xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 7ec9f8e5)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	u32 cmd;
99 	int ret;
100 
101 	cmd = MI_FLUSH;
102 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 		cmd |= MI_NO_WRITE_FLUSH;
104 
105 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 		cmd |= MI_READ_FLUSH;
107 
108 	ret = intel_ring_begin(ring, 2);
109 	if (ret)
110 		return ret;
111 
112 	intel_ring_emit(ring, cmd);
113 	intel_ring_emit(ring, MI_NOOP);
114 	intel_ring_advance(ring);
115 
116 	return 0;
117 }
118 
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 		       u32	invalidate_domains,
122 		       u32	flush_domains)
123 {
124 	struct drm_device *dev = ring->dev;
125 	u32 cmd;
126 	int ret;
127 
128 	/*
129 	 * read/write caches:
130 	 *
131 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
133 	 * also flushed at 2d versus 3d pipeline switches.
134 	 *
135 	 * read-only caches:
136 	 *
137 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 	 * MI_READ_FLUSH is set, and is always flushed on 965.
139 	 *
140 	 * I915_GEM_DOMAIN_COMMAND may not exist?
141 	 *
142 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 	 * invalidated when MI_EXE_FLUSH is set.
144 	 *
145 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 	 * invalidated with every MI_FLUSH.
147 	 *
148 	 * TLBs:
149 	 *
150 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 	 * are flushed at any MI_FLUSH.
154 	 */
155 
156 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 		cmd &= ~MI_NO_WRITE_FLUSH;
159 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 		cmd |= MI_EXE_FLUSH;
161 
162 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 	    (IS_G4X(dev) || IS_GEN5(dev)))
164 		cmd |= MI_INVALIDATE_ISP;
165 
166 	ret = intel_ring_begin(ring, 2);
167 	if (ret)
168 		return ret;
169 
170 	intel_ring_emit(ring, cmd);
171 	intel_ring_emit(ring, MI_NOOP);
172 	intel_ring_advance(ring);
173 
174 	return 0;
175 }
176 
177 /**
178  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179  * implementing two workarounds on gen6.  From section 1.4.7.1
180  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181  *
182  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183  * produced by non-pipelined state commands), software needs to first
184  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185  * 0.
186  *
187  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189  *
190  * And the workaround for these two requires this workaround first:
191  *
192  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193  * BEFORE the pipe-control with a post-sync op and no write-cache
194  * flushes.
195  *
196  * And this last workaround is tricky because of the requirements on
197  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198  * volume 2 part 1:
199  *
200  *     "1 of the following must also be set:
201  *      - Render Target Cache Flush Enable ([12] of DW1)
202  *      - Depth Cache Flush Enable ([0] of DW1)
203  *      - Stall at Pixel Scoreboard ([1] of DW1)
204  *      - Depth Stall ([13] of DW1)
205  *      - Post-Sync Operation ([13] of DW1)
206  *      - Notify Enable ([8] of DW1)"
207  *
208  * The cache flushes require the workaround flush that triggered this
209  * one, so we can't use it.  Depth stall would trigger the same.
210  * Post-sync nonzero is what triggered this second workaround, so we
211  * can't use that one either.  Notify enable is IRQs, which aren't
212  * really our business.  That leaves only stall at scoreboard.
213  */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 	int ret;
219 
220 
221 	ret = intel_ring_begin(ring, 6);
222 	if (ret)
223 		return ret;
224 
225 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 	intel_ring_emit(ring, 0); /* low dword */
230 	intel_ring_emit(ring, 0); /* high dword */
231 	intel_ring_emit(ring, MI_NOOP);
232 	intel_ring_advance(ring);
233 
234 	ret = intel_ring_begin(ring, 6);
235 	if (ret)
236 		return ret;
237 
238 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 	intel_ring_emit(ring, 0);
242 	intel_ring_emit(ring, 0);
243 	intel_ring_emit(ring, MI_NOOP);
244 	intel_ring_advance(ring);
245 
246 	return 0;
247 }
248 
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251                          u32 invalidate_domains, u32 flush_domains)
252 {
253 	u32 flags = 0;
254 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 	int ret;
256 
257 	/* Force SNB workarounds for PIPE_CONTROL flushes */
258 	ret = intel_emit_post_sync_nonzero_flush(ring);
259 	if (ret)
260 		return ret;
261 
262 	/* Just flush everything.  Experiments have shown that reducing the
263 	 * number of bits based on the write domains has little performance
264 	 * impact.
265 	 */
266 	if (flush_domains) {
267 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 		/*
270 		 * Ensure that any following seqno writes only happen
271 		 * when the render cache is indeed flushed.
272 		 */
273 		flags |= PIPE_CONTROL_CS_STALL;
274 	}
275 	if (invalidate_domains) {
276 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 		/*
283 		 * TLB invalidate requires a post-sync write.
284 		 */
285 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 	}
287 
288 	ret = intel_ring_begin(ring, 4);
289 	if (ret)
290 		return ret;
291 
292 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 	intel_ring_emit(ring, flags);
294 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 	intel_ring_emit(ring, 0);
296 	intel_ring_advance(ring);
297 
298 	return 0;
299 }
300 
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 	int ret;
305 
306 	ret = intel_ring_begin(ring, 4);
307 	if (ret)
308 		return ret;
309 
310 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 	intel_ring_emit(ring, 0);
314 	intel_ring_emit(ring, 0);
315 	intel_ring_advance(ring);
316 
317 	return 0;
318 }
319 
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322 		       u32 invalidate_domains, u32 flush_domains)
323 {
324 	u32 flags = 0;
325 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326 	int ret;
327 
328 	/*
329 	 * Ensure that any following seqno writes only happen when the render
330 	 * cache is indeed flushed.
331 	 *
332 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 	 * don't try to be clever and just set it unconditionally.
335 	 */
336 	flags |= PIPE_CONTROL_CS_STALL;
337 
338 	/* Just flush everything.  Experiments have shown that reducing the
339 	 * number of bits based on the write domains has little performance
340 	 * impact.
341 	 */
342 	if (flush_domains) {
343 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
346 	}
347 	if (invalidate_domains) {
348 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
355 		/*
356 		 * TLB invalidate requires a post-sync write.
357 		 */
358 		flags |= PIPE_CONTROL_QW_WRITE;
359 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360 
361 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
362 
363 		/* Workaround: we must issue a pipe_control with CS-stall bit
364 		 * set before a pipe_control command that has the state cache
365 		 * invalidate bit set. */
366 		gen7_render_ring_cs_stall_wa(ring);
367 	}
368 
369 	ret = intel_ring_begin(ring, 4);
370 	if (ret)
371 		return ret;
372 
373 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
374 	intel_ring_emit(ring, flags);
375 	intel_ring_emit(ring, scratch_addr);
376 	intel_ring_emit(ring, 0);
377 	intel_ring_advance(ring);
378 
379 	return 0;
380 }
381 
382 static int
383 gen8_emit_pipe_control(struct intel_engine_cs *ring,
384 		       u32 flags, u32 scratch_addr)
385 {
386 	int ret;
387 
388 	ret = intel_ring_begin(ring, 6);
389 	if (ret)
390 		return ret;
391 
392 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393 	intel_ring_emit(ring, flags);
394 	intel_ring_emit(ring, scratch_addr);
395 	intel_ring_emit(ring, 0);
396 	intel_ring_emit(ring, 0);
397 	intel_ring_emit(ring, 0);
398 	intel_ring_advance(ring);
399 
400 	return 0;
401 }
402 
403 static int
404 gen8_render_ring_flush(struct intel_engine_cs *ring,
405 		       u32 invalidate_domains, u32 flush_domains)
406 {
407 	u32 flags = 0;
408 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
409 	int ret;
410 
411 	flags |= PIPE_CONTROL_CS_STALL;
412 
413 	if (flush_domains) {
414 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
415 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
416 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
417 	}
418 	if (invalidate_domains) {
419 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
420 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
421 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
422 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
423 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
424 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
425 		flags |= PIPE_CONTROL_QW_WRITE;
426 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
427 
428 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
429 		ret = gen8_emit_pipe_control(ring,
430 					     PIPE_CONTROL_CS_STALL |
431 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
432 					     0);
433 		if (ret)
434 			return ret;
435 	}
436 
437 	return gen8_emit_pipe_control(ring, flags, scratch_addr);
438 }
439 
440 static void ring_write_tail(struct intel_engine_cs *ring,
441 			    u32 value)
442 {
443 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
444 	I915_WRITE_TAIL(ring, value);
445 }
446 
447 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
448 {
449 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 	u64 acthd;
451 
452 	if (INTEL_INFO(ring->dev)->gen >= 8)
453 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
454 					 RING_ACTHD_UDW(ring->mmio_base));
455 	else if (INTEL_INFO(ring->dev)->gen >= 4)
456 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
457 	else
458 		acthd = I915_READ(ACTHD);
459 
460 	return acthd;
461 }
462 
463 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
464 {
465 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
466 	u32 addr;
467 
468 	addr = dev_priv->status_page_dmah->busaddr;
469 	if (INTEL_INFO(ring->dev)->gen >= 4)
470 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
471 	I915_WRITE(HWS_PGA, addr);
472 }
473 
474 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
475 {
476 	struct drm_device *dev = ring->dev;
477 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
478 	u32 mmio = 0;
479 
480 	/* The ring status page addresses are no longer next to the rest of
481 	 * the ring registers as of gen7.
482 	 */
483 	if (IS_GEN7(dev)) {
484 		switch (ring->id) {
485 		case RCS:
486 			mmio = RENDER_HWS_PGA_GEN7;
487 			break;
488 		case BCS:
489 			mmio = BLT_HWS_PGA_GEN7;
490 			break;
491 		/*
492 		 * VCS2 actually doesn't exist on Gen7. Only shut up
493 		 * gcc switch check warning
494 		 */
495 		case VCS2:
496 		case VCS:
497 			mmio = BSD_HWS_PGA_GEN7;
498 			break;
499 		case VECS:
500 			mmio = VEBOX_HWS_PGA_GEN7;
501 			break;
502 		}
503 	} else if (IS_GEN6(ring->dev)) {
504 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
505 	} else {
506 		/* XXX: gen8 returns to sanity */
507 		mmio = RING_HWS_PGA(ring->mmio_base);
508 	}
509 
510 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
511 	POSTING_READ(mmio);
512 
513 	/*
514 	 * Flush the TLB for this page
515 	 *
516 	 * FIXME: These two bits have disappeared on gen8, so a question
517 	 * arises: do we still need this and if so how should we go about
518 	 * invalidating the TLB?
