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1006 	    (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1007 	ring->status_page.obj = obj;
1008 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1009 
1010 	intel_ring_setup_status_page(ring);
1011 	DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1012 			ring->name, ring->status_page.gfx_addr);
1013 
1014 	return 0;
1015 
1016 err_unpin:
1017 	i915_gem_object_unpin(obj);
1018 err_unref:
1019 	drm_gem_object_unreference(&obj->base);
1020 err:
1021 	return ret;
1022 }
1023 
1024 static
1025 int intel_init_ring_buffer(struct drm_device *dev,
1026 			   struct intel_ring_buffer *ring)
1027 {
1028 	struct drm_i915_gem_object *obj;
1029 	int ret;
1030 
1031 	ring->dev = dev;
1032 	INIT_LIST_HEAD(&ring->active_list);
1033 	INIT_LIST_HEAD(&ring->request_list);
1034 	INIT_LIST_HEAD(&ring->gpu_write_list);
1035 
1036 	lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1037 	ring->irq_mask = ~0;
1038 
1039 	if (I915_NEED_GFX_HWS(dev)) {
1040 		ret = init_status_page(ring);
1041 		if (ret)
1042 			return ret;
1043 	}
1044 
1045 	obj = i915_gem_alloc_object(dev, ring->size);
1046 	if (obj == NULL) {
1047 		DRM_ERROR("Failed to allocate ringbuffer\n");
1048 		ret = -ENOMEM;
1049 		goto err_hws;
1050 	}
1051 
1052 	ring->obj = obj;
1053 
1054 	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1055 	if (ret)
1056 		goto err_unref;
1057 
1058 	ring->map.size = ring->size;
1059 	ring->map.offset = dev->agp->base + obj->gtt_offset;
1060 	ring->map.type = 0;
1061 	ring->map.flags = 0;
1062 	ring->map.mtrr = 0;
1063 
1064 	drm_core_ioremap_wc(&ring->map, dev);
1065 	if (ring->map.virtual == NULL) {
1066 		DRM_ERROR("Failed to map ringbuffer.\n");
1067 		ret = -EINVAL;
1068 		goto err_unpin;
1069 	}
1070 
1071 	ring->virtual_start = ring->map.virtual;
1072 	ret = ring->init(ring);
1073 	if (ret)
1074 		goto err_unmap;
1075 
1076 	/* Workaround an erratum on the i830 which causes a hang if
1077 	 * the TAIL pointer points to within the last 2 cachelines
1078 	 * of the buffer.
1079 	 */
1080 	ring->effective_size = ring->size;
1081 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1082 		ring->effective_size -= 128;
1083 
1084 	return 0;
1085 
1086 err_unmap:
1087 	drm_core_ioremapfree(&ring->map, dev);
1088 err_unpin:
1089 	i915_gem_object_unpin(obj);
1090 err_unref:
1091 	drm_gem_object_unreference(&obj->base);
1092 	ring->obj = NULL;
1093 err_hws:
1094 	cleanup_status_page(ring);
1095 	return ret;
1096 }
1097 
1098 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1099 {
1100 	struct drm_i915_private *dev_priv;
1101 	int ret;
1102 
1103 	if (ring->obj == NULL)
1104 		return;
1105 
1106 	/* Disable the ring buffer. The ring must be idle at this point */
1107 	dev_priv = ring->dev->dev_private;
1108 	ret = intel_wait_ring_idle(ring);
1109 	I915_WRITE_CTL(ring, 0);
1110 
1111 	drm_core_ioremapfree(&ring->map, ring->dev);
1112 
1113 	i915_gem_object_unpin(ring->obj);
1114 	drm_gem_object_unreference(&ring->obj->base);
1115 	ring->obj = NULL;
1116 
1117 	if (ring->cleanup)
1118 		ring->cleanup(ring);
1119 
1120 	cleanup_status_page(ring);
1121 }
1122 
1123 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1124 {
1125 	unsigned int *virt;
1126 	int rem = ring->size - ring->tail;
1127 
1128 	if (ring->space < rem) {
1129 		int ret = intel_wait_ring_buffer(ring, rem);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 	virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1135 	rem /= 8;
1136 	while (rem--) {
1137 		*virt++ = MI_NOOP;
1138 		*virt++ = MI_NOOP;
1139 	}
1140 
1141 	ring->tail = 0;
1142 	ring->space = ring_space(ring);
1143 
1144 	return 0;
1145 }
1146 
1147 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1148 {
1149 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1150 	bool was_interruptible;
1151 	int ret;
1152 
1153 	/* XXX As we have not yet audited all the paths to check that
1154 	 * they are ready for ERESTARTSYS from intel_ring_begin, do not
1155 	 * allow us to be interruptible by a signal.
