xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 820c5b08)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - (tail + I915_RING_FREE_SPACE);
56 	if (space < 0)
57 		space += size;
58 	return space;
59 }
60 
61 int intel_ring_space(struct intel_ringbuffer *ringbuf)
62 {
63 	return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 				  ringbuf->tail, ringbuf->size);
65 }
66 
67 bool intel_ring_stopped(struct intel_engine_cs *ring)
68 {
69 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71 }
72 
73 void __intel_ring_advance(struct intel_engine_cs *ring)
74 {
75 	struct intel_ringbuffer *ringbuf = ring->buffer;
76 	ringbuf->tail &= ringbuf->size - 1;
77 	if (intel_ring_stopped(ring))
78 		return;
79 	ring->write_tail(ring, ringbuf->tail);
80 }
81 
82 static int
83 gen2_render_ring_flush(struct intel_engine_cs *ring,
84 		       u32	invalidate_domains,
85 		       u32	flush_domains)
86 {
87 	u32 cmd;
88 	int ret;
89 
90 	cmd = MI_FLUSH;
91 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 		cmd |= MI_NO_WRITE_FLUSH;
93 
94 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 		cmd |= MI_READ_FLUSH;
96 
97 	ret = intel_ring_begin(ring, 2);
98 	if (ret)
99 		return ret;
100 
101 	intel_ring_emit(ring, cmd);
102 	intel_ring_emit(ring, MI_NOOP);
103 	intel_ring_advance(ring);
104 
105 	return 0;
106 }
107 
108 static int
109 gen4_render_ring_flush(struct intel_engine_cs *ring,
110 		       u32	invalidate_domains,
111 		       u32	flush_domains)
112 {
113 	struct drm_device *dev = ring->dev;
114 	u32 cmd;
115 	int ret;
116 
117 	/*
118 	 * read/write caches:
119 	 *
120 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
122 	 * also flushed at 2d versus 3d pipeline switches.
123 	 *
124 	 * read-only caches:
125 	 *
126 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 	 * MI_READ_FLUSH is set, and is always flushed on 965.
128 	 *
129 	 * I915_GEM_DOMAIN_COMMAND may not exist?
130 	 *
131 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 	 * invalidated when MI_EXE_FLUSH is set.
133 	 *
134 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 	 * invalidated with every MI_FLUSH.
136 	 *
137 	 * TLBs:
138 	 *
139 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 	 * are flushed at any MI_FLUSH.
143 	 */
144 
145 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 		cmd &= ~MI_NO_WRITE_FLUSH;
148 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 		cmd |= MI_EXE_FLUSH;
150 
151 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 	    (IS_G4X(dev) || IS_GEN5(dev)))
153 		cmd |= MI_INVALIDATE_ISP;
154 
155 	ret = intel_ring_begin(ring, 2);
156 	if (ret)
157 		return ret;
158 
159 	intel_ring_emit(ring, cmd);
160 	intel_ring_emit(ring, MI_NOOP);
161 	intel_ring_advance(ring);
162 
163 	return 0;
164 }
165 
166 /**
167  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168  * implementing two workarounds on gen6.  From section 1.4.7.1
169  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170  *
171  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172  * produced by non-pipelined state commands), software needs to first
173  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174  * 0.
175  *
176  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178  *
179  * And the workaround for these two requires this workaround first:
180  *
181  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182  * BEFORE the pipe-control with a post-sync op and no write-cache
183  * flushes.
184  *
185  * And this last workaround is tricky because of the requirements on
186  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187  * volume 2 part 1:
188  *
189  *     "1 of the following must also be set:
190  *      - Render Target Cache Flush Enable ([12] of DW1)
191  *      - Depth Cache Flush Enable ([0] of DW1)
192  *      - Stall at Pixel Scoreboard ([1] of DW1)
193  *      - Depth Stall ([13] of DW1)
194  *      - Post-Sync Operation ([13] of DW1)
195  *      - Notify Enable ([8] of DW1)"
196  *
197  * The cache flushes require the workaround flush that triggered this
198  * one, so we can't use it.  Depth stall would trigger the same.
199  * Post-sync nonzero is what triggered this second workaround, so we
200  * can't use that one either.  Notify enable is IRQs, which aren't
201  * really our business.  That leaves only stall at scoreboard.
202  */
203 static int
204 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205 {
206 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 	int ret;
208 
209 
210 	ret = intel_ring_begin(ring, 6);
211 	if (ret)
212 		return ret;
213 
214 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 	intel_ring_emit(ring, 0); /* low dword */
219 	intel_ring_emit(ring, 0); /* high dword */
220 	intel_ring_emit(ring, MI_NOOP);
221 	intel_ring_advance(ring);
222 
223 	ret = intel_ring_begin(ring, 6);
224 	if (ret)
225 		return ret;
226 
227 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 	intel_ring_emit(ring, 0);
231 	intel_ring_emit(ring, 0);
232 	intel_ring_emit(ring, MI_NOOP);
233 	intel_ring_advance(ring);
234 
235 	return 0;
236 }
237 
238 static int
239 gen6_render_ring_flush(struct intel_engine_cs *ring,
240                          u32 invalidate_domains, u32 flush_domains)
241 {
242 	u32 flags = 0;
243 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 	int ret;
245 
246 	/* Force SNB workarounds for PIPE_CONTROL flushes */
247 	ret = intel_emit_post_sync_nonzero_flush(ring);
248 	if (ret)
249 		return ret;
250 
251 	/* Just flush everything.  Experiments have shown that reducing the
252 	 * number of bits based on the write domains has little performance
253 	 * impact.
254 	 */
255 	if (flush_domains) {
256 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 		/*
259 		 * Ensure that any following seqno writes only happen
260 		 * when the render cache is indeed flushed.
261 		 */
262 		flags |= PIPE_CONTROL_CS_STALL;
263 	}
264 	if (invalidate_domains) {
265 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 		/*
272 		 * TLB invalidate requires a post-sync write.
273 		 */
274 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 	}
276 
277 	ret = intel_ring_begin(ring, 4);
278 	if (ret)
279 		return ret;
280 
281 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 	intel_ring_emit(ring, flags);
283 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 	intel_ring_emit(ring, 0);
285 	intel_ring_advance(ring);
286 
287 	return 0;
288 }
289 
290 static int
291 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292 {
293 	int ret;
294 
295 	ret = intel_ring_begin(ring, 4);
296 	if (ret)
297 		return ret;
298 
299 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 	intel_ring_emit(ring, 0);
303 	intel_ring_emit(ring, 0);
304 	intel_ring_advance(ring);
305 
306 	return 0;
307 }
308 
309 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310 {
311 	int ret;
312 
313 	if (!ring->fbc_dirty)
314 		return 0;
315 
316 	ret = intel_ring_begin(ring, 6);
317 	if (ret)
318 		return ret;
319 	/* WaFbcNukeOn3DBlt:ivb/hsw */
320 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 	intel_ring_emit(ring, value);
323 	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 	intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 	intel_ring_advance(ring);
327 
328 	ring->fbc_dirty = false;
329 	return 0;
330 }
331 
332 static int
333 gen7_render_ring_flush(struct intel_engine_cs *ring,
334 		       u32 invalidate_domains, u32 flush_domains)
335 {
336 	u32 flags = 0;
337 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 	int ret;
339 
340 	/*
341 	 * Ensure that any following seqno writes only happen when the render
342 	 * cache is indeed flushed.
343 	 *
344 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 	 * don't try to be clever and just set it unconditionally.
347 	 */
348 	flags |= PIPE_CONTROL_CS_STALL;
349 
350 	/* Just flush everything.  Experiments have shown that reducing the
351 	 * number of bits based on the write domains has little performance
352 	 * impact.
353 	 */
354 	if (flush_domains) {
355 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 	}
358 	if (invalidate_domains) {
359 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 		/*
366 		 * TLB invalidate requires a post-sync write.
367 		 */
368 		flags |= PIPE_CONTROL_QW_WRITE;
369 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370 
371 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
372 
373 		/* Workaround: we must issue a pipe_control with CS-stall bit
374 		 * set before a pipe_control command that has the state cache
375 		 * invalidate bit set. */
376 		gen7_render_ring_cs_stall_wa(ring);
377 	}
378 
379 	ret = intel_ring_begin(ring, 4);
380 	if (ret)
381 		return ret;
382 
383 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
384 	intel_ring_emit(ring, flags);
385 	intel_ring_emit(ring, scratch_addr);
386 	intel_ring_emit(ring, 0);
387 	intel_ring_advance(ring);
388 
389 	if (!invalidate_domains && flush_domains)
390 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
391 
392 	return 0;
393 }
394 
395 static int
396 gen8_emit_pipe_control(struct intel_engine_cs *ring,
397 		       u32 flags, u32 scratch_addr)
398 {
399 	int ret;
400 
401 	ret = intel_ring_begin(ring, 6);
402 	if (ret)
403 		return ret;
404 
405 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
406 	intel_ring_emit(ring, flags);
407 	intel_ring_emit(ring, scratch_addr);
408 	intel_ring_emit(ring, 0);
409 	intel_ring_emit(ring, 0);
410 	intel_ring_emit(ring, 0);
411 	intel_ring_advance(ring);
412 
413 	return 0;
414 }
415 
416 static int
417 gen8_render_ring_flush(struct intel_engine_cs *ring,
418 		       u32 invalidate_domains, u32 flush_domains)
419 {
420 	u32 flags = 0;
421 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
422 	int ret;
423 
424 	flags |= PIPE_CONTROL_CS_STALL;
425 
426 	if (flush_domains) {
427 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
428 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
429 	}
430 	if (invalidate_domains) {
431 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
432 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
433 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
434 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
435 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
436 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
437 		flags |= PIPE_CONTROL_QW_WRITE;
438 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
439 
440 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
441 		ret = gen8_emit_pipe_control(ring,
442 					     PIPE_CONTROL_CS_STALL |
443 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
444 					     0);
445 		if (ret)
446 			return ret;
447 	}
448 
449 	ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
450 	if (ret)
451 		return ret;
452 
453 	if (!invalidate_domains && flush_domains)
454 		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
455 
456 	return 0;
457 }
458 
459 static void ring_write_tail(struct intel_engine_cs *ring,
460 			    u32 value)
461 {
462 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
463 	I915_WRITE_TAIL(ring, value);
464 }
465 
466 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
467 {
468 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
469 	u64 acthd;
470 
471 	if (INTEL_INFO(ring->dev)->gen >= 8)
472 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
473 					 RING_ACTHD_UDW(ring->mmio_base));
474 	else if (INTEL_INFO(ring->dev)->gen >= 4)
475 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
476 	else
477 		acthd = I915_READ(ACTHD);
478 
479 	return acthd;
480 }
481 
482 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
483 {
484 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
485 	u32 addr;
486 
487 	addr = dev_priv->status_page_dmah->busaddr;
488 	if (INTEL_INFO(ring->dev)->gen >= 4)
489 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
490 	I915_WRITE(HWS_PGA, addr);
491 }
492 
493 static bool stop_ring(struct intel_engine_cs *ring)
494 {
495 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
496 
497 	if (!IS_GEN2(ring->dev)) {
498 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
499 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
500 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
501 			/* Sometimes we observe that the idle flag is not
502 			 * set even though the ring is empty. So double
503 			 * check before giving up.