519 	 */
520 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
521 		u32 reg = RING_INSTPM(ring->mmio_base);
522 
523 		/* ring should be idle before issuing a sync flush*/
524 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
525 
526 		I915_WRITE(reg,
527 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
528 					      INSTPM_SYNC_FLUSH));
529 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
530 			     1000))
531 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
532 				  ring->name);
533 	}
534 }
535 
536 static bool stop_ring(struct intel_engine_cs *ring)
537 {
538 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
539 
540 	if (!IS_GEN2(ring->dev)) {
541 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
542 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
543 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
544 			/* Sometimes we observe that the idle flag is not
545 			 * set even though the ring is empty. So double
546 			 * check before giving up.
547 			 */
548 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
549 				return false;
550 		}
551 	}
552 
553 	I915_WRITE_CTL(ring, 0);
554 	I915_WRITE_HEAD(ring, 0);
555 	ring->write_tail(ring, 0);
556 
557 	if (!IS_GEN2(ring->dev)) {
558 		(void)I915_READ_CTL(ring);
559 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
560 	}
561 
562 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
563 }
564 
565 static int init_ring_common(struct intel_engine_cs *ring)
566 {
567 	struct drm_device *dev = ring->dev;
568 	struct drm_i915_private *dev_priv = dev->dev_private;
569 	struct intel_ringbuffer *ringbuf = ring->buffer;
570 	struct drm_i915_gem_object *obj = ringbuf->obj;
571 	int ret = 0;
572 
573 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
574 
575 	if (!stop_ring(ring)) {
576 		/* G45 ring initialization often fails to reset head to zero */
577 		DRM_DEBUG_KMS("%s head not reset to zero "
578 			      "ctl %08x head %08x tail %08x start %08x\n",
579 			      ring->name,
580 			      I915_READ_CTL(ring),
581 			      I915_READ_HEAD(ring),
582 			      I915_READ_TAIL(ring),
583 			      I915_READ_START(ring));
584 
585 		if (!stop_ring(ring)) {
586 			DRM_ERROR("failed to set %s head to zero "
587 				  "ctl %08x head %08x tail %08x start %08x\n",
588 				  ring->name,
589 				  I915_READ_CTL(ring),
590 				  I915_READ_HEAD(ring),
591 				  I915_READ_TAIL(ring),
592 				  I915_READ_START(ring));
593 			ret = -EIO;
594 			goto out;
595 		}
596 	}
597 
598 	if (I915_NEED_GFX_HWS(dev))
599 		intel_ring_setup_status_page(ring);
600 	else
601 		ring_setup_phys_status_page(ring);
602 
603 	/* Enforce ordering by reading HEAD register back */
604 	I915_READ_HEAD(ring);
605 
606 	/* Initialize the ring. This must happen _after_ we've cleared the ring
607 	 * registers with the above sequence (the readback of the HEAD registers
608 	 * also enforces ordering), otherwise the hw might lose the new ring
609 	 * register values. */
610 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
611 
612 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
613 	if (I915_READ_HEAD(ring))
614 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
615 			  ring->name, I915_READ_HEAD(ring));
616 	I915_WRITE_HEAD(ring, 0);
617 	(void)I915_READ_HEAD(ring);
618 
619 	I915_WRITE_CTL(ring,
620 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
621 			| RING_VALID);
622 
623 	/* If the head is still not zero, the ring is dead */
624 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
625 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
626 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
627 		DRM_ERROR("%s initialization failed "
628 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
629 			  ring->name,
630 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
631 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
632 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 		ret = -EIO;
634 		goto out;
635 	}
636 
637 	ringbuf->last_retired_head = -1;
638 	ringbuf->head = I915_READ_HEAD(ring);
639 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
640 	intel_ring_update_space(ringbuf);
641 
642 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
643 
644 out:
645 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646 
647 	return ret;
648 }
649 
650 void
651 intel_fini_pipe_control(struct intel_engine_cs *ring)
652 {
653 	struct drm_device *dev = ring->dev;
654 
655 	if (ring->scratch.obj == NULL)
656 		return;
657 
658 	if (INTEL_INFO(dev)->gen >= 5) {
659 		kunmap(sg_page(ring->scratch.obj->pages->sgl));
660 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
661 	}
662 
663 	drm_gem_object_unreference(&ring->scratch.obj->base);
664 	ring->scratch.obj = NULL;
665 }
666 
667 int
668 intel_init_pipe_control(struct intel_engine_cs *ring)
669 {
670 	int ret;
671 
672 	WARN_ON(ring->scratch.obj);
673 
674 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
675 	if (ring->scratch.obj == NULL) {
676 		DRM_ERROR("Failed to allocate seqno page\n");
677 		ret = -ENOMEM;
678 		goto err;
679 	}
680 
681 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
682 	if (ret)
683 		goto err_unref;
684 
685 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
686 	if (ret)
687 		goto err_unref;
688 
689 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
690 	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
691 	if (ring->scratch.cpu_page == NULL) {
692 		ret = -ENOMEM;
693 		goto err_unpin;
694 	}
695 
696 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
697 			 ring->name, ring->scratch.gtt_offset);
698 	return 0;
699 
700 err_unpin:
701 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
702 err_unref:
703 	drm_gem_object_unreference(&ring->scratch.obj->base);
704 err:
705 	return ret;
706 }
707 
708 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
709 				       struct intel_context *ctx)
710 {
711 	int ret, i;
712 	struct drm_device *dev = ring->dev;
713 	struct drm_i915_private *dev_priv = dev->dev_private;
714 	struct i915_workarounds *w = &dev_priv->workarounds;
715 
716 	if (WARN_ON_ONCE(w->count == 0))
717 		return 0;
718 
719 	ring->gpu_caches_dirty = true;
720 	ret = intel_ring_flush_all_caches(ring);
721 	if (ret)
722 		return ret;
723 
724 	ret = intel_ring_begin(ring, (w->count * 2 + 2));
725 	if (ret)
726 		return ret;
727 
728 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
729 	for (i = 0; i < w->count; i++) {
730 		intel_ring_emit(ring, w->reg[i].addr);
731 		intel_ring_emit(ring, w->reg[i].value);
732 	}
733 	intel_ring_emit(ring, MI_NOOP);
734 
735 	intel_ring_advance(ring);
736 
737 	ring->gpu_caches_dirty = true;
738 	ret = intel_ring_flush_all_caches(ring);
739 	if (ret)
740 		return ret;
741 
742 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
743 
744 	return 0;
745 }
746 
747 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
748 			      struct intel_context *ctx)
749 {
750 	int ret;
751 
752 	ret = intel_ring_workarounds_emit(ring, ctx);
753 	if (ret != 0)
754 		return ret;
755 
756 	ret = i915_gem_render_state_init(ring);
757 	if (ret)
758 		DRM_ERROR("init render state: %d\n", ret);
759 
760 	return ret;
761 }
762 
763 static int wa_add(struct drm_i915_private *dev_priv,
764 		  const u32 addr, const u32 mask, const u32 val)
765 {
766 	const u32 idx = dev_priv->workarounds.count;
767 
768 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
769 		return -ENOSPC;
770 
771 	dev_priv->workarounds.reg[idx].addr = addr;
772 	dev_priv->workarounds.reg[idx].value = val;
773 	dev_priv->workarounds.reg[idx].mask = mask;
774 
775 	dev_priv->workarounds.count++;
776 
777 	return 0;
778 }
779 
780 #define WA_REG(addr, mask, val) { \
781 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
782 		if (r) \
783 			return r; \
784 	}
785 
786 #define WA_SET_BIT_MASKED(addr, mask) \
787 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
788 
789 #define WA_CLR_BIT_MASKED(addr, mask) \
790 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
791 
792 #define WA_SET_FIELD_MASKED(addr, mask, value) \
793 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
794 
795 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
796 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
797 
798 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
799 
800 static int bdw_init_workarounds(struct intel_engine_cs *ring)
801 {
802 	struct drm_device *dev = ring->dev;
803 	struct drm_i915_private *dev_priv = dev->dev_private;
804 
805 	/* WaDisablePartialInstShootdown:bdw */
806 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
807 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
808 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
809 			  STALL_DOP_GATING_DISABLE);
810 
811 	/* WaDisableDopClockGating:bdw */
812 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
813 			  DOP_CLOCK_GATING_DISABLE);
814 
815 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
816 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
817 
818 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
819 	 * workaround for for a possible hang in the unlikely event a TLB
820 	 * invalidation occurs during a PSD flush.
821 	 */
822 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
823 			  /* WaForceEnableNonCoherent:bdw */
824 			  HDC_FORCE_NON_COHERENT |
825 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
826 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
827 			  /* WaHdcDisableFetchWhenMasked:bdw */
828 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
830 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
831 
832 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834 	 *  polygons in the same 8x4 pixel/sample area to be processed without
835 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
836 	 *  buffer."
837 	 *
838 	 * This optimization is off by default for Broadwell; turn it on.
839 	 */
840 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
841 
842 	/* Wa4x4STCOptimizationDisable:bdw */
843 	WA_SET_BIT_MASKED(CACHE_MODE_1,
844 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
845 
846 	/*
847 	 * BSpec recommends 8x4 when MSAA is used,
848 	 * however in practice 16x4 seems fastest.
849 	 *
850 	 * Note that PS/WM thread counts depend on the WIZ hashing
851 	 * disable bit, which we don't touch here, but it's good
852 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
853 	 */
854 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
855 			    GEN6_WIZ_HASHING_MASK,
856 			    GEN6_WIZ_HASHING_16x4);
857 
858 	return 0;
859 }
860 
861 static int chv_init_workarounds(struct intel_engine_cs *ring)
862 {
863 	struct drm_device *dev = ring->dev;
864 	struct drm_i915_private *dev_priv = dev->dev_private;
865 
866 	/* WaDisablePartialInstShootdown:chv */
867 	/* WaDisableThreadStallDopClockGating:chv */
868 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
869 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
870 			  STALL_DOP_GATING_DISABLE);
871 
872 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
873 	 * workaround for a possible hang in the unlikely event a TLB
874 	 * invalidation occurs during a PSD flush.