1156 	 */
1157 	was_interruptible = dev_priv->mm.interruptible;
1158 	dev_priv->mm.interruptible = false;
1159 
1160 	ret = i915_wait_request(ring, seqno, true);
1161 
1162 	dev_priv->mm.interruptible = was_interruptible;
1163 
1164 	return ret;
1165 }
1166 
1167 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1168 {
1169 	struct drm_i915_gem_request *request;
1170 	u32 seqno = 0;
1171 	int ret;
1172 
1173 	i915_gem_retire_requests_ring(ring);
1174 
1175 	if (ring->last_retired_head != -1) {
1176 		ring->head = ring->last_retired_head;
1177 		ring->last_retired_head = -1;
1178 		ring->space = ring_space(ring);
1179 		if (ring->space >= n)
1180 			return 0;
1181 	}
1182 
1183 	list_for_each_entry(request, &ring->request_list, list) {
1184 		int space;
1185 
1186 		if (request->tail == -1)
1187 			continue;
1188 
1189 		space = request->tail - (ring->tail + 8);
1190 		if (space < 0)
1191 			space += ring->size;
1192 		if (space >= n) {
1193 			seqno = request->seqno;
1194 			break;
1195 		}
1196 
1197 		/* Consume this request in case we need more space than
1198 		 * is available and so need to prevent a race between
1199 		 * updating last_retired_head and direct reads of
1200 		 * I915_RING_HEAD. It also provides a nice sanity check.
1201 		 */
1202 		request->tail = -1;
1203 	}
1204 
1205 	if (seqno == 0)
1206 		return -ENOSPC;
1207 
1208 	ret = intel_ring_wait_seqno(ring, seqno);
1209 	if (ret)
1210 		return ret;
1211 
1212 	if (ring->last_retired_head == -1)
1213 		return -ENOSPC;
1214 
1215 	ring->head = ring->last_retired_head;
1216 	ring->last_retired_head = -1;
1217 	ring->space = ring_space(ring);
1218 	if (ring->space < n)
1219 		return -ENOSPC;
1220 
1221 	return 0;
1222 }
1223 
1224 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1225 {
1226 	struct drm_device *dev = ring->dev;
1227 	struct drm_i915_private *dev_priv = dev->dev_private;
1228 	int end;
1229 	int ret;
1230 
1231 	ret = intel_ring_wait_request(ring, n);
1232 	if (ret != -ENOSPC)
1233 		return ret;
1234 
1235 	if (drm_core_check_feature(dev, DRIVER_GEM))
1236 		/* With GEM the hangcheck timer should kick us out of the loop,
1237 		 * leaving it early runs the risk of corrupting GEM state (due
1238 		 * to running on almost untested codepaths). But on resume
1239 		 * timers don't work yet, so prevent a complete hang in that
1240 		 * case by choosing an insanely large timeout. */
1241 		end = ticks + hz * 60;
1242 	else
1243 		end = ticks + hz * 3;
1244 	do {
1245 		ring->head = I915_READ_HEAD(ring);
1246 		ring->space = ring_space(ring);
1247 		if (ring->space >= n) {
1248 			return 0;
1249 		}
1250 
1251 #if 0
1252 		if (dev->primary->master) {
1253 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1254 			if (master_priv->sarea_priv)
1255 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1256 		}
1257 #else
1258 		if (dev_priv->sarea_priv)
1259 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1260 #endif
1261 
1262 		DELAY(1000);
1263 		if (atomic_read(&dev_priv->mm.wedged) != 0) {
1264 			return -EAGAIN;
1265 		}
1266 	} while (!time_after(ticks, end));
1267 	return -EBUSY;
1268 }
1269 
1270 int intel_ring_begin(struct intel_ring_buffer *ring,
