xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.h (revision 527b525a)
1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
3 
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 #include "i915_gem_request.h"
7 #include "i915_gem_timeline.h"
8 #include "i915_selftest.h"
9 
10 #define I915_CMD_HASH_ORDER 9
11 
12 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
13  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
14  * to give some inclination as to some of the magic values used in the various
15  * workarounds!
16  */
17 #define CACHELINE_BYTES 64
18 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
19 
20 /*
21  * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
22  * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
23  * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
24  *
25  * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
26  * cacheline, the Head Pointer must not be greater than the Tail
27  * Pointer."
28  */
29 #define I915_RING_FREE_SPACE 64
30 
31 struct intel_hw_status_page {
32 	struct i915_vma *vma;
33 	u32 *page_addr;
34 	u32 ggtt_offset;
35 };
36 
37 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
38 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
39 
40 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
41 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
42 
43 #define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
44 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
45 
46 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
47 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
48 
49 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
50 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
51 
52 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
53 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
54 
55 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
56  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
57  */
58 #define gen8_semaphore_seqno_size sizeof(uint64_t)
59 #define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
60 	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
61 #define GEN8_SIGNAL_OFFSET(__ring, to)			     \
62 	(dev_priv->semaphore->node.start + \
63 	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
64 #define GEN8_WAIT_OFFSET(__ring, from)			     \
65 	(dev_priv->semaphore->node.start + \
66 	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
67 
68 enum intel_engine_hangcheck_action {
69 	ENGINE_IDLE = 0,
70 	ENGINE_WAIT,
71 	ENGINE_ACTIVE_SEQNO,
72 	ENGINE_ACTIVE_HEAD,
73 	ENGINE_ACTIVE_SUBUNITS,
74 	ENGINE_WAIT_KICK,
75 	ENGINE_DEAD,
76 };
77 
78 static inline const char *
79 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
80 {
81 	switch (a) {
82 	case ENGINE_IDLE:
83 		return "idle";
84 	case ENGINE_WAIT:
85 		return "wait";
86 	case ENGINE_ACTIVE_SEQNO:
87 		return "active seqno";
88 	case ENGINE_ACTIVE_HEAD:
89 		return "active head";
90 	case ENGINE_ACTIVE_SUBUNITS:
91 		return "active subunits";
92 	case ENGINE_WAIT_KICK:
93 		return "wait kick";
94 	case ENGINE_DEAD:
95 		return "dead";
96 	}
97 
98 	return "unknown";
99 }
100 
101 #define I915_MAX_SLICES	3
102 #define I915_MAX_SUBSLICES 3
103 
104 #define instdone_slice_mask(dev_priv__) \
105 	(INTEL_GEN(dev_priv__) == 7 ? \
106 	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
107 
108 #define instdone_subslice_mask(dev_priv__) \
109 	(INTEL_GEN(dev_priv__) == 7 ? \
110 	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
111 
112 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
113 	for ((slice__) = 0, (subslice__) = 0; \
114 	     (slice__) < I915_MAX_SLICES; \
115 	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
116 	       (slice__) += ((subslice__) == 0)) \
117 		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
118 			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
119 
120 struct intel_instdone {
121 	u32 instdone;
122 	/* The following exist only in the RCS engine */
123 	u32 slice_common;
124 	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
125 	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
126 };
127 
128 struct intel_engine_hangcheck {
129 	u64 acthd;
130 	u32 seqno;
131 	enum intel_engine_hangcheck_action action;
132 	unsigned long action_timestamp;
133 	int deadlock;
134 	struct intel_instdone instdone;
135 	bool stalled;
136 };
137 
138 struct intel_ring {
139 	struct i915_vma *vma;
140 	void *vaddr;
141 
142 	struct intel_engine_cs *engine;
143 
144 	struct list_head request_list;
145 
146 	u32 head;
147 	u32 tail;
148 	u32 emit;
149 
150 	int space;
151 	int size;
152 	int effective_size;
153 };
154 
155 struct i915_gem_context;
156 struct drm_i915_reg_table;
157 
158 /*
159  * we use a single page to load ctx workarounds so all of these
160  * values are referred in terms of dwords
161  *
162  * struct i915_wa_ctx_bb:
163  *  offset: specifies batch starting position, also helpful in case
164  *    if we want to have multiple batches at different offsets based on
165  *    some criteria. It is not a requirement at the moment but provides
166  *    an option for future use.