875 	 */
876 	/* WaForceEnableNonCoherent:chv */
877 	/* WaHdcDisableFetchWhenMasked:chv */
878 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
879 			  HDC_FORCE_NON_COHERENT |
880 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED);
881 
882 	/* According to the CACHE_MODE_0 default value documentation, some
883 	 * CHV platforms disable this optimization by default.  Turn it on.
884 	 */
885 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
886 
887 	/* Wa4x4STCOptimizationDisable:chv */
888 	WA_SET_BIT_MASKED(CACHE_MODE_1,
889 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
890 
891 	/* Improve HiZ throughput on CHV. */
892 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
893 
894 	/*
895 	 * BSpec recommends 8x4 when MSAA is used,
896 	 * however in practice 16x4 seems fastest.
897 	 *
898 	 * Note that PS/WM thread counts depend on the WIZ hashing
899 	 * disable bit, which we don't touch here, but it's good
900 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
901 	 */
902 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
903 			    GEN6_WIZ_HASHING_MASK,
904 			    GEN6_WIZ_HASHING_16x4);
905 
906 	return 0;
907 }
908 
909 static int gen9_init_workarounds(struct intel_engine_cs *ring)
910 {
911 	struct drm_device *dev = ring->dev;
912 	struct drm_i915_private *dev_priv = dev->dev_private;
913 	uint32_t tmp;
914 
915 	/* WaDisablePartialInstShootdown:skl,bxt */
916 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
917 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
918 
919 	/* Syncing dependencies between camera and graphics:skl,bxt */
920 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
921 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
922 
923 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
924 	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
925 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
926 		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
927 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
928 				  GEN9_DG_MIRROR_FIX_ENABLE);
929 	}
930 
931 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
932 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
933 		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
934 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
935 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
936 		WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
937 				  DISABLE_PIXEL_MASK_CAMMING);
938 	}
939 
940 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
941 	    IS_BROXTON(dev)) {
942 		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
943 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
944 				  GEN9_ENABLE_YV12_BUGFIX);
945 	}
946 
947 	/* Wa4x4STCOptimizationDisable:skl,bxt */
948 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
949 
950 	/* WaDisablePartialResolveInVc:skl,bxt */
951 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
952 
953 	/* WaCcsTlbPrefetchDisable:skl,bxt */
954 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
955 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
956 
957 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
958 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
959 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
960 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
961 				  PIXEL_MASK_CAMMING_DISABLE);
962 
963 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
964 	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
965 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
966 	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
967 		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
968 	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
969 
970 	return 0;
971 }
972 
973 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
974 {
975 	struct drm_device *dev = ring->dev;
976 	struct drm_i915_private *dev_priv = dev->dev_private;
977 	u8 vals[3] = { 0, 0, 0 };
978 	unsigned int i;
979 
980 	for (i = 0; i < 3; i++) {
981 		u8 ss;
982 
983 		/*
984 		 * Only consider slices where one, and only one, subslice has 7
985 		 * EUs
986 		 */
987 		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
988 			continue;
989 
990 		/*
991 		 * subslice_7eu[i] != 0 (because of the check above) and
992 		 * ss_max == 4 (maximum number of subslices possible per slice)
993 		 *
994 		 * ->    0 <= ss <= 3;
995 		 */
996 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
997 		vals[i] = 3 - ss;
998 	}
999 
1000 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1001 		return 0;
1002 
1003 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1004 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1005 			    GEN9_IZ_HASHING_MASK(2) |
1006 			    GEN9_IZ_HASHING_MASK(1) |
1007 			    GEN9_IZ_HASHING_MASK(0),
1008 			    GEN9_IZ_HASHING(2, vals[2]) |
1009 			    GEN9_IZ_HASHING(1, vals[1]) |
1010 			    GEN9_IZ_HASHING(0, vals[0]));
1011 
1012 	return 0;
1013 }
1014 
1015 
1016 static int skl_init_workarounds(struct intel_engine_cs *ring)
1017 {
1018 	struct drm_device *dev = ring->dev;
1019 	struct drm_i915_private *dev_priv = dev->dev_private;
1020 
1021 	gen9_init_workarounds(ring);
1022 
1023 	/* WaDisablePowerCompilerClockGating:skl */
1024 	if (INTEL_REVID(dev) == SKL_REVID_B0)
1025 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1026 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1027 
1028 	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1029 	    INTEL_REVID(dev) == SKL_REVID_D0)
1030 		/* WaBarrierPerformanceFixDisable:skl */
1031 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1032 				  HDC_FENCE_DEST_SLM_DISABLE |
1033 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1034 
1035 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1036 		/*
1037 		 *Use Force Non-Coherent whenever executing a 3D context. This
1038 		 * is a workaround for a possible hang in the unlikely event
1039 		 * a TLB invalidation occurs during a PSD flush.
1040 		 */
1041 		/* WaForceEnableNonCoherent:skl */
1042 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1043 				  HDC_FORCE_NON_COHERENT);
1044 	}
1045 
1046 	return skl_tune_iz_hashing(ring);
1047 }
1048 
1049 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1050 {
1051 	struct drm_device *dev = ring->dev;
1052 	struct drm_i915_private *dev_priv = dev->dev_private;
1053 
1054 	gen9_init_workarounds(ring);
1055 
1056 	/* WaDisableThreadStallDopClockGating:bxt */
1057 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1058 			  STALL_DOP_GATING_DISABLE);
1059 
1060 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1061 	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1062 		WA_SET_BIT_MASKED(
1063 			GEN7_HALF_SLICE_CHICKEN1,
1064 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 int init_workarounds_ring(struct intel_engine_cs *ring)
1071 {
1072 	struct drm_device *dev = ring->dev;
1073 	struct drm_i915_private *dev_priv = dev->dev_private;
1074 
1075 	WARN_ON(ring->id != RCS);
1076 
1077 	dev_priv->workarounds.count = 0;
1078 
1079 	if (IS_BROADWELL(dev))
1080 		return bdw_init_workarounds(ring);
1081 
1082 	if (IS_CHERRYVIEW(dev))
1083 		return chv_init_workarounds(ring);
1084 
1085 	if (IS_SKYLAKE(dev))
1086 		return skl_init_workarounds(ring);
1087 
1088 	if (IS_BROXTON(dev))
1089 		return bxt_init_workarounds(ring);
1090 
1091 	return 0;
1092 }
1093 
1094 static int init_render_ring(struct intel_engine_cs *ring)
1095 {
1096 	struct drm_device *dev = ring->dev;
1097 	struct drm_i915_private *dev_priv = dev->dev_private;
1098 	int ret = init_ring_common(ring);
1099 	if (ret)
1100 		return ret;
1101 
1102 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1103 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1104 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1105 
1106 	/* We need to disable the AsyncFlip performance optimisations in order
1107 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1108 	 * programmed to '1' on all products.
1109 	 *
1110 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1111 	 */
1112 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1113 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1114 
1115 	/* Required for the hardware to program scanline values for waiting */
1116 	/* WaEnableFlushTlbInvalidationMode:snb */
1117 	if (INTEL_INFO(dev)->gen == 6)
1118 		I915_WRITE(GFX_MODE,
1119 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1120 
1121 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1122 	if (IS_GEN7(dev))
1123 		I915_WRITE(GFX_MODE_GEN7,
1124 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1125 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1126 
1127 	if (IS_GEN6(dev)) {
1128 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1129 		 * "If this bit is set, STCunit will have LRA as replacement
1130 		 *  policy. [...] This bit must be reset.  LRA replacement
1131 		 *  policy is not supported."
