xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.h (revision 3074866b)
1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
3 
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 
7 #define I915_CMD_HASH_ORDER 9
8 
9 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
10  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
11  * to give some inclination as to some of the magic values used in the various
12  * workarounds!
13  */
14 #define CACHELINE_BYTES 64
15 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
16 
17 /*
18  * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
19  * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
20  * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
21  *
22  * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
23  * cacheline, the Head Pointer must not be greater than the Tail
24  * Pointer."
25  */
26 #define I915_RING_FREE_SPACE 64
27 
28 struct  intel_hw_status_page {
29 	u32		*page_addr;
30 	unsigned int	gfx_addr;
31 	struct		drm_i915_gem_object *obj;
32 };
33 
34 #define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
35 #define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
36 
37 #define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
38 #define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
39 
40 #define I915_READ_HEAD(ring)  I915_READ(RING_HEAD((ring)->mmio_base))
41 #define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
42 
43 #define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
44 #define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
45 
46 #define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
47 #define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
48 
49 #define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
50 #define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
51 
52 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
53  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
54  */
55 #define gen8_semaphore_seqno_size sizeof(uint64_t)
56 #define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
57 	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
58 #define GEN8_SIGNAL_OFFSET(__ring, to)			     \
59 	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
60 	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
61 #define GEN8_WAIT_OFFSET(__ring, from)			     \
62 	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
63 	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
64 
65 enum intel_ring_hangcheck_action {
66 	HANGCHECK_IDLE = 0,
67 	HANGCHECK_WAIT,
68 	HANGCHECK_ACTIVE,
69 	HANGCHECK_KICK,
70 	HANGCHECK_HUNG,
71 };
72 
73 #define HANGCHECK_SCORE_RING_HUNG 31
74 
75 struct intel_ring_hangcheck {
76 	u64 acthd;
77 	unsigned long user_interrupts;
78 	u32 seqno;
79 	int score;
80 	enum intel_ring_hangcheck_action action;
81 	int deadlock;
82 	u32 instdone[I915_NUM_INSTDONE_REG];
83 };
84 
85 struct intel_ringbuffer {
86 	struct drm_i915_gem_object *obj;
87 	void __iomem *virtual_start;
88 	struct i915_vma *vma;
89 
90 	struct intel_engine_cs *engine;
91 	struct list_head link;
92 
93 	u32 head;
94 	u32 tail;
95 	int space;
96 	int size;
97 	int effective_size;
98 
99 	/** We track the position of the requests in the ring buffer, and
100 	 * when each is retired we increment last_retired_head as the GPU
101 	 * must have finished processing the request and so we know we
102 	 * can advance the ringbuffer up to that position.
103 	 *
104 	 * last_retired_head is set to -1 after the value is consumed so
105 	 * we can detect new retirements.
106 	 */
107 	u32 last_retired_head;
108 };
109 
110 struct i915_gem_context;
111 struct drm_i915_reg_table;
112 
113 /*
114  * we use a single page to load ctx workarounds so all of these
115  * values are referred in terms of dwords
116  *
117  * struct i915_wa_ctx_bb:
118  *  offset: specifies batch starting position, also helpful in case
119  *    if we want to have multiple batches at different offsets based on
120  *    some criteria. It is not a requirement at the moment but provides
121  *    an option for future use.
122  *  size: size of the batch in DWORDS
123  */
124 struct  i915_ctx_workarounds {
125 	struct i915_wa_ctx_bb {
126 		u32 offset;
127 		u32 size;
128 	} indirect_ctx, per_ctx;
129 	struct drm_i915_gem_object *obj;
130 };
131 
132 struct drm_i915_gem_request;
133 
134 struct intel_engine_cs {
135 	struct drm_i915_private *i915;
136 	const char	*name;
137 	enum intel_engine_id {
138 		RCS = 0,
139 		BCS,
140 		VCS,
141 		VCS2,	/* Keep instances of the same type engine together. */
142 		VECS
143 	} id;
144 #define I915_NUM_ENGINES 5
145 #define _VCS(n) (VCS + (n))
146 	unsigned int exec_id;
147 	unsigned int hw_id;
148 	unsigned int guc_id; /* XXX same as hw_id? */
149 	u32		mmio_base;
150 	struct intel_ringbuffer *buffer;
151 	struct list_head buffers;
152 
153 	/* Rather than have every client wait upon all user interrupts,
154 	 * with the herd waking after every interrupt and each doing the
155 	 * heavyweight seqno dance, we delegate the task (of being the
156 	 * bottom-half of the user interrupt) to the first client. After
157 	 * every interrupt, we wake up one client, who does the heavyweight
158 	 * coherent seqno read and either goes back to sleep (if incomplete),
159 	 * or wakes up all the completed clients in parallel, before then
160 	 * transferring the bottom-half status to the next client in the queue.