504 			 */
505 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
506 				return false;
507 		}
508 	}
509 
510 	I915_WRITE_CTL(ring, 0);
511 	I915_WRITE_HEAD(ring, 0);
512 	ring->write_tail(ring, 0);
513 
514 	if (!IS_GEN2(ring->dev)) {
515 		(void)I915_READ_CTL(ring);
516 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
517 	}
518 
519 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
520 }
521 
522 static int init_ring_common(struct intel_engine_cs *ring)
523 {
524 	struct drm_device *dev = ring->dev;
525 	struct drm_i915_private *dev_priv = dev->dev_private;
526 	struct intel_ringbuffer *ringbuf = ring->buffer;
527 	struct drm_i915_gem_object *obj = ringbuf->obj;
528 	int ret = 0;
529 
530 	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
531 
532 	if (!stop_ring(ring)) {
533 		/* G45 ring initialization often fails to reset head to zero */
534 		DRM_DEBUG_KMS("%s head not reset to zero "
535 			      "ctl %08x head %08x tail %08x start %08x\n",
536 			      ring->name,
537 			      I915_READ_CTL(ring),
538 			      I915_READ_HEAD(ring),
539 			      I915_READ_TAIL(ring),
540 			      I915_READ_START(ring));
541 
542 		if (!stop_ring(ring)) {
543 			DRM_ERROR("failed to set %s head to zero "
544 				  "ctl %08x head %08x tail %08x start %08x\n",
545 				  ring->name,
546 				  I915_READ_CTL(ring),
547 				  I915_READ_HEAD(ring),
548 				  I915_READ_TAIL(ring),
549 				  I915_READ_START(ring));
550 			ret = -EIO;
551 			goto out;
552 		}
553 	}
554 
555 	if (I915_NEED_GFX_HWS(dev))
556 		intel_ring_setup_status_page(ring);
557 	else
558 		ring_setup_phys_status_page(ring);
559 
560 	/* Enforce ordering by reading HEAD register back */
561 	I915_READ_HEAD(ring);
562 
563 	/* Initialize the ring. This must happen _after_ we've cleared the ring
564 	 * registers with the above sequence (the readback of the HEAD registers
565 	 * also enforces ordering), otherwise the hw might lose the new ring
566 	 * register values. */
567 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
568 
569 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
570 	if (I915_READ_HEAD(ring))
571 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
572 			  ring->name, I915_READ_HEAD(ring));
573 	I915_WRITE_HEAD(ring, 0);
574 	(void)I915_READ_HEAD(ring);
575 
576 	I915_WRITE_CTL(ring,
577 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
578 			| RING_VALID);
579 
580 	/* If the head is still not zero, the ring is dead */
581 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
582 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
583 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
584 		DRM_ERROR("%s initialization failed "
585 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
586 			  ring->name,
587 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
588 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
589 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
590 		ret = -EIO;
591 		goto out;
592 	}
593 
594 	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
595 		i915_kernel_lost_context(ring->dev);
596 	else {
597 		ringbuf->head = I915_READ_HEAD(ring);
598 		ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
599 		ringbuf->space = intel_ring_space(ringbuf);
600 		ringbuf->last_retired_head = -1;
601 	}
602 
603 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
604 
605 out:
606 	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
607 
608 	return ret;
609 }
610 
611 void
612 intel_fini_pipe_control(struct intel_engine_cs *ring)
613 {
614 	struct drm_device *dev = ring->dev;
615 
616 	if (ring->scratch.obj == NULL)
617 		return;
618 
619 	if (INTEL_INFO(dev)->gen >= 5) {
620 		kunmap(ring->scratch.obj->pages[0]);
621 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
622 	}
623 
624 	drm_gem_object_unreference(&ring->scratch.obj->base);
625 	ring->scratch.obj = NULL;
626 }
627 
628 int
629 intel_init_pipe_control(struct intel_engine_cs *ring)
630 {
631 	int ret;
632 
633 	if (ring->scratch.obj)
634 		return 0;
635 
636 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
637 	if (ring->scratch.obj == NULL) {
638 		DRM_ERROR("Failed to allocate seqno page\n");
639 		ret = -ENOMEM;
640 		goto err;
641 	}
642 
643 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
644 	if (ret)
645 		goto err_unref;
646 
647 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
648 	if (ret)
649 		goto err_unref;
650 
651 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
652 	ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
653 	if (ring->scratch.cpu_page == NULL) {
654 		ret = -ENOMEM;
655 		goto err_unpin;
656 	}
657 
658 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
659 			 ring->name, ring->scratch.gtt_offset);
660 	return 0;
661 
662 err_unpin:
663 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
664 err_unref:
665 	drm_gem_object_unreference(&ring->scratch.obj->base);
666 err:
667 	return ret;
668 }
669 
670 static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
671 				       u32 addr, u32 value)
672 {
673 	struct drm_device *dev = ring->dev;
674 	struct drm_i915_private *dev_priv = dev->dev_private;
675 
676 	if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
677 		return;
678 
679 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
680 	intel_ring_emit(ring, addr);
681 	intel_ring_emit(ring, value);
682 
683 	dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
684 	dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
685 	/* value is updated with the status of remaining bits of this
686 	 * register when it is read from debugfs file
687 	 */
688 	dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
689 	dev_priv->num_wa_regs++;
690 
691 	return;
692 }
693 
694 static int bdw_init_workarounds(struct intel_engine_cs *ring)
695 {
696 	int ret;
697 	struct drm_device *dev = ring->dev;
698 	struct drm_i915_private *dev_priv = dev->dev_private;
699 
700 	/*
701 	 * workarounds applied in this fn are part of register state context,
702 	 * they need to be re-initialized followed by gpu reset, suspend/resume,
703 	 * module reload.
704 	 */
705 	dev_priv->num_wa_regs = 0;
706 	memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
707 
708 	/*
709 	 * update the number of dwords required based on the
710 	 * actual number of workarounds applied
711 	 */
712 	ret = intel_ring_begin(ring, 18);
713 	if (ret)
714 		return ret;
715 
716 	/* WaDisablePartialInstShootdown:bdw */
717 	/* WaDisableThreadStallDopClockGating:bdw */
718 	/* FIXME: Unclear whether we really need this on production bdw. */
719 	intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
720 			   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
721 					     | STALL_DOP_GATING_DISABLE));
722 
723 	/* WaDisableDopClockGating:bdw May not be needed for production */
724 	intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
725 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
726 
727 	intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
728 			   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
729 
730 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
731 	 * workaround for for a possible hang in the unlikely event a TLB
732 	 * invalidation occurs during a PSD flush.
733 	 */
734 	intel_ring_emit_wa(ring, HDC_CHICKEN0,
735 			   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
736 
737 	/* Wa4x4STCOptimizationDisable:bdw */
738 	intel_ring_emit_wa(ring, CACHE_MODE_1,
739 			   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
740 
741 	/*
742 	 * BSpec recommends 8x4 when MSAA is used,
743 	 * however in practice 16x4 seems fastest.
744 	 *
745 	 * Note that PS/WM thread counts depend on the WIZ hashing
746 	 * disable bit, which we don't touch here, but it's good
747 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
748 	 */
749 	intel_ring_emit_wa(ring, GEN7_GT_MODE,
750 			   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
751 
752 	intel_ring_advance(ring);
753 
754 	DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
755 			 dev_priv->num_wa_regs);
756 
757 	return 0;
758 }
759 
760 static int chv_init_workarounds(struct intel_engine_cs *ring)
761 {
762 	int ret;
763 	struct drm_device *dev = ring->dev;
764 	struct drm_i915_private *dev_priv = dev->dev_private;
765 
766 	/*
767 	 * workarounds applied in this fn are part of register state context,
768 	 * they need to be re-initialized followed by gpu reset, suspend/resume,
769 	 * module reload.
770 	 */
771 	dev_priv->num_wa_regs = 0;
772 	memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
773 
774 	ret = intel_ring_begin(ring, 12);
775 	if (ret)
776 		return ret;
777 
778 	/* WaDisablePartialInstShootdown:chv */
779 	intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
780 			   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
781 
782 	/* WaDisableThreadStallDopClockGating:chv */
783 	intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
784 			   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
785 
786 	/* WaDisableDopClockGating:chv (pre-production hw) */
787 	intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
788 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
789 
790 	/* WaDisableSamplerPowerBypass:chv (pre-production hw) */
791 	intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
792 			   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
793 
794 	intel_ring_advance(ring);
795 
796 	return 0;
797 }
798 
799 static int init_render_ring(struct intel_engine_cs *ring)
800 {
801 	struct drm_device *dev = ring->dev;
802 	struct drm_i915_private *dev_priv = dev->dev_private;
803 	int ret = init_ring_common(ring);
804 	if (ret)
805 		return ret;
806 
807 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
808 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
809 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
810 
811 	/* We need to disable the AsyncFlip performance optimisations in order
812 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
813 	 * programmed to '1' on all products.
