xref: /dragonfly/sys/dev/drm/i915/intel_ringbuffer.h (revision 7c47e3df)
1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
3 
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 #include "i915_gem_request.h"
7 #include "i915_gem_timeline.h"
8 
9 #define I915_CMD_HASH_ORDER 9
10 
11 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
12  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
13  * to give some inclination as to some of the magic values used in the various
14  * workarounds!
15  */
16 #define CACHELINE_BYTES 64
17 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
18 
19 /*
20  * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
21  * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
22  * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
23  *
24  * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
25  * cacheline, the Head Pointer must not be greater than the Tail
26  * Pointer."
27  */
28 #define I915_RING_FREE_SPACE 64
29 
30 struct intel_hw_status_page {
31 	struct i915_vma *vma;
32 	u32 *page_addr;
33 	u32 ggtt_offset;
34 };
35 
36 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
37 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
38 
39 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
40 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
41 
42 #define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
43 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
44 
45 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
46 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
47 
48 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
49 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
50 
51 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
52 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
53 
54 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
55  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
56  */
57 #define gen8_semaphore_seqno_size sizeof(uint64_t)
58 #define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
59 	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
60 #define GEN8_SIGNAL_OFFSET(__ring, to)			     \
61 	(dev_priv->semaphore->node.start + \
62 	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
63 #define GEN8_WAIT_OFFSET(__ring, from)			     \
64 	(dev_priv->semaphore->node.start + \
65 	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
66 
67 enum intel_engine_hangcheck_action {
68 	HANGCHECK_IDLE = 0,
69 	HANGCHECK_WAIT,
70 	HANGCHECK_ACTIVE,
71 	HANGCHECK_KICK,
72 	HANGCHECK_HUNG,
73 };
74 
75 #define HANGCHECK_SCORE_RING_HUNG 31
76 
77 #define I915_MAX_SLICES	3
78 #define I915_MAX_SUBSLICES 3
79 
80 #define instdone_slice_mask(dev_priv__) \
81 	(INTEL_GEN(dev_priv__) == 7 ? \
82 	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
83 
84 #define instdone_subslice_mask(dev_priv__) \
85 	(INTEL_GEN(dev_priv__) == 7 ? \
86 	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
87 
88 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
89 	for ((slice__) = 0, (subslice__) = 0; \
90 	     (slice__) < I915_MAX_SLICES; \
91 	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
92 	       (slice__) += ((subslice__) == 0)) \
93 		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
94 			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
95 
96 struct intel_instdone {
97 	u32 instdone;
98 	/* The following exist only in the RCS engine */
99 	u32 slice_common;
100 	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
101 	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
102 };
103 
104 struct intel_engine_hangcheck {
105 	u64 acthd;
106 	u32 seqno;
107 	int score;
108 	enum intel_engine_hangcheck_action action;
109 	int deadlock;
110 	struct intel_instdone instdone;
111 };
112 
113 struct intel_ring {
114 	struct i915_vma *vma;
115 	void *vaddr;
116 
117 	struct intel_engine_cs *engine;
118 
119 	struct list_head request_list;
120 
121 	u32 head;
122 	u32 tail;
123 	int space;
124 	int size;
125 	int effective_size;
126 
127 	/** We track the position of the requests in the ring buffer, and
128 	 * when each is retired we increment last_retired_head as the GPU
129 	 * must have finished processing the request and so we know we
130 	 * can advance the ringbuffer up to that position.
131 	 *
132 	 * last_retired_head is set to -1 after the value is consumed so
133 	 * we can detect new retirements.
134 	 */
135 	u32 last_retired_head;
136 };
137 
138 struct i915_gem_context;
139 struct drm_i915_reg_table;
140 
141 /*
142  * we use a single page to load ctx workarounds so all of these
143  * values are referred in terms of dwords
144  *
145  * struct i915_wa_ctx_bb:
146  *  offset: specifies batch starting position, also helpful in case
147  *    if we want to have multiple batches at different offsets based on
148  *    some criteria. It is not a requirement at the moment but provides
149  *    an option for future use.
150  *  size: size of the batch in DWORDS
151  */
152 struct i915_ctx_workarounds {
153 	struct i915_wa_ctx_bb {
154 		u32 offset;
155 		u32 size;
156 	} indirect_ctx, per_ctx;
157 	struct i915_vma *vma;
158 };
159 
160 struct drm_i915_gem_request;
161 struct intel_render_state;
162 
163 struct intel_engine_cs {
164 	struct drm_i915_private *i915;
165 	const char	*name;
166 	enum intel_engine_id {
167 		RCS = 0,
168 		BCS,
169 		VCS,
170 		VCS2,	/* Keep instances of the same type engine together. */
171 		VECS
172 	} id;
173 #define _VCS(n) (VCS + (n))
174 	unsigned int exec_id;
175 	enum intel_engine_hw_id {
176 		RCS_HW = 0,
177 		VCS_HW,
178 		BCS_HW,
179 		VECS_HW,
180 		VCS2_HW
181 	} hw_id;
182 	enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
183 	u32		mmio_base;
184 	unsigned int irq_shift;
185 	struct intel_ring *buffer;
186 	struct intel_timeline *timeline;
187 
188 	struct intel_render_state *render_state;
189 
190 	/* Rather than have every client wait upon all user interrupts,
191 	 * with the herd waking after every interrupt and each doing the
192 	 * heavyweight seqno dance, we delegate the task (of being the
193 	 * bottom-half of the user interrupt) to the first client. After
194 	 * every interrupt, we wake up one client, who does the heavyweight
195 	 * coherent seqno read and either goes back to sleep (if incomplete),
196 	 * or wakes up all the completed clients in parallel, before then
197 	 * transferring the bottom-half status to the next client in the queue.