1132 		 */
1133 		I915_WRITE(CACHE_MODE_0,
1134 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1135 	}
1136 
1137 	if (INTEL_INFO(dev)->gen >= 6)
1138 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1139 
1140 	if (HAS_L3_DPF(dev))
1141 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1142 
1143 	return init_workarounds_ring(ring);
1144 }
1145 
1146 static void render_ring_cleanup(struct intel_engine_cs *ring)
1147 {
1148 	struct drm_device *dev = ring->dev;
1149 	struct drm_i915_private *dev_priv = dev->dev_private;
1150 
1151 	if (dev_priv->semaphore_obj) {
1152 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1153 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1154 		dev_priv->semaphore_obj = NULL;
1155 	}
1156 
1157 	intel_fini_pipe_control(ring);
1158 }
1159 
1160 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1161 			   unsigned int num_dwords)
1162 {
1163 #define MBOX_UPDATE_DWORDS 8
1164 	struct drm_device *dev = signaller->dev;
1165 	struct drm_i915_private *dev_priv = dev->dev_private;
1166 	struct intel_engine_cs *waiter;
1167 	int i, ret, num_rings;
1168 
1169 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1170 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1171 #undef MBOX_UPDATE_DWORDS
1172 
1173 	ret = intel_ring_begin(signaller, num_dwords);
1174 	if (ret)
1175 		return ret;
1176 
1177 	for_each_ring(waiter, dev_priv, i) {
1178 		u32 seqno;
1179 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1180 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1181 			continue;
1182 
1183 		seqno = i915_gem_request_get_seqno(
1184 					   signaller->outstanding_lazy_request);
1185 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1186 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1187 					   PIPE_CONTROL_QW_WRITE |
1188 					   PIPE_CONTROL_FLUSH_ENABLE);
1189 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1190 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1191 		intel_ring_emit(signaller, seqno);
1192 		intel_ring_emit(signaller, 0);
1193 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1194 					   MI_SEMAPHORE_TARGET(waiter->id));
1195 		intel_ring_emit(signaller, 0);
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1202 			   unsigned int num_dwords)
1203 {
1204 #define MBOX_UPDATE_DWORDS 6
1205 	struct drm_device *dev = signaller->dev;
1206 	struct drm_i915_private *dev_priv = dev->dev_private;
1207 	struct intel_engine_cs *waiter;
1208 	int i, ret, num_rings;
1209 
1210 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1211 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1212 #undef MBOX_UPDATE_DWORDS
1213 
1214 	ret = intel_ring_begin(signaller, num_dwords);
1215 	if (ret)
1216 		return ret;
1217 
1218 	for_each_ring(waiter, dev_priv, i) {
1219 		u32 seqno;
1220 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1221 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1222 			continue;
1223 
1224 		seqno = i915_gem_request_get_seqno(
1225 					   signaller->outstanding_lazy_request);
1226 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1227 					   MI_FLUSH_DW_OP_STOREDW);
1228 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1229 					   MI_FLUSH_DW_USE_GTT);
1230 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1231 		intel_ring_emit(signaller, seqno);
1232 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1233 					   MI_SEMAPHORE_TARGET(waiter->id));
1234 		intel_ring_emit(signaller, 0);
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int gen6_signal(struct intel_engine_cs *signaller,
1241 		       unsigned int num_dwords)
1242 {
1243 	struct drm_device *dev = signaller->dev;
1244 	struct drm_i915_private *dev_priv = dev->dev_private;
1245 	struct intel_engine_cs *useless;
1246 	int i, ret, num_rings;
1247 
1248 #define MBOX_UPDATE_DWORDS 3
1249 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1250 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1251 #undef MBOX_UPDATE_DWORDS
1252 
1253 	ret = intel_ring_begin(signaller, num_dwords);
1254 	if (ret)
1255 		return ret;
1256 
1257 	for_each_ring(useless, dev_priv, i) {
1258 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1259 		if (mbox_reg != GEN6_NOSYNC) {
1260 			u32 seqno = i915_gem_request_get_seqno(
1261 					   signaller->outstanding_lazy_request);
1262 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1263 			intel_ring_emit(signaller, mbox_reg);
1264 			intel_ring_emit(signaller, seqno);
1265 		}
1266 	}
1267 
1268 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1269 	if (num_rings % 2 == 0)
1270 		intel_ring_emit(signaller, MI_NOOP);
1271 
1272 	return 0;
1273 }
1274 
1275 /**
1276  * gen6_add_request - Update the semaphore mailbox registers
1277  *
1278  * @ring - ring that is adding a request
1279  * @seqno - return seqno stuck into the ring
1280  *
1281  * Update the mailbox registers in the *other* rings with the current seqno.
1282  * This acts like a signal in the canonical semaphore.
1283  */
1284 static int
1285 gen6_add_request(struct intel_engine_cs *ring)
1286 {
1287 	int ret;
1288 
1289 	if (ring->semaphore.signal)
1290 		ret = ring->semaphore.signal(ring, 4);
1291 	else
1292 		ret = intel_ring_begin(ring, 4);
1293 
1294 	if (ret)
1295 		return ret;
1296 
1297 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1298 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1299 	intel_ring_emit(ring,
1300 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1301 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1302 	__intel_ring_advance(ring);
1303 
1304 	return 0;
1305 }
1306 
1307 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1308 					      u32 seqno)
1309 {
1310 	struct drm_i915_private *dev_priv = dev->dev_private;
1311 	return dev_priv->last_seqno < seqno;
1312 }
1313 
1314 /**
1315  * intel_ring_sync - sync the waiter to the signaller on seqno
1316  *
1317  * @waiter - ring that is waiting
1318  * @signaller - ring which has, or will signal
1319  * @seqno - seqno which the waiter will block on
1320  */
1321 
1322 static int
1323 gen8_ring_sync(struct intel_engine_cs *waiter,
1324 	       struct intel_engine_cs *signaller,
1325 	       u32 seqno)
1326 {
1327 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1328 	int ret;
1329 
1330 	ret = intel_ring_begin(waiter, 4);
1331 	if (ret)
1332 		return ret;
1333 
1334 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1335 				MI_SEMAPHORE_GLOBAL_GTT |
1336 				MI_SEMAPHORE_POLL |
1337 				MI_SEMAPHORE_SAD_GTE_SDD);
1338 	intel_ring_emit(waiter, seqno);
1339 	intel_ring_emit(waiter,
1340 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1341 	intel_ring_emit(waiter,
1342 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1343 	intel_ring_advance(waiter);
1344 	return 0;
1345 }
1346 
1347 static int
1348 gen6_ring_sync(struct intel_engine_cs *waiter,
1349 	       struct intel_engine_cs *signaller,
1350 	       u32 seqno)
1351 {
1352 	u32 dw1 = MI_SEMAPHORE_MBOX |
1353 		  MI_SEMAPHORE_COMPARE |
1354 		  MI_SEMAPHORE_REGISTER;
1355 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1356 	int ret;
1357 
1358 	/* Throughout all of the GEM code, seqno passed implies our current
1359 	 * seqno is >= the last seqno executed. However for hardware the
1360 	 * comparison is strictly greater than.
1361 	 */
1362 	seqno -= 1;
1363 
1364 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1365 
1366 	ret = intel_ring_begin(waiter, 4);
1367 	if (ret)
1368 		return ret;
1369 
1370 	/* If seqno wrap happened, omit the wait with no-ops */
1371 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1372 		intel_ring_emit(waiter, dw1 | wait_mbox);
1373 		intel_ring_emit(waiter, seqno);
1374 		intel_ring_emit(waiter, 0);
1375 		intel_ring_emit(waiter, MI_NOOP);
1376 	} else {
1377 		intel_ring_emit(waiter, MI_NOOP);
1378 		intel_ring_emit(waiter, MI_NOOP);
1379 		intel_ring_emit(waiter, MI_NOOP);
1380 		intel_ring_emit(waiter, MI_NOOP);
1381 	}
1382 	intel_ring_advance(waiter);
1383 
1384 	return 0;
1385 }
1386 
1387 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1388 do {									\
1389 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1390 		 PIPE_CONTROL_DEPTH_STALL);				\
1391 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1392 	intel_ring_emit(ring__, 0);							\
1393 	intel_ring_emit(ring__, 0);							\
1394 } while (0)
1395 
1396 static int
1397 pc_render_add_request(struct intel_engine_cs *ring)
1398 {
1399 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1400 	int ret;
1401 
1402 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1403 	 * incoherent with writes to memory, i.e. completely fubar,
1404 	 * so we need to use PIPE_NOTIFY instead.
1405 	 *
1406 	 * However, we also need to workaround the qword write
1407 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1408 	 * memory before requesting an interrupt.
1409 	 */
1410 	ret = intel_ring_begin(ring, 32);
1411 	if (ret)
1412 		return ret;
1413 
1414 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1415 			PIPE_CONTROL_WRITE_FLUSH |
1416 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1417 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1418 	intel_ring_emit(ring,
1419 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1420 	intel_ring_emit(ring, 0);
1421 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1422 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1423 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1424 	scratch_addr += 2 * CACHELINE_BYTES;
1425 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1426 	scratch_addr += 2 * CACHELINE_BYTES;
1427 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1428 	scratch_addr += 2 * CACHELINE_BYTES;
1429 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1430 	scratch_addr += 2 * CACHELINE_BYTES;
1431 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1432 
1433 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1434 			PIPE_CONTROL_WRITE_FLUSH |
1435 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1436 			PIPE_CONTROL_NOTIFY);
1437 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1438 	intel_ring_emit(ring,
1439 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1440 	intel_ring_emit(ring, 0);
1441 	__intel_ring_advance(ring);
1442 
1443 	return 0;
1444 }
1445 
1446 static u32
1447 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1448 {
1449 	/* Workaround to force correct ordering between irq and seqno writes on
1450 	 * ivb (and maybe also on snb) by reading from a CS register (like
1451 	 * ACTHD) before reading the status page. */
1452 	if (!lazy_coherency) {
1453 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1454 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1455 	}
1456 
1457 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1458 }
1459 
1460 static u32
1461 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1462 {
1463 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1464 }
1465 
1466 static void
1467 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1468 {
1469 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1470 }
1471 
1472 static u32
1473 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1474 {
1475 	return ring->scratch.cpu_page[0];
1476 }
1477 
1478 static void
1479 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1480 {
1481 	ring->scratch.cpu_page[0] = seqno;
1482 }
1483 
1484 static bool
1485 gen5_ring_get_irq(struct intel_engine_cs *ring)
1486 {
1487 	struct drm_device *dev = ring->dev;
1488 	struct drm_i915_private *dev_priv = dev->dev_private;
1489 
1490 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1491 		return false;
1492 
1493 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1494 	if (ring->irq_refcount++ == 0)
1495 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1496 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1497 
