xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.c (revision a4fe36f1)
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	struct intel_engine_cs *ring = req->ring;
99 	u32 cmd;
100 	int ret;
101 
102 	cmd = MI_FLUSH;
103 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 		cmd |= MI_NO_WRITE_FLUSH;
105 
106 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 		cmd |= MI_READ_FLUSH;
108 
109 	ret = intel_ring_begin(req, 2);
110 	if (ret)
111 		return ret;
112 
113 	intel_ring_emit(ring, cmd);
114 	intel_ring_emit(ring, MI_NOOP);
115 	intel_ring_advance(ring);
116 
117 	return 0;
118 }
119 
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 		       u32	invalidate_domains,
123 		       u32	flush_domains)
124 {
125 	struct intel_engine_cs *ring = req->ring;
126 	struct drm_device *dev = ring->dev;
127 	u32 cmd;
128 	int ret;
129 
130 	/*
131 	 * read/write caches:
132 	 *
133 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135 	 * also flushed at 2d versus 3d pipeline switches.
136 	 *
137 	 * read-only caches:
138 	 *
139 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 	 * MI_READ_FLUSH is set, and is always flushed on 965.
141 	 *
142 	 * I915_GEM_DOMAIN_COMMAND may not exist?
143 	 *
144 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 	 * invalidated when MI_EXE_FLUSH is set.
146 	 *
147 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 	 * invalidated with every MI_FLUSH.
149 	 *
150 	 * TLBs:
151 	 *
152 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 	 * are flushed at any MI_FLUSH.
156 	 */
157 
158 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 		cmd &= ~MI_NO_WRITE_FLUSH;
161 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 		cmd |= MI_EXE_FLUSH;
163 
164 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 	    (IS_G4X(dev) || IS_GEN5(dev)))
166 		cmd |= MI_INVALIDATE_ISP;
167 
168 	ret = intel_ring_begin(req, 2);
169 	if (ret)
170 		return ret;
171 
172 	intel_ring_emit(ring, cmd);
173 	intel_ring_emit(ring, MI_NOOP);
174 	intel_ring_advance(ring);
175 
176 	return 0;
177 }
178 
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 	struct intel_engine_cs *ring = req->ring;
220 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 	int ret;
222 
223 	ret = intel_ring_begin(req, 6);
224 	if (ret)
225 		return ret;
226 
227 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 	intel_ring_emit(ring, 0); /* low dword */
232 	intel_ring_emit(ring, 0); /* high dword */
233 	intel_ring_emit(ring, MI_NOOP);
234 	intel_ring_advance(ring);
235 
236 	ret = intel_ring_begin(req, 6);
237 	if (ret)
238 		return ret;
239 
240 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 	intel_ring_emit(ring, 0);
244 	intel_ring_emit(ring, 0);
245 	intel_ring_emit(ring, MI_NOOP);
246 	intel_ring_advance(ring);
247 
248 	return 0;
249 }
250 
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 		       u32 invalidate_domains, u32 flush_domains)
254 {
255 	struct intel_engine_cs *ring = req->ring;
256 	u32 flags = 0;
257 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 	int ret;
259 
260 	/* Force SNB workarounds for PIPE_CONTROL flushes */
261 	ret = intel_emit_post_sync_nonzero_flush(req);
262 	if (ret)
263 		return ret;
264 
265 	/* Just flush everything.  Experiments have shown that reducing the
266 	 * number of bits based on the write domains has little performance
267 	 * impact.
268 	 */
269 	if (flush_domains) {
270 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 		/*
273 		 * Ensure that any following seqno writes only happen
274 		 * when the render cache is indeed flushed.
275 		 */
276 		flags |= PIPE_CONTROL_CS_STALL;
277 	}
278 	if (invalidate_domains) {
279 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 		/*
286 		 * TLB invalidate requires a post-sync write.
287 		 */
288 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 	}
290 
291 	ret = intel_ring_begin(req, 4);
292 	if (ret)
293 		return ret;
294 
295 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 	intel_ring_emit(ring, flags);
297 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 	intel_ring_emit(ring, 0);
299 	intel_ring_advance(ring);
300 
301 	return 0;
302 }
303 
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 	struct intel_engine_cs *ring = req->ring;
308 	int ret;
309 
310 	ret = intel_ring_begin(req, 4);
311 	if (ret)
312 		return ret;
313 
314 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 	intel_ring_emit(ring, 0);
318 	intel_ring_emit(ring, 0);
319 	intel_ring_advance(ring);
320 
321 	return 0;
322 }
323 
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 		       u32 invalidate_domains, u32 flush_domains)
327 {
328 	struct intel_engine_cs *ring = req->ring;
329 	u32 flags = 0;
330 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 	int ret;
332 
333 	/*
334 	 * Ensure that any following seqno writes only happen when the render
335 	 * cache is indeed flushed.
336 	 *
337 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 	 * don't try to be clever and just set it unconditionally.
340 	 */
341 	flags |= PIPE_CONTROL_CS_STALL;
342 
343 	/* Just flush everything.  Experiments have shown that reducing the
344 	 * number of bits based on the write domains has little performance
345 	 * impact.
346 	 */
347 	if (flush_domains) {
348 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
351 	}
352 	if (invalidate_domains) {
353 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
354 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360 		/*
361 		 * TLB invalidate requires a post-sync write.
362 		 */
363 		flags |= PIPE_CONTROL_QW_WRITE;
364 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365 
366 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367 
368 		/* Workaround: we must issue a pipe_control with CS-stall bit
369 		 * set before a pipe_control command that has the state cache
370 		 * invalidate bit set. */
371 		gen7_render_ring_cs_stall_wa(req);
372 	}
373 
374 	ret = intel_ring_begin(req, 4);
375 	if (ret)
376 		return ret;
377 
378 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379 	intel_ring_emit(ring, flags);
380 	intel_ring_emit(ring, scratch_addr);
381 	intel_ring_emit(ring, 0);
382 	intel_ring_advance(ring);
383 
384 	return 0;
385 }
386 
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389 		       u32 flags, u32 scratch_addr)
390 {
391 	struct intel_engine_cs *ring = req->ring;
392 	int ret;
393 
394 	ret = intel_ring_begin(req, 6);
395 	if (ret)
396 		return ret;
397 
398 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399 	intel_ring_emit(ring, flags);
400 	intel_ring_emit(ring, scratch_addr);
401 	intel_ring_emit(ring, 0);
402 	intel_ring_emit(ring, 0);
403 	intel_ring_emit(ring, 0);
404 	intel_ring_advance(ring);
405 
406 	return 0;
407 }
408 
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411 		       u32 invalidate_domains, u32 flush_domains)
412 {
413 	u32 flags = 0;
414 	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415 	int ret;
416 
417 	flags |= PIPE_CONTROL_CS_STALL;
418 
419 	if (flush_domains) {
420 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
423 	}
424 	if (invalidate_domains) {
425 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
426 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
427 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
428 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
429 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
430 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
431 		flags |= PIPE_CONTROL_QW_WRITE;
432 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
433 
434 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
435 		ret = gen8_emit_pipe_control(req,
436 					     PIPE_CONTROL_CS_STALL |
437 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
438 					     0);
439 		if (ret)
440 			return ret;
441 	}
442 
443 	return gen8_emit_pipe_control(req, flags, scratch_addr);
444 }
445 
446 static void ring_write_tail(struct intel_engine_cs *ring,
447 			    u32 value)
448 {
449 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 	I915_WRITE_TAIL(ring, value);
451 }
452 
453 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
454 {
455 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
456 	u64 acthd;
457 
458 	if (INTEL_INFO(ring->dev)->gen >= 8)
459 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
460 					 RING_ACTHD_UDW(ring->mmio_base));
461 	else if (INTEL_INFO(ring->dev)->gen >= 4)
462 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
463 	else
464 		acthd = I915_READ(ACTHD);
465 
466 	return acthd;
467 }
468 
469 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
470 {
471 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
472 	u32 addr;
473 
474 	addr = dev_priv->status_page_dmah->busaddr;
475 	if (INTEL_INFO(ring->dev)->gen >= 4)
476 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
477 	I915_WRITE(HWS_PGA, addr);
478 }
479 
480 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
481 {
482 	struct drm_device *dev = ring->dev;
483 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
484 	u32 mmio = 0;
485 
486 	/* The ring status page addresses are no longer next to the rest of
487 	 * the ring registers as of gen7.
488 	 */
489 	if (IS_GEN7(dev)) {
490 		switch (ring->id) {
491 		case RCS:
492 			mmio = RENDER_HWS_PGA_GEN7;
493 			break;
494 		case BCS:
495 			mmio = BLT_HWS_PGA_GEN7;
496 			break;
497 		/*
498 		 * VCS2 actually doesn't exist on Gen7. Only shut up
499 		 * gcc switch check warning
500 		 */
501 		case VCS2:
502 		case VCS:
503 			mmio = BSD_HWS_PGA_GEN7;
504 			break;
505 		case VECS:
506 			mmio = VEBOX_HWS_PGA_GEN7;
507 			break;
508 		}
509 	} else if (IS_GEN6(ring->dev)) {
510 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
511 	} else {
512 		/* XXX: gen8 returns to sanity */
513 		mmio = RING_HWS_PGA(ring->mmio_base);
514 	}
515 
516 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
517 	POSTING_READ(mmio);
518 
519 	/*
520 	 * Flush the TLB for this page
521 	 *
522 	 * FIXME: These two bits have disappeared on gen8, so a question
523 	 * arises: do we still need this and if so how should we go about
524 	 * invalidating the TLB?
525 	 */
526 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
527 		u32 reg = RING_INSTPM(ring->mmio_base);
528 
529 		/* ring should be idle before issuing a sync flush*/
530 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
531 
532 		I915_WRITE(reg,
533 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
534 					      INSTPM_SYNC_FLUSH));
535 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
536 			     1000))
537 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
538 				  ring->name);
539 	}
540 }
541 
542 static bool stop_ring(struct intel_engine_cs *ring)
543 {
544 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
545 
546 	if (!IS_GEN2(ring->dev)) {
547 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
548 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
549 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
550 			/* Sometimes we observe that the idle flag is not
551 			 * set even though the ring is empty. So double
552 			 * check before giving up.