161 	 *
162 	 * Compared to walking the entire list of waiters in a single dedicated
163 	 * bottom-half, we reduce the latency of the first waiter by avoiding
164 	 * a context switch, but incur additional coherent seqno reads when
165 	 * following the chain of request breadcrumbs. Since it is most likely
166 	 * that we have a single client waiting on each seqno, then reducing
167 	 * the overhead of waking that client is much preferred.
168 	 */
169 	struct intel_breadcrumbs {
170 		struct task_struct *irq_seqno_bh; /* bh for user interrupts */
171 		unsigned long irq_wakeups;
172 		bool irq_posted;
173 
174 		struct lock lock; /* protects the lists of requests */
175 		struct rb_root waiters; /* sorted by retirement, priority */
176 		struct rb_root signals; /* sorted by retirement */
177 		struct intel_wait *first_wait; /* oldest waiter by retirement */
178 		struct task_struct *signaler; /* used for fence signalling */
179 		struct drm_i915_gem_request *first_signal;
180 		struct timer_list fake_irq; /* used after a missed interrupt */
181 
182 		bool irq_enabled : 1;
183 		bool rpm_wakelock : 1;
184 	} breadcrumbs;
185 
186 	/*
187 	 * A pool of objects to use as shadow copies of client batch buffers
188 	 * when the command parser is enabled. Prevents the client from
189 	 * modifying the batch contents after software parsing.
190 	 */
191 	struct i915_gem_batch_pool batch_pool;
192 
193 	struct intel_hw_status_page status_page;
194 	struct i915_ctx_workarounds wa_ctx;
195 
196 	u32             irq_keep_mask; /* always keep these interrupts */
197 	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
198 	void		(*irq_enable)(struct intel_engine_cs *ring);
199 	void		(*irq_disable)(struct intel_engine_cs *ring);
200 
201 	int		(*init_hw)(struct intel_engine_cs *ring);
202 
203 	int		(*init_context)(struct drm_i915_gem_request *req);
204 
205 	void		(*write_tail)(struct intel_engine_cs *ring,
206 				      u32 value);
207 	int __must_check (*flush)(struct drm_i915_gem_request *req,
208 				  u32	invalidate_domains,
209 				  u32	flush_domains);
210 	int		(*add_request)(struct drm_i915_gem_request *req);
211 	/* Some chipsets are not quite as coherent as advertised and need
212 	 * an expensive kick to force a true read of the up-to-date seqno.
213 	 * However, the up-to-date seqno is not always required and the last
214 	 * seen value is good enough. Note that the seqno will always be
215 	 * monotonic, even if not coherent.
216 	 */
217 	void		(*irq_seqno_barrier)(struct intel_engine_cs *ring);
218 	int		(*dispatch_execbuffer)(struct drm_i915_gem_request *req,
219 					       u64 offset, u32 length,
220 					       unsigned dispatch_flags);
221 #define I915_DISPATCH_SECURE 0x1
222 #define I915_DISPATCH_PINNED 0x2
223 #define I915_DISPATCH_RS     0x4
224 	void		(*cleanup)(struct intel_engine_cs *ring);
225 
226 	/* GEN8 signal/wait table - never trust comments!
227 	 *	  signal to	signal to    signal to   signal to      signal to
228 	 *	    RCS		   VCS          BCS        VECS		 VCS2
229 	 *      --------------------------------------------------------------------
230 	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
231 	 *	|-------------------------------------------------------------------
232 	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
233 	 *	|-------------------------------------------------------------------
234 	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
235 	 *	|-------------------------------------------------------------------
236 	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
237 	 *	|-------------------------------------------------------------------
238 	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
239 	 *	|-------------------------------------------------------------------
240 	 *
241 	 * Generalization:
242 	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
243 	 *  ie. transpose of g(x, y)
244 	 *
245 	 *	 sync from	sync from    sync from    sync from	sync from
246 	 *	    RCS		   VCS          BCS        VECS		 VCS2
247 	 *      --------------------------------------------------------------------
248 	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
249 	 *	|-------------------------------------------------------------------
250 	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
251 	 *	|-------------------------------------------------------------------
252 	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
253 	 *	|-------------------------------------------------------------------
254 	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
255 	 *	|-------------------------------------------------------------------
256 	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
257 	 *	|-------------------------------------------------------------------
258 	 *
259 	 * Generalization:
260 	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
261 	 *  ie. transpose of f(x, y)
262 	 */
263 	struct {
264 		u32	sync_seqno[I915_NUM_ENGINES-1];
265 
266 		union {
267 			struct {
268 				/* our mbox written by others */
269 				u32		wait[I915_NUM_ENGINES];
270 				/* mboxes this ring signals to */
271 				i915_reg_t	signal[I915_NUM_ENGINES];
272 			} mbox;
273 			u64		signal_ggtt[I915_NUM_ENGINES];
274 		};
275 
276 		/* AKA wait() */
277 		int	(*sync_to)(struct drm_i915_gem_request *to_req,
278 				   struct intel_engine_cs *from,
279 				   u32 seqno);
280 		int	(*signal)(struct drm_i915_gem_request *signaller_req,
281 				  /* num_dwords needed by caller */
282 				  unsigned int num_dwords);
283 	} semaphore;
284 
285 	/* Execlists */
286 	struct tasklet_struct irq_tasklet;
287 	struct lock execlist_lock;	/* used inside tasklet, use spin_lock_bh */
288 	struct list_head execlist_queue;
289 	unsigned int fw_domains;
290 	unsigned int next_context_status_buffer;
291 	unsigned int idle_lite_restore_wa;
292 	bool disable_lite_restore_wa;
293 	u32 ctx_desc_template;
294 	int		(*emit_request)(struct drm_i915_gem_request *request);
295 	int		(*emit_flush)(struct drm_i915_gem_request *request,
296 				      u32 invalidate_domains,
297 				      u32 flush_domains);
298 	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
299 					 u64 offset, unsigned dispatch_flags);
300 
301 	/**
302 	 * List of objects currently involved in rendering from the
303 	 * ringbuffer.
