xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision 9f020288)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41 
42 int __intel_ring_space(int head, int tail, int size)
43 {
44 	int space = head - tail;
45 	if (space <= 0)
46 		space += size;
47 	return space - I915_RING_FREE_SPACE;
48 }
49 
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52 	if (ring->last_retired_head != -1) {
53 		ring->head = ring->last_retired_head;
54 		ring->last_retired_head = -1;
55 	}
56 
57 	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58 					 ring->tail, ring->size);
59 }
60 
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64 	struct intel_ring *ring = req->ring;
65 	u32 cmd;
66 	int ret;
67 
68 	cmd = MI_FLUSH;
69 
70 	if (mode & EMIT_INVALIDATE)
71 		cmd |= MI_READ_FLUSH;
72 
73 	ret = intel_ring_begin(req, 2);
74 	if (ret)
75 		return ret;
76 
77 	intel_ring_emit(ring, cmd);
78 	intel_ring_emit(ring, MI_NOOP);
79 	intel_ring_advance(ring);
80 
81 	return 0;
82 }
83 
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87 	struct intel_ring *ring = req->ring;
88 	u32 cmd;
89 	int ret;
90 
91 	/*
92 	 * read/write caches:
93 	 *
94 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96 	 * also flushed at 2d versus 3d pipeline switches.
97 	 *
98 	 * read-only caches:
99 	 *
100 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 	 * MI_READ_FLUSH is set, and is always flushed on 965.
102 	 *
103 	 * I915_GEM_DOMAIN_COMMAND may not exist?
104 	 *
105 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 	 * invalidated when MI_EXE_FLUSH is set.
107 	 *
108 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 	 * invalidated with every MI_FLUSH.
110 	 *
111 	 * TLBs:
112 	 *
113 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 	 * are flushed at any MI_FLUSH.
117 	 */
118 
119 	cmd = MI_FLUSH;
120 	if (mode & EMIT_INVALIDATE) {
121 		cmd |= MI_EXE_FLUSH;
122 		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 			cmd |= MI_INVALIDATE_ISP;
124 	}
125 
126 	ret = intel_ring_begin(req, 2);
127 	if (ret)
128 		return ret;
129 
130 	intel_ring_emit(ring, cmd);
131 	intel_ring_emit(ring, MI_NOOP);
132 	intel_ring_advance(ring);
133 
134 	return 0;
135 }
136 
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177 	struct intel_ring *ring = req->ring;
178 	u32 scratch_addr =
179 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180 	int ret;
181 
182 	ret = intel_ring_begin(req, 6);
183 	if (ret)
184 		return ret;
185 
186 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190 	intel_ring_emit(ring, 0); /* low dword */
191 	intel_ring_emit(ring, 0); /* high dword */
192 	intel_ring_emit(ring, MI_NOOP);
193 	intel_ring_advance(ring);
194 
195 	ret = intel_ring_begin(req, 6);
196 	if (ret)
197 		return ret;
198 
199 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202 	intel_ring_emit(ring, 0);
203 	intel_ring_emit(ring, 0);
204 	intel_ring_emit(ring, MI_NOOP);
205 	intel_ring_advance(ring);
206 
207 	return 0;
208 }
209 
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213 	struct intel_ring *ring = req->ring;
214 	u32 scratch_addr =
215 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216 	u32 flags = 0;
217 	int ret;
218 
219 	/* Force SNB workarounds for PIPE_CONTROL flushes */
220 	ret = intel_emit_post_sync_nonzero_flush(req);
221 	if (ret)
222 		return ret;
223 
224 	/* Just flush everything.  Experiments have shown that reducing the
225 	 * number of bits based on the write domains has little performance
226 	 * impact.
227 	 */
228 	if (mode & EMIT_FLUSH) {
229 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231 		/*
232 		 * Ensure that any following seqno writes only happen
233 		 * when the render cache is indeed flushed.
234 		 */
235 		flags |= PIPE_CONTROL_CS_STALL;
236 	}
237 	if (mode & EMIT_INVALIDATE) {
238 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
239 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244 		/*
245 		 * TLB invalidate requires a post-sync write.
246 		 */
247 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248 	}
249 
250 	ret = intel_ring_begin(req, 4);
251 	if (ret)
252 		return ret;
253 
254 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255 	intel_ring_emit(ring, flags);
256 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257 	intel_ring_emit(ring, 0);
258 	intel_ring_advance(ring);
259 
260 	return 0;
261 }
262 
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266 	struct intel_ring *ring = req->ring;
267 	int ret;
268 
269 	ret = intel_ring_begin(req, 4);
270 	if (ret)
271 		return ret;
272 
273 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 	intel_ring_emit(ring,
275 			PIPE_CONTROL_CS_STALL |
276 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
277 	intel_ring_emit(ring, 0);
278 	intel_ring_emit(ring, 0);
279 	intel_ring_advance(ring);
280 
281 	return 0;
282 }
283 
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287 	struct intel_ring *ring = req->ring;
288 	u32 scratch_addr =
289 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290 	u32 flags = 0;
291 	int ret;
292 
293 	/*
294 	 * Ensure that any following seqno writes only happen when the render
295 	 * cache is indeed flushed.
296 	 *
297 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
298 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
299 	 * don't try to be clever and just set it unconditionally.
300 	 */
301 	flags |= PIPE_CONTROL_CS_STALL;
302 
303 	/* Just flush everything.  Experiments have shown that reducing the
304 	 * number of bits based on the write domains has little performance
305 	 * impact.
306 	 */
307 	if (mode & EMIT_FLUSH) {
308 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312 	}
313 	if (mode & EMIT_INVALIDATE) {
314 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
315 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 		/*
322 		 * TLB invalidate requires a post-sync write.
323 		 */
324 		flags |= PIPE_CONTROL_QW_WRITE;
325 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326 
327 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328 
329 		/* Workaround: we must issue a pipe_control with CS-stall bit
330 		 * set before a pipe_control command that has the state cache
331 		 * invalidate bit set. */
332 		gen7_render_ring_cs_stall_wa(req);
333 	}
334 
335 	ret = intel_ring_begin(req, 4);
336 	if (ret)
337 		return ret;
338 
339 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340 	intel_ring_emit(ring, flags);
341 	intel_ring_emit(ring, scratch_addr);
342 	intel_ring_emit(ring, 0);
343 	intel_ring_advance(ring);
344 
345 	return 0;
346 }
347 
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 		       u32 flags, u32 scratch_addr)
351 {
352 	struct intel_ring *ring = req->ring;
353 	int ret;
354 
355 	ret = intel_ring_begin(req, 6);
356 	if (ret)
357 		return ret;
358 
359 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360 	intel_ring_emit(ring, flags);
361 	intel_ring_emit(ring, scratch_addr);
362 	intel_ring_emit(ring, 0);
363 	intel_ring_emit(ring, 0);
364 	intel_ring_emit(ring, 0);
365 	intel_ring_advance(ring);
366 
367 	return 0;
368 }
369 
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373 	u32 scratch_addr =
374 		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375 	u32 flags = 0;
376 	int ret;
377 
378 	flags |= PIPE_CONTROL_CS_STALL;
379 
380 	if (mode & EMIT_FLUSH) {
381 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
385 	}
386 	if (mode & EMIT_INVALIDATE) {
387 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
388 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393 		flags |= PIPE_CONTROL_QW_WRITE;
394 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 
396 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397 		ret = gen8_emit_pipe_control(req,
398 					     PIPE_CONTROL_CS_STALL |
399 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
400 					     0);
401 		if (ret)
402 			return ret;
403 	}
404 
405 	return gen8_emit_pipe_control(req, flags, scratch_addr);
406 }
407 
408 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409 {
410 	struct drm_i915_private *dev_priv = engine->i915;
411 	u32 addr;
412 
413 	addr = dev_priv->status_page_dmah->busaddr;
414 	if (INTEL_GEN(dev_priv) >= 4)
415 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
416 	I915_WRITE(HWS_PGA, addr);
417 }
418 
419 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420 {
421 	struct drm_i915_private *dev_priv = engine->i915;
422 	i915_reg_t mmio;
423 
424 	/* The ring status page addresses are no longer next to the rest of
425 	 * the ring registers as of gen7.
426 	 */
427 	if (IS_GEN7(dev_priv)) {
428 		switch (engine->id) {
429 		case RCS:
430 			mmio = RENDER_HWS_PGA_GEN7;
431 			break;
432 		case BCS:
433 			mmio = BLT_HWS_PGA_GEN7;
434 			break;
435 		/*
436 		 * VCS2 actually doesn't exist on Gen7. Only shut up
437 		 * gcc switch check warning
438 		 */
439 		case VCS2:
440 		case VCS:
441 			mmio = BSD_HWS_PGA_GEN7;
442 			break;
443 		case VECS:
444 			mmio = VEBOX_HWS_PGA_GEN7;
445 			break;
446 		}
447 	} else if (IS_GEN6(dev_priv)) {
448 		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449 	} else {
450 		/* XXX: gen8 returns to sanity */
451 		mmio = RING_HWS_PGA(engine->mmio_base);
452 	}
453 
454 	I915_WRITE(mmio, engine->status_page.ggtt_offset);
455 	POSTING_READ(mmio);
456 
457 	/*
458 	 * Flush the TLB for this page
459 	 *
460 	 * FIXME: These two bits have disappeared on gen8, so a question
461 	 * arises: do we still need this and if so how should we go about
462 	 * invalidating the TLB?
463 	 */
464 	if (IS_GEN(dev_priv, 6, 7)) {
465 		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466 
467 		/* ring should be idle before issuing a sync flush*/
468 		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469 
470 		I915_WRITE(reg,
471 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
472 					      INSTPM_SYNC_FLUSH));
473 		if (intel_wait_for_register(dev_priv,
474 					    reg, INSTPM_SYNC_FLUSH, 0,
475 					    1000))
476 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477 				  engine->name);
478 	}
479 }
480 
481 static bool stop_ring(struct intel_engine_cs *engine)
482 {
483 	struct drm_i915_private *dev_priv = engine->i915;
484 
485 	if (INTEL_GEN(dev_priv) > 2) {
486 		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487 		if (intel_wait_for_register(dev_priv,
488 					    RING_MI_MODE(engine->mmio_base),
489 					    MODE_IDLE,
490 					    MODE_IDLE,
491 					    1000)) {
492 			DRM_ERROR("%s : timed out trying to stop ring\n",
493 				  engine->name);
494 			/* Sometimes we observe that the idle flag is not
495 			 * set even though the ring is empty. So double
496 			 * check before giving up.