553 			 */
554 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
555 				return false;
556 		}
557 	}
558 
559 	I915_WRITE_CTL(ring, 0);
560 	I915_WRITE_HEAD(ring, 0);
561 	ring->write_tail(ring, 0);
562 
563 	if (!IS_GEN2(ring->dev)) {
564 		(void)I915_READ_CTL(ring);
565 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
566 	}
567 
568 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
569 }
570 
571 static int init_ring_common(struct intel_engine_cs *ring)
572 {
573 	struct drm_device *dev = ring->dev;
574 	struct drm_i915_private *dev_priv = dev->dev_private;
575 	struct intel_ringbuffer *ringbuf = ring->buffer;
576 	struct drm_i915_gem_object *obj = ringbuf->obj;
577 	int ret = 0;
578 
579 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
580 
581 	if (!stop_ring(ring)) {
582 		/* G45 ring initialization often fails to reset head to zero */
583 		DRM_DEBUG_KMS("%s head not reset to zero "
584 			      "ctl %08x head %08x tail %08x start %08x\n",
585 			      ring->name,
586 			      I915_READ_CTL(ring),
587 			      I915_READ_HEAD(ring),
588 			      I915_READ_TAIL(ring),
589 			      I915_READ_START(ring));
590 
591 		if (!stop_ring(ring)) {
592 			DRM_ERROR("failed to set %s head to zero "
593 				  "ctl %08x head %08x tail %08x start %08x\n",
594 				  ring->name,
595 				  I915_READ_CTL(ring),
596 				  I915_READ_HEAD(ring),
597 				  I915_READ_TAIL(ring),
598 				  I915_READ_START(ring));
599 			ret = -EIO;
600 			goto out;
601 		}
602 	}
603 
604 	if (I915_NEED_GFX_HWS(dev))
605 		intel_ring_setup_status_page(ring);
606 	else
607 		ring_setup_phys_status_page(ring);
608 
609 	/* Enforce ordering by reading HEAD register back */
610 	I915_READ_HEAD(ring);
611 
612 	/* Initialize the ring. This must happen _after_ we've cleared the ring
613 	 * registers with the above sequence (the readback of the HEAD registers
614 	 * also enforces ordering), otherwise the hw might lose the new ring
615 	 * register values. */
616 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
617 
618 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
619 	if (I915_READ_HEAD(ring))
620 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
621 			  ring->name, I915_READ_HEAD(ring));
622 	I915_WRITE_HEAD(ring, 0);
623 	(void)I915_READ_HEAD(ring);
624 
625 	I915_WRITE_CTL(ring,
626 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
627 			| RING_VALID);
628 
629 	/* If the head is still not zero, the ring is dead */
630 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
631 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
632 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
633 		DRM_ERROR("%s initialization failed "
634 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
635 			  ring->name,
636 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
637 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
638 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
639 		ret = -EIO;
640 		goto out;
641 	}
642 
643 	ringbuf->last_retired_head = -1;
644 	ringbuf->head = I915_READ_HEAD(ring);
645 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
646 	intel_ring_update_space(ringbuf);
647 
648 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
649 
650 out:
651 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
652 
653 	return ret;
654 }
655 
656 void
657 intel_fini_pipe_control(struct intel_engine_cs *ring)
658 {
659 	struct drm_device *dev = ring->dev;
660 
661 	if (ring->scratch.obj == NULL)
662 		return;
663 
664 	if (INTEL_INFO(dev)->gen >= 5) {
665 		kunmap(sg_page(ring->scratch.obj->pages->sgl));
666 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
667 	}
668 
669 	drm_gem_object_unreference(&ring->scratch.obj->base);
670 	ring->scratch.obj = NULL;
671 }
672 
673 int
674 intel_init_pipe_control(struct intel_engine_cs *ring)
675 {
676 	int ret;
677 
678 	WARN_ON(ring->scratch.obj);
679 
680 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
681 	if (ring->scratch.obj == NULL) {
682 		DRM_ERROR("Failed to allocate seqno page\n");
683 		ret = -ENOMEM;
684 		goto err;
685 	}
686 
687 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
688 	if (ret)
689 		goto err_unref;
690 
691 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
692 	if (ret)
693 		goto err_unref;
694 
695 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
696 	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
697 	if (ring->scratch.cpu_page == NULL) {
698 		ret = -ENOMEM;
699 		goto err_unpin;
700 	}
701 
702 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
703 			 ring->name, ring->scratch.gtt_offset);
704 	return 0;
705 
706 err_unpin:
707 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
708 err_unref:
709 	drm_gem_object_unreference(&ring->scratch.obj->base);
710 err:
711 	return ret;
712 }
713 
714 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
715 {
716 	int ret, i;
717 	struct intel_engine_cs *ring = req->ring;
718 	struct drm_device *dev = ring->dev;
719 	struct drm_i915_private *dev_priv = dev->dev_private;
720 	struct i915_workarounds *w = &dev_priv->workarounds;
721 
722 	if (WARN_ON_ONCE(w->count == 0))
723 		return 0;
724 
725 	ring->gpu_caches_dirty = true;
726 	ret = intel_ring_flush_all_caches(req);
727 	if (ret)
728 		return ret;
729 
730 	ret = intel_ring_begin(req, (w->count * 2 + 2));
731 	if (ret)
732 		return ret;
733 
734 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
735 	for (i = 0; i < w->count; i++) {
736 		intel_ring_emit(ring, w->reg[i].addr);
737 		intel_ring_emit(ring, w->reg[i].value);
738 	}
739 	intel_ring_emit(ring, MI_NOOP);
740 
741 	intel_ring_advance(ring);
742 
743 	ring->gpu_caches_dirty = true;
744 	ret = intel_ring_flush_all_caches(req);
745 	if (ret)
746 		return ret;
747 
748 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
749 
750 	return 0;
751 }
752 
753 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
754 {
755 	int ret;
756 
757 	ret = intel_ring_workarounds_emit(req);
758 	if (ret != 0)
759 		return ret;
760 
761 	ret = i915_gem_render_state_init(req);
762 	if (ret)
763 		DRM_ERROR("init render state: %d\n", ret);
764 
765 	return ret;
766 }
767 
768 static int wa_add(struct drm_i915_private *dev_priv,
769 		  const u32 addr, const u32 mask, const u32 val)
770 {
771 	const u32 idx = dev_priv->workarounds.count;
772 
773 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
774 		return -ENOSPC;
775 
776 	dev_priv->workarounds.reg[idx].addr = addr;
777 	dev_priv->workarounds.reg[idx].value = val;
778 	dev_priv->workarounds.reg[idx].mask = mask;
779 
780 	dev_priv->workarounds.count++;
781 
782 	return 0;
783 }
784 
785 #define WA_REG(addr, mask, val) do { \
786 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
787 		if (r) \
788 			return r; \
789 	} while (0)
790 
791 #define WA_SET_BIT_MASKED(addr, mask) \
792 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
793 
794 #define WA_CLR_BIT_MASKED(addr, mask) \
795 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
796 
797 #define WA_SET_FIELD_MASKED(addr, mask, value) \
798 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
799 
800 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
801 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
802 
803 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
804 
805 static int bdw_init_workarounds(struct intel_engine_cs *ring)
806 {
807 	struct drm_device *dev = ring->dev;
808 	struct drm_i915_private *dev_priv = dev->dev_private;
809 
810 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
811 
812 	/* WaDisableAsyncFlipPerfMode:bdw */
813 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
814 
815 	/* WaDisablePartialInstShootdown:bdw */
816 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
817 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
818 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
819 			  STALL_DOP_GATING_DISABLE);
820 
821 	/* WaDisableDopClockGating:bdw */
822 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
823 			  DOP_CLOCK_GATING_DISABLE);
824 
825 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
826 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
827 
828 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
829 	 * workaround for for a possible hang in the unlikely event a TLB
830 	 * invalidation occurs during a PSD flush.
831 	 */
832 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
833 			  /* WaForceEnableNonCoherent:bdw */
834 			  HDC_FORCE_NON_COHERENT |
835 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
836 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
837 			  /* WaHdcDisableFetchWhenMasked:bdw */
838 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
839 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
840 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
841 
842 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
843 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
844 	 *  polygons in the same 8x4 pixel/sample area to be processed without
845 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
846 	 *  buffer."
847 	 *
848 	 * This optimization is off by default for Broadwell; turn it on.
849 	 */
850 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
851 
852 	/* Wa4x4STCOptimizationDisable:bdw */
853 	WA_SET_BIT_MASKED(CACHE_MODE_1,
854 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
855 
856 	/*
857 	 * BSpec recommends 8x4 when MSAA is used,
858 	 * however in practice 16x4 seems fastest.
859 	 *
860 	 * Note that PS/WM thread counts depend on the WIZ hashing
861 	 * disable bit, which we don't touch here, but it's good
862 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
863 	 */
864 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
865 			    GEN6_WIZ_HASHING_MASK,
866 			    GEN6_WIZ_HASHING_16x4);
867 
868 	return 0;
869 }
870 
871 static int chv_init_workarounds(struct intel_engine_cs *ring)
872 {
873 	struct drm_device *dev = ring->dev;
874 	struct drm_i915_private *dev_priv = dev->dev_private;
875 
876 	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
877 
878 	/* WaDisableAsyncFlipPerfMode:chv */
879 	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
880 
881 	/* WaDisablePartialInstShootdown:chv */
882 	/* WaDisableThreadStallDopClockGating:chv */
883 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
884 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
885 			  STALL_DOP_GATING_DISABLE);
886 
887 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
888 	 * workaround for a possible hang in the unlikely event a TLB
889 	 * invalidation occurs during a PSD flush.
890 	 */
891 	/* WaForceEnableNonCoherent:chv */
892 	/* WaHdcDisableFetchWhenMasked:chv */
893 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
894 			  HDC_FORCE_NON_COHERENT |
895 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED);
896 
897 	/* According to the CACHE_MODE_0 default value documentation, some
898 	 * CHV platforms disable this optimization by default.  Turn it on.
899 	 */
900 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
901 
902 	/* Wa4x4STCOptimizationDisable:chv */
903 	WA_SET_BIT_MASKED(CACHE_MODE_1,
904 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
905 
906 	/* Improve HiZ throughput on CHV. */
907 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908 
909 	/*
910 	 * BSpec recommends 8x4 when MSAA is used,
911 	 * however in practice 16x4 seems fastest.