167  *  size: size of the batch in DWORDS
168  */
169 struct i915_ctx_workarounds {
170 	struct i915_wa_ctx_bb {
171 		u32 offset;
172 		u32 size;
173 	} indirect_ctx, per_ctx;
174 	struct i915_vma *vma;
175 };
176 
177 struct drm_i915_gem_request;
178 struct intel_render_state;
179 
180 /*
181  * Engine IDs definitions.
182  * Keep instances of the same type engine together.
183  */
184 enum intel_engine_id {
185 	RCS = 0,
186 	BCS,
187 	VCS,
188 	VCS2,
189 #define _VCS(n) (VCS + (n))
190 	VECS
191 };
192 
193 struct intel_engine_cs {
194 	struct drm_i915_private *i915;
195 	const char	*name;
196 	enum intel_engine_id id;
197 	unsigned int exec_id;
198 	unsigned int hw_id;
199 	unsigned int guc_id;
200 	u32		mmio_base;
201 	unsigned int irq_shift;
202 	struct intel_ring *buffer;
203 	struct intel_timeline *timeline;
204 
205 	struct intel_render_state *render_state;
206 
207 	atomic_t irq_count;
208 	unsigned long irq_posted;
209 #define ENGINE_IRQ_BREADCRUMB 0
210 #define ENGINE_IRQ_EXECLIST 1
211 
212 	/* Rather than have every client wait upon all user interrupts,
213 	 * with the herd waking after every interrupt and each doing the
214 	 * heavyweight seqno dance, we delegate the task (of being the
215 	 * bottom-half of the user interrupt) to the first client. After
216 	 * every interrupt, we wake up one client, who does the heavyweight
217 	 * coherent seqno read and either goes back to sleep (if incomplete),
218 	 * or wakes up all the completed clients in parallel, before then
219 	 * transferring the bottom-half status to the next client in the queue.
220 	 *
221 	 * Compared to walking the entire list of waiters in a single dedicated
222 	 * bottom-half, we reduce the latency of the first waiter by avoiding
223 	 * a context switch, but incur additional coherent seqno reads when
224 	 * following the chain of request breadcrumbs. Since it is most likely
225 	 * that we have a single client waiting on each seqno, then reducing
226 	 * the overhead of waking that client is much preferred.
227 	 */
228 	struct intel_breadcrumbs {
229 		spinlock_t irq_lock; /* protects irq_*; irqsafe */
230 		struct intel_wait *irq_wait; /* oldest waiter by retirement */
231 
232 		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
233 		struct rb_root waiters; /* sorted by retirement, priority */
234 		struct rb_root signals; /* sorted by retirement */
235 		struct task_struct *signaler; /* used for fence signalling */
236 		struct drm_i915_gem_request __rcu *first_signal;
237 		struct timer_list fake_irq; /* used after a missed interrupt */
238 		struct timer_list hangcheck; /* detect missed interrupts */
239 
240 		unsigned int hangcheck_interrupts;
241 
242 		bool irq_armed : 1;
243 		bool irq_enabled : 1;
244 		I915_SELFTEST_DECLARE(bool mock : 1);
245 	} breadcrumbs;
246 
247 	/*
248 	 * A pool of objects to use as shadow copies of client batch buffers
249 	 * when the command parser is enabled. Prevents the client from
250 	 * modifying the batch contents after software parsing.
251 	 */
252 	struct i915_gem_batch_pool batch_pool;
253 
254 	struct intel_hw_status_page status_page;
255 	struct i915_ctx_workarounds wa_ctx;
256 	struct i915_vma *scratch;
257 
258 	u32             irq_keep_mask; /* always keep these interrupts */
259 	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
260 	void		(*irq_enable)(struct intel_engine_cs *engine);
261 	void		(*irq_disable)(struct intel_engine_cs *engine);
262 
263 	int		(*init_hw)(struct intel_engine_cs *engine);
264 	void		(*reset_hw)(struct intel_engine_cs *engine,
265 				    struct drm_i915_gem_request *req);
266 
267 	void		(*set_default_submission)(struct intel_engine_cs *engine);
268 
269 	int		(*context_pin)(struct intel_engine_cs *engine,
270 				       struct i915_gem_context *ctx);
271 	void		(*context_unpin)(struct intel_engine_cs *engine,
272 					 struct i915_gem_context *ctx);
273 	int		(*request_alloc)(struct drm_i915_gem_request *req);
274 	int		(*init_context)(struct drm_i915_gem_request *req);
275 
276 	int		(*emit_flush)(struct drm_i915_gem_request *request,
277 				      u32 mode);
278 #define EMIT_INVALIDATE	BIT(0)
279 #define EMIT_FLUSH	BIT(1)
280 #define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
281 	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
282 					 u64 offset, u32 length,
283 					 unsigned int dispatch_flags);
284 #define I915_DISPATCH_SECURE BIT(0)
285 #define I915_DISPATCH_PINNED BIT(1)
286 #define I915_DISPATCH_RS     BIT(2)
287 	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
288 					   u32 *cs);
289 	int		emit_breadcrumb_sz;
290 
291 	/* Pass the request to the hardware queue (e.g. directly into
292 	 * the legacy ringbuffer or to the end of an execlist).