497 			 */
498 			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499 				return false;
500 		}
501 	}
502 
503 	I915_WRITE_CTL(engine, 0);
504 	I915_WRITE_HEAD(engine, 0);
505 	I915_WRITE_TAIL(engine, 0);
506 
507 	if (INTEL_GEN(dev_priv) > 2) {
508 		(void)I915_READ_CTL(engine);
509 		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510 	}
511 
512 	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513 }
514 
515 static int init_ring_common(struct intel_engine_cs *engine)
516 {
517 	struct drm_i915_private *dev_priv = engine->i915;
518 	struct intel_ring *ring = engine->buffer;
519 	int ret = 0;
520 
521 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522 
523 	if (!stop_ring(engine)) {
524 		/* G45 ring initialization often fails to reset head to zero */
525 		DRM_DEBUG_KMS("%s head not reset to zero "
526 			      "ctl %08x head %08x tail %08x start %08x\n",
527 			      engine->name,
528 			      I915_READ_CTL(engine),
529 			      I915_READ_HEAD(engine),
530 			      I915_READ_TAIL(engine),
531 			      I915_READ_START(engine));
532 
533 		if (!stop_ring(engine)) {
534 			DRM_ERROR("failed to set %s head to zero "
535 				  "ctl %08x head %08x tail %08x start %08x\n",
536 				  engine->name,
537 				  I915_READ_CTL(engine),
538 				  I915_READ_HEAD(engine),
539 				  I915_READ_TAIL(engine),
540 				  I915_READ_START(engine));
541 			ret = -EIO;
542 			goto out;
543 		}
544 	}
545 
546 	if (HWS_NEEDS_PHYSICAL(dev_priv))
547 		ring_setup_phys_status_page(engine);
548 	else
549 		intel_ring_setup_status_page(engine);
550 
551 	intel_engine_reset_breadcrumbs(engine);
552 
553 	/* Enforce ordering by reading HEAD register back */
554 	I915_READ_HEAD(engine);
555 
556 	/* Initialize the ring. This must happen _after_ we've cleared the ring
557 	 * registers with the above sequence (the readback of the HEAD registers
558 	 * also enforces ordering), otherwise the hw might lose the new ring
559 	 * register values. */
560 	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561 
562 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
563 	if (I915_READ_HEAD(engine))
564 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565 			  engine->name, I915_READ_HEAD(engine));
566 
567 	intel_ring_update_space(ring);
568 	I915_WRITE_HEAD(engine, ring->head);
569 	I915_WRITE_TAIL(engine, ring->tail);
570 	(void)I915_READ_TAIL(engine);
571 
572 	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573 
574 	/* If the head is still not zero, the ring is dead */
575 	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
576 				       RING_VALID, RING_VALID,
577 				       50)) {
578 		DRM_ERROR("%s initialization failed "
579 			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580 			  engine->name,
581 			  I915_READ_CTL(engine),
582 			  I915_READ_CTL(engine) & RING_VALID,
583 			  I915_READ_HEAD(engine), ring->head,
584 			  I915_READ_TAIL(engine), ring->tail,
585 			  I915_READ_START(engine),
586 			  i915_ggtt_offset(ring->vma));
587 		ret = -EIO;
588 		goto out;
589 	}
590 
591 	intel_engine_init_hangcheck(engine);
592 
593 out:
594 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595 
596 	return ret;
597 }
598 
599 static void reset_ring_common(struct intel_engine_cs *engine,
600 			      struct drm_i915_gem_request *request)
601 {
602 	struct intel_ring *ring = request->ring;
603 
604 	ring->head = request->postfix;
605 	ring->last_retired_head = -1;
606 }
607 
608 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609 {
610 	struct intel_ring *ring = req->ring;
611 	struct i915_workarounds *w = &req->i915->workarounds;
612 	int ret, i;
613 
614 	if (w->count == 0)
615 		return 0;
616 
617 	ret = req->engine->emit_flush(req, EMIT_BARRIER);
618 	if (ret)
619 		return ret;
620 
621 	ret = intel_ring_begin(req, (w->count * 2 + 2));
622 	if (ret)
623 		return ret;
624 
625 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626 	for (i = 0; i < w->count; i++) {
627 		intel_ring_emit_reg(ring, w->reg[i].addr);
628 		intel_ring_emit(ring, w->reg[i].value);
629 	}
630 	intel_ring_emit(ring, MI_NOOP);
631 
632 	intel_ring_advance(ring);
633 
634 	ret = req->engine->emit_flush(req, EMIT_BARRIER);
635 	if (ret)
636 		return ret;
637 
638 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639 
640 	return 0;
641 }
642 
643 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 {
645 	int ret;
646 
647 	ret = intel_ring_workarounds_emit(req);
648 	if (ret != 0)
649 		return ret;
650 
651 	ret = i915_gem_render_state_init(req);
652 	if (ret)
653 		return ret;
654 
655 	return 0;
656 }
657 
658 static int wa_add(struct drm_i915_private *dev_priv,
659 		  i915_reg_t addr,
660 		  const u32 mask, const u32 val)
661 {
662 	const u32 idx = dev_priv->workarounds.count;
663 
664 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
665 		return -ENOSPC;
666 
667 	dev_priv->workarounds.reg[idx].addr = addr;
668 	dev_priv->workarounds.reg[idx].value = val;
669 	dev_priv->workarounds.reg[idx].mask = mask;
670 
671 	dev_priv->workarounds.count++;
672 
673 	return 0;
674 }
675 
676 #define WA_REG(addr, mask, val) do { \
677 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678 		if (r) \
679 			return r; \
680 	} while (0)
681 
682 #define WA_SET_BIT_MASKED(addr, mask) \
683 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684 
685 #define WA_CLR_BIT_MASKED(addr, mask) \
686 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687 
688 #define WA_SET_FIELD_MASKED(addr, mask, value) \
689 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690 
691 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
692 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693 
694 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695 
696 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
697 				 i915_reg_t reg)
698 {
699 	struct drm_i915_private *dev_priv = engine->i915;
700 	struct i915_workarounds *wa = &dev_priv->workarounds;
701 	const uint32_t index = wa->hw_whitelist_count[engine->id];
702 
703 	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
704 		return -EINVAL;
705 
706 	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707 		 i915_mmio_reg_offset(reg));
708 	wa->hw_whitelist_count[engine->id]++;
709 
710 	return 0;
711 }
712 
713 static int gen8_init_workarounds(struct intel_engine_cs *engine)
714 {
715 	struct drm_i915_private *dev_priv = engine->i915;
716 
717 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718 
719 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
720 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
721 
722 	/* WaDisablePartialInstShootdown:bdw,chv */
723 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
724 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
725 
726 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
727 	 * workaround for for a possible hang in the unlikely event a TLB
728 	 * invalidation occurs during a PSD flush.
729 	 */
730 	/* WaForceEnableNonCoherent:bdw,chv */
731 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
732 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
733 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734 			  HDC_FORCE_NON_COHERENT);
735 
736 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
737 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
738 	 *  polygons in the same 8x4 pixel/sample area to be processed without
739 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
740 	 *  buffer."
741 	 *
742 	 * This optimization is off by default for BDW and CHV; turn it on.
743 	 */
744 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
745 
746 	/* Wa4x4STCOptimizationDisable:bdw,chv */
747 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
748 
749 	/*
750 	 * BSpec recommends 8x4 when MSAA is used,
751 	 * however in practice 16x4 seems fastest.
752 	 *
753 	 * Note that PS/WM thread counts depend on the WIZ hashing
754 	 * disable bit, which we don't touch here, but it's good
755 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
756 	 */
757 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
758 			    GEN6_WIZ_HASHING_MASK,
759 			    GEN6_WIZ_HASHING_16x4);
760 
761 	return 0;
762 }
763 
764 static int bdw_init_workarounds(struct intel_engine_cs *engine)
765 {
766 	struct drm_i915_private *dev_priv = engine->i915;
767 	int ret;
768 
769 	ret = gen8_init_workarounds(engine);
770 	if (ret)
771 		return ret;
772 
773 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775 
776 	/* WaDisableDopClockGating:bdw */
777 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
778 			  DOP_CLOCK_GATING_DISABLE);
779 
780 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
781 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
782 
783 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
784 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
785 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
786 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787 			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788 
789 	return 0;
790 }
791 
792 static int chv_init_workarounds(struct intel_engine_cs *engine)
793 {
794 	struct drm_i915_private *dev_priv = engine->i915;
795 	int ret;
796 
797 	ret = gen8_init_workarounds(engine);
798 	if (ret)
799 		return ret;
800 
801 	/* WaDisableThreadStallDopClockGating:chv */
802 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803 
804 	/* Improve HiZ throughput on CHV. */
805 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
806 
807 	return 0;
808 }
809 
810 static int gen9_init_workarounds(struct intel_engine_cs *engine)
811 {
812 	struct drm_i915_private *dev_priv = engine->i915;
813 	int ret;
814 
815 	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
816 	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
817 
818 	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
820 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
821 
822 	/* WaDisableKillLogic:bxt,skl,kbl */
823 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
824 		   ECOCHK_DIS_TLB);
825 
826 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
827 	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
828 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829 			  FLOW_CONTROL_ENABLE |
830 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
831 
832 	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
834 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
835 
836 	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
837 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
839 				  GEN9_DG_MIRROR_FIX_ENABLE);
840 
841 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
842 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
844 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
845 		/*
846 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
847 		 * but we do that in per ctx batchbuffer as there is an issue
848 		 * with this register not getting restored on ctx restore
849 		 */
850 	}
851 
852 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853 	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
854 			  GEN9_ENABLE_GPGPU_PREEMPTION);
855 
856 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
857 	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
858 	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
859 					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
860 
861 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
862 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
863 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
864 
865 	/* WaDisableMaskBasedCammingInRCC:bxt */
866 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
867 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
868 				  PIXEL_MASK_CAMMING_DISABLE);
869 
870 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
871 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
872 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
873 			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
874 
875 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
876 	 * both tied to WaForceContextSaveRestoreNonCoherent
877 	 * in some hsds for skl. We keep the tie for all gen9. The
878 	 * documentation is a bit hazy and so we want to get common behaviour,
879 	 * even though there is no clear evidence we would need both on kbl/bxt.