912 	 *
913 	 * Note that PS/WM thread counts depend on the WIZ hashing
914 	 * disable bit, which we don't touch here, but it's good
915 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
916 	 */
917 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
918 			    GEN6_WIZ_HASHING_MASK,
919 			    GEN6_WIZ_HASHING_16x4);
920 
921 	return 0;
922 }
923 
924 static int gen9_init_workarounds(struct intel_engine_cs *ring)
925 {
926 	struct drm_device *dev = ring->dev;
927 	struct drm_i915_private *dev_priv = dev->dev_private;
928 	uint32_t tmp;
929 
930 	/* WaDisablePartialInstShootdown:skl,bxt */
931 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
933 
934 	/* Syncing dependencies between camera and graphics:skl,bxt */
935 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
936 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
937 
938 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
939 	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
940 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
941 		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
942 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943 				  GEN9_DG_MIRROR_FIX_ENABLE);
944 	}
945 
946 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
947 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
948 		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
949 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
950 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
951 		/*
952 		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
953 		 * but we do that in per ctx batchbuffer as there is an issue
954 		 * with this register not getting restored on ctx restore
955 		 */
956 	}
957 
958 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
959 	    IS_BROXTON(dev)) {
960 		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
961 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
962 				  GEN9_ENABLE_YV12_BUGFIX);
963 	}
964 
965 	/* Wa4x4STCOptimizationDisable:skl,bxt */
966 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
967 
968 	/* WaDisablePartialResolveInVc:skl,bxt */
969 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
970 
971 	/* WaCcsTlbPrefetchDisable:skl,bxt */
972 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
973 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
974 
975 	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
976 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
977 	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
978 		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
979 				  PIXEL_MASK_CAMMING_DISABLE);
980 
981 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
982 	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
983 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
984 	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
985 		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
986 	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
987 
988 	return 0;
989 }
990 
991 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992 {
993 	struct drm_device *dev = ring->dev;
994 	struct drm_i915_private *dev_priv = dev->dev_private;
995 	u8 vals[3] = { 0, 0, 0 };
996 	unsigned int i;
997 
998 	for (i = 0; i < 3; i++) {
999 		u8 ss;
1000 
1001 		/*
1002 		 * Only consider slices where one, and only one, subslice has 7
1003 		 * EUs
1004 		 */
1005 		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006 			continue;
1007 
1008 		/*
1009 		 * subslice_7eu[i] != 0 (because of the check above) and
1010 		 * ss_max == 4 (maximum number of subslices possible per slice)
1011 		 *
1012 		 * ->    0 <= ss <= 3;
1013 		 */
1014 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015 		vals[i] = 3 - ss;
1016 	}
1017 
1018 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019 		return 0;
1020 
1021 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1022 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023 			    GEN9_IZ_HASHING_MASK(2) |
1024 			    GEN9_IZ_HASHING_MASK(1) |
1025 			    GEN9_IZ_HASHING_MASK(0),
1026 			    GEN9_IZ_HASHING(2, vals[2]) |
1027 			    GEN9_IZ_HASHING(1, vals[1]) |
1028 			    GEN9_IZ_HASHING(0, vals[0]));
1029 
1030 	return 0;
1031 }
1032 
1033 
1034 static int skl_init_workarounds(struct intel_engine_cs *ring)
1035 {
1036 	struct drm_device *dev = ring->dev;
1037 	struct drm_i915_private *dev_priv = dev->dev_private;
1038 
1039 	gen9_init_workarounds(ring);
1040 
1041 	/* WaDisablePowerCompilerClockGating:skl */
1042 	if (INTEL_REVID(dev) == SKL_REVID_B0)
1043 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1044 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1045 
1046 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1047 		/*
1048 		 *Use Force Non-Coherent whenever executing a 3D context. This
1049 		 * is a workaround for a possible hang in the unlikely event
1050 		 * a TLB invalidation occurs during a PSD flush.
1051 		 */
1052 		/* WaForceEnableNonCoherent:skl */
1053 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1054 				  HDC_FORCE_NON_COHERENT);
1055 	}
1056 
1057 	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1058 	    INTEL_REVID(dev) == SKL_REVID_D0)
1059 		/* WaBarrierPerformanceFixDisable:skl */
1060 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1061 				  HDC_FENCE_DEST_SLM_DISABLE |
1062 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1063 
1064 	/* WaDisableSbeCacheDispatchPortSharing:skl */
1065 	if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1066 		WA_SET_BIT_MASKED(
1067 			GEN7_HALF_SLICE_CHICKEN1,
1068 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1069 	}
1070 
1071 	return skl_tune_iz_hashing(ring);
1072 }
1073 
1074 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1075 {
1076 	struct drm_device *dev = ring->dev;
1077 	struct drm_i915_private *dev_priv = dev->dev_private;
1078 
1079 	gen9_init_workarounds(ring);
1080 
1081 	/* WaDisableThreadStallDopClockGating:bxt */
1082 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1083 			  STALL_DOP_GATING_DISABLE);
1084 
1085 	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1086 	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1087 		WA_SET_BIT_MASKED(
1088 			GEN7_HALF_SLICE_CHICKEN1,
1089 			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 int init_workarounds_ring(struct intel_engine_cs *ring)
1096 {
1097 	struct drm_device *dev = ring->dev;
1098 	struct drm_i915_private *dev_priv = dev->dev_private;
1099 
1100 	WARN_ON(ring->id != RCS);
1101 
1102 	dev_priv->workarounds.count = 0;
1103 
1104 	if (IS_BROADWELL(dev))
1105 		return bdw_init_workarounds(ring);
1106 
1107 	if (IS_CHERRYVIEW(dev))
1108 		return chv_init_workarounds(ring);
1109 
1110 	if (IS_SKYLAKE(dev))
1111 		return skl_init_workarounds(ring);
1112 
1113 	if (IS_BROXTON(dev))
1114 		return bxt_init_workarounds(ring);
1115 
1116 	return 0;
1117 }
1118 
1119 static int init_render_ring(struct intel_engine_cs *ring)
1120 {
1121 	struct drm_device *dev = ring->dev;
1122 	struct drm_i915_private *dev_priv = dev->dev_private;
1123 	int ret = init_ring_common(ring);
1124 	if (ret)
1125 		return ret;
1126 
1127 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1128 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1129 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1130 
1131 	/* We need to disable the AsyncFlip performance optimisations in order
1132 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1133 	 * programmed to '1' on all products.
1134 	 *
1135 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1136 	 */
1137 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1138 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1139 
1140 	/* Required for the hardware to program scanline values for waiting */
1141 	/* WaEnableFlushTlbInvalidationMode:snb */
1142 	if (INTEL_INFO(dev)->gen == 6)
1143 		I915_WRITE(GFX_MODE,
1144 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1145 
1146 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1147 	if (IS_GEN7(dev))
1148 		I915_WRITE(GFX_MODE_GEN7,
1149 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1150 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1151 
1152 	if (IS_GEN6(dev)) {
1153 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1154 		 * "If this bit is set, STCunit will have LRA as replacement
1155 		 *  policy. [...] This bit must be reset.  LRA replacement
1156 		 *  policy is not supported."
1157 		 */
1158 		I915_WRITE(CACHE_MODE_0,
1159 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1160 	}
1161 
1162 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1163 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1164 
1165 	if (HAS_L3_DPF(dev))
1166 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1167 
1168 	return init_workarounds_ring(ring);
1169 }
1170 
1171 static void render_ring_cleanup(struct intel_engine_cs *ring)
1172 {
1173 	struct drm_device *dev = ring->dev;
1174 	struct drm_i915_private *dev_priv = dev->dev_private;
1175 
1176 	if (dev_priv->semaphore_obj) {
1177 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1178 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1179 		dev_priv->semaphore_obj = NULL;
1180 	}
1181 
1182 	intel_fini_pipe_control(ring);
1183 }
1184 
1185 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1186 			   unsigned int num_dwords)
1187 {
1188 #define MBOX_UPDATE_DWORDS 8
1189 	struct intel_engine_cs *signaller = signaller_req->ring;
1190 	struct drm_device *dev = signaller->dev;
1191 	struct drm_i915_private *dev_priv = dev->dev_private;
1192 	struct intel_engine_cs *waiter;
1193 	int i, ret, num_rings;
1194 
1195 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1196 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1197 #undef MBOX_UPDATE_DWORDS
1198 
1199 	ret = intel_ring_begin(signaller_req, num_dwords);
1200 	if (ret)
1201 		return ret;
1202 
1203 	for_each_ring(waiter, dev_priv, i) {
1204 		u32 seqno;
1205 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1206 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1207 			continue;
1208 
1209 		seqno = i915_gem_request_get_seqno(signaller_req);
1210 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1211 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1212 					   PIPE_CONTROL_QW_WRITE |
1213 					   PIPE_CONTROL_FLUSH_ENABLE);
1214 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1215 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1216 		intel_ring_emit(signaller, seqno);
1217 		intel_ring_emit(signaller, 0);
1218 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1219 					   MI_SEMAPHORE_TARGET(waiter->id));
1220 		intel_ring_emit(signaller, 0);
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1227 			   unsigned int num_dwords)
1228 {
1229 #define MBOX_UPDATE_DWORDS 6
1230 	struct intel_engine_cs *signaller = signaller_req->ring;
1231 	struct drm_device *dev = signaller->dev;
1232 	struct drm_i915_private *dev_priv = dev->dev_private;
1233 	struct intel_engine_cs *waiter;
1234 	int i, ret, num_rings;
1235 
1236 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1237 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1238 #undef MBOX_UPDATE_DWORDS
1239 
1240 	ret = intel_ring_begin(signaller_req, num_dwords);
1241 	if (ret)
1242 		return ret;
1243 
1244 	for_each_ring(waiter, dev_priv, i) {
1245 		u32 seqno;
1246 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1247 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1248 			continue;
1249 
1250 		seqno = i915_gem_request_get_seqno(signaller_req);
1251 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1252 					   MI_FLUSH_DW_OP_STOREDW);
1253 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1254 					   MI_FLUSH_DW_USE_GTT);
1255 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1256 		intel_ring_emit(signaller, seqno);
1257 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1258 					   MI_SEMAPHORE_TARGET(waiter->id));
1259 		intel_ring_emit(signaller, 0);
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1266 		       unsigned int num_dwords)
1267 {
1268 	struct intel_engine_cs *signaller = signaller_req->ring;
1269 	struct drm_device *dev = signaller->dev;
1270 	struct drm_i915_private *dev_priv = dev->dev_private;
1271 	struct intel_engine_cs *useless;
1272 	int i, ret, num_rings;
1273 
1274 #define MBOX_UPDATE_DWORDS 3
1275 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1276 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1277 #undef MBOX_UPDATE_DWORDS
1278 
1279 	ret = intel_ring_begin(signaller_req, num_dwords);
1280 	if (ret)
1281 		return ret;
1282 
1283 	for_each_ring(useless, dev_priv, i) {
1284 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1285 		if (mbox_reg != GEN6_NOSYNC) {
1286 			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1287 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1288 			intel_ring_emit(signaller, mbox_reg);
1289 			intel_ring_emit(signaller, seqno);
1290 		}
1291 	}
1292 
1293 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1294 	if (num_rings % 2 == 0)
1295 		intel_ring_emit(signaller, MI_NOOP);
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * gen6_add_request - Update the semaphore mailbox registers
1302  *
1303  * @request - request to write to the ring
1304  *
1305  * Update the mailbox registers in the *other* rings with the current seqno.