814 	 *
815 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
816 	 */
817 	if (INTEL_INFO(dev)->gen >= 6)
818 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
819 
820 	/* Required for the hardware to program scanline values for waiting */
821 	/* WaEnableFlushTlbInvalidationMode:snb */
822 	if (INTEL_INFO(dev)->gen == 6)
823 		I915_WRITE(GFX_MODE,
824 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
825 
826 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
827 	if (IS_GEN7(dev))
828 		I915_WRITE(GFX_MODE_GEN7,
829 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
830 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
831 
832 	if (INTEL_INFO(dev)->gen >= 5) {
833 		ret = intel_init_pipe_control(ring);
834 		if (ret)
835 			return ret;
836 	}
837 
838 	if (IS_GEN6(dev)) {
839 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
840 		 * "If this bit is set, STCunit will have LRA as replacement
841 		 *  policy. [...] This bit must be reset.  LRA replacement
842 		 *  policy is not supported."
843 		 */
844 		I915_WRITE(CACHE_MODE_0,
845 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
846 	}
847 
848 	if (INTEL_INFO(dev)->gen >= 6)
849 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
850 
851 	if (HAS_L3_DPF(dev))
852 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
853 
854 	return ret;
855 }
856 
857 static void render_ring_cleanup(struct intel_engine_cs *ring)
858 {
859 	struct drm_device *dev = ring->dev;
860 	struct drm_i915_private *dev_priv = dev->dev_private;
861 
862 	if (dev_priv->semaphore_obj) {
863 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
864 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
865 		dev_priv->semaphore_obj = NULL;
866 	}
867 
868 	intel_fini_pipe_control(ring);
869 }
870 
871 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
872 			   unsigned int num_dwords)
873 {
874 #define MBOX_UPDATE_DWORDS 8
875 	struct drm_device *dev = signaller->dev;
876 	struct drm_i915_private *dev_priv = dev->dev_private;
877 	struct intel_engine_cs *waiter;
878 	int i, ret, num_rings;
879 
880 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
881 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
882 #undef MBOX_UPDATE_DWORDS
883 
884 	ret = intel_ring_begin(signaller, num_dwords);
885 	if (ret)
886 		return ret;
887 
888 	for_each_ring(waiter, dev_priv, i) {
889 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
890 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
891 			continue;
892 
893 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
894 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
895 					   PIPE_CONTROL_QW_WRITE |
896 					   PIPE_CONTROL_FLUSH_ENABLE);
897 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
898 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
899 		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
900 		intel_ring_emit(signaller, 0);
901 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
902 					   MI_SEMAPHORE_TARGET(waiter->id));
903 		intel_ring_emit(signaller, 0);
904 	}
905 
906 	return 0;
907 }
908 
909 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
910 			   unsigned int num_dwords)
911 {
912 #define MBOX_UPDATE_DWORDS 6
913 	struct drm_device *dev = signaller->dev;
914 	struct drm_i915_private *dev_priv = dev->dev_private;
915 	struct intel_engine_cs *waiter;
916 	int i, ret, num_rings;
917 
918 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
919 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
920 #undef MBOX_UPDATE_DWORDS
921 
922 	ret = intel_ring_begin(signaller, num_dwords);
923 	if (ret)
924 		return ret;
925 
926 	for_each_ring(waiter, dev_priv, i) {
927 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
928 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
929 			continue;
930 
931 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
932 					   MI_FLUSH_DW_OP_STOREDW);
933 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
934 					   MI_FLUSH_DW_USE_GTT);
935 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
936 		intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
937 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
938 					   MI_SEMAPHORE_TARGET(waiter->id));
939 		intel_ring_emit(signaller, 0);
940 	}
941 
942 	return 0;
943 }
944 
945 static int gen6_signal(struct intel_engine_cs *signaller,
946 		       unsigned int num_dwords)
947 {
948 	struct drm_device *dev = signaller->dev;
949 	struct drm_i915_private *dev_priv = dev->dev_private;
950 	struct intel_engine_cs *useless;
951 	int i, ret, num_rings;
952 
953 #define MBOX_UPDATE_DWORDS 3
954 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
955 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
956 #undef MBOX_UPDATE_DWORDS
957 
958 	ret = intel_ring_begin(signaller, num_dwords);
959 	if (ret)
960 		return ret;
961 
962 	for_each_ring(useless, dev_priv, i) {
963 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
964 		if (mbox_reg != GEN6_NOSYNC) {
965 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
966 			intel_ring_emit(signaller, mbox_reg);
967 			intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
968 		}
969 	}
970 
971 	/* If num_dwords was rounded, make sure the tail pointer is correct */
972 	if (num_rings % 2 == 0)
973 		intel_ring_emit(signaller, MI_NOOP);
974 
975 	return 0;
976 }
977 
978 /**
979  * gen6_add_request - Update the semaphore mailbox registers
980  *
981  * @ring - ring that is adding a request
982  * @seqno - return seqno stuck into the ring
983  *
984  * Update the mailbox registers in the *other* rings with the current seqno.
985  * This acts like a signal in the canonical semaphore.
986  */
987 static int
988 gen6_add_request(struct intel_engine_cs *ring)
989 {
990 	int ret;
991 
992 	if (ring->semaphore.signal)
993 		ret = ring->semaphore.signal(ring, 4);
994 	else
995 		ret = intel_ring_begin(ring, 4);
996 
997 	if (ret)
998 		return ret;
999 
1000 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1001 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1002 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1003 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1004 	__intel_ring_advance(ring);
1005 
1006 	return 0;
1007 }
1008 
1009 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1010 					      u32 seqno)
1011 {
1012 	struct drm_i915_private *dev_priv = dev->dev_private;
1013 	return dev_priv->last_seqno < seqno;
1014 }
1015 
1016 /**
1017  * intel_ring_sync - sync the waiter to the signaller on seqno
1018  *
1019  * @waiter - ring that is waiting
1020  * @signaller - ring which has, or will signal
1021  * @seqno - seqno which the waiter will block on
1022  */
1023 
1024 static int
1025 gen8_ring_sync(struct intel_engine_cs *waiter,
1026 	       struct intel_engine_cs *signaller,
1027 	       u32 seqno)
1028 {
1029 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1030 	int ret;
1031 
1032 	ret = intel_ring_begin(waiter, 4);
1033 	if (ret)
1034 		return ret;
1035 
1036 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1037 				MI_SEMAPHORE_GLOBAL_GTT |
1038 				MI_SEMAPHORE_POLL |
1039 				MI_SEMAPHORE_SAD_GTE_SDD);
1040 	intel_ring_emit(waiter, seqno);
1041 	intel_ring_emit(waiter,
1042 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1043 	intel_ring_emit(waiter,
1044 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1045 	intel_ring_advance(waiter);
1046 	return 0;
1047 }
1048 
1049 static int
1050 gen6_ring_sync(struct intel_engine_cs *waiter,
1051 	       struct intel_engine_cs *signaller,
1052 	       u32 seqno)
1053 {
1054 	u32 dw1 = MI_SEMAPHORE_MBOX |
1055 		  MI_SEMAPHORE_COMPARE |
1056 		  MI_SEMAPHORE_REGISTER;
1057 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1058 	int ret;
1059 
1060 	/* Throughout all of the GEM code, seqno passed implies our current
1061 	 * seqno is >= the last seqno executed. However for hardware the
1062 	 * comparison is strictly greater than.
1063 	 */
1064 	seqno -= 1;
1065 
1066 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1067 
1068 	ret = intel_ring_begin(waiter, 4);
1069 	if (ret)
1070 		return ret;
1071 
1072 	/* If seqno wrap happened, omit the wait with no-ops */
1073 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1074 		intel_ring_emit(waiter, dw1 | wait_mbox);
1075 		intel_ring_emit(waiter, seqno);
1076 		intel_ring_emit(waiter, 0);
1077 		intel_ring_emit(waiter, MI_NOOP);
1078 	} else {
1079 		intel_ring_emit(waiter, MI_NOOP);
1080 		intel_ring_emit(waiter, MI_NOOP);
1081 		intel_ring_emit(waiter, MI_NOOP);
1082 		intel_ring_emit(waiter, MI_NOOP);
1083 	}
1084 	intel_ring_advance(waiter);
1085 
1086 	return 0;
1087 }
1088 
1089 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1090 do {									\
1091 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1092 		 PIPE_CONTROL_DEPTH_STALL);				\
1093 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1094 	intel_ring_emit(ring__, 0);							\
1095 	intel_ring_emit(ring__, 0);							\
1096 } while (0)
1097 
1098 static int
1099 pc_render_add_request(struct intel_engine_cs *ring)
1100 {
1101 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1102 	int ret;
1103 
1104 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1105 	 * incoherent with writes to memory, i.e. completely fubar,
1106 	 * so we need to use PIPE_NOTIFY instead.
1107 	 *
1108 	 * However, we also need to workaround the qword write
1109 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1110 	 * memory before requesting an interrupt.