880 	 * This area has been source of system hangs so we play it safe
881 	 * and mimic the skl regardless of what bspec says.
882 	 *
883 	 * Use Force Non-Coherent whenever executing a 3D context. This
884 	 * is a workaround for a possible hang in the unlikely event
885 	 * a TLB invalidation occurs during a PSD flush.
886 	 */
887 
888 	/* WaForceEnableNonCoherent:skl,bxt,kbl */
889 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
890 			  HDC_FORCE_NON_COHERENT);
891 
892 	/* WaDisableHDCInvalidation:skl,bxt,kbl */
893 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
894 		   BDW_DISABLE_HDC_INVALIDATION);
895 
896 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
897 	if (IS_SKYLAKE(dev_priv) ||
898 	    IS_KABYLAKE(dev_priv) ||
899 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
900 		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
901 				  GEN8_SAMPLER_POWER_BYPASS_DIS);
902 
903 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
904 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
905 
906 	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
907 	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
908 				    GEN8_LQSC_FLUSH_COHERENT_LINES));
909 
910 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
911 	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
912 	if (ret)
913 		return ret;
914 
915 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916 	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
917 	if (ret)
918 		return ret;
919 
920 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
921 	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
922 	if (ret)
923 		return ret;
924 
925 	return 0;
926 }
927 
928 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
929 {
930 	struct drm_i915_private *dev_priv = engine->i915;
931 	u8 vals[3] = { 0, 0, 0 };
932 	unsigned int i;
933 
934 	for (i = 0; i < 3; i++) {
935 		u8 ss;
936 
937 		/*
938 		 * Only consider slices where one, and only one, subslice has 7
939 		 * EUs
940 		 */
941 		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
942 			continue;
943 
944 		/*
945 		 * subslice_7eu[i] != 0 (because of the check above) and
946 		 * ss_max == 4 (maximum number of subslices possible per slice)
947 		 *
948 		 * ->    0 <= ss <= 3;
949 		 */
950 		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
951 		vals[i] = 3 - ss;
952 	}
953 
954 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
955 		return 0;
956 
957 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
958 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
959 			    GEN9_IZ_HASHING_MASK(2) |
960 			    GEN9_IZ_HASHING_MASK(1) |
961 			    GEN9_IZ_HASHING_MASK(0),
962 			    GEN9_IZ_HASHING(2, vals[2]) |
963 			    GEN9_IZ_HASHING(1, vals[1]) |
964 			    GEN9_IZ_HASHING(0, vals[0]));
965 
966 	return 0;
967 }
968 
969 static int skl_init_workarounds(struct intel_engine_cs *engine)
970 {
971 	struct drm_i915_private *dev_priv = engine->i915;
972 	int ret;
973 
974 	ret = gen9_init_workarounds(engine);
975 	if (ret)
976 		return ret;
977 
978 	/*
979 	 * Actual WA is to disable percontext preemption granularity control
980 	 * until D0 which is the default case so this is equivalent to
981 	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
982 	 */
983 	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
984 		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
985 
986 	/* WaEnableGapsTsvCreditFix:skl */
987 	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
988 				   GEN9_GAPS_TSV_CREDIT_DISABLE));
989 
990 	/* WaDisableGafsUnitClkGating:skl */
991 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
992 
993 	/* WaInPlaceDecompressionHang:skl */
994 	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
995 		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
996 			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
997 
998 	/* WaDisableLSQCROPERFforOCL:skl */
999 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000 	if (ret)
1001 		return ret;
1002 
1003 	return skl_tune_iz_hashing(engine);
1004 }
1005 
1006 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007 {
1008 	struct drm_i915_private *dev_priv = engine->i915;
1009 	int ret;
1010 
1011 	ret = gen9_init_workarounds(engine);
1012 	if (ret)
1013 		return ret;
1014 
1015 	/* WaStoreMultiplePTEenable:bxt */
1016 	/* This is a requirement according to Hardware specification */
1017 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018 		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1019 
1020 	/* WaSetClckGatingDisableMedia:bxt */
1021 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022 		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1023 					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1024 	}
1025 
1026 	/* WaDisableThreadStallDopClockGating:bxt */
1027 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1028 			  STALL_DOP_GATING_DISABLE);
1029 
1030 	/* WaDisablePooledEuLoadBalancingFix:bxt */
1031 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1032 		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1033 				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1034 	}
1035 
1036 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1037 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038 		WA_SET_BIT_MASKED(
1039 			GEN7_HALF_SLICE_CHICKEN1,
1040 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1041 	}
1042 
1043 	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1044 	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1045 	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046 	/* WaDisableLSQCROPERFforOCL:bxt */
1047 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048 		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049 		if (ret)
1050 			return ret;
1051 
1052 		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059 		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1060 					   L3_HIGH_PRIO_CREDITS(2));
1061 
1062 	/* WaToEnableHwFixForPushConstHWBug:bxt */
1063 	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1065 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1066 
1067 	/* WaInPlaceDecompressionHang:bxt */
1068 	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1069 		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1070 			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1071 
1072 	return 0;
1073 }
1074 
1075 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1076 {
1077 	struct drm_i915_private *dev_priv = engine->i915;
1078 	int ret;
1079 
1080 	ret = gen9_init_workarounds(engine);
1081 	if (ret)
1082 		return ret;
1083 
1084 	/* WaEnableGapsTsvCreditFix:kbl */
1085 	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1086 				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1087 
1088 	/* WaDisableDynamicCreditSharing:kbl */
1089 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1090 		WA_SET_BIT(GAMT_CHKN_BIT_REG,
1091 			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1092 
1093 	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1094 	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1095 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1096 				  HDC_FENCE_DEST_SLM_DISABLE);
1097 
1098 	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1099 	 * involving this register should also be added to WA batch as required.
1100 	 */
1101 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1102 		/* WaDisableLSQCROPERFforOCL:kbl */
1103 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1104 			   GEN8_LQSC_RO_PERF_DIS);
1105 
1106 	/* WaToEnableHwFixForPushConstHWBug:kbl */
1107 	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1108 		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1109 				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1110 
1111 	/* WaDisableGafsUnitClkGating:kbl */
1112 	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1113 
1114 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
1115 	WA_SET_BIT_MASKED(
1116 		GEN7_HALF_SLICE_CHICKEN1,
1117 		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1118 
1119 	/* WaInPlaceDecompressionHang:kbl */
1120 	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1121 		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1122 
1123 	/* WaDisableLSQCROPERFforOCL:kbl */
1124 	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1125 	if (ret)
1126 		return ret;
1127 
1128 	return 0;
1129 }
1130 
1131 int init_workarounds_ring(struct intel_engine_cs *engine)
1132 {
1133 	struct drm_i915_private *dev_priv = engine->i915;
1134 
1135 	WARN_ON(engine->id != RCS);
1136 
1137 	dev_priv->workarounds.count = 0;
1138 	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1139 
1140 	if (IS_BROADWELL(dev_priv))
1141 		return bdw_init_workarounds(engine);
1142 
1143 	if (IS_CHERRYVIEW(dev_priv))
1144 		return chv_init_workarounds(engine);
1145 
1146 	if (IS_SKYLAKE(dev_priv))
1147 		return skl_init_workarounds(engine);
1148 
1149 	if (IS_BROXTON(dev_priv))
1150 		return bxt_init_workarounds(engine);
1151 
1152 	if (IS_KABYLAKE(dev_priv))
1153 		return kbl_init_workarounds(engine);
1154 
1155 	return 0;
1156 }
1157 
1158 static int init_render_ring(struct intel_engine_cs *engine)
1159 {
1160 	struct drm_i915_private *dev_priv = engine->i915;
1161 	int ret = init_ring_common(engine);
1162 	if (ret)
1163 		return ret;
1164 
1165 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166 	if (IS_GEN(dev_priv, 4, 6))
1167 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1168 
1169 	/* We need to disable the AsyncFlip performance optimisations in order
1170 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1171 	 * programmed to '1' on all products.
1172 	 *
1173 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1174 	 */
1175 	if (IS_GEN(dev_priv, 6, 7))
1176 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1177 
1178 	/* Required for the hardware to program scanline values for waiting */
1179 	/* WaEnableFlushTlbInvalidationMode:snb */
1180 	if (IS_GEN6(dev_priv))
1181 		I915_WRITE(GFX_MODE,
1182 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1183 
1184 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1185 	if (IS_GEN7(dev_priv))
1186 		I915_WRITE(GFX_MODE_GEN7,
1187 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1188 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1189 
1190 	if (IS_GEN6(dev_priv)) {
1191 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1192 		 * "If this bit is set, STCunit will have LRA as replacement
1193 		 *  policy. [...] This bit must be reset.  LRA replacement
1194 		 *  policy is not supported."