304 	 *
305 	 * Includes buffers having the contents of their GPU caches
306 	 * flushed, not necessarily primitives.  last_read_req
307 	 * represents when the rendering involved will be completed.
308 	 *
309 	 * A reference is held on the buffer while on this list.
310 	 */
311 	struct list_head active_list;
312 
313 	/**
314 	 * List of breadcrumbs associated with GPU requests currently
315 	 * outstanding.
316 	 */
317 	struct list_head request_list;
318 
319 	/**
320 	 * Seqno of request most recently submitted to request_list.
321 	 * Used exclusively by hang checker to avoid grabbing lock while
322 	 * inspecting request list.
323 	 */
324 	u32 last_submitted_seqno;
325 
326 	bool gpu_caches_dirty;
327 
328 	struct i915_gem_context *last_context;
329 
330 	struct intel_ring_hangcheck hangcheck;
331 
332 	struct {
333 		struct drm_i915_gem_object *obj;
334 		u32 gtt_offset;
335 	} scratch;
336 
337 	bool needs_cmd_parser;
338 
339 	/*
340 	 * Table of commands the command parser needs to know about
341 	 * for this ring.
342 	 */
343 	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
344 
345 	/*
346 	 * Table of registers allowed in commands that read/write registers.
347 	 */
348 	const struct drm_i915_reg_table *reg_tables;
349 	int reg_table_count;
350 
351 	/*
352 	 * Returns the bitmask for the length field of the specified command.
353 	 * Return 0 for an unrecognized/invalid command.
354 	 *
355 	 * If the command parser finds an entry for a command in the ring's
356 	 * cmd_tables, it gets the command's length based on the table entry.
357 	 * If not, it calls this function to determine the per-ring length field
358 	 * encoding for the command (i.e. certain opcode ranges use certain bits
359 	 * to encode the command length in the header).
360 	 */
361 	u32 (*get_cmd_length_mask)(u32 cmd_header);
362 };
363 
364 static inline bool
365 intel_engine_initialized(const struct intel_engine_cs *engine)
366 {
367 	return engine->i915 != NULL;
368 }
369 
370 static inline unsigned
371 intel_engine_flag(const struct intel_engine_cs *engine)
372 {
373 	return 1 << engine->id;
374 }
375 
376 static inline u32
377 intel_ring_sync_index(struct intel_engine_cs *engine,
378 		      struct intel_engine_cs *other)
379 {
380 	int idx;
381 
382 	/*
383 	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
384 	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
385 	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
386 	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
387 	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
388 	 */
389 
390 	idx = (other - engine) - 1;
391 	if (idx < 0)
392 		idx += I915_NUM_ENGINES;
393 
394 	return idx;
395 }
396 
397 static inline void
398 intel_flush_status_page(struct intel_engine_cs *engine, int reg)
399 {
400 	mb();
401 	linux_clflush(&engine->status_page.page_addr[reg]);
402 	mb();
403 }
404 
405 static inline u32
406 intel_read_status_page(struct intel_engine_cs *engine, int reg)
407 {
408 	/* Ensure that the compiler doesn't optimize away the load. */
409 	return READ_ONCE(engine->status_page.page_addr[reg]);
410 }
411 
412 static inline void
413 intel_write_status_page(struct intel_engine_cs *engine,
414 			int reg, u32 value)
415 {
416 	engine->status_page.page_addr[reg] = value;
417 }
418 
419 /*
420  * Reads a dword out of the status page, which is written to from the command
421  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
422  * MI_STORE_DATA_IMM.