1498 	return true;
1499 }
1500 
1501 static void
1502 gen5_ring_put_irq(struct intel_engine_cs *ring)
1503 {
1504 	struct drm_device *dev = ring->dev;
1505 	struct drm_i915_private *dev_priv = dev->dev_private;
1506 
1507 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1508 	if (--ring->irq_refcount == 0)
1509 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1510 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1511 }
1512 
1513 static bool
1514 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1515 {
1516 	struct drm_device *dev = ring->dev;
1517 	struct drm_i915_private *dev_priv = dev->dev_private;
1518 
1519 	if (!intel_irqs_enabled(dev_priv))
1520 		return false;
1521 
1522 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1523 	if (ring->irq_refcount++ == 0) {
1524 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1525 		I915_WRITE(IMR, dev_priv->irq_mask);
1526 		POSTING_READ(IMR);
1527 	}
1528 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1529 
1530 	return true;
1531 }
1532 
1533 static void
1534 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1535 {
1536 	struct drm_device *dev = ring->dev;
1537 	struct drm_i915_private *dev_priv = dev->dev_private;
1538 
1539 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1540 	if (--ring->irq_refcount == 0) {
1541 		dev_priv->irq_mask |= ring->irq_enable_mask;
1542 		I915_WRITE(IMR, dev_priv->irq_mask);
1543 		POSTING_READ(IMR);
1544 	}
1545 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1546 }
1547 
1548 static bool
1549 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1550 {
1551 	struct drm_device *dev = ring->dev;
1552 	struct drm_i915_private *dev_priv = dev->dev_private;
1553 
1554 	if (!intel_irqs_enabled(dev_priv))
1555 		return false;
1556 
1557 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1558 	if (ring->irq_refcount++ == 0) {
1559 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1560 		I915_WRITE16(IMR, dev_priv->irq_mask);
1561 		POSTING_READ16(IMR);
1562 	}
1563 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1564 
1565 	return true;
1566 }
1567 
1568 static void
1569 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1570 {
1571 	struct drm_device *dev = ring->dev;
1572 	struct drm_i915_private *dev_priv = dev->dev_private;
1573 
1574 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1575 	if (--ring->irq_refcount == 0) {
1576 		dev_priv->irq_mask |= ring->irq_enable_mask;
1577 		I915_WRITE16(IMR, dev_priv->irq_mask);
1578 		POSTING_READ16(IMR);
1579 	}
1580 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1581 }
1582 
1583 static int
1584 bsd_ring_flush(struct intel_engine_cs *ring,
1585 	       u32     invalidate_domains,
1586 	       u32     flush_domains)
1587 {
1588 	int ret;
1589 
1590 	ret = intel_ring_begin(ring, 2);
1591 	if (ret)
1592 		return ret;
1593 
1594 	intel_ring_emit(ring, MI_FLUSH);
1595 	intel_ring_emit(ring, MI_NOOP);
1596 	intel_ring_advance(ring);
1597 	return 0;
1598 }
1599 
1600 static int
1601 i9xx_add_request(struct intel_engine_cs *ring)
1602 {
1603 	int ret;
1604 
1605 	ret = intel_ring_begin(ring, 4);
1606 	if (ret)
1607 		return ret;
1608 
1609 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1610 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1611 	intel_ring_emit(ring,
1612 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1613 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1614 	__intel_ring_advance(ring);
1615 
1616 	return 0;
1617 }
1618 
1619 static bool
1620 gen6_ring_get_irq(struct intel_engine_cs *ring)
1621 {
1622 	struct drm_device *dev = ring->dev;
1623 	struct drm_i915_private *dev_priv = dev->dev_private;
1624 
1625 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1626 		return false;
1627 
1628 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1629 	if (ring->irq_refcount++ == 0) {
1630 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1631 			I915_WRITE_IMR(ring,
1632 				       ~(ring->irq_enable_mask |
1633 					 GT_PARITY_ERROR(dev)));
1634 		else
1635 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1636 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1637 	}
1638 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1639 
1640 	return true;
1641 }
1642 
1643 static void
1644 gen6_ring_put_irq(struct intel_engine_cs *ring)
1645 {
1646 	struct drm_device *dev = ring->dev;
1647 	struct drm_i915_private *dev_priv = dev->dev_private;
1648 
1649 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1650 	if (--ring->irq_refcount == 0) {
1651 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1652 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1653 		else
1654 			I915_WRITE_IMR(ring, ~0);
1655 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1656 	}
1657 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1658 }
1659 
1660 static bool
1661 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1662 {
1663 	struct drm_device *dev = ring->dev;
1664 	struct drm_i915_private *dev_priv = dev->dev_private;
1665 
1666 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1667 		return false;
1668 
1669 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1670 	if (ring->irq_refcount++ == 0) {
1671 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1672 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1673 	}
1674 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1675 
1676 	return true;
1677 }
1678 
1679 static void
1680 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1681 {
1682 	struct drm_device *dev = ring->dev;
1683 	struct drm_i915_private *dev_priv = dev->dev_private;
1684 
1685 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1686 	if (--ring->irq_refcount == 0) {
1687 		I915_WRITE_IMR(ring, ~0);
1688 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1689 	}
1690 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1691 }
1692 
1693 static bool
1694 gen8_ring_get_irq(struct intel_engine_cs *ring)
1695 {
1696 	struct drm_device *dev = ring->dev;
1697 	struct drm_i915_private *dev_priv = dev->dev_private;
1698 
1699 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1700 		return false;
1701 
1702 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1703 	if (ring->irq_refcount++ == 0) {
1704 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1705 			I915_WRITE_IMR(ring,
1706 				       ~(ring->irq_enable_mask |
1707 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1708 		} else {
1709 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1710 		}
1711 		POSTING_READ(RING_IMR(ring->mmio_base));
1712 	}
1713 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1714 
1715 	return true;
1716 }
1717 
1718 static void
1719 gen8_ring_put_irq(struct intel_engine_cs *ring)
1720 {
1721 	struct drm_device *dev = ring->dev;
1722 	struct drm_i915_private *dev_priv = dev->dev_private;
1723 
1724 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1725 	if (--ring->irq_refcount == 0) {
1726 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1727 			I915_WRITE_IMR(ring,
1728 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1729 		} else {
1730 			I915_WRITE_IMR(ring, ~0);
1731 		}
1732 		POSTING_READ(RING_IMR(ring->mmio_base));
1733 	}
1734 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1735 }
1736 
1737 static int
1738 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1739 			 u64 offset, u32 length,
1740 			 unsigned dispatch_flags)
1741 {
1742 	int ret;
1743 
1744 	ret = intel_ring_begin(ring, 2);
1745 	if (ret)
1746 		return ret;
1747 
1748 	intel_ring_emit(ring,
1749 			MI_BATCH_BUFFER_START |
1750 			MI_BATCH_GTT |
1751 			(dispatch_flags & I915_DISPATCH_SECURE ?
1752 			 0 : MI_BATCH_NON_SECURE_I965));
1753 	intel_ring_emit(ring, offset);
1754 	intel_ring_advance(ring);
1755 
1756 	return 0;
1757 }
1758 
1759 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1760 #define I830_BATCH_LIMIT (256*1024)
1761 #define I830_TLB_ENTRIES (2)
1762 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1763 static int
1764 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1765 			 u64 offset, u32 len,
1766 			 unsigned dispatch_flags)
1767 {
1768 	u32 cs_offset = ring->scratch.gtt_offset;
1769 	int ret;
1770 
1771 	ret = intel_ring_begin(ring, 6);
1772 	if (ret)
1773 		return ret;
1774 
1775 	/* Evict the invalid PTE TLBs */
1776 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1777 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1778 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1779 	intel_ring_emit(ring, cs_offset);
1780 	intel_ring_emit(ring, 0xdeadbeef);
1781 	intel_ring_emit(ring, MI_NOOP);
1782 	intel_ring_advance(ring);
1783 
1784 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1785 		if (len > I830_BATCH_LIMIT)
1786 			return -ENOSPC;
1787 
1788 		ret = intel_ring_begin(ring, 6 + 2);
1789 		if (ret)
1790 			return ret;
1791 
1792 		/* Blit the batch (which has now all relocs applied) to the
1793 		 * stable batch scratch bo area (so that the CS never
1794 		 * stumbles over its tlb invalidation bug) ...
1795 		 */
1796 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1797 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1798 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1799 		intel_ring_emit(ring, cs_offset);
1800 		intel_ring_emit(ring, 4096);
1801 		intel_ring_emit(ring, offset);
1802 
1803 		intel_ring_emit(ring, MI_FLUSH);
1804 		intel_ring_emit(ring, MI_NOOP);
1805 		intel_ring_advance(ring);
1806 
1807 		/* ... and execute it. */
1808 		offset = cs_offset;
1809 	}
1810 
1811 	ret = intel_ring_begin(ring, 4);
1812 	if (ret)
1813 		return ret;
1814 
1815 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1816 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1817 					0 : MI_BATCH_NON_SECURE));
1818 	intel_ring_emit(ring, offset + len - 8);
1819 	intel_ring_emit(ring, MI_NOOP);
1820 	intel_ring_advance(ring);
1821 
1822 	return 0;
1823 }
1824 
1825 static int
1826 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1827 			 u64 offset, u32 len,
1828 			 unsigned dispatch_flags)
1829 {
1830 	int ret;
1831 
1832 	ret = intel_ring_begin(ring, 2);
1833 	if (ret)
1834 		return ret;
1835 
1836 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1837 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1838 					0 : MI_BATCH_NON_SECURE));
1839 	intel_ring_advance(ring);
1840 
1841 	return 0;
1842 }
1843 
1844 static void cleanup_status_page(struct intel_engine_cs *ring)
1845 {
1846 	struct drm_i915_gem_object *obj;
1847 
1848 	obj = ring->status_page.obj;
1849 	if (obj == NULL)
1850 		return;
1851 
1852 	kunmap(sg_page(obj->pages->sgl));
1853 	i915_gem_object_ggtt_unpin(obj);
1854 	drm_gem_object_unreference(&obj->base);
1855 	ring->status_page.obj = NULL;
1856 }
1857 
1858 static int init_status_page(struct intel_engine_cs *ring)
1859 {
1860 	struct drm_i915_gem_object *obj;
1861 
1862 	if ((obj = ring->status_page.obj) == NULL) {
1863 		unsigned flags;
1864 		int ret;
1865 
1866 		obj = i915_gem_alloc_object(ring->dev, 4096);
1867 		if (obj == NULL) {
1868 			DRM_ERROR("Failed to allocate status page\n");
1869 			return -ENOMEM;
1870 		}
1871 
1872 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1873 		if (ret)
1874 			goto err_unref;
1875 
1876 		flags = 0;
1877 		if (!HAS_LLC(ring->dev))
1878 			/* On g33, we cannot place HWS above 256MiB, so
1879 			 * restrict its pinning to the low mappable arena.
1880 			 * Though this restriction is not documented for
1881 			 * gen4, gen5, or byt, they also behave similarly
1882 			 * and hang if the HWS is placed at the top of the
1883 			 * GTT. To generalise, it appears that all !llc
1884 			 * platforms have issues with us placing the HWS
1885 			 * above the mappable region (even though we never
1886 			 * actualy map it).