1306  * This acts like a signal in the canonical semaphore.
1307  */
1308 static int
1309 gen6_add_request(struct drm_i915_gem_request *req)
1310 {
1311 	struct intel_engine_cs *ring = req->ring;
1312 	int ret;
1313 
1314 	if (ring->semaphore.signal)
1315 		ret = ring->semaphore.signal(req, 4);
1316 	else
1317 		ret = intel_ring_begin(req, 4);
1318 
1319 	if (ret)
1320 		return ret;
1321 
1322 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1323 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1324 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1325 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1326 	__intel_ring_advance(ring);
1327 
1328 	return 0;
1329 }
1330 
1331 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1332 					      u32 seqno)
1333 {
1334 	struct drm_i915_private *dev_priv = dev->dev_private;
1335 	return dev_priv->last_seqno < seqno;
1336 }
1337 
1338 /**
1339  * intel_ring_sync - sync the waiter to the signaller on seqno
1340  *
1341  * @waiter - ring that is waiting
1342  * @signaller - ring which has, or will signal
1343  * @seqno - seqno which the waiter will block on
1344  */
1345 
1346 static int
1347 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1348 	       struct intel_engine_cs *signaller,
1349 	       u32 seqno)
1350 {
1351 	struct intel_engine_cs *waiter = waiter_req->ring;
1352 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1353 	int ret;
1354 
1355 	ret = intel_ring_begin(waiter_req, 4);
1356 	if (ret)
1357 		return ret;
1358 
1359 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1360 				MI_SEMAPHORE_GLOBAL_GTT |
1361 				MI_SEMAPHORE_POLL |
1362 				MI_SEMAPHORE_SAD_GTE_SDD);
1363 	intel_ring_emit(waiter, seqno);
1364 	intel_ring_emit(waiter,
1365 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1366 	intel_ring_emit(waiter,
1367 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1368 	intel_ring_advance(waiter);
1369 	return 0;
1370 }
1371 
1372 static int
1373 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1374 	       struct intel_engine_cs *signaller,
1375 	       u32 seqno)
1376 {
1377 	struct intel_engine_cs *waiter = waiter_req->ring;
1378 	u32 dw1 = MI_SEMAPHORE_MBOX |
1379 		  MI_SEMAPHORE_COMPARE |
1380 		  MI_SEMAPHORE_REGISTER;
1381 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1382 	int ret;
1383 
1384 	/* Throughout all of the GEM code, seqno passed implies our current
1385 	 * seqno is >= the last seqno executed. However for hardware the
1386 	 * comparison is strictly greater than.
1387 	 */
1388 	seqno -= 1;
1389 
1390 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1391 
1392 	ret = intel_ring_begin(waiter_req, 4);
1393 	if (ret)
1394 		return ret;
1395 
1396 	/* If seqno wrap happened, omit the wait with no-ops */
1397 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1398 		intel_ring_emit(waiter, dw1 | wait_mbox);
1399 		intel_ring_emit(waiter, seqno);
1400 		intel_ring_emit(waiter, 0);
1401 		intel_ring_emit(waiter, MI_NOOP);
1402 	} else {
1403 		intel_ring_emit(waiter, MI_NOOP);
1404 		intel_ring_emit(waiter, MI_NOOP);
1405 		intel_ring_emit(waiter, MI_NOOP);
1406 		intel_ring_emit(waiter, MI_NOOP);
1407 	}
1408 	intel_ring_advance(waiter);
1409 
1410 	return 0;
1411 }
1412 
1413 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1414 do {									\
1415 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1416 		 PIPE_CONTROL_DEPTH_STALL);				\
1417 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1418 	intel_ring_emit(ring__, 0);							\
1419 	intel_ring_emit(ring__, 0);							\
1420 } while (0)
1421 
1422 static int
1423 pc_render_add_request(struct drm_i915_gem_request *req)
1424 {
1425 	struct intel_engine_cs *ring = req->ring;
1426 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1427 	int ret;
1428 
1429 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1430 	 * incoherent with writes to memory, i.e. completely fubar,
1431 	 * so we need to use PIPE_NOTIFY instead.
1432 	 *
1433 	 * However, we also need to workaround the qword write
1434 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1435 	 * memory before requesting an interrupt.
1436 	 */
1437 	ret = intel_ring_begin(req, 32);
1438 	if (ret)
1439 		return ret;
1440 
1441 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1442 			PIPE_CONTROL_WRITE_FLUSH |
1443 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1444 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1445 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1446 	intel_ring_emit(ring, 0);
1447 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1448 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1449 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450 	scratch_addr += 2 * CACHELINE_BYTES;
1451 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1452 	scratch_addr += 2 * CACHELINE_BYTES;
1453 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1454 	scratch_addr += 2 * CACHELINE_BYTES;
1455 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1456 	scratch_addr += 2 * CACHELINE_BYTES;
1457 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1458 
1459 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1460 			PIPE_CONTROL_WRITE_FLUSH |
1461 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1462 			PIPE_CONTROL_NOTIFY);
1463 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465 	intel_ring_emit(ring, 0);
1466 	__intel_ring_advance(ring);
1467 
1468 	return 0;
1469 }
1470 
1471 static u32
1472 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1473 {
1474 	/* Workaround to force correct ordering between irq and seqno writes on
1475 	 * ivb (and maybe also on snb) by reading from a CS register (like
1476 	 * ACTHD) before reading the status page. */
1477 	if (!lazy_coherency) {
1478 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1479 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1480 	}
1481 
1482 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1483 }
1484 
1485 static u32
1486 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1487 {
1488 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1489 }
1490 
1491 static void
1492 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1493 {
1494 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1495 }
1496 
1497 static u32
1498 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1499 {
1500 	return ring->scratch.cpu_page[0];
1501 }
1502 
1503 static void
1504 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1505 {
1506 	ring->scratch.cpu_page[0] = seqno;
1507 }
1508 
1509 static bool
1510 gen5_ring_get_irq(struct intel_engine_cs *ring)
1511 {
1512 	struct drm_device *dev = ring->dev;
1513 	struct drm_i915_private *dev_priv = dev->dev_private;
1514 
1515 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1516 		return false;
1517 
1518 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1519 	if (ring->irq_refcount++ == 0)
1520 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1521 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1522 
1523 	return true;
1524 }
1525 
1526 static void
1527 gen5_ring_put_irq(struct intel_engine_cs *ring)
1528 {
1529 	struct drm_device *dev = ring->dev;
1530 	struct drm_i915_private *dev_priv = dev->dev_private;
1531 
1532 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1533 	if (--ring->irq_refcount == 0)
1534 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1535 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1536 }
1537 
1538 static bool
1539 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1540 {
1541 	struct drm_device *dev = ring->dev;
1542 	struct drm_i915_private *dev_priv = dev->dev_private;
1543 
1544 	if (!intel_irqs_enabled(dev_priv))
1545 		return false;
1546 
1547 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1548 	if (ring->irq_refcount++ == 0) {
1549 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1550 		I915_WRITE(IMR, dev_priv->irq_mask);
1551 		POSTING_READ(IMR);
1552 	}
1553 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1554 
1555 	return true;
1556 }
1557 
1558 static void
1559 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1560 {
1561 	struct drm_device *dev = ring->dev;
1562 	struct drm_i915_private *dev_priv = dev->dev_private;
1563 
1564 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1565 	if (--ring->irq_refcount == 0) {
1566 		dev_priv->irq_mask |= ring->irq_enable_mask;
1567 		I915_WRITE(IMR, dev_priv->irq_mask);
1568 		POSTING_READ(IMR);
1569 	}
1570 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1571 }
1572 
1573 static bool
1574 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1575 {
1576 	struct drm_device *dev = ring->dev;
1577 	struct drm_i915_private *dev_priv = dev->dev_private;
1578 
1579 	if (!intel_irqs_enabled(dev_priv))
1580 		return false;
1581 
1582 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1583 	if (ring->irq_refcount++ == 0) {
1584 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1585 		I915_WRITE16(IMR, dev_priv->irq_mask);
1586 		POSTING_READ16(IMR);
1587 	}
1588 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1589 
1590 	return true;
1591 }
1592 
1593 static void
1594 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1595 {
1596 	struct drm_device *dev = ring->dev;
1597 	struct drm_i915_private *dev_priv = dev->dev_private;
1598 
1599 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1600 	if (--ring->irq_refcount == 0) {
1601 		dev_priv->irq_mask |= ring->irq_enable_mask;
1602 		I915_WRITE16(IMR, dev_priv->irq_mask);
1603 		POSTING_READ16(IMR);
1604 	}
1605 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1606 }
1607 
1608 static int
1609 bsd_ring_flush(struct drm_i915_gem_request *req,
1610 	       u32     invalidate_domains,
1611 	       u32     flush_domains)
1612 {
1613 	struct intel_engine_cs *ring = req->ring;
1614 	int ret;
1615 
1616 	ret = intel_ring_begin(req, 2);
1617 	if (ret)
1618 		return ret;
1619 
1620 	intel_ring_emit(ring, MI_FLUSH);
1621 	intel_ring_emit(ring, MI_NOOP);
1622 	intel_ring_advance(ring);
1623 	return 0;
1624 }
1625 
1626 static int
1627 i9xx_add_request(struct drm_i915_gem_request *req)
1628 {
1629 	struct intel_engine_cs *ring = req->ring;
1630 	int ret;
1631 
1632 	ret = intel_ring_begin(req, 4);
1633 	if (ret)
1634 		return ret;
1635 
1636 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1637 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1638 	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1639 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1640 	__intel_ring_advance(ring);
1641 
1642 	return 0;
1643 }
1644 
1645 static bool
1646 gen6_ring_get_irq(struct intel_engine_cs *ring)
1647 {
1648 	struct drm_device *dev = ring->dev;
1649 	struct drm_i915_private *dev_priv = dev->dev_private;
1650 
1651 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1652 		return false;
1653 
1654 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1655 	if (ring->irq_refcount++ == 0) {
1656 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1657 			I915_WRITE_IMR(ring,
1658 				       ~(ring->irq_enable_mask |
1659 					 GT_PARITY_ERROR(dev)));
1660 		else
1661 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1662 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1663 	}
1664 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1665 
1666 	return true;
1667 }
1668 
1669 static void
1670 gen6_ring_put_irq(struct intel_engine_cs *ring)
1671 {
1672 	struct drm_device *dev = ring->dev;
1673 	struct drm_i915_private *dev_priv = dev->dev_private;
1674 
1675 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1676 	if (--ring->irq_refcount == 0) {