1195 		 */
1196 		I915_WRITE(CACHE_MODE_0,
1197 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1198 	}
1199 
1200 	if (IS_GEN(dev_priv, 6, 7))
1201 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1202 
1203 	if (INTEL_INFO(dev_priv)->gen >= 6)
1204 		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1205 
1206 	return init_workarounds_ring(engine);
1207 }
1208 
1209 static void render_ring_cleanup(struct intel_engine_cs *engine)
1210 {
1211 	struct drm_i915_private *dev_priv = engine->i915;
1212 
1213 	i915_vma_unpin_and_release(&dev_priv->semaphore);
1214 }
1215 
1216 static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1217 {
1218 	struct intel_ring *ring = req->ring;
1219 	struct drm_i915_private *dev_priv = req->i915;
1220 	struct intel_engine_cs *waiter;
1221 	enum intel_engine_id id;
1222 	int ret, num_rings;
1223 
1224 	num_rings = INTEL_INFO(dev_priv)->num_rings;
1225 	ret = intel_ring_begin(req, (num_rings-1) * 8);
1226 	if (ret)
1227 		return ret;
1228 
1229 	for_each_engine(waiter, dev_priv, id) {
1230 		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1231 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1232 			continue;
1233 
1234 		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1235 		intel_ring_emit(ring,
1236 				PIPE_CONTROL_GLOBAL_GTT_IVB |
1237 				PIPE_CONTROL_QW_WRITE |
1238 				PIPE_CONTROL_CS_STALL);
1239 		intel_ring_emit(ring, lower_32_bits(gtt_offset));
1240 		intel_ring_emit(ring, upper_32_bits(gtt_offset));
1241 		intel_ring_emit(ring, req->fence.seqno);
1242 		intel_ring_emit(ring, 0);
1243 		intel_ring_emit(ring,
1244 				MI_SEMAPHORE_SIGNAL |
1245 				MI_SEMAPHORE_TARGET(waiter->hw_id));
1246 		intel_ring_emit(ring, 0);
1247 	}
1248 	intel_ring_advance(ring);
1249 
1250 	return 0;
1251 }
1252 
1253 static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1254 {
1255 	struct intel_ring *ring = req->ring;
1256 	struct drm_i915_private *dev_priv = req->i915;
1257 	struct intel_engine_cs *waiter;
1258 	enum intel_engine_id id;
1259 	int ret, num_rings;
1260 
1261 	num_rings = INTEL_INFO(dev_priv)->num_rings;
1262 	ret = intel_ring_begin(req, (num_rings-1) * 6);
1263 	if (ret)
1264 		return ret;
1265 
1266 	for_each_engine(waiter, dev_priv, id) {
1267 		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1268 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1269 			continue;
1270 
1271 		intel_ring_emit(ring,
1272 				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1273 		intel_ring_emit(ring,
1274 				lower_32_bits(gtt_offset) |
1275 				MI_FLUSH_DW_USE_GTT);
1276 		intel_ring_emit(ring, upper_32_bits(gtt_offset));
1277 		intel_ring_emit(ring, req->fence.seqno);
1278 		intel_ring_emit(ring,
1279 				MI_SEMAPHORE_SIGNAL |
1280 				MI_SEMAPHORE_TARGET(waiter->hw_id));
1281 		intel_ring_emit(ring, 0);
1282 	}
1283 	intel_ring_advance(ring);
1284 
1285 	return 0;
1286 }
1287 
1288 static int gen6_signal(struct drm_i915_gem_request *req)
1289 {
1290 	struct intel_ring *ring = req->ring;
1291 	struct drm_i915_private *dev_priv = req->i915;
1292 	struct intel_engine_cs *engine;
1293 	enum intel_engine_id id;
1294 	int ret, num_rings;
1295 
1296 	num_rings = INTEL_INFO(dev_priv)->num_rings;
1297 	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1298 	if (ret)
1299 		return ret;
1300 
1301 	for_each_engine(engine, dev_priv, id) {
1302 		i915_reg_t mbox_reg;
1303 
1304 		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1305 			continue;
1306 
1307 		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1308 		if (i915_mmio_reg_valid(mbox_reg)) {
1309 			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1310 			intel_ring_emit_reg(ring, mbox_reg);
1311 			intel_ring_emit(ring, req->fence.seqno);
1312 		}
1313 	}
1314 
1315 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1316 	if (num_rings % 2 == 0)
1317 		intel_ring_emit(ring, MI_NOOP);
1318 	intel_ring_advance(ring);
1319 
1320 	return 0;
1321 }
1322 
1323 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1324 {
1325 	struct drm_i915_private *dev_priv = request->i915;
1326 
1327 	I915_WRITE_TAIL(request->engine,
1328 			intel_ring_offset(request->ring, request->tail));
1329 }
1330 
1331 static int i9xx_emit_request(struct drm_i915_gem_request *req)
1332 {
1333 	struct intel_ring *ring = req->ring;
1334 	int ret;
1335 
1336 	ret = intel_ring_begin(req, 4);
1337 	if (ret)
1338 		return ret;
1339 
1340 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1341 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1342 	intel_ring_emit(ring, req->fence.seqno);
1343 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1344 	intel_ring_advance(ring);
1345 
1346 	req->tail = ring->tail;
1347 
1348 	return 0;
1349 }
1350 
1351 /**
1352  * gen6_sema_emit_request - Update the semaphore mailbox registers
1353  *
1354  * @request - request to write to the ring
1355  *
1356  * Update the mailbox registers in the *other* rings with the current seqno.
1357  * This acts like a signal in the canonical semaphore.
1358  */
1359 static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1360 {
1361 	int ret;
1362 
1363 	ret = req->engine->semaphore.signal(req);
1364 	if (ret)
1365 		return ret;
1366 
1367 	return i9xx_emit_request(req);
1368 }
1369 
1370 static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1371 {
1372 	struct intel_engine_cs *engine = req->engine;
1373 	struct intel_ring *ring = req->ring;
1374 	int ret;
1375 
1376 	if (engine->semaphore.signal) {
1377 		ret = engine->semaphore.signal(req);
1378 		if (ret)
1379 			return ret;
1380 	}
1381 
1382 	ret = intel_ring_begin(req, 8);
1383 	if (ret)
1384 		return ret;
1385 
1386 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1387 	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1388 			       PIPE_CONTROL_CS_STALL |
1389 			       PIPE_CONTROL_QW_WRITE));
1390 	intel_ring_emit(ring, intel_hws_seqno_address(engine));
1391 	intel_ring_emit(ring, 0);
1392 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1393 	/* We're thrashing one dword of HWS. */
1394 	intel_ring_emit(ring, 0);
1395 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1396 	intel_ring_emit(ring, MI_NOOP);
1397 	intel_ring_advance(ring);
1398 
1399 	req->tail = ring->tail;
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  * intel_ring_sync - sync the waiter to the signaller on seqno
1406  *
1407  * @waiter - ring that is waiting
1408  * @signaller - ring which has, or will signal
1409  * @seqno - seqno which the waiter will block on
1410  */
1411 
1412 static int
1413 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1414 		  struct drm_i915_gem_request *signal)
1415 {
1416 	struct intel_ring *ring = req->ring;
1417 	struct drm_i915_private *dev_priv = req->i915;
1418 	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1419 	struct i915_hw_ppgtt *ppgtt;
1420 	int ret;
1421 
1422 	ret = intel_ring_begin(req, 4);
1423 	if (ret)
1424 		return ret;
1425 
1426 	intel_ring_emit(ring,
1427 			MI_SEMAPHORE_WAIT |
1428 			MI_SEMAPHORE_GLOBAL_GTT |
1429 			MI_SEMAPHORE_SAD_GTE_SDD);
1430 	intel_ring_emit(ring, signal->fence.seqno);
1431 	intel_ring_emit(ring, lower_32_bits(offset));
1432 	intel_ring_emit(ring, upper_32_bits(offset));
1433 	intel_ring_advance(ring);
1434 
1435 	/* When the !RCS engines idle waiting upon a semaphore, they lose their
1436 	 * pagetables and we must reload them before executing the batch.
1437 	 * We do this on the i915_switch_context() following the wait and
1438 	 * before the dispatch.
1439 	 */
1440 	ppgtt = req->ctx->ppgtt;
1441 	if (ppgtt && req->engine->id != RCS)
1442 		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1443 	return 0;
1444 }
1445 
1446 static int
1447 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1448 		  struct drm_i915_gem_request *signal)
1449 {
1450 	struct intel_ring *ring = req->ring;
1451 	u32 dw1 = MI_SEMAPHORE_MBOX |
1452 		  MI_SEMAPHORE_COMPARE |
1453 		  MI_SEMAPHORE_REGISTER;
1454 	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1455 	int ret;
1456 
1457 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1458 
1459 	ret = intel_ring_begin(req, 4);
1460 	if (ret)
1461 		return ret;
1462 
1463 	intel_ring_emit(ring, dw1 | wait_mbox);
1464 	/* Throughout all of the GEM code, seqno passed implies our current
1465 	 * seqno is >= the last seqno executed. However for hardware the
1466 	 * comparison is strictly greater than.
1467 	 */
1468 	intel_ring_emit(ring, signal->fence.seqno - 1);
1469 	intel_ring_emit(ring, 0);
1470 	intel_ring_emit(ring, MI_NOOP);
1471 	intel_ring_advance(ring);
1472 
1473 	return 0;
1474 }
1475 
1476 static void
1477 gen5_seqno_barrier(struct intel_engine_cs *engine)
1478 {
1479 	/* MI_STORE are internally buffered by the GPU and not flushed
1480 	 * either by MI_FLUSH or SyncFlush or any other combination of
1481 	 * MI commands.
1482 	 *
1483 	 * "Only the submission of the store operation is guaranteed.
1484 	 * The write result will be complete (coherent) some time later
1485 	 * (this is practically a finite period but there is no guaranteed
1486 	 * latency)."
1487 	 *
1488 	 * Empirically, we observe that we need a delay of at least 75us to
1489 	 * be sure that the seqno write is visible by the CPU.
1490 	 */
1491 	usleep_range(125, 250);
1492 }
1493 
1494 static void
1495 gen6_seqno_barrier(struct intel_engine_cs *engine)
1496 {
1497 	struct drm_i915_private *dev_priv = engine->i915;
1498 
1499 	/* Workaround to force correct ordering between irq and seqno writes on
1500 	 * ivb (and maybe also on snb) by reading from a CS register (like
1501 	 * ACTHD) before reading the status page.
1502 	 *
1503 	 * Note that this effectively stalls the read by the time it takes to
1504 	 * do a memory transaction, which more or less ensures that the write
1505 	 * from the GPU has sufficient time to invalidate the CPU cacheline.