293 	 *
294 	 * This is called from an atomic context with irqs disabled; must
295 	 * be irq safe.
296 	 */
297 	void		(*submit_request)(struct drm_i915_gem_request *req);
298 
299 	/* Call when the priority on a request has changed and it and its
300 	 * dependencies may need rescheduling. Note the request itself may
301 	 * not be ready to run!
302 	 *
303 	 * Called under the struct_mutex.
304 	 */
305 	void		(*schedule)(struct drm_i915_gem_request *request,
306 				    int priority);
307 
308 	/* Some chipsets are not quite as coherent as advertised and need
309 	 * an expensive kick to force a true read of the up-to-date seqno.
310 	 * However, the up-to-date seqno is not always required and the last
311 	 * seen value is good enough. Note that the seqno will always be
312 	 * monotonic, even if not coherent.
313 	 */
314 	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
315 	void		(*cleanup)(struct intel_engine_cs *engine);
316 
317 	/* GEN8 signal/wait table - never trust comments!
318 	 *	  signal to	signal to    signal to   signal to      signal to
319 	 *	    RCS		   VCS          BCS        VECS		 VCS2
320 	 *      --------------------------------------------------------------------
321 	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
322 	 *	|-------------------------------------------------------------------
323 	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
324 	 *	|-------------------------------------------------------------------
325 	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
326 	 *	|-------------------------------------------------------------------
327 	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
328 	 *	|-------------------------------------------------------------------
329 	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
330 	 *	|-------------------------------------------------------------------
331 	 *
332 	 * Generalization:
333 	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
334 	 *  ie. transpose of g(x, y)
335 	 *
336 	 *	 sync from	sync from    sync from    sync from	sync from
337 	 *	    RCS		   VCS          BCS        VECS		 VCS2
338 	 *      --------------------------------------------------------------------
339 	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
340 	 *	|-------------------------------------------------------------------
341 	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
342 	 *	|-------------------------------------------------------------------
343 	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
344 	 *	|-------------------------------------------------------------------
345 	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
346 	 *	|-------------------------------------------------------------------
347 	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
348 	 *	|-------------------------------------------------------------------
349 	 *
350 	 * Generalization:
351 	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
352 	 *  ie. transpose of f(x, y)
353 	 */
354 	struct {
355 		union {
356 #define GEN6_SEMAPHORE_LAST	VECS_HW
357 #define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
358 #define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
359 			struct {
360 				/* our mbox written by others */
361 				u32		wait[GEN6_NUM_SEMAPHORES];
362 				/* mboxes this ring signals to */
363 				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
364 			} mbox;
365 			u64		signal_ggtt[I915_NUM_ENGINES];
366 		};
367 
368 		/* AKA wait() */
369 		int	(*sync_to)(struct drm_i915_gem_request *req,
370 				   struct drm_i915_gem_request *signal);
371 		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *cs);
372 	} semaphore;
373 
374 	/* Execlists */
375 	struct tasklet_struct irq_tasklet;
376 	struct execlist_port {
377 		struct drm_i915_gem_request *request;
378 		unsigned int count;
379 		GEM_DEBUG_DECL(u32 context_id);
380 	} execlist_port[2];
381 	struct rb_root execlist_queue;
382 	struct rb_node *execlist_first;
383 	unsigned int fw_domains;
384 
385 	/* Contexts are pinned whilst they are active on the GPU. The last
386 	 * context executed remains active whilst the GPU is idle - the
387 	 * switch away and write to the context object only occurs on the
388 	 * next execution.  Contexts are only unpinned on retirement of the
389 	 * following request ensuring that we can always write to the object
390 	 * on the context switch even after idling. Across suspend, we switch
391 	 * to the kernel context and trash it as the save may not happen
392 	 * before the hardware is powered down.