1677 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1678 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1679 		else
1680 			I915_WRITE_IMR(ring, ~0);
1681 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1682 	}
1683 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1684 }
1685 
1686 static bool
1687 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1688 {
1689 	struct drm_device *dev = ring->dev;
1690 	struct drm_i915_private *dev_priv = dev->dev_private;
1691 
1692 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1693 		return false;
1694 
1695 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1696 	if (ring->irq_refcount++ == 0) {
1697 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1698 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1699 	}
1700 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1701 
1702 	return true;
1703 }
1704 
1705 static void
1706 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1707 {
1708 	struct drm_device *dev = ring->dev;
1709 	struct drm_i915_private *dev_priv = dev->dev_private;
1710 
1711 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1712 	if (--ring->irq_refcount == 0) {
1713 		I915_WRITE_IMR(ring, ~0);
1714 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1715 	}
1716 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1717 }
1718 
1719 static bool
1720 gen8_ring_get_irq(struct intel_engine_cs *ring)
1721 {
1722 	struct drm_device *dev = ring->dev;
1723 	struct drm_i915_private *dev_priv = dev->dev_private;
1724 
1725 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1726 		return false;
1727 
1728 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1729 	if (ring->irq_refcount++ == 0) {
1730 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1731 			I915_WRITE_IMR(ring,
1732 				       ~(ring->irq_enable_mask |
1733 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1734 		} else {
1735 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1736 		}
1737 		POSTING_READ(RING_IMR(ring->mmio_base));
1738 	}
1739 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1740 
1741 	return true;
1742 }
1743 
1744 static void
1745 gen8_ring_put_irq(struct intel_engine_cs *ring)
1746 {
1747 	struct drm_device *dev = ring->dev;
1748 	struct drm_i915_private *dev_priv = dev->dev_private;
1749 
1750 	lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1751 	if (--ring->irq_refcount == 0) {
1752 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1753 			I915_WRITE_IMR(ring,
1754 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1755 		} else {
1756 			I915_WRITE_IMR(ring, ~0);
1757 		}
1758 		POSTING_READ(RING_IMR(ring->mmio_base));
1759 	}
1760 	lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1761 }
1762 
1763 static int
1764 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1765 			 u64 offset, u32 length,
1766 			 unsigned dispatch_flags)
1767 {
1768 	struct intel_engine_cs *ring = req->ring;
1769 	int ret;
1770 
1771 	ret = intel_ring_begin(req, 2);
1772 	if (ret)
1773 		return ret;
1774 
1775 	intel_ring_emit(ring,
1776 			MI_BATCH_BUFFER_START |
1777 			MI_BATCH_GTT |
1778 			(dispatch_flags & I915_DISPATCH_SECURE ?
1779 			 0 : MI_BATCH_NON_SECURE_I965));
1780 	intel_ring_emit(ring, offset);
1781 	intel_ring_advance(ring);
1782 
1783 	return 0;
1784 }
1785 
1786 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1787 #define I830_BATCH_LIMIT (256*1024)
1788 #define I830_TLB_ENTRIES (2)
1789 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1790 static int
1791 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1792 			 u64 offset, u32 len,
1793 			 unsigned dispatch_flags)
1794 {
1795 	struct intel_engine_cs *ring = req->ring;
1796 	u32 cs_offset = ring->scratch.gtt_offset;
1797 	int ret;
1798 
1799 	ret = intel_ring_begin(req, 6);
1800 	if (ret)
1801 		return ret;
1802 
1803 	/* Evict the invalid PTE TLBs */
1804 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1805 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1806 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1807 	intel_ring_emit(ring, cs_offset);
1808 	intel_ring_emit(ring, 0xdeadbeef);
1809 	intel_ring_emit(ring, MI_NOOP);
1810 	intel_ring_advance(ring);
1811 
1812 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1813 		if (len > I830_BATCH_LIMIT)
1814 			return -ENOSPC;
1815 
1816 		ret = intel_ring_begin(req, 6 + 2);
1817 		if (ret)
1818 			return ret;
1819 
1820 		/* Blit the batch (which has now all relocs applied) to the
1821 		 * stable batch scratch bo area (so that the CS never
1822 		 * stumbles over its tlb invalidation bug) ...
1823 		 */
1824 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1825 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1826 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1827 		intel_ring_emit(ring, cs_offset);
1828 		intel_ring_emit(ring, 4096);
1829 		intel_ring_emit(ring, offset);
1830 
1831 		intel_ring_emit(ring, MI_FLUSH);
1832 		intel_ring_emit(ring, MI_NOOP);
1833 		intel_ring_advance(ring);
1834 
1835 		/* ... and execute it. */
1836 		offset = cs_offset;
1837 	}
1838 
1839 	ret = intel_ring_begin(req, 4);
1840 	if (ret)
1841 		return ret;
1842 
1843 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1844 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1845 					0 : MI_BATCH_NON_SECURE));
1846 	intel_ring_emit(ring, offset + len - 8);
1847 	intel_ring_emit(ring, MI_NOOP);
1848 	intel_ring_advance(ring);
1849 
1850 	return 0;
1851 }
1852 
1853 static int
1854 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1855 			 u64 offset, u32 len,
1856 			 unsigned dispatch_flags)
1857 {
1858 	struct intel_engine_cs *ring = req->ring;
1859 	int ret;
1860 
1861 	ret = intel_ring_begin(req, 2);
1862 	if (ret)
1863 		return ret;
1864 
1865 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1866 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1867 					0 : MI_BATCH_NON_SECURE));
1868 	intel_ring_advance(ring);
1869 
1870 	return 0;
1871 }
1872 
1873 static void cleanup_status_page(struct intel_engine_cs *ring)
1874 {
1875 	struct drm_i915_gem_object *obj;
1876 
1877 	obj = ring->status_page.obj;
1878 	if (obj == NULL)
1879 		return;
1880 
1881 	kunmap(sg_page(obj->pages->sgl));
1882 	i915_gem_object_ggtt_unpin(obj);
1883 	drm_gem_object_unreference(&obj->base);
1884 	ring->status_page.obj = NULL;
1885 }
1886 
1887 static int init_status_page(struct intel_engine_cs *ring)
1888 {
1889 	struct drm_i915_gem_object *obj;
1890 
1891 	if ((obj = ring->status_page.obj) == NULL) {
1892 		unsigned flags;
1893 		int ret;
1894 
1895 		obj = i915_gem_alloc_object(ring->dev, 4096);
1896 		if (obj == NULL) {
1897 			DRM_ERROR("Failed to allocate status page\n");
1898 			return -ENOMEM;
1899 		}
1900 
1901 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1902 		if (ret)
1903 			goto err_unref;
1904 
1905 		flags = 0;
1906 		if (!HAS_LLC(ring->dev))
1907 			/* On g33, we cannot place HWS above 256MiB, so
1908 			 * restrict its pinning to the low mappable arena.
1909 			 * Though this restriction is not documented for
1910 			 * gen4, gen5, or byt, they also behave similarly
1911 			 * and hang if the HWS is placed at the top of the
1912 			 * GTT. To generalise, it appears that all !llc
1913 			 * platforms have issues with us placing the HWS
1914 			 * above the mappable region (even though we never
1915 			 * actualy map it).
1916 			 */
1917 			flags |= PIN_MAPPABLE;
1918 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1919 		if (ret) {
1920 err_unref:
1921 			drm_gem_object_unreference(&obj->base);
1922 			return ret;
1923 		}
1924 
1925 		ring->status_page.obj = obj;
1926 	}
1927 
1928 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1929 	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1930 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1931 
1932 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1933 			ring->name, ring->status_page.gfx_addr);
1934 
1935 	return 0;
1936 }
1937 
1938 static int init_phys_status_page(struct intel_engine_cs *ring)
1939 {
1940 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1941 
1942 	if (!dev_priv->status_page_dmah) {
1943 		dev_priv->status_page_dmah =
1944 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1945 		if (!dev_priv->status_page_dmah)
1946 			return -ENOMEM;
1947 	}
1948 
1949 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1950 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1951 
1952 	return 0;
1953 }
1954 
1955 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1956 {
1957 	iounmap(ringbuf->virtual_start);
1958 	ringbuf->virtual_start = NULL;
1959 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1960 }
1961 
1962 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1963 				     struct intel_ringbuffer *ringbuf)
1964 {
1965 	struct drm_i915_private *dev_priv = to_i915(dev);
1966 	struct drm_i915_gem_object *obj = ringbuf->obj;
1967 	int ret;
1968 
1969 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1970 	if (ret)
1971 		return ret;
1972 
1973 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1974 	if (ret) {
1975 		i915_gem_object_ggtt_unpin(obj);
1976 		return ret;
1977 	}
1978 
1979 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1980 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1981 	if (ringbuf->virtual_start == NULL) {
1982 		i915_gem_object_ggtt_unpin(obj);
1983 		return -EINVAL;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1990 {
1991 	drm_gem_object_unreference(&ringbuf->obj->base);
1992 	ringbuf->obj = NULL;
1993 }
1994 
1995 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1996 			       struct intel_ringbuffer *ringbuf)
1997 {
1998 	struct drm_i915_gem_object *obj;
1999 
2000 	obj = NULL;
2001 	if (!HAS_LLC(dev))
2002 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2003 	if (obj == NULL)
2004 		obj = i915_gem_alloc_object(dev, ringbuf->size);
2005 	if (obj == NULL)
2006 		return -ENOMEM;
2007 
2008 	/* mark ring buffers as read-only from GPU side by default */
2009 	obj->gt_ro = 1;
2010 
2011 	ringbuf->obj = obj;
2012 
2013 	return 0;
2014 }
2015 
2016 static int intel_init_ring_buffer(struct drm_device *dev,
2017 				  struct intel_engine_cs *ring)
2018 {
2019 	struct intel_ringbuffer *ringbuf;
2020 	int ret;
2021 
2022 	WARN_ON(ring->buffer);
2023 
2024 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2025 	if (!ringbuf)
2026 		return -ENOMEM;
2027 	ring->buffer = ringbuf;
2028 
2029 	ring->dev = dev;
2030 	INIT_LIST_HEAD(&ring->active_list);
2031 	INIT_LIST_HEAD(&ring->request_list);
2032 	INIT_LIST_HEAD(&ring->execlist_queue);
2033 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2034 	ringbuf->size = 32 * PAGE_SIZE;
2035 	ringbuf->ring = ring;
2036 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2037 
2038 	init_waitqueue_head(&ring->irq_queue);
2039 
2040 	if (I915_NEED_GFX_HWS(dev)) {
2041 		ret = init_status_page(ring);
2042 		if (ret)
2043 			goto error;
2044 	} else {
2045 		BUG_ON(ring->id != RCS);
2046 		ret = init_phys_status_page(ring);
2047 		if (ret)
2048 			goto error;
2049 	}
2050 
2051 	WARN_ON(ringbuf->obj);
2052 
2053 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2054 	if (ret) {
2055 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2056 				ring->name, ret);
2057 		goto error;
2058 	}
2059 
2060 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2061 	if (ret) {
2062 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2063 				ring->name, ret);
2064 		intel_destroy_ringbuffer_obj(ringbuf);
2065 		goto error;
2066 	}
2067 
2068 	/* Workaround an erratum on the i830 which causes a hang if
2069 	 * the TAIL pointer points to within the last 2 cachelines
2070 	 * of the buffer.