1271 		     int num_dwords)
1272 {
1273 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1274 	int n = 4*num_dwords;
1275 	int ret;
1276 
1277 	if (atomic_read(&dev_priv->mm.wedged))
1278 		return -EIO;
1279 
1280 	if (ring->tail + n > ring->effective_size) {
1281 		ret = intel_wrap_ring_buffer(ring);
1282 		if (ret != 0)
1283 			return ret;
1284 	}
1285 
1286 	if (ring->space < n) {
1287 		ret = intel_wait_ring_buffer(ring, n);
1288 		if (ret != 0)
1289 			return ret;
1290 	}
1291 
1292 	ring->space -= n;
1293 	return 0;
1294 }
1295 
1296 void intel_ring_advance(struct intel_ring_buffer *ring)
1297 {
1298 	ring->tail &= ring->size - 1;
1299 	ring->write_tail(ring, ring->tail);
1300 }
1301 
1302 static const struct intel_ring_buffer render_ring = {
1303 	.name			= "render ring",
1304 	.id			= RCS,
1305 	.mmio_base		= RENDER_RING_BASE,
1306 	.size			= 32 * PAGE_SIZE,
1307 	.init			= init_render_ring,
1308 	.write_tail		= ring_write_tail,
1309 	.flush			= render_ring_flush,
1310 	.add_request		= render_ring_add_request,
1311 	.get_seqno		= ring_get_seqno,
1312 	.irq_get		= render_ring_get_irq,
1313 	.irq_put		= render_ring_put_irq,
1314 	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1315 	.cleanup		= render_ring_cleanup,
1316 	.sync_to		= render_ring_sync_to,
1317 	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
1318 				   MI_SEMAPHORE_SYNC_RV,
1319 				   MI_SEMAPHORE_SYNC_RB},
1320 	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1321 };
1322 
1323 /* ring buffer for bit-stream decoder */
1324 
1325 static const struct intel_ring_buffer bsd_ring = {
1326 	.name                   = "bsd ring",
1327 	.id			= VCS,
1328 	.mmio_base		= BSD_RING_BASE,
1329 	.size			= 32 * PAGE_SIZE,
1330 	.init			= init_ring_common,
1331 	.write_tail		= ring_write_tail,
1332 	.flush			= bsd_ring_flush,
1333 	.add_request		= ring_add_request,
1334 	.get_seqno		= ring_get_seqno,
1335 	.irq_get		= bsd_ring_get_irq,
1336 	.irq_put		= bsd_ring_put_irq,
1337 	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1338 };
1339 
1340 
1341 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1342 				     u32 value)
1343 {
1344 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1345 
1346        /* Every tail move must follow the sequence below */
1347 
1348 	/* Disable notification that the ring is IDLE. The GT
1349 	 * will then assume that it is busy and bring it out of rc6.
1350 	 */
1351 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1352 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1353 
1354 	/* Clear the context id. Here be magic! */
1355 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1356 
1357 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1358 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1359 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1360 		     50))
1361 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1362 
1363 	/* Now that the ring is fully powered up, update the tail */
1364 	I915_WRITE_TAIL(ring, value);
1365 	POSTING_READ(RING_TAIL(ring->mmio_base));
1366 
1367 	/* Let the ring send IDLE messages to the GT again,
1368 	 * and so let it sleep to conserve power when idle.