1887 			 */
1888 			flags |= PIN_MAPPABLE;
1889 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1890 		if (ret) {
1891 err_unref:
1892 			drm_gem_object_unreference(&obj->base);
1893 			return ret;
1894 		}
1895 
1896 		ring->status_page.obj = obj;
1897 	}
1898 
1899 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1900 	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1901 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1902 
1903 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1904 			ring->name, ring->status_page.gfx_addr);
1905 
1906 	return 0;
1907 }
1908 
1909 static int init_phys_status_page(struct intel_engine_cs *ring)
1910 {
1911 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1912 
1913 	if (!dev_priv->status_page_dmah) {
1914 		dev_priv->status_page_dmah =
1915 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1916 		if (!dev_priv->status_page_dmah)
1917 			return -ENOMEM;
1918 	}
1919 
1920 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1921 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1922 
1923 	return 0;
1924 }
1925 
1926 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1927 {
1928 	iounmap(ringbuf->virtual_start);
1929 	ringbuf->virtual_start = NULL;
1930 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1931 }
1932 
1933 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1934 				     struct intel_ringbuffer *ringbuf)
1935 {
1936 	struct drm_i915_private *dev_priv = to_i915(dev);
1937 	struct drm_i915_gem_object *obj = ringbuf->obj;
1938 	int ret;
1939 
1940 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1941 	if (ret)
1942 		return ret;
1943 
1944 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1945 	if (ret) {
1946 		i915_gem_object_ggtt_unpin(obj);
1947 		return ret;
1948 	}
1949 
1950 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1951 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1952 	if (ringbuf->virtual_start == NULL) {
1953 		i915_gem_object_ggtt_unpin(obj);
1954 		return -EINVAL;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1961 {
1962 	drm_gem_object_unreference(&ringbuf->obj->base);
1963 	ringbuf->obj = NULL;
1964 }
1965 
1966 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1967 			       struct intel_ringbuffer *ringbuf)
1968 {
1969 	struct drm_i915_gem_object *obj;
1970 
1971 	obj = NULL;
1972 	if (!HAS_LLC(dev))
1973 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1974 	if (obj == NULL)
1975 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1976 	if (obj == NULL)
1977 		return -ENOMEM;
1978 
1979 	/* mark ring buffers as read-only from GPU side by default */
1980 	obj->gt_ro = 1;
1981 
1982 	ringbuf->obj = obj;
1983 
1984 	return 0;
1985 }
1986 
1987 static int intel_init_ring_buffer(struct drm_device *dev,
1988 				  struct intel_engine_cs *ring)
1989 {
1990 	struct intel_ringbuffer *ringbuf;
1991 	int ret;
1992 
1993 	WARN_ON(ring->buffer);
1994 
1995 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1996 	if (!ringbuf)
1997 		return -ENOMEM;
1998 	ring->buffer = ringbuf;
1999 
2000 	ring->dev = dev;
2001 	INIT_LIST_HEAD(&ring->active_list);
2002 	INIT_LIST_HEAD(&ring->request_list);
2003 	INIT_LIST_HEAD(&ring->execlist_queue);
2004 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2005 	ringbuf->size = 32 * PAGE_SIZE;
2006 	ringbuf->ring = ring;
2007 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2008 
2009 	init_waitqueue_head(&ring->irq_queue);
2010 
2011 	if (I915_NEED_GFX_HWS(dev)) {
2012 		ret = init_status_page(ring);
2013 		if (ret)
2014 			goto error;
2015 	} else {
2016 		BUG_ON(ring->id != RCS);
2017 		ret = init_phys_status_page(ring);
2018 		if (ret)
2019 			goto error;
2020 	}
2021 
2022 	WARN_ON(ringbuf->obj);
2023 
2024 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2025 	if (ret) {
2026 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2027 				ring->name, ret);
2028 		goto error;
2029 	}
2030 
2031 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2032 	if (ret) {
2033 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2034 				ring->name, ret);
2035 		intel_destroy_ringbuffer_obj(ringbuf);
2036 		goto error;
2037 	}
2038 
2039 	/* Workaround an erratum on the i830 which causes a hang if
2040 	 * the TAIL pointer points to within the last 2 cachelines
2041 	 * of the buffer.
2042 	 */
2043 	ringbuf->effective_size = ringbuf->size;
2044 	if (IS_I830(dev) || IS_845G(dev))
2045 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2046 
2047 	ret = i915_cmd_parser_init_ring(ring);
2048 	if (ret)
2049 		goto error;
2050 
2051 	return 0;
2052 
2053 error:
2054 	kfree(ringbuf);
2055 	ring->buffer = NULL;
2056 	return ret;
2057 }
2058 
2059 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2060 {
2061 	struct drm_i915_private *dev_priv;
2062 	struct intel_ringbuffer *ringbuf;
2063 
2064 	if (!intel_ring_initialized(ring))
2065 		return;
2066 
2067 	dev_priv = to_i915(ring->dev);
2068 	ringbuf = ring->buffer;
2069 
2070 	intel_stop_ring_buffer(ring);
2071 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2072 
2073 	intel_unpin_ringbuffer_obj(ringbuf);
2074 	intel_destroy_ringbuffer_obj(ringbuf);
2075 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2076 
2077 	if (ring->cleanup)
2078 		ring->cleanup(ring);
2079 
2080 	cleanup_status_page(ring);
2081 
2082 	i915_cmd_parser_fini_ring(ring);
2083 	i915_gem_batch_pool_fini(&ring->batch_pool);
2084 
2085 	kfree(ringbuf);
2086 	ring->buffer = NULL;
2087 }
2088 
2089 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2090 {
2091 	struct intel_ringbuffer *ringbuf = ring->buffer;
2092 	struct drm_i915_gem_request *request;
2093 	unsigned space;
2094 	int ret;
2095 
2096 	if (intel_ring_space(ringbuf) >= n)
2097 		return 0;
2098 
2099 	list_for_each_entry(request, &ring->request_list, list) {
2100 		space = __intel_ring_space(request->postfix, ringbuf->tail,
2101 					   ringbuf->size);
2102 		if (space >= n)
2103 			break;
2104 	}
2105 
2106 	if (WARN_ON(&request->list == &ring->request_list))
2107 		return -ENOSPC;
2108 
2109 	ret = i915_wait_request(request);
2110 	if (ret)
2111 		return ret;
2112 
2113 	ringbuf->space = space;
2114 	return 0;
2115 }
2116 
2117 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2118 {
2119 	uint32_t __iomem *virt;
2120 	struct intel_ringbuffer *ringbuf = ring->buffer;
2121 	int rem = ringbuf->size - ringbuf->tail;
2122 
2123 	if (ringbuf->space < rem) {
2124 		int ret = ring_wait_for_space(ring, rem);
2125 		if (ret)
2126 			return ret;
2127 	}
2128 
2129 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2130 	rem /= 4;
2131 	while (rem--)
2132 		iowrite32(MI_NOOP, virt++);
2133 
2134 	ringbuf->tail = 0;
2135 	intel_ring_update_space(ringbuf);
2136 
2137 	return 0;
2138 }
2139 
2140 int intel_ring_idle(struct intel_engine_cs *ring)
2141 {
2142 	struct drm_i915_gem_request *req;
2143 	int ret;
2144 
2145 	/* We need to add any requests required to flush the objects and ring */
2146 	if (ring->outstanding_lazy_request) {
2147 		ret = i915_add_request(ring);
2148 		if (ret)
2149 			return ret;
2150 	}
2151 
2152 	/* Wait upon the last request to be completed */
2153 	if (list_empty(&ring->request_list))
2154 		return 0;
2155 
2156 	req = list_entry(ring->request_list.prev,
2157 			struct drm_i915_gem_request,
2158 			list);
2159 
2160 	/* Make sure we do not trigger any retires */
2161 	return __i915_wait_request(req,
2162 				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2163 				   to_i915(ring->dev)->mm.interruptible,
2164 				   NULL, NULL);
2165 }
2166 
2167 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2168 {
2169 	request->ringbuf = request->ring->buffer;
2170 	return 0;
2171 }
2172 
2173 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2174 				int bytes)
2175 {
2176 	struct intel_ringbuffer *ringbuf = ring->buffer;
2177 	int ret;
2178 
2179 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2180 		ret = intel_wrap_ring_buffer(ring);
2181 		if (unlikely(ret))
2182 			return ret;
2183 	}
2184 
2185 	if (unlikely(ringbuf->space < bytes)) {
2186 		ret = ring_wait_for_space(ring, bytes);
2187 		if (unlikely(ret))
2188 			return ret;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 int intel_ring_begin(struct intel_engine_cs *ring,
2195 		     int num_dwords)
2196 {
2197 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2198 	int ret;
2199 
2200 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2201 				   dev_priv->mm.interruptible);
2202 	if (ret)
2203 		return ret;
2204 
2205 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2206 	if (ret)
2207 		return ret;
2208 
2209 	/* Preallocate the olr before touching the ring */
2210 	ret = i915_gem_request_alloc(ring, ring->default_context);
2211 	if (ret)
2212 		return ret;
2213 
2214 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2215 	return 0;
2216 }
2217 
2218 /* Align the ring tail to a cacheline boundary */
2219 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2220 {
2221 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2222 	int ret;
2223 
2224 	if (num_dwords == 0)
2225 		return 0;
2226 
2227 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2228 	ret = intel_ring_begin(ring, num_dwords);
2229 	if (ret)
2230 		return ret;
2231 
2232 	while (num_dwords--)
2233 		intel_ring_emit(ring, MI_NOOP);
2234 
2235 	intel_ring_advance(ring);
2236 
2237 	return 0;
2238 }
2239 
2240 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2241 {
2242 	struct drm_device *dev = ring->dev;
2243 	struct drm_i915_private *dev_priv = dev->dev_private;
2244 
2245 	BUG_ON(ring->outstanding_lazy_request);
2246 
2247 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2248 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2249 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2250 		if (HAS_VEBOX(dev))
2251 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2252 	}
2253 
2254 	ring->set_seqno(ring, seqno);
2255 	ring->hangcheck.seqno = seqno;
2256 }
2257 
2258 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2259 				     u32 value)
2260 {
2261 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2262 
2263        /* Every tail move must follow the sequence below */
2264 
2265 	/* Disable notification that the ring is IDLE. The GT
2266 	 * will then assume that it is busy and bring it out of rc6.
2267 	 */
2268 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2269 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2270 
2271 	/* Clear the context id. Here be magic! */
2272 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2273 
2274 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2275 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2276 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2277 		     50))
2278 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2279 
2280 	/* Now that the ring is fully powered up, update the tail */
2281 	I915_WRITE_TAIL(ring, value);
2282 	POSTING_READ(RING_TAIL(ring->mmio_base));
2283 
2284 	/* Let the ring send IDLE messages to the GT again,
2285 	 * and so let it sleep to conserve power when idle.