1506 	 * Alternatively we could delay the interrupt from the CS ring to give
1507 	 * the write time to land, but that would incur a delay after every
1508 	 * batch i.e. much more frequent than a delay when waiting for the
1509 	 * interrupt (with the same net latency).
1510 	 *
1511 	 * Also note that to prevent whole machine hangs on gen7, we have to
1512 	 * take the spinlock to guard against concurrent cacheline access.
1513 	 */
1514 	spin_lock_irq(&dev_priv->uncore.lock);
1515 	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1516 	spin_unlock_irq(&dev_priv->uncore.lock);
1517 }
1518 
1519 static void
1520 gen5_irq_enable(struct intel_engine_cs *engine)
1521 {
1522 	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1523 }
1524 
1525 static void
1526 gen5_irq_disable(struct intel_engine_cs *engine)
1527 {
1528 	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1529 }
1530 
1531 static void
1532 i9xx_irq_enable(struct intel_engine_cs *engine)
1533 {
1534 	struct drm_i915_private *dev_priv = engine->i915;
1535 
1536 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1537 	I915_WRITE(IMR, dev_priv->irq_mask);
1538 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1539 }
1540 
1541 static void
1542 i9xx_irq_disable(struct intel_engine_cs *engine)
1543 {
1544 	struct drm_i915_private *dev_priv = engine->i915;
1545 
1546 	dev_priv->irq_mask |= engine->irq_enable_mask;
1547 	I915_WRITE(IMR, dev_priv->irq_mask);
1548 }
1549 
1550 static void
1551 i8xx_irq_enable(struct intel_engine_cs *engine)
1552 {
1553 	struct drm_i915_private *dev_priv = engine->i915;
1554 
1555 	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1556 	I915_WRITE16(IMR, dev_priv->irq_mask);
1557 	POSTING_READ16(RING_IMR(engine->mmio_base));
1558 }
1559 
1560 static void
1561 i8xx_irq_disable(struct intel_engine_cs *engine)
1562 {
1563 	struct drm_i915_private *dev_priv = engine->i915;
1564 
1565 	dev_priv->irq_mask |= engine->irq_enable_mask;
1566 	I915_WRITE16(IMR, dev_priv->irq_mask);
1567 }
1568 
1569 static int
1570 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1571 {
1572 	struct intel_ring *ring = req->ring;
1573 	int ret;
1574 
1575 	ret = intel_ring_begin(req, 2);
1576 	if (ret)
1577 		return ret;
1578 
1579 	intel_ring_emit(ring, MI_FLUSH);
1580 	intel_ring_emit(ring, MI_NOOP);
1581 	intel_ring_advance(ring);
1582 	return 0;
1583 }
1584 
1585 static void
1586 gen6_irq_enable(struct intel_engine_cs *engine)
1587 {
1588 	struct drm_i915_private *dev_priv = engine->i915;
1589 
1590 	I915_WRITE_IMR(engine,
1591 		       ~(engine->irq_enable_mask |
1592 			 engine->irq_keep_mask));
1593 	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1594 }
1595 
1596 static void
1597 gen6_irq_disable(struct intel_engine_cs *engine)
1598 {
1599 	struct drm_i915_private *dev_priv = engine->i915;
1600 
1601 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1602 	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1603 }
1604 
1605 static void
1606 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1607 {
1608 	struct drm_i915_private *dev_priv = engine->i915;
1609 
1610 	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1611 	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1612 }
1613 
1614 static void
1615 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1616 {
1617 	struct drm_i915_private *dev_priv = engine->i915;
1618 
1619 	I915_WRITE_IMR(engine, ~0);
1620 	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1621 }
1622 
1623 static void
1624 gen8_irq_enable(struct intel_engine_cs *engine)
1625 {
1626 	struct drm_i915_private *dev_priv = engine->i915;
1627 
1628 	I915_WRITE_IMR(engine,
1629 		       ~(engine->irq_enable_mask |
1630 			 engine->irq_keep_mask));
1631 	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1632 }
1633 
1634 static void
1635 gen8_irq_disable(struct intel_engine_cs *engine)
1636 {
1637 	struct drm_i915_private *dev_priv = engine->i915;
1638 
1639 	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1640 }
1641 
1642 static int
1643 i965_emit_bb_start(struct drm_i915_gem_request *req,
1644 		   u64 offset, u32 length,
1645 		   unsigned int dispatch_flags)
1646 {
1647 	struct intel_ring *ring = req->ring;
1648 	int ret;
1649 
1650 	ret = intel_ring_begin(req, 2);
1651 	if (ret)
1652 		return ret;
1653 
1654 	intel_ring_emit(ring,
1655 			MI_BATCH_BUFFER_START |
1656 			MI_BATCH_GTT |
1657 			(dispatch_flags & I915_DISPATCH_SECURE ?
1658 			 0 : MI_BATCH_NON_SECURE_I965));
1659 	intel_ring_emit(ring, offset);
1660 	intel_ring_advance(ring);
1661 
1662 	return 0;
1663 }
1664 
1665 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1666 #define I830_BATCH_LIMIT (256*1024)
1667 #define I830_TLB_ENTRIES (2)
1668 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1669 static int
1670 i830_emit_bb_start(struct drm_i915_gem_request *req,
1671 		   u64 offset, u32 len,
1672 		   unsigned int dispatch_flags)
1673 {
1674 	struct intel_ring *ring = req->ring;
1675 	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1676 	int ret;
1677 
1678 	ret = intel_ring_begin(req, 6);
1679 	if (ret)
1680 		return ret;
1681 
1682 	/* Evict the invalid PTE TLBs */
1683 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1684 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1685 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1686 	intel_ring_emit(ring, cs_offset);
1687 	intel_ring_emit(ring, 0xdeadbeef);
1688 	intel_ring_emit(ring, MI_NOOP);
1689 	intel_ring_advance(ring);
1690 
1691 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1692 		if (len > I830_BATCH_LIMIT)
1693 			return -ENOSPC;
1694 
1695 		ret = intel_ring_begin(req, 6 + 2);
1696 		if (ret)
1697 			return ret;
1698 
1699 		/* Blit the batch (which has now all relocs applied) to the
1700 		 * stable batch scratch bo area (so that the CS never
1701 		 * stumbles over its tlb invalidation bug) ...
1702 		 */
1703 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1704 		intel_ring_emit(ring,
1705 				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1706 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1707 		intel_ring_emit(ring, cs_offset);
1708 		intel_ring_emit(ring, 4096);
1709 		intel_ring_emit(ring, offset);
1710 
1711 		intel_ring_emit(ring, MI_FLUSH);
1712 		intel_ring_emit(ring, MI_NOOP);
1713 		intel_ring_advance(ring);
1714 
1715 		/* ... and execute it. */
1716 		offset = cs_offset;
1717 	}
1718 
1719 	ret = intel_ring_begin(req, 2);
1720 	if (ret)
1721 		return ret;
1722 
1723 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1724 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1725 					0 : MI_BATCH_NON_SECURE));
1726 	intel_ring_advance(ring);
1727 
1728 	return 0;
1729 }
1730 
1731 static int
1732 i915_emit_bb_start(struct drm_i915_gem_request *req,
1733 		   u64 offset, u32 len,
1734 		   unsigned int dispatch_flags)
1735 {
1736 	struct intel_ring *ring = req->ring;
1737 	int ret;
1738 
1739 	ret = intel_ring_begin(req, 2);
1740 	if (ret)
1741 		return ret;
1742 
1743 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1744 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1745 					0 : MI_BATCH_NON_SECURE));
1746 	intel_ring_advance(ring);
1747 
1748 	return 0;
1749 }
1750 
1751 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1752 {
1753 	struct drm_i915_private *dev_priv = engine->i915;
1754 
1755 	if (!dev_priv->status_page_dmah)
1756 		return;
1757 
1758 	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1759 	engine->status_page.page_addr = NULL;
1760 }
1761 
1762 static void cleanup_status_page(struct intel_engine_cs *engine)
1763 {
1764 	struct i915_vma *vma;
1765 
1766 	vma = fetch_and_zero(&engine->status_page.vma);
1767 	if (!vma)
1768 		return;
1769 
1770 	i915_vma_unpin(vma);
1771 	i915_gem_object_unpin_map(vma->obj);
1772 	i915_vma_put(vma);
1773 }
1774 
1775 static int init_status_page(struct intel_engine_cs *engine)
1776 {
1777 	struct drm_i915_gem_object *obj;
1778 	struct i915_vma *vma;
1779 	unsigned int flags;
1780 	int ret;
1781 
1782 	obj = i915_gem_object_create(&engine->i915->drm, 4096);
1783 	if (IS_ERR(obj)) {
1784 		DRM_ERROR("Failed to allocate status page\n");
1785 		return PTR_ERR(obj);
1786 	}
1787 
1788 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1789 	if (ret)
1790 		goto err;
1791 
1792 	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1793 	if (IS_ERR(vma)) {
1794 		ret = PTR_ERR(vma);
1795 		goto err;
1796 	}
1797 
1798 	flags = PIN_GLOBAL;
1799 	if (!HAS_LLC(engine->i915))
1800 		/* On g33, we cannot place HWS above 256MiB, so
1801 		 * restrict its pinning to the low mappable arena.
1802 		 * Though this restriction is not documented for
1803 		 * gen4, gen5, or byt, they also behave similarly
1804 		 * and hang if the HWS is placed at the top of the
1805 		 * GTT. To generalise, it appears that all !llc
1806 		 * platforms have issues with us placing the HWS
1807 		 * above the mappable region (even though we never
1808 		 * actualy map it).