2071 	 */
2072 	ringbuf->effective_size = ringbuf->size;
2073 	if (IS_I830(dev) || IS_845G(dev))
2074 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2075 
2076 	ret = i915_cmd_parser_init_ring(ring);
2077 	if (ret)
2078 		goto error;
2079 
2080 	return 0;
2081 
2082 error:
2083 	kfree(ringbuf);
2084 	ring->buffer = NULL;
2085 	return ret;
2086 }
2087 
2088 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2089 {
2090 	struct drm_i915_private *dev_priv;
2091 	struct intel_ringbuffer *ringbuf;
2092 
2093 	if (!intel_ring_initialized(ring))
2094 		return;
2095 
2096 	dev_priv = to_i915(ring->dev);
2097 	ringbuf = ring->buffer;
2098 
2099 	intel_stop_ring_buffer(ring);
2100 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2101 
2102 	intel_unpin_ringbuffer_obj(ringbuf);
2103 	intel_destroy_ringbuffer_obj(ringbuf);
2104 
2105 	if (ring->cleanup)
2106 		ring->cleanup(ring);
2107 
2108 	cleanup_status_page(ring);
2109 
2110 	i915_cmd_parser_fini_ring(ring);
2111 	i915_gem_batch_pool_fini(&ring->batch_pool);
2112 
2113 	kfree(ringbuf);
2114 	ring->buffer = NULL;
2115 }
2116 
2117 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2118 {
2119 	struct intel_ringbuffer *ringbuf = ring->buffer;
2120 	struct drm_i915_gem_request *request;
2121 	unsigned space;
2122 	int ret;
2123 
2124 	if (intel_ring_space(ringbuf) >= n)
2125 		return 0;
2126 
2127 	/* The whole point of reserving space is to not wait! */
2128 	WARN_ON(ringbuf->reserved_in_use);
2129 
2130 	list_for_each_entry(request, &ring->request_list, list) {
2131 		space = __intel_ring_space(request->postfix, ringbuf->tail,
2132 					   ringbuf->size);
2133 		if (space >= n)
2134 			break;
2135 	}
2136 
2137 	if (WARN_ON(&request->list == &ring->request_list))
2138 		return -ENOSPC;
2139 
2140 	ret = i915_wait_request(request);
2141 	if (ret)
2142 		return ret;
2143 
2144 	ringbuf->space = space;
2145 	return 0;
2146 }
2147 
2148 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2149 {
2150 	uint32_t __iomem *virt;
2151 	int rem = ringbuf->size - ringbuf->tail;
2152 
2153 	virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2154 	rem /= 4;
2155 	while (rem--)
2156 		iowrite32(MI_NOOP, virt++);
2157 
2158 	ringbuf->tail = 0;
2159 	intel_ring_update_space(ringbuf);
2160 }
2161 
2162 int intel_ring_idle(struct intel_engine_cs *ring)
2163 {
2164 	struct drm_i915_gem_request *req;
2165 
2166 	/* Wait upon the last request to be completed */
2167 	if (list_empty(&ring->request_list))
2168 		return 0;
2169 
2170 	req = list_entry(ring->request_list.prev,
2171 			struct drm_i915_gem_request,
2172 			list);
2173 
2174 	/* Make sure we do not trigger any retires */
2175 	return __i915_wait_request(req,
2176 				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2177 				   to_i915(ring->dev)->mm.interruptible,
2178 				   NULL, NULL);
2179 }
2180 
2181 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2182 {
2183 	request->ringbuf = request->ring->buffer;
2184 	return 0;
2185 }
2186 
2187 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2188 {
2189 	/*
2190 	 * The first call merely notes the reserve request and is common for
2191 	 * all back ends. The subsequent localised _begin() call actually
2192 	 * ensures that the reservation is available. Without the begin, if
2193 	 * the request creator immediately submitted the request without
2194 	 * adding any commands to it then there might not actually be
2195 	 * sufficient room for the submission commands.
2196 	 */
2197 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2198 
2199 	return intel_ring_begin(request, 0);
2200 }
2201 
2202 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2203 {
2204 	WARN_ON(ringbuf->reserved_size);
2205 	WARN_ON(ringbuf->reserved_in_use);
2206 
2207 	ringbuf->reserved_size = size;
2208 }
2209 
2210 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2211 {
2212 	WARN_ON(ringbuf->reserved_in_use);
2213 
2214 	ringbuf->reserved_size   = 0;
2215 	ringbuf->reserved_in_use = false;
2216 }
2217 
2218 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2219 {
2220 	WARN_ON(ringbuf->reserved_in_use);
2221 
2222 	ringbuf->reserved_in_use = true;
2223 	ringbuf->reserved_tail   = ringbuf->tail;
2224 }
2225 
2226 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2227 {
2228 	WARN_ON(!ringbuf->reserved_in_use);
2229 	if (ringbuf->tail > ringbuf->reserved_tail) {
2230 		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2231 		     "request reserved size too small: %d vs %d!\n",
2232 		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2233 	} else {
2234 		/*
2235 		 * The ring was wrapped while the reserved space was in use.
2236 		 * That means that some unknown amount of the ring tail was
2237 		 * no-op filled and skipped. Thus simply adding the ring size
2238 		 * to the tail and doing the above space check will not work.
2239 		 * Rather than attempt to track how much tail was skipped,
2240 		 * it is much simpler to say that also skipping the sanity
2241 		 * check every once in a while is not a big issue.
2242 		 */
2243 	}
2244 
2245 	ringbuf->reserved_size   = 0;
2246 	ringbuf->reserved_in_use = false;
2247 }
2248 
2249 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2250 {
2251 	struct intel_ringbuffer *ringbuf = ring->buffer;
2252 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2253 	int remain_actual = ringbuf->size - ringbuf->tail;
2254 	int ret, total_bytes, wait_bytes = 0;
2255 	bool need_wrap = false;
2256 
2257 	if (ringbuf->reserved_in_use)
2258 		total_bytes = bytes;
2259 	else
2260 		total_bytes = bytes + ringbuf->reserved_size;
2261 
2262 	if (unlikely(bytes > remain_usable)) {
2263 		/*
2264 		 * Not enough space for the basic request. So need to flush
2265 		 * out the remainder and then wait for base + reserved.
2266 		 */
2267 		wait_bytes = remain_actual + total_bytes;
2268 		need_wrap = true;
2269 	} else {
2270 		if (unlikely(total_bytes > remain_usable)) {
2271 			/*
2272 			 * The base request will fit but the reserved space
2273 			 * falls off the end. So only need to to wait for the
2274 			 * reserved size after flushing out the remainder.
2275 			 */
2276 			wait_bytes = remain_actual + ringbuf->reserved_size;
2277 			need_wrap = true;
2278 		} else if (total_bytes > ringbuf->space) {
2279 			/* No wrapping required, just waiting. */
2280 			wait_bytes = total_bytes;
2281 		}
2282 	}
2283 
2284 	if (wait_bytes) {
2285 		ret = ring_wait_for_space(ring, wait_bytes);
2286 		if (unlikely(ret))
2287 			return ret;
2288 
2289 		if (need_wrap)
2290 			__wrap_ring_buffer(ringbuf);
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 int intel_ring_begin(struct drm_i915_gem_request *req,
2297 		     int num_dwords)
2298 {
2299 	struct intel_engine_cs *ring;
2300 	struct drm_i915_private *dev_priv;
2301 	int ret;
2302 
2303 	WARN_ON(req == NULL);
2304 	ring = req->ring;
2305 	dev_priv = ring->dev->dev_private;
2306 
2307 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2308 				   dev_priv->mm.interruptible);
2309 	if (ret)
2310 		return ret;
2311 
2312 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2313 	if (ret)
2314 		return ret;
2315 
2316 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2317 	return 0;
2318 }
2319 
2320 /* Align the ring tail to a cacheline boundary */
2321 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2322 {
2323 	struct intel_engine_cs *ring = req->ring;
2324 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2325 	int ret;
2326 
2327 	if (num_dwords == 0)
2328 		return 0;
2329 
2330 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2331 	ret = intel_ring_begin(req, num_dwords);
2332 	if (ret)
2333 		return ret;
2334 
2335 	while (num_dwords--)
2336 		intel_ring_emit(ring, MI_NOOP);
2337 
2338 	intel_ring_advance(ring);
2339 
2340 	return 0;
2341 }
2342 
2343 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2344 {
2345 	struct drm_device *dev = ring->dev;
2346 	struct drm_i915_private *dev_priv = dev->dev_private;
2347 
2348 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2349 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2350 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2351 		if (HAS_VEBOX(dev))
2352 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2353 	}
2354 
2355 	ring->set_seqno(ring, seqno);
2356 	ring->hangcheck.seqno = seqno;
2357 }
2358 
2359 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2360 				     u32 value)
2361 {
2362 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2363 
2364        /* Every tail move must follow the sequence below */
2365 
2366 	/* Disable notification that the ring is IDLE. The GT
2367 	 * will then assume that it is busy and bring it out of rc6.