393 	 */
394 	struct i915_gem_context *last_retired_context;
395 
396 	/* We track the current MI_SET_CONTEXT in order to eliminate
397 	 * redudant context switches. This presumes that requests are not
398 	 * reordered! Or when they are the tracking is updated along with
399 	 * the emission of individual requests into the legacy command
400 	 * stream (ring).
401 	 */
402 	struct i915_gem_context *legacy_active_context;
403 
404 	/* status_notifier: list of callbacks for context-switch changes */
405 	struct atomic_notifier_head context_status_notifier;
406 
407 	struct intel_engine_hangcheck hangcheck;
408 
409 	bool needs_cmd_parser;
410 
411 	/*
412 	 * Table of commands the command parser needs to know about
413 	 * for this engine.
414 	 */
415 	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
416 
417 	/*
418 	 * Table of registers allowed in commands that read/write registers.
419 	 */
420 	const struct drm_i915_reg_table *reg_tables;
421 	int reg_table_count;
422 
423 	/*
424 	 * Returns the bitmask for the length field of the specified command.
425 	 * Return 0 for an unrecognized/invalid command.
426 	 *
427 	 * If the command parser finds an entry for a command in the engine's
428 	 * cmd_tables, it gets the command's length based on the table entry.
429 	 * If not, it calls this function to determine the per-engine length
430 	 * field encoding for the command (i.e. different opcode ranges use
431 	 * certain bits to encode the command length in the header).
432 	 */
433 	u32 (*get_cmd_length_mask)(u32 cmd_header);
434 };
435 
436 static inline unsigned int
437 intel_engine_flag(const struct intel_engine_cs *engine)
438 {
439 	return BIT(engine->id);
440 }
441 
442 static inline u32
443 intel_read_status_page(struct intel_engine_cs *engine, int reg)
444 {
445 	/* Ensure that the compiler doesn't optimize away the load. */
446 	return READ_ONCE(engine->status_page.page_addr[reg]);
447 }
448 
449 static inline void
450 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
451 {
452 	/* Writing into the status page should be done sparingly. Since
453 	 * we do when we are uncertain of the device state, we take a bit
454 	 * of extra paranoia to try and ensure that the HWS takes the value
455 	 * we give and that it doesn't end up trapped inside the CPU!
456 	 */
457 	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
458 		mb();
459 		linux_clflush(&engine->status_page.page_addr[reg]);
460 		engine->status_page.page_addr[reg] = value;
461 		linux_clflush(&engine->status_page.page_addr[reg]);
462 		mb();
463 	} else {
464 		WRITE_ONCE(engine->status_page.page_addr[reg], value);
465 	}
466 }
467 
468 /*
469  * Reads a dword out of the status page, which is written to from the command
470  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
471  * MI_STORE_DATA_IMM.
472  *
473  * The following dwords have a reserved meaning:
474  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
475  * 0x04: ring 0 head pointer
476  * 0x05: ring 1 head pointer (915-class)
477  * 0x06: ring 2 head pointer (915-class)
478  * 0x10-0x1b: Context status DWords (GM45)
479  * 0x1f: Last written status offset. (GM45)
480  * 0x20-0x2f: Reserved (Gen6+)
481  *
482  * The area from dword 0x30 to 0x3ff is available for driver usage.
483  */
484 #define I915_GEM_HWS_INDEX		0x30
485 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
486 #define I915_GEM_HWS_SCRATCH_INDEX	0x40
487 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
488 
489 struct intel_ring *
490 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
491 int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias);
492 void intel_ring_reset(struct intel_ring *ring, u32 tail);
493 void intel_ring_update_space(struct intel_ring *ring);
494 void intel_ring_unpin(struct intel_ring *ring);
495 void intel_ring_free(struct intel_ring *ring);
496 
497 void intel_engine_stop(struct intel_engine_cs *engine);
498 void intel_engine_cleanup(struct intel_engine_cs *engine);
499 
500 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
501 
502 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
503 
504 u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req, int n);
505 
506 static inline void
507 intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
508 {
509 	/* Dummy function.
510 	 *
511 	 * This serves as a placeholder in the code so that the reader
512 	 * can compare against the preceding intel_ring_begin() and
513 	 * check that the number of dwords emitted matches the space
514 	 * reserved for the command packet (i.e. the value passed to
515 	 * intel_ring_begin()).