1369 	 */
1370 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1371 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1372 }
1373 
1374 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1375 			   uint32_t invalidate, uint32_t flush)
1376 {
1377 	uint32_t cmd;
1378 	int ret;
1379 
1380 	ret = intel_ring_begin(ring, 4);
1381 	if (ret)
1382 		return ret;
1383 
1384 	cmd = MI_FLUSH_DW;
1385 	if (invalidate & I915_GEM_GPU_DOMAINS)
1386 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1387 	intel_ring_emit(ring, cmd);
1388 	intel_ring_emit(ring, 0);
1389 	intel_ring_emit(ring, 0);
1390 	intel_ring_emit(ring, MI_NOOP);
1391 	intel_ring_advance(ring);
1392 	return 0;
1393 }
1394 
1395 static int
1396 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1397 			      uint32_t offset, uint32_t len)
1398 {
1399 	int ret;
1400 
1401 	ret = intel_ring_begin(ring, 2);
1402 	if (ret)
1403 		return ret;
1404 
1405 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1406 	/* bit0-7 is the length on GEN6+ */
1407 	intel_ring_emit(ring, offset);
1408 	intel_ring_advance(ring);
1409 
1410 	return 0;
1411 }
1412 
1413 static bool
1414 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1415 {
1416 	return gen6_ring_get_irq(ring,
1417 				 GT_USER_INTERRUPT,
1418 				 GEN6_RENDER_USER_INTERRUPT);
1419 }
1420 
1421 static void
1422 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1423 {
1424 	return gen6_ring_put_irq(ring,
1425 				 GT_USER_INTERRUPT,
1426 				 GEN6_RENDER_USER_INTERRUPT);
1427 }
1428 
1429 static bool
1430 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1431 {
1432 	return gen6_ring_get_irq(ring,
1433 				 GT_GEN6_BSD_USER_INTERRUPT,
1434 				 GEN6_BSD_USER_INTERRUPT);
1435 }
1436 
1437 static void
1438 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1439 {
1440 	return gen6_ring_put_irq(ring,
1441 				 GT_GEN6_BSD_USER_INTERRUPT,
1442 				 GEN6_BSD_USER_INTERRUPT);
1443 }
1444 
1445 /* ring buffer for Video Codec for Gen6+ */
1446 static const struct intel_ring_buffer gen6_bsd_ring = {
1447 	.name			= "gen6 bsd ring",
1448 	.id			= VCS,
1449 	.mmio_base		= GEN6_BSD_RING_BASE,
1450 	.size			= 32 * PAGE_SIZE,
1451 	.init			= init_ring_common,
1452 	.write_tail		= gen6_bsd_ring_write_tail,
1453 	.flush			= gen6_ring_flush,
1454 	.add_request		= gen6_add_request,
1455 	.get_seqno		= gen6_ring_get_seqno,
1456 	.irq_get		= gen6_bsd_ring_get_irq,
1457 	.irq_put		= gen6_bsd_ring_put_irq,
1458 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1459 	.sync_to		= gen6_bsd_ring_sync_to,
1460 	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
1461 				   MI_SEMAPHORE_SYNC_INVALID,
1462 				   MI_SEMAPHORE_SYNC_VB},
1463 	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1464 };
1465 
1466 /* Blitter support (SandyBridge+) */
1467 
1468 static bool
1469 blt_ring_get_irq(struct intel_ring_buffer *ring)
1470 {
1471 	return gen6_ring_get_irq(ring,
1472 				 GT_GEN6_BLT_USER_INTERRUPT,
1473 				 GEN6_BLITTER_USER_INTERRUPT);
1474 }
1475 
1476 static void
1477 blt_ring_put_irq(struct intel_ring_buffer *ring)
1478 {
1479 	gen6_ring_put_irq(ring,
1480 			  GT_GEN6_BLT_USER_INTERRUPT,
1481 			  GEN6_BLITTER_USER_INTERRUPT);
1482 }
1483 
1484 static int blt_ring_flush(struct intel_ring_buffer *ring,
1485 			  uint32_t invalidate, uint32_t flush)
1486 {
1487 	uint32_t cmd;
1488 	int ret;
1489 
1490 	ret = intel_ring_begin(ring, 4);
1491 	if (ret)
1492 		return ret;
1493 
1494 	cmd = MI_FLUSH_DW;
1495 	if (invalidate & I915_GEM_DOMAIN_RENDER)
1496 		cmd |= MI_INVALIDATE_TLB;
1497 	intel_ring_emit(ring, cmd);
1498 	intel_ring_emit(ring, 0);
1499 	intel_ring_emit(ring, 0);