2286 	 */
2287 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2288 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2289 }
2290 
2291 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2292 			       u32 invalidate, u32 flush)
2293 {
2294 	uint32_t cmd;
2295 	int ret;
2296 
2297 	ret = intel_ring_begin(ring, 4);
2298 	if (ret)
2299 		return ret;
2300 
2301 	cmd = MI_FLUSH_DW;
2302 	if (INTEL_INFO(ring->dev)->gen >= 8)
2303 		cmd += 1;
2304 
2305 	/* We always require a command barrier so that subsequent
2306 	 * commands, such as breadcrumb interrupts, are strictly ordered
2307 	 * wrt the contents of the write cache being flushed to memory
2308 	 * (and thus being coherent from the CPU).
2309 	 */
2310 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2311 
2312 	/*
2313 	 * Bspec vol 1c.5 - video engine command streamer:
2314 	 * "If ENABLED, all TLBs will be invalidated once the flush
2315 	 * operation is complete. This bit is only valid when the
2316 	 * Post-Sync Operation field is a value of 1h or 3h."
2317 	 */
2318 	if (invalidate & I915_GEM_GPU_DOMAINS)
2319 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2320 
2321 	intel_ring_emit(ring, cmd);
2322 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2323 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2324 		intel_ring_emit(ring, 0); /* upper addr */
2325 		intel_ring_emit(ring, 0); /* value */
2326 	} else  {
2327 		intel_ring_emit(ring, 0);
2328 		intel_ring_emit(ring, MI_NOOP);
2329 	}
2330 	intel_ring_advance(ring);
2331 	return 0;
2332 }
2333 
2334 static int
2335 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2336 			      u64 offset, u32 len,
2337 			      unsigned dispatch_flags)
2338 {
2339 	bool ppgtt = USES_PPGTT(ring->dev) &&
2340 			!(dispatch_flags & I915_DISPATCH_SECURE);
2341 	int ret;
2342 
2343 	ret = intel_ring_begin(ring, 4);
2344 	if (ret)
2345 		return ret;
2346 
2347 	/* FIXME(BDW): Address space and security selectors. */
2348 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2349 	intel_ring_emit(ring, lower_32_bits(offset));
2350 	intel_ring_emit(ring, upper_32_bits(offset));
2351 	intel_ring_emit(ring, MI_NOOP);
2352 	intel_ring_advance(ring);
2353 
2354 	return 0;
2355 }
2356 
2357 static int
2358 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2359 			     u64 offset, u32 len,
2360 			     unsigned dispatch_flags)
2361 {
2362 	int ret;
2363 
2364 	ret = intel_ring_begin(ring, 2);
2365 	if (ret)
2366 		return ret;
2367 
2368 	intel_ring_emit(ring,
2369 			MI_BATCH_BUFFER_START |
2370 			(dispatch_flags & I915_DISPATCH_SECURE ?
2371 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2372 	/* bit0-7 is the length on GEN6+ */
2373 	intel_ring_emit(ring, offset);
2374 	intel_ring_advance(ring);
2375 
2376 	return 0;
2377 }
2378 
2379 static int
2380 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2381 			      u64 offset, u32 len,
2382 			      unsigned dispatch_flags)
2383 {
2384 	int ret;
2385 
2386 	ret = intel_ring_begin(ring, 2);
2387 	if (ret)
2388 		return ret;
2389 
2390 	intel_ring_emit(ring,
2391 			MI_BATCH_BUFFER_START |
2392 			(dispatch_flags & I915_DISPATCH_SECURE ?
2393 			 0 : MI_BATCH_NON_SECURE_I965));
2394 	/* bit0-7 is the length on GEN6+ */
2395 	intel_ring_emit(ring, offset);
2396 	intel_ring_advance(ring);
2397 
2398 	return 0;
2399 }
2400 
2401 /* Blitter support (SandyBridge+) */
2402 
2403 static int gen6_ring_flush(struct intel_engine_cs *ring,
2404 			   u32 invalidate, u32 flush)
2405 {
2406 	struct drm_device *dev = ring->dev;
2407 	uint32_t cmd;
2408 	int ret;
2409 
2410 	ret = intel_ring_begin(ring, 4);
2411 	if (ret)
2412 		return ret;
2413 
2414 	cmd = MI_FLUSH_DW;
2415 	if (INTEL_INFO(dev)->gen >= 8)
2416 		cmd += 1;
2417 
2418 	/* We always require a command barrier so that subsequent
2419 	 * commands, such as breadcrumb interrupts, are strictly ordered
2420 	 * wrt the contents of the write cache being flushed to memory
2421 	 * (and thus being coherent from the CPU).
2422 	 */
2423 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2424 
2425 	/*
2426 	 * Bspec vol 1c.3 - blitter engine command streamer:
2427 	 * "If ENABLED, all TLBs will be invalidated once the flush
2428 	 * operation is complete. This bit is only valid when the
2429 	 * Post-Sync Operation field is a value of 1h or 3h."
2430 	 */
2431 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2432 		cmd |= MI_INVALIDATE_TLB;
2433 	intel_ring_emit(ring, cmd);
2434 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2435 	if (INTEL_INFO(dev)->gen >= 8) {
2436 		intel_ring_emit(ring, 0); /* upper addr */
2437 		intel_ring_emit(ring, 0); /* value */
2438 	} else  {
2439 		intel_ring_emit(ring, 0);
2440 		intel_ring_emit(ring, MI_NOOP);
2441 	}
2442 	intel_ring_advance(ring);
2443 
2444 	return 0;
2445 }
2446 
2447 int intel_init_render_ring_buffer(struct drm_device *dev)
2448 {
2449 	struct drm_i915_private *dev_priv = dev->dev_private;
2450 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2451 	struct drm_i915_gem_object *obj;
2452 	int ret;
2453 
2454 	ring->name = "render ring";
2455 	ring->id = RCS;
2456 	ring->mmio_base = RENDER_RING_BASE;
2457 
2458 	if (INTEL_INFO(dev)->gen >= 8) {
2459 		if (i915_semaphore_is_enabled(dev)) {
2460 			obj = i915_gem_alloc_object(dev, 4096);
2461 			if (obj == NULL) {
2462 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2463 				i915.semaphores = 0;
2464 			} else {
2465 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2466 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2467 				if (ret != 0) {
2468 					drm_gem_object_unreference(&obj->base);
2469 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2470 					i915.semaphores = 0;
2471 				} else
2472 					dev_priv->semaphore_obj = obj;
2473 			}
2474 		}
2475 
2476 		ring->init_context = intel_rcs_ctx_init;
2477 		ring->add_request = gen6_add_request;
2478 		ring->flush = gen8_render_ring_flush;
2479 		ring->irq_get = gen8_ring_get_irq;
2480 		ring->irq_put = gen8_ring_put_irq;
2481 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2482 		ring->get_seqno = gen6_ring_get_seqno;
2483 		ring->set_seqno = ring_set_seqno;
2484 		if (i915_semaphore_is_enabled(dev)) {
2485 			WARN_ON(!dev_priv->semaphore_obj);
2486 			ring->semaphore.sync_to = gen8_ring_sync;
2487 			ring->semaphore.signal = gen8_rcs_signal;
2488 			GEN8_RING_SEMAPHORE_INIT;
2489 		}
2490 	} else if (INTEL_INFO(dev)->gen >= 6) {
2491 		ring->add_request = gen6_add_request;
2492 		ring->flush = gen7_render_ring_flush;
2493 		if (INTEL_INFO(dev)->gen == 6)
2494 			ring->flush = gen6_render_ring_flush;
2495 		ring->irq_get = gen6_ring_get_irq;
2496 		ring->irq_put = gen6_ring_put_irq;
2497 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2498 		ring->get_seqno = gen6_ring_get_seqno;
2499 		ring->set_seqno = ring_set_seqno;
2500 		if (i915_semaphore_is_enabled(dev)) {
2501 			ring->semaphore.sync_to = gen6_ring_sync;
2502 			ring->semaphore.signal = gen6_signal;
2503 			/*
2504 			 * The current semaphore is only applied on pre-gen8
2505 			 * platform.  And there is no VCS2 ring on the pre-gen8
2506 			 * platform. So the semaphore between RCS and VCS2 is
2507 			 * initialized as INVALID.  Gen8 will initialize the
2508 			 * sema between VCS2 and RCS later.