2368 	 */
2369 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2370 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2371 
2372 	/* Clear the context id. Here be magic! */
2373 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2374 
2375 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2376 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2377 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2378 		     50))
2379 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2380 
2381 	/* Now that the ring is fully powered up, update the tail */
2382 	I915_WRITE_TAIL(ring, value);
2383 	POSTING_READ(RING_TAIL(ring->mmio_base));
2384 
2385 	/* Let the ring send IDLE messages to the GT again,
2386 	 * and so let it sleep to conserve power when idle.
2387 	 */
2388 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2389 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2390 }
2391 
2392 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2393 			       u32 invalidate, u32 flush)
2394 {
2395 	struct intel_engine_cs *ring = req->ring;
2396 	uint32_t cmd;
2397 	int ret;
2398 
2399 	ret = intel_ring_begin(req, 4);
2400 	if (ret)
2401 		return ret;
2402 
2403 	cmd = MI_FLUSH_DW;
2404 	if (INTEL_INFO(ring->dev)->gen >= 8)
2405 		cmd += 1;
2406 
2407 	/* We always require a command barrier so that subsequent
2408 	 * commands, such as breadcrumb interrupts, are strictly ordered
2409 	 * wrt the contents of the write cache being flushed to memory
2410 	 * (and thus being coherent from the CPU).
2411 	 */
2412 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2413 
2414 	/*
2415 	 * Bspec vol 1c.5 - video engine command streamer:
2416 	 * "If ENABLED, all TLBs will be invalidated once the flush
2417 	 * operation is complete. This bit is only valid when the
2418 	 * Post-Sync Operation field is a value of 1h or 3h."
2419 	 */
2420 	if (invalidate & I915_GEM_GPU_DOMAINS)
2421 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2422 
2423 	intel_ring_emit(ring, cmd);
2424 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2425 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2426 		intel_ring_emit(ring, 0); /* upper addr */
2427 		intel_ring_emit(ring, 0); /* value */
2428 	} else  {
2429 		intel_ring_emit(ring, 0);
2430 		intel_ring_emit(ring, MI_NOOP);
2431 	}
2432 	intel_ring_advance(ring);
2433 	return 0;
2434 }
2435 
2436 static int
2437 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2438 			      u64 offset, u32 len,
2439 			      unsigned dispatch_flags)
2440 {
2441 	struct intel_engine_cs *ring = req->ring;
2442 	bool ppgtt = USES_PPGTT(ring->dev) &&
2443 			!(dispatch_flags & I915_DISPATCH_SECURE);
2444 	int ret;
2445 
2446 	ret = intel_ring_begin(req, 4);
2447 	if (ret)
2448 		return ret;
2449 
2450 	/* FIXME(BDW): Address space and security selectors. */
2451 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2452 			(dispatch_flags & I915_DISPATCH_RS ?
2453 			 MI_BATCH_RESOURCE_STREAMER : 0));
2454 	intel_ring_emit(ring, lower_32_bits(offset));
2455 	intel_ring_emit(ring, upper_32_bits(offset));
2456 	intel_ring_emit(ring, MI_NOOP);
2457 	intel_ring_advance(ring);
2458 
2459 	return 0;
2460 }
2461 
2462 static int
2463 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2464 			     u64 offset, u32 len,
2465 			     unsigned dispatch_flags)
2466 {
2467 	struct intel_engine_cs *ring = req->ring;
2468 	int ret;
2469 
2470 	ret = intel_ring_begin(req, 2);
2471 	if (ret)
2472 		return ret;
2473 
2474 	intel_ring_emit(ring,
2475 			MI_BATCH_BUFFER_START |
2476 			(dispatch_flags & I915_DISPATCH_SECURE ?
2477 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2478 			(dispatch_flags & I915_DISPATCH_RS ?
2479 			 MI_BATCH_RESOURCE_STREAMER : 0));
2480 	/* bit0-7 is the length on GEN6+ */
2481 	intel_ring_emit(ring, offset);
2482 	intel_ring_advance(ring);
2483 
2484 	return 0;
2485 }
2486 
2487 static int
2488 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2489 			      u64 offset, u32 len,
2490 			      unsigned dispatch_flags)
2491 {
2492 	struct intel_engine_cs *ring = req->ring;
2493 	int ret;
2494 
2495 	ret = intel_ring_begin(req, 2);
2496 	if (ret)
2497 		return ret;
2498 
2499 	intel_ring_emit(ring,
2500 			MI_BATCH_BUFFER_START |
2501 			(dispatch_flags & I915_DISPATCH_SECURE ?
2502 			 0 : MI_BATCH_NON_SECURE_I965));
2503 	/* bit0-7 is the length on GEN6+ */
2504 	intel_ring_emit(ring, offset);
2505 	intel_ring_advance(ring);
2506 
2507 	return 0;
2508 }
2509 
2510 /* Blitter support (SandyBridge+) */
2511 
2512 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2513 			   u32 invalidate, u32 flush)
2514 {
2515 	struct intel_engine_cs *ring = req->ring;
2516 	struct drm_device *dev = ring->dev;
2517 	uint32_t cmd;
2518 	int ret;
2519 
2520 	ret = intel_ring_begin(req, 4);
2521 	if (ret)
2522 		return ret;
2523 
2524 	cmd = MI_FLUSH_DW;
2525 	if (INTEL_INFO(dev)->gen >= 8)
2526 		cmd += 1;
2527 
2528 	/* We always require a command barrier so that subsequent
2529 	 * commands, such as breadcrumb interrupts, are strictly ordered
2530 	 * wrt the contents of the write cache being flushed to memory
2531 	 * (and thus being coherent from the CPU).
2532 	 */
2533 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2534 
2535 	/*
2536 	 * Bspec vol 1c.3 - blitter engine command streamer:
2537 	 * "If ENABLED, all TLBs will be invalidated once the flush
2538 	 * operation is complete. This bit is only valid when the
2539 	 * Post-Sync Operation field is a value of 1h or 3h."
2540 	 */
2541 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2542 		cmd |= MI_INVALIDATE_TLB;
2543 	intel_ring_emit(ring, cmd);
2544 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2545 	if (INTEL_INFO(dev)->gen >= 8) {
2546 		intel_ring_emit(ring, 0); /* upper addr */
2547 		intel_ring_emit(ring, 0); /* value */
2548 	} else  {
2549 		intel_ring_emit(ring, 0);
2550 		intel_ring_emit(ring, MI_NOOP);
2551 	}
2552 	intel_ring_advance(ring);
2553 
2554 	return 0;
2555 }
2556 
2557 int intel_init_render_ring_buffer(struct drm_device *dev)
2558 {
2559 	struct drm_i915_private *dev_priv = dev->dev_private;
2560 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2561 	struct drm_i915_gem_object *obj;
2562 	int ret;
2563 
2564 	ring->name = "render ring";
2565 	ring->id = RCS;
2566 	ring->mmio_base = RENDER_RING_BASE;
2567 
2568 	if (INTEL_INFO(dev)->gen >= 8) {
2569 		if (i915_semaphore_is_enabled(dev)) {
2570 			obj = i915_gem_alloc_object(dev, 4096);
2571 			if (obj == NULL) {
2572 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2573 				i915.semaphores = 0;
2574 			} else {
2575 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2576 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2577 				if (ret != 0) {
2578 					drm_gem_object_unreference(&obj->base);
2579 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2580 					i915.semaphores = 0;
2581 				} else
2582 					dev_priv->semaphore_obj = obj;
2583 			}
2584 		}
2585 
2586 		ring->init_context = intel_rcs_ctx_init;
2587 		ring->add_request = gen6_add_request;
2588 		ring->flush = gen8_render_ring_flush;
2589 		ring->irq_get = gen8_ring_get_irq;
2590 		ring->irq_put = gen8_ring_put_irq;
2591 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2592 		ring->get_seqno = gen6_ring_get_seqno;
2593 		ring->set_seqno = ring_set_seqno;
2594 		if (i915_semaphore_is_enabled(dev)) {
2595 			WARN_ON(!dev_priv->semaphore_obj);
2596 			ring->semaphore.sync_to = gen8_ring_sync;
2597 			ring->semaphore.signal = gen8_rcs_signal;
2598 			GEN8_RING_SEMAPHORE_INIT;
2599 		}
2600 	} else if (INTEL_INFO(dev)->gen >= 6) {
2601 		ring->add_request = gen6_add_request;
2602 		ring->flush = gen7_render_ring_flush;
2603 		if (INTEL_INFO(dev)->gen == 6)
2604 			ring->flush = gen6_render_ring_flush;
2605 		ring->irq_get = gen6_ring_get_irq;
2606 		ring->irq_put = gen6_ring_put_irq;
2607 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2608 		ring->get_seqno = gen6_ring_get_seqno;
2609 		ring->set_seqno = ring_set_seqno;
2610 		if (i915_semaphore_is_enabled(dev)) {
2611 			ring->semaphore.sync_to = gen6_ring_sync;
2612 			ring->semaphore.signal = gen6_signal;
2613 			/*
2614 			 * The current semaphore is only applied on pre-gen8
2615 			 * platform.  And there is no VCS2 ring on the pre-gen8
2616 			 * platform. So the semaphore between RCS and VCS2 is
2617 			 * initialized as INVALID.  Gen8 will initialize the
2618 			 * sema between VCS2 and RCS later.