1111 	 */
1112 	ret = intel_ring_begin(ring, 32);
1113 	if (ret)
1114 		return ret;
1115 
1116 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1117 			PIPE_CONTROL_WRITE_FLUSH |
1118 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1119 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1120 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1121 	intel_ring_emit(ring, 0);
1122 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1123 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1124 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1125 	scratch_addr += 2 * CACHELINE_BYTES;
1126 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1127 	scratch_addr += 2 * CACHELINE_BYTES;
1128 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1129 	scratch_addr += 2 * CACHELINE_BYTES;
1130 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1131 	scratch_addr += 2 * CACHELINE_BYTES;
1132 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1133 
1134 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1135 			PIPE_CONTROL_WRITE_FLUSH |
1136 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1137 			PIPE_CONTROL_NOTIFY);
1138 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1139 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1140 	intel_ring_emit(ring, 0);
1141 	__intel_ring_advance(ring);
1142 
1143 	return 0;
1144 }
1145 
1146 static u32
1147 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1148 {
1149 	/* Workaround to force correct ordering between irq and seqno writes on
1150 	 * ivb (and maybe also on snb) by reading from a CS register (like
1151 	 * ACTHD) before reading the status page. */
1152 	if (!lazy_coherency) {
1153 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1154 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1155 	}
1156 
1157 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1158 }
1159 
1160 static u32
1161 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1162 {
1163 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1164 }
1165 
1166 static void
1167 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1168 {
1169 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1170 }
1171 
1172 static u32
1173 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1174 {
1175 	return ring->scratch.cpu_page[0];
1176 }
1177 
1178 static void
1179 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1180 {
1181 	ring->scratch.cpu_page[0] = seqno;
1182 }
1183 
1184 static bool
1185 gen5_ring_get_irq(struct intel_engine_cs *ring)
1186 {
1187 	struct drm_device *dev = ring->dev;
1188 	struct drm_i915_private *dev_priv = dev->dev_private;
1189 
1190 	if (!dev->irq_enabled)
1191 		return false;
1192 
1193 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1194 	if (ring->irq_refcount++ == 0)
1195 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1196 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1197 
1198 	return true;
1199 }
1200 
1201 static void
1202 gen5_ring_put_irq(struct intel_engine_cs *ring)
1203 {
1204 	struct drm_device *dev = ring->dev;
1205 	struct drm_i915_private *dev_priv = dev->dev_private;
1206 
1207 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1208 	if (--ring->irq_refcount == 0)
1209 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1210 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1211 }
1212 
1213 static bool
1214 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1215 {
1216 	struct drm_device *dev = ring->dev;
1217 	struct drm_i915_private *dev_priv = dev->dev_private;
1218 
1219 	if (!dev->irq_enabled)
1220 		return false;
1221 
1222 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1223 	if (ring->irq_refcount++ == 0) {
1224 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1225 		I915_WRITE(IMR, dev_priv->irq_mask);
1226 		POSTING_READ(IMR);
1227 	}
1228 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1229 
1230 	return true;
1231 }
1232 
1233 static void
1234 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1235 {
1236 	struct drm_device *dev = ring->dev;
1237 	struct drm_i915_private *dev_priv = dev->dev_private;
1238 
1239 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1240 	if (--ring->irq_refcount == 0) {
1241 		dev_priv->irq_mask |= ring->irq_enable_mask;
1242 		I915_WRITE(IMR, dev_priv->irq_mask);
1243 		POSTING_READ(IMR);
1244 	}
1245 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1246 }
1247 
1248 static bool
1249 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1250 {
1251 	struct drm_device *dev = ring->dev;
1252 	struct drm_i915_private *dev_priv = dev->dev_private;
1253 
1254 	if (!dev->irq_enabled)
1255 		return false;
1256 
1257 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1258 	if (ring->irq_refcount++ == 0) {
1259 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1260 		I915_WRITE16(IMR, dev_priv->irq_mask);
1261 		POSTING_READ16(IMR);
1262 	}
1263 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1264 
1265 	return true;
1266 }
1267 
1268 static void
1269 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1270 {
1271 	struct drm_device *dev = ring->dev;
1272 	struct drm_i915_private *dev_priv = dev->dev_private;
1273 
1274 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1275 	if (--ring->irq_refcount == 0) {
1276 		dev_priv->irq_mask |= ring->irq_enable_mask;
1277 		I915_WRITE16(IMR, dev_priv->irq_mask);
1278 		POSTING_READ16(IMR);
1279 	}
1280 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1281 }
1282 
1283 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1284 {
1285 	struct drm_device *dev = ring->dev;
1286 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1287 	u32 mmio = 0;
1288 
1289 	/* The ring status page addresses are no longer next to the rest of
1290 	 * the ring registers as of gen7.
1291 	 */
1292 	if (IS_GEN7(dev)) {
1293 		switch (ring->id) {
1294 		case RCS:
1295 			mmio = RENDER_HWS_PGA_GEN7;
1296 			break;
1297 		case BCS:
1298 			mmio = BLT_HWS_PGA_GEN7;
1299 			break;
1300 		/*
1301 		 * VCS2 actually doesn't exist on Gen7. Only shut up
1302 		 * gcc switch check warning
1303 		 */
1304 		case VCS2:
1305 		case VCS:
1306 			mmio = BSD_HWS_PGA_GEN7;
1307 			break;
1308 		case VECS:
1309 			mmio = VEBOX_HWS_PGA_GEN7;
1310 			break;
1311 		}
1312 	} else if (IS_GEN6(ring->dev)) {
1313 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1314 	} else {
1315 		/* XXX: gen8 returns to sanity */
1316 		mmio = RING_HWS_PGA(ring->mmio_base);
1317 	}
1318 
1319 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1320 	POSTING_READ(mmio);
1321 
1322 	/*
1323 	 * Flush the TLB for this page
1324 	 *
1325 	 * FIXME: These two bits have disappeared on gen8, so a question
1326 	 * arises: do we still need this and if so how should we go about
1327 	 * invalidating the TLB?
1328 	 */
1329 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1330 		u32 reg = RING_INSTPM(ring->mmio_base);
1331 
1332 		/* ring should be idle before issuing a sync flush*/
1333 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1334 
1335 		I915_WRITE(reg,
1336 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1337 					      INSTPM_SYNC_FLUSH));
1338 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1339 			     1000))
1340 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1341 				  ring->name);
1342 	}
1343 }
1344 
1345 static int
1346 bsd_ring_flush(struct intel_engine_cs *ring,
1347 	       u32     invalidate_domains,
1348 	       u32     flush_domains)
1349 {
1350 	int ret;
1351 
1352 	ret = intel_ring_begin(ring, 2);
1353 	if (ret)
1354 		return ret;
1355 
1356 	intel_ring_emit(ring, MI_FLUSH);
1357 	intel_ring_emit(ring, MI_NOOP);
1358 	intel_ring_advance(ring);
1359 	return 0;
1360 }
1361 
1362 static int
1363 i9xx_add_request(struct intel_engine_cs *ring)
1364 {
1365 	int ret;
1366 
1367 	ret = intel_ring_begin(ring, 4);
1368 	if (ret)
1369 		return ret;
1370 
1371 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1372 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1373 	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1374 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1375 	__intel_ring_advance(ring);
1376 
1377 	return 0;
1378 }
1379 
1380 static bool
1381 gen6_ring_get_irq(struct intel_engine_cs *ring)
1382 {
1383 	struct drm_device *dev = ring->dev;
1384 	struct drm_i915_private *dev_priv = dev->dev_private;
1385 
1386 	if (!dev->irq_enabled)
1387 	       return false;
1388 
1389 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1390 	if (ring->irq_refcount++ == 0) {
1391 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1392 			I915_WRITE_IMR(ring,
1393 				       ~(ring->irq_enable_mask |
1394 					 GT_PARITY_ERROR(dev)));
1395 		else
1396 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1397 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1398 	}
1399 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1400 
1401 	return true;
1402 }
1403 
1404 static void
1405 gen6_ring_put_irq(struct intel_engine_cs *ring)
1406 {
1407 	struct drm_device *dev = ring->dev;
1408 	struct drm_i915_private *dev_priv = dev->dev_private;
1409 
1410 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1411 	if (--ring->irq_refcount == 0) {
1412 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1413 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1414 		else
1415 			I915_WRITE_IMR(ring, ~0);
1416 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1417 	}
1418 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1419 }
1420 
1421 static bool
1422 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1423 {
1424 	struct drm_device *dev = ring->dev;
1425 	struct drm_i915_private *dev_priv = dev->dev_private;
1426 
1427 	if (!dev->irq_enabled)
1428 		return false;
1429 
1430 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1431 	if (ring->irq_refcount++ == 0) {
1432 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1433 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1434 	}
1435 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1436 
1437 	return true;
1438 }
1439 
1440 static void
1441 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1442 {
1443 	struct drm_device *dev = ring->dev;
1444 	struct drm_i915_private *dev_priv = dev->dev_private;
1445 
1446 	if (!dev->irq_enabled)
1447 		return;
1448 
1449 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1450 	if (--ring->irq_refcount == 0) {
1451 		I915_WRITE_IMR(ring, ~0);
1452 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1453 	}
1454 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1455 }
1456 
1457 static bool
1458 gen8_ring_get_irq(struct intel_engine_cs *ring)
1459 {
1460 	struct drm_device *dev = ring->dev;
1461 	struct drm_i915_private *dev_priv = dev->dev_private;
1462 
1463 	if (!dev->irq_enabled)
1464 		return false;
1465 
1466 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1467 	if (ring->irq_refcount++ == 0) {
1468 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1469 			I915_WRITE_IMR(ring,
1470 				       ~(ring->irq_enable_mask |
1471 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1472 		} else {
1473 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1474 		}
1475 		POSTING_READ(RING_IMR(ring->mmio_base));
1476 	}
1477 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1478 
1479 	return true;
1480 }
1481 
1482 static void
1483 gen8_ring_put_irq(struct intel_engine_cs *ring)
1484 {
1485 	struct drm_device *dev = ring->dev;
1486 	struct drm_i915_private *dev_priv = dev->dev_private;
1487 
1488 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1489 	if (--ring->irq_refcount == 0) {
1490 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1491 			I915_WRITE_IMR(ring,
1492 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1493 		} else {
1494 			I915_WRITE_IMR(ring, ~0);
1495 		}
1496 		POSTING_READ(RING_IMR(ring->mmio_base));
1497 	}
1498 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1499 }
1500 
1501 static int
1502 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1503 			 u64 offset, u32 length,
1504 			 unsigned flags)
1505 {
1506 	int ret;
1507 
1508 	ret = intel_ring_begin(ring, 2);
1509 	if (ret)
1510 		return ret;
1511 
1512 	intel_ring_emit(ring,
1513 			MI_BATCH_BUFFER_START |
1514 			MI_BATCH_GTT |
1515 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1516 	intel_ring_emit(ring, offset);
1517 	intel_ring_advance(ring);
1518 
1519 	return 0;
1520 }
1521 
1522 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1523 #define I830_BATCH_LIMIT (256*1024)
1524 #define I830_TLB_ENTRIES (2)
1525 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1526 static int
1527 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1528 				u64 offset, u32 len,
1529 				unsigned flags)
1530 {
1531 	u32 cs_offset = ring->scratch.gtt_offset;
1532 	int ret;
1533 
1534 	ret = intel_ring_begin(ring, 6);
1535 	if (ret)
1536 		return ret;
1537 
1538 	/* Evict the invalid PTE TLBs */
1539 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1540 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1541 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1542 	intel_ring_emit(ring, cs_offset);
1543 	intel_ring_emit(ring, 0xdeadbeef);
1544 	intel_ring_emit(ring, MI_NOOP);
1545 	intel_ring_advance(ring);
1546 
1547 	if ((flags & I915_DISPATCH_PINNED) == 0) {
1548 		if (len > I830_BATCH_LIMIT)
1549 			return -ENOSPC;
1550 
1551 		ret = intel_ring_begin(ring, 6 + 2);
1552 		if (ret)
1553 			return ret;
1554 
1555 		/* Blit the batch (which has now all relocs applied) to the
1556 		 * stable batch scratch bo area (so that the CS never
1557 		 * stumbles over its tlb invalidation bug) ...