1500 	intel_ring_emit(ring, MI_NOOP);
1501 	intel_ring_advance(ring);
1502 	return 0;
1503 }
1504 
1505 static const struct intel_ring_buffer gen6_blt_ring = {
1506 	.name			= "blt ring",
1507 	.id			= BCS,
1508 	.mmio_base		= BLT_RING_BASE,
1509 	.size			= 32 * PAGE_SIZE,
1510 	.init			= init_ring_common,
1511 	.write_tail		= ring_write_tail,
1512 	.flush			= blt_ring_flush,
1513 	.add_request		= gen6_add_request,
1514 	.get_seqno		= gen6_ring_get_seqno,
1515 	.irq_get		= blt_ring_get_irq,
1516 	.irq_put		= blt_ring_put_irq,
1517 	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1518 	.sync_to		= gen6_blt_ring_sync_to,
1519 	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
1520 				   MI_SEMAPHORE_SYNC_BV,
1521 				   MI_SEMAPHORE_SYNC_INVALID},
1522 	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1523 };
1524 
1525 int intel_init_render_ring_buffer(struct drm_device *dev)
1526 {
1527 	drm_i915_private_t *dev_priv = dev->dev_private;
1528 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1529 
1530 	*ring = render_ring;
1531 	if (INTEL_INFO(dev)->gen >= 6) {
1532 		ring->add_request = gen6_add_request;
1533 		ring->flush = gen6_render_ring_flush;
1534 		ring->irq_get = gen6_render_ring_get_irq;
1535 		ring->irq_put = gen6_render_ring_put_irq;
1536 		ring->get_seqno = gen6_ring_get_seqno;
1537 	} else if (IS_GEN5(dev)) {
1538 		ring->add_request = pc_render_add_request;
1539 		ring->get_seqno = pc_render_get_seqno;
1540 	}
1541 
1542 	if (!I915_NEED_GFX_HWS(dev)) {
1543 		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1544 		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1545 	}
1546 
1547 	return intel_init_ring_buffer(dev, ring);
1548 }
1549 
1550 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1551     uint32_t size)
1552 {
1553 	drm_i915_private_t *dev_priv = dev->dev_private;
1554 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1555 
1556 	*ring = render_ring;
1557 	if (INTEL_INFO(dev)->gen >= 6) {
1558 		ring->add_request = gen6_add_request;
1559 		ring->irq_get = gen6_render_ring_get_irq;
1560 		ring->irq_put = gen6_render_ring_put_irq;
1561 	} else if (IS_GEN5(dev)) {
1562 		ring->add_request = pc_render_add_request;
1563 		ring->get_seqno = pc_render_get_seqno;
1564 	}
1565 
1566 	ring->dev = dev;
1567 	INIT_LIST_HEAD(&ring->active_list);
1568 	INIT_LIST_HEAD(&ring->request_list);
1569 	INIT_LIST_HEAD(&ring->gpu_write_list);
1570 
1571 	ring->size = size;
1572 	ring->effective_size = ring->size;
1573 	if (IS_I830(ring->dev))
1574 		ring->effective_size -= 128;
1575 
1576 	ring->map.offset = start;
1577 	ring->map.size = size;
1578 	ring->map.type = 0;
1579 	ring->map.flags = 0;
1580 	ring->map.mtrr = 0;
1581 
1582 	drm_core_ioremap_wc(&ring->map, dev);
1583 	if (ring->map.virtual == NULL) {
1584 		DRM_ERROR("can not ioremap virtual address for"
1585 			  " ring buffer\n");
1586 		return -ENOMEM;
1587 	}
1588 
1589 	ring->virtual_start = (void *)ring->map.virtual;
1590 	return 0;
1591 }
1592 
1593 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1594 {
1595 	drm_i915_private_t *dev_priv = dev->dev_private;
1596 	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1597 
1598 	if (IS_GEN6(dev) || IS_GEN7(dev))
1599 		*ring = gen6_bsd_ring;
1600 	else
1601 		*ring = bsd_ring;
1602 
1603 	return intel_init_ring_buffer(dev, ring);
1604 }
1605 
1606 int intel_init_blt_ring_buffer(struct drm_device *dev)
1607 {
1608 	drm_i915_private_t *dev_priv = dev->dev_private;
1609 	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1610 
1611 	*ring = gen6_blt_ring;
1612 
1613 	return intel_init_ring_buffer(dev, ring);
1614 }
1615