1809 		 */
1810 		flags |= PIN_MAPPABLE;
1811 	ret = i915_vma_pin(vma, 0, 4096, flags);
1812 	if (ret)
1813 		goto err;
1814 
1815 	engine->status_page.vma = vma;
1816 	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1817 	engine->status_page.page_addr =
1818 		i915_gem_object_pin_map(obj, I915_MAP_WB);
1819 
1820 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1821 			 engine->name, i915_ggtt_offset(vma));
1822 	return 0;
1823 
1824 err:
1825 	i915_gem_object_put(obj);
1826 	return ret;
1827 }
1828 
1829 static int init_phys_status_page(struct intel_engine_cs *engine)
1830 {
1831 	struct drm_i915_private *dev_priv = engine->i915;
1832 
1833 	dev_priv->status_page_dmah =
1834 		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1835 	if (!dev_priv->status_page_dmah)
1836 		return -ENOMEM;
1837 
1838 	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1839 	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1840 
1841 	return 0;
1842 }
1843 
1844 int intel_ring_pin(struct intel_ring *ring)
1845 {
1846 	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1847 	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1848 	enum i915_map_type map;
1849 	struct i915_vma *vma = ring->vma;
1850 	void *addr;
1851 	int ret;
1852 
1853 	GEM_BUG_ON(ring->vaddr);
1854 
1855 	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1856 
1857 	if (vma->obj->stolen)
1858 		flags |= PIN_MAPPABLE;
1859 
1860 	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1861 		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1862 			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1863 		else
1864 			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1865 		if (unlikely(ret))
1866 			return ret;
1867 	}
1868 
1869 	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1870 	if (unlikely(ret))
1871 		return ret;
1872 
1873 	if (i915_vma_is_map_and_fenceable(vma))
1874 		addr = (void __force *)i915_vma_pin_iomap(vma);
1875 	else
1876 		addr = i915_gem_object_pin_map(vma->obj, map);
1877 	if (IS_ERR(addr))
1878 		goto err;
1879 
1880 	ring->vaddr = addr;
1881 	return 0;
1882 
1883 err:
1884 	i915_vma_unpin(vma);
1885 	return PTR_ERR(addr);
1886 }
1887 
1888 void intel_ring_unpin(struct intel_ring *ring)
1889 {
1890 	GEM_BUG_ON(!ring->vma);
1891 	GEM_BUG_ON(!ring->vaddr);
1892 
1893 	if (i915_vma_is_map_and_fenceable(ring->vma))
1894 		i915_vma_unpin_iomap(ring->vma);
1895 	else
1896 		i915_gem_object_unpin_map(ring->vma->obj);
1897 	ring->vaddr = NULL;
1898 
1899 	i915_vma_unpin(ring->vma);
1900 }
1901 
1902 static struct i915_vma *
1903 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1904 {
1905 	struct drm_i915_gem_object *obj;
1906 	struct i915_vma *vma;
1907 
1908 	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1909 	if (!obj)
1910 		obj = i915_gem_object_create(&dev_priv->drm, size);
1911 	if (IS_ERR(obj))
1912 		return ERR_CAST(obj);
1913 
1914 	/* mark ring buffers as read-only from GPU side by default */
1915 	obj->gt_ro = 1;
1916 
1917 	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
1918 	if (IS_ERR(vma))
1919 		goto err;
1920 
1921 	return vma;
1922 
1923 err:
1924 	i915_gem_object_put(obj);
1925 	return vma;
1926 }
1927 
1928 struct intel_ring *
1929 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1930 {
1931 	struct intel_ring *ring;
1932 	struct i915_vma *vma;
1933 
1934 	GEM_BUG_ON(!is_power_of_2(size));
1935 	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1936 
1937 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1938 	if (!ring)
1939 		return ERR_PTR(-ENOMEM);
1940 
1941 	ring->engine = engine;
1942 
1943 	INIT_LIST_HEAD(&ring->request_list);
1944 
1945 	ring->size = size;
1946 	/* Workaround an erratum on the i830 which causes a hang if
1947 	 * the TAIL pointer points to within the last 2 cachelines
1948 	 * of the buffer.
1949 	 */
1950 	ring->effective_size = size;
1951 	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1952 		ring->effective_size -= 2 * CACHELINE_BYTES;
1953 
1954 	ring->last_retired_head = -1;
1955 	intel_ring_update_space(ring);
1956 
1957 	vma = intel_ring_create_vma(engine->i915, size);
1958 	if (IS_ERR(vma)) {
1959 		kfree(ring);
1960 		return ERR_CAST(vma);
1961 	}
1962 	ring->vma = vma;
1963 
1964 	return ring;
1965 }
1966 
1967 void
1968 intel_ring_free(struct intel_ring *ring)
1969 {
1970 	i915_vma_put(ring->vma);
1971 	kfree(ring);
1972 }
1973 
1974 static int intel_ring_context_pin(struct i915_gem_context *ctx,
1975 				  struct intel_engine_cs *engine)
1976 {
1977 	struct intel_context *ce = &ctx->engine[engine->id];
1978 	int ret;
1979 
1980 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1981 
1982 	if (ce->pin_count++)
1983 		return 0;
1984 
1985 	if (ce->state) {
1986 		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
1987 		if (ret)
1988 			goto error;
1989 
1990 		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
1991 				   PIN_GLOBAL | PIN_HIGH);
1992 		if (ret)
1993 			goto error;
1994 	}
1995 
1996 	/* The kernel context is only used as a placeholder for flushing the
1997 	 * active context. It is never used for submitting user rendering and
1998 	 * as such never requires the golden render context, and so we can skip
1999 	 * emitting it when we switch to the kernel context. This is required
2000 	 * as during eviction we cannot allocate and pin the renderstate in
2001 	 * order to initialise the context.
2002 	 */
2003 	if (ctx == ctx->i915->kernel_context)
2004 		ce->initialised = true;
2005 
2006 	i915_gem_context_get(ctx);
2007 	return 0;
2008 
2009 error:
2010 	ce->pin_count = 0;
2011 	return ret;
2012 }
2013 
2014 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2015 				     struct intel_engine_cs *engine)
2016 {
2017 	struct intel_context *ce = &ctx->engine[engine->id];
2018 
2019 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2020 
2021 	if (--ce->pin_count)
2022 		return;
2023 
2024 	if (ce->state)
2025 		i915_vma_unpin(ce->state);
2026 
2027 	i915_gem_context_put(ctx);
2028 }
2029 
2030 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2031 {
2032 	struct drm_i915_private *dev_priv = engine->i915;
2033 	struct intel_ring *ring;
2034 	int ret;
2035 
2036 	WARN_ON(engine->buffer);
2037 
2038 	intel_engine_setup_common(engine);
2039 
2040 	memset(engine->semaphore.sync_seqno, 0,
2041 	       sizeof(engine->semaphore.sync_seqno));
2042 
2043 	ret = intel_engine_init_common(engine);
2044 	if (ret)
2045 		goto error;
2046 
2047 	/* We may need to do things with the shrinker which
2048 	 * require us to immediately switch back to the default
2049 	 * context. This can cause a problem as pinning the
2050 	 * default context also requires GTT space which may not
2051 	 * be available. To avoid this we always pin the default
2052 	 * context.
2053 	 */
2054 	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2055 	if (ret)
2056 		goto error;
2057 
2058 	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2059 	if (IS_ERR(ring)) {
2060 		ret = PTR_ERR(ring);
2061 		goto error;
2062 	}
2063 
2064 	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2065 		WARN_ON(engine->id != RCS);
2066 		ret = init_phys_status_page(engine);
2067 		if (ret)
2068 			goto error;
2069 	} else {
2070 		ret = init_status_page(engine);
2071 		if (ret)
2072 			goto error;
2073 	}
2074 
2075 	ret = intel_ring_pin(ring);
2076 	if (ret) {
2077 		intel_ring_free(ring);
2078 		goto error;
2079 	}
2080 	engine->buffer = ring;
2081 
2082 	return 0;
2083 
2084 error:
2085 	intel_engine_cleanup(engine);
2086 	return ret;
2087 }
2088 
2089 void intel_engine_cleanup(struct intel_engine_cs *engine)
2090 {
2091 	struct drm_i915_private *dev_priv;
2092 
2093 	dev_priv = engine->i915;
2094 
2095 	if (engine->buffer) {
2096 		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2097 			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2098 
2099 		intel_ring_unpin(engine->buffer);
2100 		intel_ring_free(engine->buffer);
2101 		engine->buffer = NULL;
2102 	}
2103 
2104 	if (engine->cleanup)
2105 		engine->cleanup(engine);
2106 
2107 	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2108 		WARN_ON(engine->id != RCS);
2109 		cleanup_phys_status_page(engine);
2110 	} else {
2111 		cleanup_status_page(engine);
2112 	}
2113 
2114 	intel_engine_cleanup_common(engine);
2115 
2116 	intel_ring_context_unpin(dev_priv->kernel_context, engine);
2117 
2118 	engine->i915 = NULL;
2119 	dev_priv->engine[engine->id] = NULL;
2120 	kfree(engine);
2121 }
2122 
2123 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2124 {
2125 	struct intel_engine_cs *engine;
2126 	enum intel_engine_id id;
2127 
2128 	for_each_engine(engine, dev_priv, id) {
2129 		engine->buffer->head = engine->buffer->tail;
2130 		engine->buffer->last_retired_head = -1;
2131 	}
2132 }
2133 
2134 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2135 {
2136 	int ret;
2137 
2138 	/* Flush enough space to reduce the likelihood of waiting after
2139 	 * we start building the request - in which case we will just
2140 	 * have to repeat work.
2141 	 */
2142 	request->reserved_space += LEGACY_REQUEST_SIZE;
2143 
2144 	request->ring = request->engine->buffer;
2145 
2146 	ret = intel_ring_begin(request, 0);
2147 	if (ret)
2148 		return ret;
2149 
2150 	request->reserved_space -= LEGACY_REQUEST_SIZE;
2151 	return 0;
2152 }
2153 
2154 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2155 {
2156 	struct intel_ring *ring = req->ring;
2157 	struct drm_i915_gem_request *target;
2158 	int ret;
2159 
2160 	intel_ring_update_space(ring);
2161 	if (ring->space >= bytes)
2162 		return 0;
2163 
2164 	/*
2165 	 * Space is reserved in the ringbuffer for finalising the request,
2166 	 * as that cannot be allowed to fail. During request finalisation,
2167 	 * reserved_space is set to 0 to stop the overallocation and the
2168 	 * assumption is that then we never need to wait (which has the
2169 	 * risk of failing with EINTR).