1558 		 */
1559 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1560 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1561 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1562 		intel_ring_emit(ring, cs_offset);
1563 		intel_ring_emit(ring, 4096);
1564 		intel_ring_emit(ring, offset);
1565 
1566 		intel_ring_emit(ring, MI_FLUSH);
1567 		intel_ring_emit(ring, MI_NOOP);
1568 		intel_ring_advance(ring);
1569 
1570 		/* ... and execute it. */
1571 		offset = cs_offset;
1572 	}
1573 
1574 	ret = intel_ring_begin(ring, 4);
1575 	if (ret)
1576 		return ret;
1577 
1578 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1579 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1580 	intel_ring_emit(ring, offset + len - 8);
1581 	intel_ring_emit(ring, MI_NOOP);
1582 	intel_ring_advance(ring);
1583 
1584 	return 0;
1585 }
1586 
1587 static int
1588 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1589 			 u64 offset, u32 len,
1590 			 unsigned flags)
1591 {
1592 	int ret;
1593 
1594 	ret = intel_ring_begin(ring, 2);
1595 	if (ret)
1596 		return ret;
1597 
1598 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1599 	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1600 	intel_ring_advance(ring);
1601 
1602 	return 0;
1603 }
1604 
1605 static void cleanup_status_page(struct intel_engine_cs *ring)
1606 {
1607 	struct drm_i915_gem_object *obj;
1608 
1609 	obj = ring->status_page.obj;
1610 	if (obj == NULL)
1611 		return;
1612 
1613 	kunmap(obj->pages[0]);
1614 	i915_gem_object_ggtt_unpin(obj);
1615 	drm_gem_object_unreference(&obj->base);
1616 	ring->status_page.obj = NULL;
1617 }
1618 
1619 static int init_status_page(struct intel_engine_cs *ring)
1620 {
1621 	struct drm_i915_gem_object *obj;
1622 
1623 	if ((obj = ring->status_page.obj) == NULL) {
1624 		unsigned flags;
1625 		int ret;
1626 
1627 		obj = i915_gem_alloc_object(ring->dev, 4096);
1628 		if (obj == NULL) {
1629 			DRM_ERROR("Failed to allocate status page\n");
1630 			return -ENOMEM;
1631 		}
1632 
1633 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1634 		if (ret)
1635 			goto err_unref;
1636 
1637 		flags = 0;
1638 		if (!HAS_LLC(ring->dev))
1639 			/* On g33, we cannot place HWS above 256MiB, so
1640 			 * restrict its pinning to the low mappable arena.
1641 			 * Though this restriction is not documented for
1642 			 * gen4, gen5, or byt, they also behave similarly
1643 			 * and hang if the HWS is placed at the top of the
1644 			 * GTT. To generalise, it appears that all !llc
1645 			 * platforms have issues with us placing the HWS
1646 			 * above the mappable region (even though we never
1647 			 * actualy map it).
1648 			 */
1649 			flags |= PIN_MAPPABLE;
1650 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1651 		if (ret) {
1652 err_unref:
1653 			drm_gem_object_unreference(&obj->base);
1654 			return ret;
1655 		}
1656 
1657 		ring->status_page.obj = obj;
1658 	}
1659 
1660 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1661 	ring->status_page.page_addr = kmap(obj->pages[0]);
1662 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1663 
1664 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1665 			ring->name, ring->status_page.gfx_addr);
1666 
1667 	return 0;
1668 }
1669 
1670 static int init_phys_status_page(struct intel_engine_cs *ring)
1671 {
1672 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1673 
1674 	if (!dev_priv->status_page_dmah) {
1675 		dev_priv->status_page_dmah =
1676 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1677 		if (!dev_priv->status_page_dmah)
1678 			return -ENOMEM;
1679 	}
1680 
1681 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1682 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1683 
1684 	return 0;
1685 }
1686 
1687 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1688 {
1689 	if (!ringbuf->obj)
1690 		return;
1691 
1692 	iounmap(ringbuf->virtual_start, ringbuf->size);
1693 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1694 	drm_gem_object_unreference(&ringbuf->obj->base);
1695 	ringbuf->obj = NULL;
1696 }
1697 
1698 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1699 			       struct intel_ringbuffer *ringbuf)
1700 {
1701 	struct drm_i915_private *dev_priv = to_i915(dev);
1702 	struct drm_i915_gem_object *obj;
1703 	int ret;
1704 
1705 	if (ringbuf->obj)
1706 		return 0;
1707 
1708 	obj = NULL;
1709 	if (!HAS_LLC(dev))
1710 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1711 	if (obj == NULL)
1712 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1713 	if (obj == NULL)
1714 		return -ENOMEM;
1715 
1716 	/* mark ring buffers as read-only from GPU side by default */
1717 	obj->gt_ro = 1;
1718 
1719 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1720 	if (ret)
1721 		goto err_unref;
1722 
1723 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1724 	if (ret)
1725 		goto err_unpin;
1726 
1727 	ringbuf->virtual_start =
1728 		ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1729 				ringbuf->size);
1730 	if (ringbuf->virtual_start == NULL) {
1731 		ret = -EINVAL;
1732 		goto err_unpin;
1733 	}
1734 
1735 	ringbuf->obj = obj;
1736 	return 0;
1737 
1738 err_unpin:
1739 	i915_gem_object_ggtt_unpin(obj);
1740 err_unref:
1741 	drm_gem_object_unreference(&obj->base);
1742 	return ret;
1743 }
1744 
1745 static int intel_init_ring_buffer(struct drm_device *dev,
1746 				  struct intel_engine_cs *ring)
1747 {
1748 	struct intel_ringbuffer *ringbuf = ring->buffer;
1749 	int ret;
1750 
1751 	if (ringbuf == NULL) {
1752 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1753 		if (!ringbuf)
1754 			return -ENOMEM;
1755 		ring->buffer = ringbuf;
1756 	}
1757 
1758 	ring->dev = dev;
1759 	INIT_LIST_HEAD(&ring->active_list);
1760 	INIT_LIST_HEAD(&ring->request_list);
1761 	INIT_LIST_HEAD(&ring->execlist_queue);
1762 	ringbuf->size = 32 * PAGE_SIZE;
1763 	ringbuf->ring = ring;
1764 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1765 
1766 	init_waitqueue_head(&ring->irq_queue);
1767 
1768 	if (I915_NEED_GFX_HWS(dev)) {
1769 		ret = init_status_page(ring);
1770 		if (ret)
1771 			goto error;
1772 	} else {
1773 		BUG_ON(ring->id != RCS);
1774 		ret = init_phys_status_page(ring);
1775 		if (ret)
1776 			goto error;
1777 	}
1778 
1779 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1780 	if (ret) {
1781 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1782 		goto error;
1783 	}
1784 
1785 	/* Workaround an erratum on the i830 which causes a hang if
1786 	 * the TAIL pointer points to within the last 2 cachelines
1787 	 * of the buffer.