516 	 */
517 	GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
518 }
519 
520 static inline u32
521 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
522 {
523 	return pos & (ring->size - 1);
524 }
525 
526 static inline u32
527 intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
528 {
529 	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
530 	u32 offset = addr - req->ring->vaddr;
531 	GEM_BUG_ON(offset > req->ring->size);
532 	return intel_ring_wrap(req->ring, offset);
533 }
534 
535 static inline void
536 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
537 {
538 	/* We could combine these into a single tail operation, but keeping
539 	 * them as seperate tests will help identify the cause should one
540 	 * ever fire.
541 	 */
542 	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
543 	GEM_BUG_ON(tail >= ring->size);
544 }
545 
546 static inline unsigned int
547 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
548 {
549 	/* Whilst writes to the tail are strictly order, there is no
550 	 * serialisation between readers and the writers. The tail may be
551 	 * read by i915_gem_request_retire() just as it is being updated
552 	 * by execlists, as although the breadcrumb is complete, the context
553 	 * switch hasn't been seen.
554 	 */
555 	assert_ring_tail_valid(ring, tail);
556 	ring->tail = tail;
557 	return tail;
558 }
559 
560 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
561 
562 void intel_engine_setup_common(struct intel_engine_cs *engine);
563 int intel_engine_init_common(struct intel_engine_cs *engine);
564 int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
565 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
566 
567 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
568 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
569 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
570 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
571 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
572 
573 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
574 u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
575 
576 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
577 {
578 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
579 }
580 
581 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
582 {
583 	/* We are only peeking at the tail of the submit queue (and not the
584 	 * queue itself) in order to gain a hint as to the current active
585 	 * state of the engine. Callers are not expected to be taking
586 	 * engine->timeline->lock, nor are they expected to be concerned
587 	 * wtih serialising this hint with anything, so document it as
588 	 * a hint and nothing more.
589 	 */
590 	return READ_ONCE(engine->timeline->seqno);
591 }
592 
593 int init_workarounds_ring(struct intel_engine_cs *engine);
594 int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
595 
596 void intel_engine_get_instdone(struct intel_engine_cs *engine,
597 			       struct intel_instdone *instdone);
598 
599 /*
600  * Arbitrary size for largest possible 'add request' sequence. The code paths
601  * are complex and variable. Empirical measurement shows that the worst case
602  * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
603  * we need to allocate double the largest single packet within that emission
604  * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
605  */
606 #define MIN_SPACE_FOR_ADD_REQUEST 336
607 
608 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
609 {
610 	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
611 }
612 
613 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
614 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
615 
616 static inline void intel_wait_init(struct intel_wait *wait,
617 				   struct drm_i915_gem_request *rq)
618 {
619 	wait->tsk = current;
620 	wait->request = rq;
621 }
622 
623 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
624 {
625 	wait->tsk = current;
626 	wait->seqno = seqno;
627 }
628 
629 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
630 {
631 	return wait->seqno;
632 }
633 
634 static inline bool
635 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
636 {
637 	wait->seqno = seqno;
638 	return intel_wait_has_seqno(wait);
639 }
640 
641 static inline bool
642 intel_wait_update_request(struct intel_wait *wait,
643 			  const struct drm_i915_gem_request *rq)
644 {
645 	return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
646 }
647 
648 static inline bool
649 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
650 {
651 	return wait->seqno == seqno;
652 }
653 
654 static inline bool
655 intel_wait_check_request(const struct intel_wait *wait,
656 			 const struct drm_i915_gem_request *rq)
657 {
658 	return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
659 }
660 
661 static inline bool intel_wait_complete(const struct intel_wait *wait)
662 {
663 	return RB_EMPTY_NODE(&wait->node);
664 }
665 
666 bool intel_engine_add_wait(struct intel_engine_cs *engine,
667 			   struct intel_wait *wait);
668 void intel_engine_remove_wait(struct intel_engine_cs *engine,
669 			      struct intel_wait *wait);
670 void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
671 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
672 
673 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
674 {
675 	return READ_ONCE(engine->breadcrumbs.irq_wait);
676 }
677 
678 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
679 #define ENGINE_WAKEUP_WAITER BIT(0)
680 #define ENGINE_WAKEUP_ASLEEP BIT(1)
681 
682 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
683 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
684 
685 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
686 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
687 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
688 
689 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
690 {
691 	memset(batch, 0, 6 * sizeof(u32));
692 
693 	batch[0] = GFX_OP_PIPE_CONTROL(6);
694 	batch[1] = flags;
695 	batch[2] = offset;
696 
697 	return batch + 6;
698 }
699 
700 bool intel_engine_is_idle(struct intel_engine_cs *engine);
701 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
702 
703 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
704 
705 #endif /* _INTEL_RINGBUFFER_H_ */
706