2170 	 *
2171 	 * See also i915_gem_request_alloc() and i915_add_request().
2172 	 */
2173 	GEM_BUG_ON(!req->reserved_space);
2174 
2175 	list_for_each_entry(target, &ring->request_list, ring_link) {
2176 		unsigned space;
2177 
2178 		/* Would completion of this request free enough space? */
2179 		space = __intel_ring_space(target->postfix, ring->tail,
2180 					   ring->size);
2181 		if (space >= bytes)
2182 			break;
2183 	}
2184 
2185 	if (WARN_ON(&target->ring_link == &ring->request_list))
2186 		return -ENOSPC;
2187 
2188 	ret = i915_wait_request(target,
2189 				I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2190 				NULL, NO_WAITBOOST);
2191 	if (ret)
2192 		return ret;
2193 
2194 	i915_gem_request_retire_upto(target);
2195 
2196 	intel_ring_update_space(ring);
2197 	GEM_BUG_ON(ring->space < bytes);
2198 	return 0;
2199 }
2200 
2201 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2202 {
2203 	struct intel_ring *ring = req->ring;
2204 	int remain_actual = ring->size - ring->tail;
2205 	int remain_usable = ring->effective_size - ring->tail;
2206 	int bytes = num_dwords * sizeof(u32);
2207 	int total_bytes, wait_bytes;
2208 	bool need_wrap = false;
2209 
2210 	total_bytes = bytes + req->reserved_space;
2211 
2212 	if (unlikely(bytes > remain_usable)) {
2213 		/*
2214 		 * Not enough space for the basic request. So need to flush
2215 		 * out the remainder and then wait for base + reserved.
2216 		 */
2217 		wait_bytes = remain_actual + total_bytes;
2218 		need_wrap = true;
2219 	} else if (unlikely(total_bytes > remain_usable)) {
2220 		/*
2221 		 * The base request will fit but the reserved space
2222 		 * falls off the end. So we don't need an immediate wrap
2223 		 * and only need to effectively wait for the reserved
2224 		 * size space from the start of ringbuffer.
2225 		 */
2226 		wait_bytes = remain_actual + req->reserved_space;
2227 	} else {
2228 		/* No wrapping required, just waiting. */
2229 		wait_bytes = total_bytes;
2230 	}
2231 
2232 	if (wait_bytes > ring->space) {
2233 		int ret = wait_for_space(req, wait_bytes);
2234 		if (unlikely(ret))
2235 			return ret;
2236 	}
2237 
2238 	if (unlikely(need_wrap)) {
2239 		GEM_BUG_ON(remain_actual > ring->space);
2240 		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2241 
2242 		/* Fill the tail with MI_NOOP */
2243 		memset(ring->vaddr + ring->tail, 0, remain_actual);
2244 		ring->tail = 0;
2245 		ring->space -= remain_actual;
2246 	}
2247 
2248 	ring->space -= bytes;
2249 	GEM_BUG_ON(ring->space < 0);
2250 	return 0;
2251 }
2252 
2253 /* Align the ring tail to a cacheline boundary */
2254 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2255 {
2256 	struct intel_ring *ring = req->ring;
2257 	int num_dwords =
2258 		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2259 	int ret;
2260 
2261 	if (num_dwords == 0)
2262 		return 0;
2263 
2264 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2265 	ret = intel_ring_begin(req, num_dwords);
2266 	if (ret)
2267 		return ret;
2268 
2269 	while (num_dwords--)
2270 		intel_ring_emit(ring, MI_NOOP);
2271 
2272 	intel_ring_advance(ring);
2273 
2274 	return 0;
2275 }
2276 
2277 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2278 {
2279 	struct drm_i915_private *dev_priv = request->i915;
2280 
2281 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2282 
2283        /* Every tail move must follow the sequence below */
2284 
2285 	/* Disable notification that the ring is IDLE. The GT
2286 	 * will then assume that it is busy and bring it out of rc6.
2287 	 */
2288 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2289 		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2290 
2291 	/* Clear the context id. Here be magic! */
2292 	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2293 
2294 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2295 	if (intel_wait_for_register_fw(dev_priv,
2296 				       GEN6_BSD_SLEEP_PSMI_CONTROL,
2297 				       GEN6_BSD_SLEEP_INDICATOR,
2298 				       0,
2299 				       50))
2300 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2301 
2302 	/* Now that the ring is fully powered up, update the tail */
2303 	i9xx_submit_request(request);
2304 
2305 	/* Let the ring send IDLE messages to the GT again,
2306 	 * and so let it sleep to conserve power when idle.
2307 	 */
2308 	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2309 		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2310 
2311 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2312 }
2313 
2314 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2315 {
2316 	struct intel_ring *ring = req->ring;
2317 	uint32_t cmd;
2318 	int ret;
2319 
2320 	ret = intel_ring_begin(req, 4);
2321 	if (ret)
2322 		return ret;
2323 
2324 	cmd = MI_FLUSH_DW;
2325 	if (INTEL_GEN(req->i915) >= 8)
2326 		cmd += 1;
2327 
2328 	/* We always require a command barrier so that subsequent
2329 	 * commands, such as breadcrumb interrupts, are strictly ordered
2330 	 * wrt the contents of the write cache being flushed to memory
2331 	 * (and thus being coherent from the CPU).
2332 	 */
2333 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2334 
2335 	/*
2336 	 * Bspec vol 1c.5 - video engine command streamer:
2337 	 * "If ENABLED, all TLBs will be invalidated once the flush
2338 	 * operation is complete. This bit is only valid when the
2339 	 * Post-Sync Operation field is a value of 1h or 3h."
2340 	 */
2341 	if (mode & EMIT_INVALIDATE)
2342 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2343 
2344 	intel_ring_emit(ring, cmd);
2345 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2346 	if (INTEL_GEN(req->i915) >= 8) {
2347 		intel_ring_emit(ring, 0); /* upper addr */
2348 		intel_ring_emit(ring, 0); /* value */
2349 	} else  {
2350 		intel_ring_emit(ring, 0);
2351 		intel_ring_emit(ring, MI_NOOP);
2352 	}
2353 	intel_ring_advance(ring);
2354 	return 0;
2355 }
2356 
2357 static int
2358 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2359 		   u64 offset, u32 len,
2360 		   unsigned int dispatch_flags)
2361 {
2362 	struct intel_ring *ring = req->ring;
2363 	bool ppgtt = USES_PPGTT(req->i915) &&
2364 			!(dispatch_flags & I915_DISPATCH_SECURE);
2365 	int ret;
2366 
2367 	ret = intel_ring_begin(req, 4);
2368 	if (ret)
2369 		return ret;
2370 
2371 	/* FIXME(BDW): Address space and security selectors. */
2372 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2373 			(dispatch_flags & I915_DISPATCH_RS ?
2374 			 MI_BATCH_RESOURCE_STREAMER : 0));
2375 	intel_ring_emit(ring, lower_32_bits(offset));
2376 	intel_ring_emit(ring, upper_32_bits(offset));
2377 	intel_ring_emit(ring, MI_NOOP);
2378 	intel_ring_advance(ring);
2379 
2380 	return 0;
2381 }
2382 
2383 static int
2384 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2385 		  u64 offset, u32 len,
2386 		  unsigned int dispatch_flags)
2387 {
2388 	struct intel_ring *ring = req->ring;
2389 	int ret;
2390 
2391 	ret = intel_ring_begin(req, 2);
2392 	if (ret)
2393 		return ret;
2394 
2395 	intel_ring_emit(ring,
2396 			MI_BATCH_BUFFER_START |
2397 			(dispatch_flags & I915_DISPATCH_SECURE ?
2398 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2399 			(dispatch_flags & I915_DISPATCH_RS ?
2400 			 MI_BATCH_RESOURCE_STREAMER : 0));
2401 	/* bit0-7 is the length on GEN6+ */
2402 	intel_ring_emit(ring, offset);
2403 	intel_ring_advance(ring);
2404 
2405 	return 0;
2406 }
2407 
2408 static int
2409 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2410 		   u64 offset, u32 len,
2411 		   unsigned int dispatch_flags)
2412 {
2413 	struct intel_ring *ring = req->ring;
2414 	int ret;
2415 
2416 	ret = intel_ring_begin(req, 2);
2417 	if (ret)
2418 		return ret;
2419 
2420 	intel_ring_emit(ring,
2421 			MI_BATCH_BUFFER_START |
2422 			(dispatch_flags & I915_DISPATCH_SECURE ?
2423 			 0 : MI_BATCH_NON_SECURE_I965));
2424 	/* bit0-7 is the length on GEN6+ */
2425 	intel_ring_emit(ring, offset);
2426 	intel_ring_advance(ring);
2427 
2428 	return 0;
2429 }
2430 
2431 /* Blitter support (SandyBridge+) */
2432 
2433 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2434 {
2435 	struct intel_ring *ring = req->ring;
2436 	uint32_t cmd;
2437 	int ret;
2438 
2439 	ret = intel_ring_begin(req, 4);
2440 	if (ret)
2441 		return ret;
2442 
2443 	cmd = MI_FLUSH_DW;
2444 	if (INTEL_GEN(req->i915) >= 8)
2445 		cmd += 1;
2446 
2447 	/* We always require a command barrier so that subsequent
2448 	 * commands, such as breadcrumb interrupts, are strictly ordered
2449 	 * wrt the contents of the write cache being flushed to memory
2450 	 * (and thus being coherent from the CPU).
2451 	 */
2452 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2453 
2454 	/*
2455 	 * Bspec vol 1c.3 - blitter engine command streamer:
2456 	 * "If ENABLED, all TLBs will be invalidated once the flush
2457 	 * operation is complete. This bit is only valid when the
2458 	 * Post-Sync Operation field is a value of 1h or 3h."