1788 	 */
1789 	ringbuf->effective_size = ringbuf->size;
1790 	if (IS_I830(dev) || IS_845G(dev))
1791 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1792 
1793 	ret = i915_cmd_parser_init_ring(ring);
1794 	if (ret)
1795 		goto error;
1796 
1797 	ret = ring->init(ring);
1798 	if (ret)
1799 		goto error;
1800 
1801 	return 0;
1802 
1803 error:
1804 	kfree(ringbuf);
1805 	ring->buffer = NULL;
1806 	return ret;
1807 }
1808 
1809 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1810 {
1811 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1812 	struct intel_ringbuffer *ringbuf = ring->buffer;
1813 
1814 	if (!intel_ring_initialized(ring))
1815 		return;
1816 
1817 	intel_stop_ring_buffer(ring);
1818 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1819 
1820 	intel_destroy_ringbuffer_obj(ringbuf);
1821 	ring->preallocated_lazy_request = NULL;
1822 	ring->outstanding_lazy_seqno = 0;
1823 
1824 	if (ring->cleanup)
1825 		ring->cleanup(ring);
1826 
1827 	cleanup_status_page(ring);
1828 
1829 	i915_cmd_parser_fini_ring(ring);
1830 
1831 	kfree(ringbuf);
1832 	ring->buffer = NULL;
1833 }
1834 
1835 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1836 {
1837 	struct intel_ringbuffer *ringbuf = ring->buffer;
1838 	struct drm_i915_gem_request *request;
1839 	u32 seqno = 0;
1840 	int ret;
1841 
1842 	if (ringbuf->last_retired_head != -1) {
1843 		ringbuf->head = ringbuf->last_retired_head;
1844 		ringbuf->last_retired_head = -1;
1845 
1846 		ringbuf->space = intel_ring_space(ringbuf);
1847 		if (ringbuf->space >= n)
1848 			return 0;
1849 	}
1850 
1851 	list_for_each_entry(request, &ring->request_list, list) {
1852 		if (__intel_ring_space(request->tail, ringbuf->tail,
1853 				       ringbuf->size) >= n) {
1854 			seqno = request->seqno;
1855 			break;
1856 		}
1857 	}
1858 
1859 	if (seqno == 0)
1860 		return -ENOSPC;
1861 
1862 	ret = i915_wait_seqno(ring, seqno);
1863 	if (ret)
1864 		return ret;
1865 
1866 	i915_gem_retire_requests_ring(ring);
1867 	ringbuf->head = ringbuf->last_retired_head;
1868 	ringbuf->last_retired_head = -1;
1869 
1870 	ringbuf->space = intel_ring_space(ringbuf);
1871 	return 0;
1872 }
1873 
1874 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1875 {
1876 	struct drm_device *dev = ring->dev;
1877 	struct drm_i915_private *dev_priv = dev->dev_private;
1878 	struct intel_ringbuffer *ringbuf = ring->buffer;
1879 	unsigned long end;
1880 	int ret;
1881 
1882 	ret = intel_ring_wait_request(ring, n);
1883 	if (ret != -ENOSPC)
1884 		return ret;
1885 
1886 	/* force the tail write in case we have been skipping them */
1887 	__intel_ring_advance(ring);
1888 
1889 	/* With GEM the hangcheck timer should kick us out of the loop,
1890 	 * leaving it early runs the risk of corrupting GEM state (due
1891 	 * to running on almost untested codepaths). But on resume
1892 	 * timers don't work yet, so prevent a complete hang in that
1893 	 * case by choosing an insanely large timeout. */
1894 	end = jiffies + 60 * HZ;
1895 
1896 	trace_i915_ring_wait_begin(ring);
1897 	do {
1898 		ringbuf->head = I915_READ_HEAD(ring);
1899 		ringbuf->space = intel_ring_space(ringbuf);
1900 		if (ringbuf->space >= n) {
1901 			ret = 0;
1902 			break;
1903 		}
1904 
1905 #if 0
1906 		if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1907 		    dev->primary->master) {
1908 			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1909 			if (master_priv->sarea_priv)
1910 				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1911 		}
1912 #else
1913 		if (dev_priv->sarea_priv)
1914 			dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1915 #endif
1916 
1917 
1918 		msleep(1);
1919 
1920 		if (dev_priv->mm.interruptible && signal_pending(curthread->td_lwp)) {
1921 			ret = -ERESTARTSYS;
1922 			break;
1923 		}
1924 
1925 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1926 					   dev_priv->mm.interruptible);
1927 		if (ret)
1928 			break;
1929 
1930 		if (time_after(jiffies, end)) {
1931 			ret = -EBUSY;
1932 			break;
1933 		}
1934 	} while (1);
1935 	trace_i915_ring_wait_end(ring);
1936 	return ret;
1937 }
1938 
1939 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1940 {
1941 	uint32_t __iomem *virt;
1942 	struct intel_ringbuffer *ringbuf = ring->buffer;
1943 	int rem = ringbuf->size - ringbuf->tail;
1944 
1945 	if (ringbuf->space < rem) {
1946 		int ret = ring_wait_for_space(ring, rem);
1947 		if (ret)
1948 			return ret;
1949 	}
1950 
1951 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1952 	rem /= 4;
1953 	while (rem--)
1954 		iowrite32(MI_NOOP, virt++);
1955 
1956 	ringbuf->tail = 0;
1957 	ringbuf->space = intel_ring_space(ringbuf);
1958 
1959 	return 0;
1960 }
1961 
1962 int intel_ring_idle(struct intel_engine_cs *ring)
1963 {
1964 	u32 seqno;
1965 	int ret;
1966 
1967 	/* We need to add any requests required to flush the objects and ring */
1968 	if (ring->outstanding_lazy_seqno) {
1969 		ret = i915_add_request(ring, NULL);
1970 		if (ret)
1971 			return ret;
1972 	}
1973 
1974 	/* Wait upon the last request to be completed */
1975 	if (list_empty(&ring->request_list))
1976 		return 0;
1977 
1978 	seqno = list_entry(ring->request_list.prev,
1979 			   struct drm_i915_gem_request,
1980 			   list)->seqno;
1981 
1982 	return i915_wait_seqno(ring, seqno);
1983 }
1984 
1985 static int
1986 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1987 {
1988 	if (ring->outstanding_lazy_seqno)
1989 		return 0;
1990 
1991 	if (ring->preallocated_lazy_request == NULL) {
1992 		struct drm_i915_gem_request *request;
1993 
1994 		request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1995 		if (request == NULL)
1996 			return -ENOMEM;
1997 
1998 		ring->preallocated_lazy_request = request;
1999 	}
2000 
2001 	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2002 }
2003 
2004 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2005 				int bytes)
2006 {
2007 	struct intel_ringbuffer *ringbuf = ring->buffer;
2008 	int ret;
2009 
2010 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2011 		ret = intel_wrap_ring_buffer(ring);
2012 		if (unlikely(ret))
2013 			return ret;
2014 	}
2015 
2016 	if (unlikely(ringbuf->space < bytes)) {
2017 		ret = ring_wait_for_space(ring, bytes);
2018 		if (unlikely(ret))
2019 			return ret;
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 int intel_ring_begin(struct intel_engine_cs *ring,
2026 		     int num_dwords)
2027 {
2028 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2029 	int ret;
2030 
2031 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2032 				   dev_priv->mm.interruptible);
2033 	if (ret)
2034 		return ret;
2035 
2036 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2037 	if (ret)
2038 		return ret;
2039 
2040 	/* Preallocate the olr before touching the ring */
2041 	ret = intel_ring_alloc_seqno(ring);
2042 	if (ret)
2043 		return ret;
2044 
2045 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2046 	return 0;
2047 }
2048 
2049 /* Align the ring tail to a cacheline boundary */
2050 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2051 {
2052 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2053 	int ret;
2054 
2055 	if (num_dwords == 0)
2056 		return 0;
2057 
2058 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2059 	ret = intel_ring_begin(ring, num_dwords);
2060 	if (ret)
2061 		return ret;
2062 
2063 	while (num_dwords--)
2064 		intel_ring_emit(ring, MI_NOOP);
2065 
2066 	intel_ring_advance(ring);
2067 
2068 	return 0;
2069 }
2070 
2071 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2072 {
2073 	struct drm_device *dev = ring->dev;
2074 	struct drm_i915_private *dev_priv = dev->dev_private;
2075 
2076 	BUG_ON(ring->outstanding_lazy_seqno);
2077 
2078 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2079 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2080 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2081 		if (HAS_VEBOX(dev))
2082 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2083 	}
2084 
2085 	ring->set_seqno(ring, seqno);
2086 	ring->hangcheck.seqno = seqno;
2087 }
2088 
2089 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2090 				     u32 value)
2091 {
2092 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2093 
2094        /* Every tail move must follow the sequence below */
2095 
2096 	/* Disable notification that the ring is IDLE. The GT
2097 	 * will then assume that it is busy and bring it out of rc6.
2098 	 */
2099 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2100 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2101 
2102 	/* Clear the context id. Here be magic! */
2103 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2104 
2105 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2106 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2107 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2108 		     50))
2109 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2110 
2111 	/* Now that the ring is fully powered up, update the tail */
2112 	I915_WRITE_TAIL(ring, value);
2113 	POSTING_READ(RING_TAIL(ring->mmio_base));
2114 
2115 	/* Let the ring send IDLE messages to the GT again,
2116 	 * and so let it sleep to conserve power when idle.
2117 	 */
2118 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2119 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2120 }
2121 
2122 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2123 			       u32 invalidate, u32 flush)
2124 {
2125 	uint32_t cmd;
2126 	int ret;
2127 
2128 	ret = intel_ring_begin(ring, 4);
2129 	if (ret)
2130 		return ret;
2131 
2132 	cmd = MI_FLUSH_DW;
2133 	if (INTEL_INFO(ring->dev)->gen >= 8)
2134 		cmd += 1;
2135 	/*
2136 	 * Bspec vol 1c.5 - video engine command streamer:
2137 	 * "If ENABLED, all TLBs will be invalidated once the flush
2138 	 * operation is complete. This bit is only valid when the
2139 	 * Post-Sync Operation field is a value of 1h or 3h."
2140 	 */
2141 	if (invalidate & I915_GEM_GPU_DOMAINS)
2142 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2143 			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2144 	intel_ring_emit(ring, cmd);
2145 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2146 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2147 		intel_ring_emit(ring, 0); /* upper addr */
2148 		intel_ring_emit(ring, 0); /* value */
2149 	} else  {
2150 		intel_ring_emit(ring, 0);
2151 		intel_ring_emit(ring, MI_NOOP);
2152 	}
2153 	intel_ring_advance(ring);
2154 	return 0;
2155 }
2156 
2157 static int
2158 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2159 			      u64 offset, u32 len,
2160 			      unsigned flags)
2161 {
2162 	bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2163 	int ret;
2164 
2165 	ret = intel_ring_begin(ring, 4);
2166 	if (ret)
2167 		return ret;
2168 
2169 	/* FIXME(BDW): Address space and security selectors. */
2170 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2171 	intel_ring_emit(ring, lower_32_bits(offset));
2172 	intel_ring_emit(ring, upper_32_bits(offset));
2173 	intel_ring_emit(ring, MI_NOOP);
2174 	intel_ring_advance(ring);
2175 
2176 	return 0;
2177 }
2178 
2179 static int
2180 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2181 			      u64 offset, u32 len,
2182 			      unsigned flags)
2183 {
2184 	int ret;
2185 
2186 	ret = intel_ring_begin(ring, 2);
2187 	if (ret)
2188 		return ret;
2189 
2190 	intel_ring_emit(ring,
2191 			MI_BATCH_BUFFER_START |
2192 			(flags & I915_DISPATCH_SECURE ?