2509 			 */
2510 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2511 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2512 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2513 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2514 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2515 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2516 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2517 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2518 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2519 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2520 		}
2521 	} else if (IS_GEN5(dev)) {
2522 		ring->add_request = pc_render_add_request;
2523 		ring->flush = gen4_render_ring_flush;
2524 		ring->get_seqno = pc_render_get_seqno;
2525 		ring->set_seqno = pc_render_set_seqno;
2526 		ring->irq_get = gen5_ring_get_irq;
2527 		ring->irq_put = gen5_ring_put_irq;
2528 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2529 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2530 	} else {
2531 		ring->add_request = i9xx_add_request;
2532 		if (INTEL_INFO(dev)->gen < 4)
2533 			ring->flush = gen2_render_ring_flush;
2534 		else
2535 			ring->flush = gen4_render_ring_flush;
2536 		ring->get_seqno = ring_get_seqno;
2537 		ring->set_seqno = ring_set_seqno;
2538 		if (IS_GEN2(dev)) {
2539 			ring->irq_get = i8xx_ring_get_irq;
2540 			ring->irq_put = i8xx_ring_put_irq;
2541 		} else {
2542 			ring->irq_get = i9xx_ring_get_irq;
2543 			ring->irq_put = i9xx_ring_put_irq;
2544 		}
2545 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2546 	}
2547 	ring->write_tail = ring_write_tail;
2548 
2549 	if (IS_HASWELL(dev))
2550 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2551 	else if (IS_GEN8(dev))
2552 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2553 	else if (INTEL_INFO(dev)->gen >= 6)
2554 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2555 	else if (INTEL_INFO(dev)->gen >= 4)
2556 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2557 	else if (IS_I830(dev) || IS_845G(dev))
2558 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2559 	else
2560 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2561 	ring->init_hw = init_render_ring;
2562 	ring->cleanup = render_ring_cleanup;
2563 
2564 	/* Workaround batchbuffer to combat CS tlb bug. */
2565 	if (HAS_BROKEN_CS_TLB(dev)) {
2566 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2567 		if (obj == NULL) {
2568 			DRM_ERROR("Failed to allocate batch bo\n");
2569 			return -ENOMEM;
2570 		}
2571 
2572 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2573 		if (ret != 0) {
2574 			drm_gem_object_unreference(&obj->base);
2575 			DRM_ERROR("Failed to ping batch bo\n");
2576 			return ret;
2577 		}
2578 
2579 		ring->scratch.obj = obj;
2580 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2581 	}
2582 
2583 	ret = intel_init_ring_buffer(dev, ring);
2584 	if (ret)
2585 		return ret;
2586 
2587 	if (INTEL_INFO(dev)->gen >= 5) {
2588 		ret = intel_init_pipe_control(ring);
2589 		if (ret)
2590 			return ret;
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2597 {
2598 	struct drm_i915_private *dev_priv = dev->dev_private;
2599 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2600 
2601 	ring->name = "bsd ring";
2602 	ring->id = VCS;
2603 
2604 	ring->write_tail = ring_write_tail;
2605 	if (INTEL_INFO(dev)->gen >= 6) {
2606 		ring->mmio_base = GEN6_BSD_RING_BASE;
2607 		/* gen6 bsd needs a special wa for tail updates */
2608 		if (IS_GEN6(dev))
2609 			ring->write_tail = gen6_bsd_ring_write_tail;
2610 		ring->flush = gen6_bsd_ring_flush;
2611 		ring->add_request = gen6_add_request;
2612 		ring->get_seqno = gen6_ring_get_seqno;
2613 		ring->set_seqno = ring_set_seqno;
2614 		if (INTEL_INFO(dev)->gen >= 8) {
2615 			ring->irq_enable_mask =
2616 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2617 			ring->irq_get = gen8_ring_get_irq;
2618 			ring->irq_put = gen8_ring_put_irq;
2619 			ring->dispatch_execbuffer =
2620 				gen8_ring_dispatch_execbuffer;
2621 			if (i915_semaphore_is_enabled(dev)) {
2622 				ring->semaphore.sync_to = gen8_ring_sync;
2623 				ring->semaphore.signal = gen8_xcs_signal;
2624 				GEN8_RING_SEMAPHORE_INIT;
2625 			}
2626 		} else {
2627 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2628 			ring->irq_get = gen6_ring_get_irq;
2629 			ring->irq_put = gen6_ring_put_irq;
2630 			ring->dispatch_execbuffer =
2631 				gen6_ring_dispatch_execbuffer;
2632 			if (i915_semaphore_is_enabled(dev)) {
2633 				ring->semaphore.sync_to = gen6_ring_sync;
2634 				ring->semaphore.signal = gen6_signal;
2635 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2636 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2637 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2638 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2639 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2640 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2641 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2642 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2643 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2644 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2645 			}
2646 		}
2647 	} else {
2648 		ring->mmio_base = BSD_RING_BASE;
2649 		ring->flush = bsd_ring_flush;
2650 		ring->add_request = i9xx_add_request;
2651 		ring->get_seqno = ring_get_seqno;
2652 		ring->set_seqno = ring_set_seqno;
2653 		if (IS_GEN5(dev)) {
2654 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2655 			ring->irq_get = gen5_ring_get_irq;
2656 			ring->irq_put = gen5_ring_put_irq;
2657 		} else {
2658 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2659 			ring->irq_get = i9xx_ring_get_irq;
2660 			ring->irq_put = i9xx_ring_put_irq;
2661 		}
2662 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2663 	}
2664 	ring->init_hw = init_ring_common;
2665 
2666 	return intel_init_ring_buffer(dev, ring);
2667 }
2668 
2669 /**
2670  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2671  */
2672 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2673 {
2674 	struct drm_i915_private *dev_priv = dev->dev_private;
2675 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2676 
2677 	ring->name = "bsd2 ring";
2678 	ring->id = VCS2;
2679 
2680 	ring->write_tail = ring_write_tail;
2681 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2682 	ring->flush = gen6_bsd_ring_flush;
2683 	ring->add_request = gen6_add_request;
2684 	ring->get_seqno = gen6_ring_get_seqno;
2685 	ring->set_seqno = ring_set_seqno;
2686 	ring->irq_enable_mask =
2687 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2688 	ring->irq_get = gen8_ring_get_irq;
2689 	ring->irq_put = gen8_ring_put_irq;
2690 	ring->dispatch_execbuffer =
2691 			gen8_ring_dispatch_execbuffer;
2692 	if (i915_semaphore_is_enabled(dev)) {
2693 		ring->semaphore.sync_to = gen8_ring_sync;
2694 		ring->semaphore.signal = gen8_xcs_signal;
2695 		GEN8_RING_SEMAPHORE_INIT;
2696 	}
2697 	ring->init_hw = init_ring_common;
2698 
2699 	return intel_init_ring_buffer(dev, ring);
2700 }
2701 
2702 int intel_init_blt_ring_buffer(struct drm_device *dev)
2703 {
2704 	struct drm_i915_private *dev_priv = dev->dev_private;
2705 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2706 
2707 	ring->name = "blitter ring";
2708 	ring->id = BCS;
2709 
2710 	ring->mmio_base = BLT_RING_BASE;
2711 	ring->write_tail = ring_write_tail;
2712 	ring->flush = gen6_ring_flush;
2713 	ring->add_request = gen6_add_request;
2714 	ring->get_seqno = gen6_ring_get_seqno;
2715 	ring->set_seqno = ring_set_seqno;
2716 	if (INTEL_INFO(dev)->gen >= 8) {
2717 		ring->irq_enable_mask =
2718 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2719 		ring->irq_get = gen8_ring_get_irq;
2720 		ring->irq_put = gen8_ring_put_irq;
2721 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2722 		if (i915_semaphore_is_enabled(dev)) {
2723 			ring->semaphore.sync_to = gen8_ring_sync;
2724 			ring->semaphore.signal = gen8_xcs_signal;
2725 			GEN8_RING_SEMAPHORE_INIT;
2726 		}
2727 	} else {
2728 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2729 		ring->irq_get = gen6_ring_get_irq;
2730 		ring->irq_put = gen6_ring_put_irq;
2731 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2732 		if (i915_semaphore_is_enabled(dev)) {
2733 			ring->semaphore.signal = gen6_signal;
2734 			ring->semaphore.sync_to = gen6_ring_sync;
2735 			/*
2736 			 * The current semaphore is only applied on pre-gen8
2737 			 * platform.  And there is no VCS2 ring on the pre-gen8
2738 			 * platform. So the semaphore between BCS and VCS2 is
2739 			 * initialized as INVALID.  Gen8 will initialize the
2740 			 * sema between BCS and VCS2 later.
2741 			 */
2742 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2743 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2744 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2745 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2746 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2747 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2748 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2749 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2750 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2751 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2752 		}
2753 	}
2754 	ring->init_hw = init_ring_common;
2755 
2756 	return intel_init_ring_buffer(dev, ring);
2757 }
2758 
2759 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2760 {
2761 	struct drm_i915_private *dev_priv = dev->dev_private;
2762 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2763 
2764 	ring->name = "video enhancement ring";
2765 	ring->id = VECS;
2766 
2767 	ring->mmio_base = VEBOX_RING_BASE;
2768 	ring->write_tail = ring_write_tail;
2769 	ring->flush = gen6_ring_flush;
2770 	ring->add_request = gen6_add_request;
2771 	ring->get_seqno = gen6_ring_get_seqno;
2772 	ring->set_seqno = ring_set_seqno;
2773 
2774 	if (INTEL_INFO(dev)->gen >= 8) {
2775 		ring->irq_enable_mask =
2776 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2777 		ring->irq_get = gen8_ring_get_irq;
2778 		ring->irq_put = gen8_ring_put_irq;
2779 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2780 		if (i915_semaphore_is_enabled(dev)) {
2781 			ring->semaphore.sync_to = gen8_ring_sync;
2782 			ring->semaphore.signal = gen8_xcs_signal;
2783 			GEN8_RING_SEMAPHORE_INIT;
2784 		}
2785 	} else {
2786 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2787 		ring->irq_get = hsw_vebox_get_irq;
2788 		ring->irq_put = hsw_vebox_put_irq;
2789 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2790 		if (i915_semaphore_is_enabled(dev)) {
2791 			ring->semaphore.sync_to = gen6_ring_sync;
2792 			ring->semaphore.signal = gen6_signal;
2793 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2794 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2795 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2796 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2797 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2798 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2799 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2800 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2801 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2802 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2803 		}
2804 	}
2805 	ring->init_hw = init_ring_common;
2806 
2807 	return intel_init_ring_buffer(dev, ring);
2808 }
2809 
2810 int
2811 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2812 {
2813 	int ret;
2814 
2815 	if (!ring->gpu_caches_dirty)
2816 		return 0;
2817 
2818 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2819 	if (ret)
2820 		return ret;
2821 
2822 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2823 
2824 	ring->gpu_caches_dirty = false;
2825 	return 0;
2826 }
2827 
2828 int
2829 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2830 {
2831 	uint32_t flush_domains;
2832 	int ret;
2833 
2834 	flush_domains = 0;
2835 	if (ring->gpu_caches_dirty)
2836 		flush_domains = I915_GEM_GPU_DOMAINS;
2837 
2838 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2839 	if (ret)
2840 		return ret;
2841 
2842 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2843 
2844 	ring->gpu_caches_dirty = false;
2845 	return 0;
2846 }
2847 
2848 void
2849 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2850 {
2851 	int ret;
2852 
2853 	if (!intel_ring_initialized(ring))
2854 		return;
2855 
2856 	ret = intel_ring_idle(ring);
2857 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2858 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2859 			  ring->name, ret);
2860 
2861 	stop_ring(ring);
2862 }
2863