2619 			 */
2620 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2621 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2622 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2623 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2624 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2625 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2626 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2627 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2628 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2629 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2630 		}
2631 	} else if (IS_GEN5(dev)) {
2632 		ring->add_request = pc_render_add_request;
2633 		ring->flush = gen4_render_ring_flush;
2634 		ring->get_seqno = pc_render_get_seqno;
2635 		ring->set_seqno = pc_render_set_seqno;
2636 		ring->irq_get = gen5_ring_get_irq;
2637 		ring->irq_put = gen5_ring_put_irq;
2638 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2639 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2640 	} else {
2641 		ring->add_request = i9xx_add_request;
2642 		if (INTEL_INFO(dev)->gen < 4)
2643 			ring->flush = gen2_render_ring_flush;
2644 		else
2645 			ring->flush = gen4_render_ring_flush;
2646 		ring->get_seqno = ring_get_seqno;
2647 		ring->set_seqno = ring_set_seqno;
2648 		if (IS_GEN2(dev)) {
2649 			ring->irq_get = i8xx_ring_get_irq;
2650 			ring->irq_put = i8xx_ring_put_irq;
2651 		} else {
2652 			ring->irq_get = i9xx_ring_get_irq;
2653 			ring->irq_put = i9xx_ring_put_irq;
2654 		}
2655 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2656 	}
2657 	ring->write_tail = ring_write_tail;
2658 
2659 	if (IS_HASWELL(dev))
2660 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2661 	else if (IS_GEN8(dev))
2662 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2663 	else if (INTEL_INFO(dev)->gen >= 6)
2664 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2665 	else if (INTEL_INFO(dev)->gen >= 4)
2666 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2667 	else if (IS_I830(dev) || IS_845G(dev))
2668 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2669 	else
2670 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2671 	ring->init_hw = init_render_ring;
2672 	ring->cleanup = render_ring_cleanup;
2673 
2674 	/* Workaround batchbuffer to combat CS tlb bug. */
2675 	if (HAS_BROKEN_CS_TLB(dev)) {
2676 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2677 		if (obj == NULL) {
2678 			DRM_ERROR("Failed to allocate batch bo\n");
2679 			return -ENOMEM;
2680 		}
2681 
2682 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2683 		if (ret != 0) {
2684 			drm_gem_object_unreference(&obj->base);
2685 			DRM_ERROR("Failed to ping batch bo\n");
2686 			return ret;
2687 		}
2688 
2689 		ring->scratch.obj = obj;
2690 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2691 	}
2692 
2693 	ret = intel_init_ring_buffer(dev, ring);
2694 	if (ret)
2695 		return ret;
2696 
2697 	if (INTEL_INFO(dev)->gen >= 5) {
2698 		ret = intel_init_pipe_control(ring);
2699 		if (ret)
2700 			return ret;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2707 {
2708 	struct drm_i915_private *dev_priv = dev->dev_private;
2709 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2710 
2711 	ring->name = "bsd ring";
2712 	ring->id = VCS;
2713 
2714 	ring->write_tail = ring_write_tail;
2715 	if (INTEL_INFO(dev)->gen >= 6) {
2716 		ring->mmio_base = GEN6_BSD_RING_BASE;
2717 		/* gen6 bsd needs a special wa for tail updates */
2718 		if (IS_GEN6(dev))
2719 			ring->write_tail = gen6_bsd_ring_write_tail;
2720 		ring->flush = gen6_bsd_ring_flush;
2721 		ring->add_request = gen6_add_request;
2722 		ring->get_seqno = gen6_ring_get_seqno;
2723 		ring->set_seqno = ring_set_seqno;
2724 		if (INTEL_INFO(dev)->gen >= 8) {
2725 			ring->irq_enable_mask =
2726 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2727 			ring->irq_get = gen8_ring_get_irq;
2728 			ring->irq_put = gen8_ring_put_irq;
2729 			ring->dispatch_execbuffer =
2730 				gen8_ring_dispatch_execbuffer;
2731 			if (i915_semaphore_is_enabled(dev)) {
2732 				ring->semaphore.sync_to = gen8_ring_sync;
2733 				ring->semaphore.signal = gen8_xcs_signal;
2734 				GEN8_RING_SEMAPHORE_INIT;
2735 			}
2736 		} else {
2737 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2738 			ring->irq_get = gen6_ring_get_irq;
2739 			ring->irq_put = gen6_ring_put_irq;
2740 			ring->dispatch_execbuffer =
2741 				gen6_ring_dispatch_execbuffer;
2742 			if (i915_semaphore_is_enabled(dev)) {
2743 				ring->semaphore.sync_to = gen6_ring_sync;
2744 				ring->semaphore.signal = gen6_signal;
2745 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2746 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2747 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2748 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2749 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2750 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2751 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2752 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2753 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2754 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2755 			}
2756 		}
2757 	} else {
2758 		ring->mmio_base = BSD_RING_BASE;
2759 		ring->flush = bsd_ring_flush;
2760 		ring->add_request = i9xx_add_request;
2761 		ring->get_seqno = ring_get_seqno;
2762 		ring->set_seqno = ring_set_seqno;
2763 		if (IS_GEN5(dev)) {
2764 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2765 			ring->irq_get = gen5_ring_get_irq;
2766 			ring->irq_put = gen5_ring_put_irq;
2767 		} else {
2768 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2769 			ring->irq_get = i9xx_ring_get_irq;
2770 			ring->irq_put = i9xx_ring_put_irq;
2771 		}
2772 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2773 	}
2774 	ring->init_hw = init_ring_common;
2775 
2776 	return intel_init_ring_buffer(dev, ring);
2777 }
2778 
2779 /**
2780  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2781  */
2782 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2783 {
2784 	struct drm_i915_private *dev_priv = dev->dev_private;
2785 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2786 
2787 	ring->name = "bsd2 ring";
2788 	ring->id = VCS2;
2789 
2790 	ring->write_tail = ring_write_tail;
2791 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2792 	ring->flush = gen6_bsd_ring_flush;
2793 	ring->add_request = gen6_add_request;
2794 	ring->get_seqno = gen6_ring_get_seqno;
2795 	ring->set_seqno = ring_set_seqno;
2796 	ring->irq_enable_mask =
2797 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2798 	ring->irq_get = gen8_ring_get_irq;
2799 	ring->irq_put = gen8_ring_put_irq;
2800 	ring->dispatch_execbuffer =
2801 			gen8_ring_dispatch_execbuffer;
2802 	if (i915_semaphore_is_enabled(dev)) {
2803 		ring->semaphore.sync_to = gen8_ring_sync;
2804 		ring->semaphore.signal = gen8_xcs_signal;
2805 		GEN8_RING_SEMAPHORE_INIT;
2806 	}
2807 	ring->init_hw = init_ring_common;
2808 
2809 	return intel_init_ring_buffer(dev, ring);
2810 }
2811 
2812 int intel_init_blt_ring_buffer(struct drm_device *dev)
2813 {
2814 	struct drm_i915_private *dev_priv = dev->dev_private;
2815 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2816 
2817 	ring->name = "blitter ring";
2818 	ring->id = BCS;
2819 
2820 	ring->mmio_base = BLT_RING_BASE;
2821 	ring->write_tail = ring_write_tail;
2822 	ring->flush = gen6_ring_flush;
2823 	ring->add_request = gen6_add_request;
2824 	ring->get_seqno = gen6_ring_get_seqno;
2825 	ring->set_seqno = ring_set_seqno;
2826 	if (INTEL_INFO(dev)->gen >= 8) {
2827 		ring->irq_enable_mask =
2828 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2829 		ring->irq_get = gen8_ring_get_irq;
2830 		ring->irq_put = gen8_ring_put_irq;
2831 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2832 		if (i915_semaphore_is_enabled(dev)) {
2833 			ring->semaphore.sync_to = gen8_ring_sync;
2834 			ring->semaphore.signal = gen8_xcs_signal;
2835 			GEN8_RING_SEMAPHORE_INIT;
2836 		}
2837 	} else {
2838 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2839 		ring->irq_get = gen6_ring_get_irq;
2840 		ring->irq_put = gen6_ring_put_irq;
2841 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2842 		if (i915_semaphore_is_enabled(dev)) {
2843 			ring->semaphore.signal = gen6_signal;
2844 			ring->semaphore.sync_to = gen6_ring_sync;
2845 			/*
2846 			 * The current semaphore is only applied on pre-gen8
2847 			 * platform.  And there is no VCS2 ring on the pre-gen8
2848 			 * platform. So the semaphore between BCS and VCS2 is
2849 			 * initialized as INVALID.  Gen8 will initialize the
2850 			 * sema between BCS and VCS2 later.
2851 			 */
2852 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2853 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2854 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2855 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2856 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2857 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2858 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2859 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2860 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2861 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2862 		}
2863 	}
2864 	ring->init_hw = init_ring_common;
2865 
2866 	return intel_init_ring_buffer(dev, ring);
2867 }
2868 
2869 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2870 {
2871 	struct drm_i915_private *dev_priv = dev->dev_private;
2872 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2873 
2874 	ring->name = "video enhancement ring";
2875 	ring->id = VECS;
2876 
2877 	ring->mmio_base = VEBOX_RING_BASE;
2878 	ring->write_tail = ring_write_tail;
2879 	ring->flush = gen6_ring_flush;
2880 	ring->add_request = gen6_add_request;
2881 	ring->get_seqno = gen6_ring_get_seqno;
2882 	ring->set_seqno = ring_set_seqno;
2883 
2884 	if (INTEL_INFO(dev)->gen >= 8) {
2885 		ring->irq_enable_mask =
2886 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2887 		ring->irq_get = gen8_ring_get_irq;
2888 		ring->irq_put = gen8_ring_put_irq;
2889 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2890 		if (i915_semaphore_is_enabled(dev)) {
2891 			ring->semaphore.sync_to = gen8_ring_sync;
2892 			ring->semaphore.signal = gen8_xcs_signal;
2893 			GEN8_RING_SEMAPHORE_INIT;
2894 		}
2895 	} else {
2896 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2897 		ring->irq_get = hsw_vebox_get_irq;
2898 		ring->irq_put = hsw_vebox_put_irq;
2899 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2900 		if (i915_semaphore_is_enabled(dev)) {
2901 			ring->semaphore.sync_to = gen6_ring_sync;
2902 			ring->semaphore.signal = gen6_signal;
2903 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2904 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2905 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2906 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2907 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2908 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2909 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2910 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2911 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2912 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2913 		}
2914 	}
2915 	ring->init_hw = init_ring_common;
2916 
2917 	return intel_init_ring_buffer(dev, ring);
2918 }
2919 
2920 int
2921 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2922 {
2923 	struct intel_engine_cs *ring = req->ring;
2924 	int ret;
2925 
2926 	if (!ring->gpu_caches_dirty)
2927 		return 0;
2928 
2929 	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2930 	if (ret)
2931 		return ret;
2932 
2933 	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2934 
2935 	ring->gpu_caches_dirty = false;
2936 	return 0;
2937 }
2938 
2939 int
2940 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2941 {
2942 	struct intel_engine_cs *ring = req->ring;
2943 	uint32_t flush_domains;
2944 	int ret;
2945 
2946 	flush_domains = 0;
2947 	if (ring->gpu_caches_dirty)
2948 		flush_domains = I915_GEM_GPU_DOMAINS;
2949 
2950 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2951 	if (ret)
2952 		return ret;
2953 
2954 	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2955 
2956 	ring->gpu_caches_dirty = false;
2957 	return 0;
2958 }
2959 
2960 void
2961 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2962 {
2963 	int ret;
2964 
2965 	if (!intel_ring_initialized(ring))
2966 		return;
2967 
2968 	ret = intel_ring_idle(ring);
2969 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2970 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2971 			  ring->name, ret);
2972 
2973 	stop_ring(ring);
2974 }
2975