2193 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2194 	/* bit0-7 is the length on GEN6+ */
2195 	intel_ring_emit(ring, offset);
2196 	intel_ring_advance(ring);
2197 
2198 	return 0;
2199 }
2200 
2201 static int
2202 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2203 			      u64 offset, u32 len,
2204 			      unsigned flags)
2205 {
2206 	int ret;
2207 
2208 	ret = intel_ring_begin(ring, 2);
2209 	if (ret)
2210 		return ret;
2211 
2212 	intel_ring_emit(ring,
2213 			MI_BATCH_BUFFER_START |
2214 			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2215 	/* bit0-7 is the length on GEN6+ */
2216 	intel_ring_emit(ring, offset);
2217 	intel_ring_advance(ring);
2218 
2219 	return 0;
2220 }
2221 
2222 /* Blitter support (SandyBridge+) */
2223 
2224 static int gen6_ring_flush(struct intel_engine_cs *ring,
2225 			   u32 invalidate, u32 flush)
2226 {
2227 	struct drm_device *dev = ring->dev;
2228 	uint32_t cmd;
2229 	int ret;
2230 
2231 	ret = intel_ring_begin(ring, 4);
2232 	if (ret)
2233 		return ret;
2234 
2235 	cmd = MI_FLUSH_DW;
2236 	if (INTEL_INFO(ring->dev)->gen >= 8)
2237 		cmd += 1;
2238 	/*
2239 	 * Bspec vol 1c.3 - blitter engine command streamer:
2240 	 * "If ENABLED, all TLBs will be invalidated once the flush
2241 	 * operation is complete. This bit is only valid when the
2242 	 * Post-Sync Operation field is a value of 1h or 3h."
2243 	 */
2244 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2245 		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2246 			MI_FLUSH_DW_OP_STOREDW;
2247 	intel_ring_emit(ring, cmd);
2248 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2249 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2250 		intel_ring_emit(ring, 0); /* upper addr */
2251 		intel_ring_emit(ring, 0); /* value */
2252 	} else  {
2253 		intel_ring_emit(ring, 0);
2254 		intel_ring_emit(ring, MI_NOOP);
2255 	}
2256 	intel_ring_advance(ring);
2257 
2258 	if (IS_GEN7(dev) && !invalidate && flush)
2259 		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2260 
2261 	return 0;
2262 }
2263 
2264 int intel_init_render_ring_buffer(struct drm_device *dev)
2265 {
2266 	struct drm_i915_private *dev_priv = dev->dev_private;
2267 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2268 	struct drm_i915_gem_object *obj;
2269 	int ret;
2270 
2271 	ring->name = "render ring";
2272 	ring->id = RCS;
2273 	ring->mmio_base = RENDER_RING_BASE;
2274 
2275 	if (INTEL_INFO(dev)->gen >= 8) {
2276 		if (i915_semaphore_is_enabled(dev)) {
2277 			obj = i915_gem_alloc_object(dev, 4096);
2278 			if (obj == NULL) {
2279 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2280 				i915.semaphores = 0;
2281 			} else {
2282 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2283 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2284 				if (ret != 0) {
2285 					drm_gem_object_unreference(&obj->base);
2286 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2287 					i915.semaphores = 0;
2288 				} else
2289 					dev_priv->semaphore_obj = obj;
2290 			}
2291 		}
2292 		if (IS_CHERRYVIEW(dev))
2293 			ring->init_context = chv_init_workarounds;
2294 		else
2295 			ring->init_context = bdw_init_workarounds;
2296 		ring->add_request = gen6_add_request;
2297 		ring->flush = gen8_render_ring_flush;
2298 		ring->irq_get = gen8_ring_get_irq;
2299 		ring->irq_put = gen8_ring_put_irq;
2300 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2301 		ring->get_seqno = gen6_ring_get_seqno;
2302 		ring->set_seqno = ring_set_seqno;
2303 		if (i915_semaphore_is_enabled(dev)) {
2304 			WARN_ON(!dev_priv->semaphore_obj);
2305 			ring->semaphore.sync_to = gen8_ring_sync;
2306 			ring->semaphore.signal = gen8_rcs_signal;
2307 			GEN8_RING_SEMAPHORE_INIT;
2308 		}
2309 	} else if (INTEL_INFO(dev)->gen >= 6) {
2310 		ring->add_request = gen6_add_request;
2311 		ring->flush = gen7_render_ring_flush;
2312 		if (INTEL_INFO(dev)->gen == 6)
2313 			ring->flush = gen6_render_ring_flush;
2314 		ring->irq_get = gen6_ring_get_irq;
2315 		ring->irq_put = gen6_ring_put_irq;
2316 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2317 		ring->get_seqno = gen6_ring_get_seqno;
2318 		ring->set_seqno = ring_set_seqno;
2319 		if (i915_semaphore_is_enabled(dev)) {
2320 			ring->semaphore.sync_to = gen6_ring_sync;
2321 			ring->semaphore.signal = gen6_signal;
2322 			/*
2323 			 * The current semaphore is only applied on pre-gen8
2324 			 * platform.  And there is no VCS2 ring on the pre-gen8
2325 			 * platform. So the semaphore between RCS and VCS2 is
2326 			 * initialized as INVALID.  Gen8 will initialize the
2327 			 * sema between VCS2 and RCS later.
2328 			 */
2329 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2330 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2331 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2332 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2333 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2334 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2335 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2336 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2337 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2338 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2339 		}
2340 	} else if (IS_GEN5(dev)) {
2341 		ring->add_request = pc_render_add_request;
2342 		ring->flush = gen4_render_ring_flush;
2343 		ring->get_seqno = pc_render_get_seqno;
2344 		ring->set_seqno = pc_render_set_seqno;
2345 		ring->irq_get = gen5_ring_get_irq;
2346 		ring->irq_put = gen5_ring_put_irq;
2347 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2348 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2349 	} else {
2350 		ring->add_request = i9xx_add_request;
2351 		if (INTEL_INFO(dev)->gen < 4)
2352 			ring->flush = gen2_render_ring_flush;
2353 		else
2354 			ring->flush = gen4_render_ring_flush;
2355 		ring->get_seqno = ring_get_seqno;
2356 		ring->set_seqno = ring_set_seqno;
2357 		if (IS_GEN2(dev)) {
2358 			ring->irq_get = i8xx_ring_get_irq;
2359 			ring->irq_put = i8xx_ring_put_irq;
2360 		} else {
2361 			ring->irq_get = i9xx_ring_get_irq;
2362 			ring->irq_put = i9xx_ring_put_irq;
2363 		}
2364 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2365 	}
2366 	ring->write_tail = ring_write_tail;
2367 
2368 	if (IS_HASWELL(dev))
2369 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2370 	else if (IS_GEN8(dev))
2371 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2372 	else if (INTEL_INFO(dev)->gen >= 6)
2373 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2374 	else if (INTEL_INFO(dev)->gen >= 4)
2375 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2376 	else if (IS_I830(dev) || IS_845G(dev))
2377 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2378 	else
2379 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2380 	ring->init = init_render_ring;
2381 	ring->cleanup = render_ring_cleanup;
2382 
2383 	/* Workaround batchbuffer to combat CS tlb bug. */
2384 	if (HAS_BROKEN_CS_TLB(dev)) {
2385 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2386 		if (obj == NULL) {
2387 			DRM_ERROR("Failed to allocate batch bo\n");
2388 			return -ENOMEM;
2389 		}
2390 
2391 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2392 		if (ret != 0) {
2393 			drm_gem_object_unreference(&obj->base);
2394 			DRM_ERROR("Failed to ping batch bo\n");
2395 			return ret;
2396 		}
2397 
2398 		ring->scratch.obj = obj;
2399 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2400 	}
2401 
2402 	return intel_init_ring_buffer(dev, ring);
2403 }
2404 
2405 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2406 {
2407 	struct drm_i915_private *dev_priv = dev->dev_private;
2408 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2409 	struct intel_ringbuffer *ringbuf = ring->buffer;
2410 	int ret;
2411 
2412 	if (ringbuf == NULL) {
2413 		ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2414 		if (!ringbuf)
2415 			return -ENOMEM;
2416 		ring->buffer = ringbuf;
2417 	}
2418 
2419 	ring->name = "render ring";
2420 	ring->id = RCS;
2421 	ring->mmio_base = RENDER_RING_BASE;
2422 
2423 	if (INTEL_INFO(dev)->gen >= 6) {
2424 		/* non-kms not supported on gen6+ */
2425 		ret = -ENODEV;
2426 		goto err_ringbuf;
2427 	}
2428 
2429 	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2430 	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2431 	 * the special gen5 functions. */
2432 	ring->add_request = i9xx_add_request;
2433 	if (INTEL_INFO(dev)->gen < 4)
2434 		ring->flush = gen2_render_ring_flush;
2435 	else
2436 		ring->flush = gen4_render_ring_flush;
2437 	ring->get_seqno = ring_get_seqno;
2438 	ring->set_seqno = ring_set_seqno;
2439 	if (IS_GEN2(dev)) {
2440 		ring->irq_get = i8xx_ring_get_irq;
2441 		ring->irq_put = i8xx_ring_put_irq;
2442 	} else {
2443 		ring->irq_get = i9xx_ring_get_irq;
2444 		ring->irq_put = i9xx_ring_put_irq;
2445 	}
2446 	ring->irq_enable_mask = I915_USER_INTERRUPT;
2447 	ring->write_tail = ring_write_tail;
2448 	if (INTEL_INFO(dev)->gen >= 4)
2449 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2450 	else if (IS_I830(dev) || IS_845G(dev))
2451 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2452 	else
2453 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2454 	ring->init = init_render_ring;
2455 	ring->cleanup = render_ring_cleanup;
2456 
2457 	ring->dev = dev;
2458 	INIT_LIST_HEAD(&ring->active_list);
2459 	INIT_LIST_HEAD(&ring->request_list);
2460 
2461 	ringbuf->size = size;
2462 	ringbuf->effective_size = ringbuf->size;
2463 	if (IS_I830(ring->dev) || IS_845G(ring->dev))
2464 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2465 
2466 	ringbuf->virtual_start = ioremap_wc(start, size);
2467 	if (ringbuf->virtual_start == NULL) {
2468 		DRM_ERROR("can not ioremap virtual address for"
2469 			  " ring buffer\n");
2470 		ret = -ENOMEM;
2471 		goto err_ringbuf;
2472 	}
2473 
2474 	if (!I915_NEED_GFX_HWS(dev)) {
2475 		ret = init_phys_status_page(ring);
2476 		if (ret)
2477 			goto err_vstart;
2478 	}
2479 