423  *
424  * The following dwords have a reserved meaning:
425  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
426  * 0x04: ring 0 head pointer
427  * 0x05: ring 1 head pointer (915-class)
428  * 0x06: ring 2 head pointer (915-class)
429  * 0x10-0x1b: Context status DWords (GM45)
430  * 0x1f: Last written status offset. (GM45)
431  * 0x20-0x2f: Reserved (Gen6+)
432  *
433  * The area from dword 0x30 to 0x3ff is available for driver usage.
434  */
435 #define I915_GEM_HWS_INDEX		0x30
436 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
437 #define I915_GEM_HWS_SCRATCH_INDEX	0x40
438 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
439 
440 struct intel_ringbuffer *
441 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
442 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
443 				     struct intel_ringbuffer *ringbuf);
444 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
445 void intel_ringbuffer_free(struct intel_ringbuffer *ring);
446 
447 void intel_stop_engine(struct intel_engine_cs *engine);
448 void intel_cleanup_engine(struct intel_engine_cs *engine);
449 
450 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
451 
452 int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
453 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
454 static inline void intel_ring_emit(struct intel_engine_cs *engine,
455 				   u32 data)
456 {
457 	struct intel_ringbuffer *ringbuf = engine->buffer;
458 	iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
459 	ringbuf->tail += 4;
460 }
461 static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
462 				       i915_reg_t reg)
463 {
464 	intel_ring_emit(engine, i915_mmio_reg_offset(reg));
465 }
466 static inline void intel_ring_advance(struct intel_engine_cs *engine)
467 {
468 	struct intel_ringbuffer *ringbuf = engine->buffer;
469 	ringbuf->tail &= ringbuf->size - 1;
470 }
471 int __intel_ring_space(int head, int tail, int size);
472 void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
473 
474 int __must_check intel_engine_idle(struct intel_engine_cs *engine);
475 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
476 int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
477 int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
478 
479 int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
480 void intel_fini_pipe_control(struct intel_engine_cs *engine);
481 
482 int intel_init_render_ring_buffer(struct drm_device *dev);
483 int intel_init_bsd_ring_buffer(struct drm_device *dev);
484 int intel_init_bsd2_ring_buffer(struct drm_device *dev);
485 int intel_init_blt_ring_buffer(struct drm_device *dev);
486 int intel_init_vebox_ring_buffer(struct drm_device *dev);
487 
488 u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
489 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
490 {
491 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
492 }
493 
494 int init_workarounds_ring(struct intel_engine_cs *engine);
495 
496 static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
497 {
498 	return ringbuf->tail;
499 }
500 
501 /*
502  * Arbitrary size for largest possible 'add request' sequence. The code paths
503  * are complex and variable. Empirical measurement shows that the worst case
504  * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
505  * we need to allocate double the largest single packet within that emission
506  * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
507  */
508 #define MIN_SPACE_FOR_ADD_REQUEST 336
509 
510 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
511 {
512 	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
513 }
514 
515 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
516 struct intel_wait {
517 	struct rb_node node;
518 	struct task_struct *tsk;
519 	u32 seqno;
520 };
521 
522 struct intel_signal_node {
523 	struct rb_node node;
524 	struct intel_wait wait;
525 };
526 
527 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
528 
529 static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
530 {
531 	wait->tsk = current;
532 	wait->seqno = seqno;
533 }
534 
535 static inline bool intel_wait_complete(const struct intel_wait *wait)
536 {
537 	return RB_EMPTY_NODE(&wait->node);
538 }
539 
540 bool intel_engine_add_wait(struct intel_engine_cs *engine,
541 			   struct intel_wait *wait);
542 void intel_engine_remove_wait(struct intel_engine_cs *engine,
543 			      struct intel_wait *wait);
544 void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
545 
546 static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
547 {
548 	return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
549 }
550 
551 static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
552 {
553 	bool wakeup = false;
554 	struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
555 	/* Note that for this not to dangerously chase a dangling pointer,
556 	 * the caller is responsible for ensure that the task remain valid for
557 	 * wake_up_process() i.e. that the RCU grace period cannot expire.
558 	 *
559 	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
560 	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
561 	 * is unlikely to be beneficial.
562 	 */
563 	if (tsk)
564 		wakeup = wake_up_process(tsk);
565 	return wakeup;
566 }
567 
568 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
569 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
570 unsigned int intel_kick_waiters(struct drm_i915_private *i915);
571 unsigned int intel_kick_signalers(struct drm_i915_private *i915);
572 
573 #endif /* _INTEL_RINGBUFFER_H_ */
574