2459 	 */
2460 	if (mode & EMIT_INVALIDATE)
2461 		cmd |= MI_INVALIDATE_TLB;
2462 	intel_ring_emit(ring, cmd);
2463 	intel_ring_emit(ring,
2464 			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2465 	if (INTEL_GEN(req->i915) >= 8) {
2466 		intel_ring_emit(ring, 0); /* upper addr */
2467 		intel_ring_emit(ring, 0); /* value */
2468 	} else  {
2469 		intel_ring_emit(ring, 0);
2470 		intel_ring_emit(ring, MI_NOOP);
2471 	}
2472 	intel_ring_advance(ring);
2473 
2474 	return 0;
2475 }
2476 
2477 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2478 				       struct intel_engine_cs *engine)
2479 {
2480 	struct drm_i915_gem_object *obj;
2481 	int ret, i;
2482 
2483 	if (!i915.semaphores)
2484 		return;
2485 
2486 	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2487 		struct i915_vma *vma;
2488 
2489 		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2490 		if (IS_ERR(obj))
2491 			goto err;
2492 
2493 		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2494 		if (IS_ERR(vma))
2495 			goto err_obj;
2496 
2497 		ret = i915_gem_object_set_to_gtt_domain(obj, false);
2498 		if (ret)
2499 			goto err_obj;
2500 
2501 		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2502 		if (ret)
2503 			goto err_obj;
2504 
2505 		dev_priv->semaphore = vma;
2506 	}
2507 
2508 	if (INTEL_GEN(dev_priv) >= 8) {
2509 		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2510 
2511 		engine->semaphore.sync_to = gen8_ring_sync_to;
2512 		engine->semaphore.signal = gen8_xcs_signal;
2513 
2514 		for (i = 0; i < I915_NUM_ENGINES; i++) {
2515 			u32 ring_offset;
2516 
2517 			if (i != engine->id)
2518 				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2519 			else
2520 				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2521 
2522 			engine->semaphore.signal_ggtt[i] = ring_offset;
2523 		}
2524 	} else if (INTEL_GEN(dev_priv) >= 6) {
2525 		engine->semaphore.sync_to = gen6_ring_sync_to;
2526 		engine->semaphore.signal = gen6_signal;
2527 
2528 		/*
2529 		 * The current semaphore is only applied on pre-gen8
2530 		 * platform.  And there is no VCS2 ring on the pre-gen8
2531 		 * platform. So the semaphore between RCS and VCS2 is
2532 		 * initialized as INVALID.  Gen8 will initialize the
2533 		 * sema between VCS2 and RCS later.
2534 		 */
2535 		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2536 			static const struct {
2537 				u32 wait_mbox;
2538 				i915_reg_t mbox_reg;
2539 			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2540 				[RCS_HW] = {
2541 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2542 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2543 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2544 				},
2545 				[VCS_HW] = {
2546 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2547 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2548 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2549 				},
2550 				[BCS_HW] = {
2551 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2552 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2553 					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2554 				},
2555 				[VECS_HW] = {
2556 					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2557 					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2558 					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2559 				},
2560 			};
2561 			u32 wait_mbox;
2562 			i915_reg_t mbox_reg;
2563 
2564 			if (i == engine->hw_id) {
2565 				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2566 				mbox_reg = GEN6_NOSYNC;
2567 			} else {
2568 				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2569 				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2570 			}
2571 
2572 			engine->semaphore.mbox.wait[i] = wait_mbox;
2573 			engine->semaphore.mbox.signal[i] = mbox_reg;
2574 		}
2575 	}
2576 
2577 	return;
2578 
2579 err_obj:
2580 	i915_gem_object_put(obj);
2581 err:
2582 	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2583 	i915.semaphores = 0;
2584 }
2585 
2586 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2587 				struct intel_engine_cs *engine)
2588 {
2589 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2590 
2591 	if (INTEL_GEN(dev_priv) >= 8) {
2592 		engine->irq_enable = gen8_irq_enable;
2593 		engine->irq_disable = gen8_irq_disable;
2594 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2595 	} else if (INTEL_GEN(dev_priv) >= 6) {
2596 		engine->irq_enable = gen6_irq_enable;
2597 		engine->irq_disable = gen6_irq_disable;
2598 		engine->irq_seqno_barrier = gen6_seqno_barrier;
2599 	} else if (INTEL_GEN(dev_priv) >= 5) {
2600 		engine->irq_enable = gen5_irq_enable;
2601 		engine->irq_disable = gen5_irq_disable;
2602 		engine->irq_seqno_barrier = gen5_seqno_barrier;
2603 	} else if (INTEL_GEN(dev_priv) >= 3) {
2604 		engine->irq_enable = i9xx_irq_enable;
2605 		engine->irq_disable = i9xx_irq_disable;
2606 	} else {
2607 		engine->irq_enable = i8xx_irq_enable;
2608 		engine->irq_disable = i8xx_irq_disable;
2609 	}
2610 }
2611 
2612 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2613 				      struct intel_engine_cs *engine)
2614 {
2615 	intel_ring_init_irq(dev_priv, engine);
2616 	intel_ring_init_semaphores(dev_priv, engine);
2617 
2618 	engine->init_hw = init_ring_common;
2619 	engine->reset_hw = reset_ring_common;
2620 
2621 	engine->emit_request = i9xx_emit_request;
2622 	if (i915.semaphores)
2623 		engine->emit_request = gen6_sema_emit_request;
2624 	engine->submit_request = i9xx_submit_request;
2625 
2626 	if (INTEL_GEN(dev_priv) >= 8)
2627 		engine->emit_bb_start = gen8_emit_bb_start;
2628 	else if (INTEL_GEN(dev_priv) >= 6)
2629 		engine->emit_bb_start = gen6_emit_bb_start;
2630 	else if (INTEL_GEN(dev_priv) >= 4)
2631 		engine->emit_bb_start = i965_emit_bb_start;
2632 	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2633 		engine->emit_bb_start = i830_emit_bb_start;
2634 	else
2635 		engine->emit_bb_start = i915_emit_bb_start;
2636 }
2637 
2638 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2639 {
2640 	struct drm_i915_private *dev_priv = engine->i915;
2641 	int ret;
2642 
2643 	intel_ring_default_vfuncs(dev_priv, engine);
2644 
2645 	if (HAS_L3_DPF(dev_priv))
2646 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2647 
2648 	if (INTEL_GEN(dev_priv) >= 8) {
2649 		engine->init_context = intel_rcs_ctx_init;
2650 		engine->emit_request = gen8_render_emit_request;
2651 		engine->emit_flush = gen8_render_ring_flush;
2652 		if (i915.semaphores)
2653 			engine->semaphore.signal = gen8_rcs_signal;
2654 	} else if (INTEL_GEN(dev_priv) >= 6) {
2655 		engine->init_context = intel_rcs_ctx_init;
2656 		engine->emit_flush = gen7_render_ring_flush;
2657 		if (IS_GEN6(dev_priv))
2658 			engine->emit_flush = gen6_render_ring_flush;
2659 	} else if (IS_GEN5(dev_priv)) {
2660 		engine->emit_flush = gen4_render_ring_flush;
2661 	} else {
2662 		if (INTEL_GEN(dev_priv) < 4)
2663 			engine->emit_flush = gen2_render_ring_flush;
2664 		else
2665 			engine->emit_flush = gen4_render_ring_flush;
2666 		engine->irq_enable_mask = I915_USER_INTERRUPT;
2667 	}
2668 
2669 	if (IS_HASWELL(dev_priv))
2670 		engine->emit_bb_start = hsw_emit_bb_start;
2671 
2672 	engine->init_hw = init_render_ring;
2673 	engine->cleanup = render_ring_cleanup;
2674 
2675 	ret = intel_init_ring_buffer(engine);
2676 	if (ret)
2677 		return ret;
2678 
2679 	if (INTEL_GEN(dev_priv) >= 6) {
2680 		ret = intel_engine_create_scratch(engine, 4096);
2681 		if (ret)
2682 			return ret;
2683 	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2684 		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2685 		if (ret)
2686 			return ret;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2693 {
2694 	struct drm_i915_private *dev_priv = engine->i915;
2695 
2696 	intel_ring_default_vfuncs(dev_priv, engine);
2697 
2698 	if (INTEL_GEN(dev_priv) >= 6) {
2699 		/* gen6 bsd needs a special wa for tail updates */
2700 		if (IS_GEN6(dev_priv))
2701 			engine->submit_request = gen6_bsd_submit_request;
2702 		engine->emit_flush = gen6_bsd_ring_flush;
2703 		if (INTEL_GEN(dev_priv) < 8)
2704 			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2705 	} else {
2706 		engine->mmio_base = BSD_RING_BASE;
2707 		engine->emit_flush = bsd_ring_flush;
2708 		if (IS_GEN5(dev_priv))
2709 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2710 		else
2711 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2712 	}
2713 
2714 	return intel_init_ring_buffer(engine);
2715 }
2716 
2717 /**
2718  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2719  */
2720 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2721 {
2722 	struct drm_i915_private *dev_priv = engine->i915;
2723 
2724 	intel_ring_default_vfuncs(dev_priv, engine);
2725 
2726 	engine->emit_flush = gen6_bsd_ring_flush;
2727 
2728 	return intel_init_ring_buffer(engine);
2729 }
2730 
2731 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2732 {
2733 	struct drm_i915_private *dev_priv = engine->i915;
2734 
2735 	intel_ring_default_vfuncs(dev_priv, engine);
2736 
2737 	engine->emit_flush = gen6_ring_flush;
2738 	if (INTEL_GEN(dev_priv) < 8)
2739 		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2740 
2741 	return intel_init_ring_buffer(engine);
2742 }
2743 
2744 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2745 {
2746 	struct drm_i915_private *dev_priv = engine->i915;
2747 
2748 	intel_ring_default_vfuncs(dev_priv, engine);
2749 
2750 	engine->emit_flush = gen6_ring_flush;
2751 
2752 	if (INTEL_GEN(dev_priv) < 8) {
2753 		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2754 		engine->irq_enable = hsw_vebox_irq_enable;
2755 		engine->irq_disable = hsw_vebox_irq_disable;
2756 	}
2757 
2758 	return intel_init_ring_buffer(engine);
2759 }
2760