2480 	return 0;
2481 
2482 err_vstart:
2483 	pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2484 err_ringbuf:
2485 	kfree(ringbuf);
2486 	ring->buffer = NULL;
2487 	return ret;
2488 }
2489 
2490 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2491 {
2492 	struct drm_i915_private *dev_priv = dev->dev_private;
2493 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2494 
2495 	ring->name = "bsd ring";
2496 	ring->id = VCS;
2497 
2498 	ring->write_tail = ring_write_tail;
2499 	if (INTEL_INFO(dev)->gen >= 6) {
2500 		ring->mmio_base = GEN6_BSD_RING_BASE;
2501 		/* gen6 bsd needs a special wa for tail updates */
2502 		if (IS_GEN6(dev))
2503 			ring->write_tail = gen6_bsd_ring_write_tail;
2504 		ring->flush = gen6_bsd_ring_flush;
2505 		ring->add_request = gen6_add_request;
2506 		ring->get_seqno = gen6_ring_get_seqno;
2507 		ring->set_seqno = ring_set_seqno;
2508 		if (INTEL_INFO(dev)->gen >= 8) {
2509 			ring->irq_enable_mask =
2510 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2511 			ring->irq_get = gen8_ring_get_irq;
2512 			ring->irq_put = gen8_ring_put_irq;
2513 			ring->dispatch_execbuffer =
2514 				gen8_ring_dispatch_execbuffer;
2515 			if (i915_semaphore_is_enabled(dev)) {
2516 				ring->semaphore.sync_to = gen8_ring_sync;
2517 				ring->semaphore.signal = gen8_xcs_signal;
2518 				GEN8_RING_SEMAPHORE_INIT;
2519 			}
2520 		} else {
2521 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2522 			ring->irq_get = gen6_ring_get_irq;
2523 			ring->irq_put = gen6_ring_put_irq;
2524 			ring->dispatch_execbuffer =
2525 				gen6_ring_dispatch_execbuffer;
2526 			if (i915_semaphore_is_enabled(dev)) {
2527 				ring->semaphore.sync_to = gen6_ring_sync;
2528 				ring->semaphore.signal = gen6_signal;
2529 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2530 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2531 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2532 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2533 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2534 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2535 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2536 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2537 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2538 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2539 			}
2540 		}
2541 	} else {
2542 		ring->mmio_base = BSD_RING_BASE;
2543 		ring->flush = bsd_ring_flush;
2544 		ring->add_request = i9xx_add_request;
2545 		ring->get_seqno = ring_get_seqno;
2546 		ring->set_seqno = ring_set_seqno;
2547 		if (IS_GEN5(dev)) {
2548 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2549 			ring->irq_get = gen5_ring_get_irq;
2550 			ring->irq_put = gen5_ring_put_irq;
2551 		} else {
2552 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2553 			ring->irq_get = i9xx_ring_get_irq;
2554 			ring->irq_put = i9xx_ring_put_irq;
2555 		}
2556 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2557 	}
2558 	ring->init = init_ring_common;
2559 
2560 	return intel_init_ring_buffer(dev, ring);
2561 }
2562 
2563 /**
2564  * Initialize the second BSD ring for Broadwell GT3.
2565  * It is noted that this only exists on Broadwell GT3.
2566  */
2567 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2568 {
2569 	struct drm_i915_private *dev_priv = dev->dev_private;
2570 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2571 
2572 	if ((INTEL_INFO(dev)->gen != 8)) {
2573 		DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2574 		return -EINVAL;
2575 	}
2576 
2577 	ring->name = "bsd2 ring";
2578 	ring->id = VCS2;
2579 
2580 	ring->write_tail = ring_write_tail;
2581 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2582 	ring->flush = gen6_bsd_ring_flush;
2583 	ring->add_request = gen6_add_request;
2584 	ring->get_seqno = gen6_ring_get_seqno;
2585 	ring->set_seqno = ring_set_seqno;
2586 	ring->irq_enable_mask =
2587 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2588 	ring->irq_get = gen8_ring_get_irq;
2589 	ring->irq_put = gen8_ring_put_irq;
2590 	ring->dispatch_execbuffer =
2591 			gen8_ring_dispatch_execbuffer;
2592 	if (i915_semaphore_is_enabled(dev)) {
2593 		ring->semaphore.sync_to = gen8_ring_sync;
2594 		ring->semaphore.signal = gen8_xcs_signal;
2595 		GEN8_RING_SEMAPHORE_INIT;
2596 	}
2597 	ring->init = init_ring_common;
2598 
2599 	return intel_init_ring_buffer(dev, ring);
2600 }
2601 
2602 int intel_init_blt_ring_buffer(struct drm_device *dev)
2603 {
2604 	struct drm_i915_private *dev_priv = dev->dev_private;
2605 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2606 
2607 	ring->name = "blitter ring";
2608 	ring->id = BCS;
2609 
2610 	ring->mmio_base = BLT_RING_BASE;
2611 	ring->write_tail = ring_write_tail;
2612 	ring->flush = gen6_ring_flush;
2613 	ring->add_request = gen6_add_request;
2614 	ring->get_seqno = gen6_ring_get_seqno;
2615 	ring->set_seqno = ring_set_seqno;
2616 	if (INTEL_INFO(dev)->gen >= 8) {
2617 		ring->irq_enable_mask =
2618 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2619 		ring->irq_get = gen8_ring_get_irq;
2620 		ring->irq_put = gen8_ring_put_irq;
2621 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2622 		if (i915_semaphore_is_enabled(dev)) {
2623 			ring->semaphore.sync_to = gen8_ring_sync;
2624 			ring->semaphore.signal = gen8_xcs_signal;
2625 			GEN8_RING_SEMAPHORE_INIT;
2626 		}
2627 	} else {
2628 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2629 		ring->irq_get = gen6_ring_get_irq;
2630 		ring->irq_put = gen6_ring_put_irq;
2631 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2632 		if (i915_semaphore_is_enabled(dev)) {
2633 			ring->semaphore.signal = gen6_signal;
2634 			ring->semaphore.sync_to = gen6_ring_sync;
2635 			/*
2636 			 * The current semaphore is only applied on pre-gen8
2637 			 * platform.  And there is no VCS2 ring on the pre-gen8
2638 			 * platform. So the semaphore between BCS and VCS2 is
2639 			 * initialized as INVALID.  Gen8 will initialize the
2640 			 * sema between BCS and VCS2 later.
2641 			 */
2642 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2643 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2644 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2645 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2646 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2647 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2648 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2649 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2650 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2651 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2652 		}
2653 	}
2654 	ring->init = init_ring_common;
2655 
2656 	return intel_init_ring_buffer(dev, ring);
2657 }
2658 
2659 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2660 {
2661 	struct drm_i915_private *dev_priv = dev->dev_private;
2662 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2663 
2664 	ring->name = "video enhancement ring";
2665 	ring->id = VECS;
2666 
2667 	ring->mmio_base = VEBOX_RING_BASE;
2668 	ring->write_tail = ring_write_tail;
2669 	ring->flush = gen6_ring_flush;
2670 	ring->add_request = gen6_add_request;
2671 	ring->get_seqno = gen6_ring_get_seqno;
2672 	ring->set_seqno = ring_set_seqno;
2673 
2674 	if (INTEL_INFO(dev)->gen >= 8) {
2675 		ring->irq_enable_mask =
2676 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2677 		ring->irq_get = gen8_ring_get_irq;
2678 		ring->irq_put = gen8_ring_put_irq;
2679 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2680 		if (i915_semaphore_is_enabled(dev)) {
2681 			ring->semaphore.sync_to = gen8_ring_sync;
2682 			ring->semaphore.signal = gen8_xcs_signal;
2683 			GEN8_RING_SEMAPHORE_INIT;
2684 		}
2685 	} else {
2686 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2687 		ring->irq_get = hsw_vebox_get_irq;
2688 		ring->irq_put = hsw_vebox_put_irq;
2689 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2690 		if (i915_semaphore_is_enabled(dev)) {
2691 			ring->semaphore.sync_to = gen6_ring_sync;
2692 			ring->semaphore.signal = gen6_signal;
2693 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2694 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2695 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2696 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2697 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2698 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2699 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2700 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2701 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2702 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2703 		}
2704 	}
2705 	ring->init = init_ring_common;
2706 
2707 	return intel_init_ring_buffer(dev, ring);
2708 }
2709 
2710 int
2711 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2712 {
2713 	int ret;
2714 
2715 	if (!ring->gpu_caches_dirty)
2716 		return 0;
2717 
2718 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2719 	if (ret)
2720 		return ret;
2721 
2722 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2723 
2724 	ring->gpu_caches_dirty = false;
2725 	return 0;
2726 }
2727 
2728 int
2729 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2730 {
2731 	uint32_t flush_domains;
2732 	int ret;
2733 
2734 	flush_domains = 0;
2735 	if (ring->gpu_caches_dirty)
2736 		flush_domains = I915_GEM_GPU_DOMAINS;
2737 
2738 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2739 	if (ret)
2740 		return ret;
2741 
2742 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2743 
2744 	ring->gpu_caches_dirty = false;
2745 	return 0;
2746 }
2747 
2748 void
2749 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2750 {
2751 	int ret;
2752 
2753 	if (!intel_ring_initialized(ring))
2754 		return;
2755 
2756 	ret = intel_ring_idle(ring);
2757 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2758 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2759 			  ring->name, ret);
2760 
2761 	stop_ring(ring);
2762 }
2763