198 	 *
199 	 * Compared to walking the entire list of waiters in a single dedicated
200 	 * bottom-half, we reduce the latency of the first waiter by avoiding
201 	 * a context switch, but incur additional coherent seqno reads when
202 	 * following the chain of request breadcrumbs. Since it is most likely
203 	 * that we have a single client waiting on each seqno, then reducing
204 	 * the overhead of waking that client is much preferred.
205 	 */
206 	struct intel_breadcrumbs {
207 		struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
208 		bool irq_posted;
209 
210 		spinlock_t lock; /* protects the lists of requests; irqsafe */
211 		struct rb_root waiters; /* sorted by retirement, priority */
212 		struct rb_root signals; /* sorted by retirement */
213 		struct intel_wait *first_wait; /* oldest waiter by retirement */
214 		struct task_struct *signaler; /* used for fence signalling */
215 		struct drm_i915_gem_request *first_signal;
216 		struct timer_list fake_irq; /* used after a missed interrupt */
217 		struct timer_list hangcheck; /* detect missed interrupts */
218 
219 		unsigned long timeout;
220 
221 		bool irq_enabled : 1;
222 		bool rpm_wakelock : 1;
223 	} breadcrumbs;
224 
225 	/*
226 	 * A pool of objects to use as shadow copies of client batch buffers
227 	 * when the command parser is enabled. Prevents the client from
228 	 * modifying the batch contents after software parsing.
229 	 */
230 	struct i915_gem_batch_pool batch_pool;
231 
232 	struct intel_hw_status_page status_page;
233 	struct i915_ctx_workarounds wa_ctx;
234 	struct i915_vma *scratch;
235 
236 	u32             irq_keep_mask; /* always keep these interrupts */
237 	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
238 	void		(*irq_enable)(struct intel_engine_cs *engine);
239 	void		(*irq_disable)(struct intel_engine_cs *engine);
240 
241 	int		(*init_hw)(struct intel_engine_cs *engine);
242 	void		(*reset_hw)(struct intel_engine_cs *engine,
243 				    struct drm_i915_gem_request *req);
244 
245 	int		(*init_context)(struct drm_i915_gem_request *req);
246 
247 	int		(*emit_flush)(struct drm_i915_gem_request *request,
248 				      u32 mode);
249 #define EMIT_INVALIDATE	BIT(0)
250 #define EMIT_FLUSH	BIT(1)
251 #define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
252 	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
253 					 u64 offset, u32 length,
254 					 unsigned int dispatch_flags);
255 #define I915_DISPATCH_SECURE BIT(0)
256 #define I915_DISPATCH_PINNED BIT(1)
257 #define I915_DISPATCH_RS     BIT(2)
258 	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
259 					   u32 *out);
260 	int		emit_breadcrumb_sz;
261 
262 	/* Pass the request to the hardware queue (e.g. directly into
263 	 * the legacy ringbuffer or to the end of an execlist).
264 	 *
265 	 * This is called from an atomic context with irqs disabled; must
266 	 * be irq safe.
267 	 */
268 	void		(*submit_request)(struct drm_i915_gem_request *req);
269 
270 	/* Call when the priority on a request has changed and it and its
271 	 * dependencies may need rescheduling. Note the request itself may
272 	 * not be ready to run!
273 	 *
274 	 * Called under the struct_mutex.
275 	 */
276 	void		(*schedule)(struct drm_i915_gem_request *request,
277 				    int priority);
278 
279 	/* Some chipsets are not quite as coherent as advertised and need
280 	 * an expensive kick to force a true read of the up-to-date seqno.
281 	 * However, the up-to-date seqno is not always required and the last
282 	 * seen value is good enough. Note that the seqno will always be
283 	 * monotonic, even if not coherent.
284 	 */
285 	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
286 	void		(*cleanup)(struct intel_engine_cs *engine);
287 
288 	/* GEN8 signal/wait table - never trust comments!
289 	 *	  signal to	signal to    signal to   signal to      signal to
290 	 *	    RCS		   VCS          BCS        VECS		 VCS2
291 	 *      --------------------------------------------------------------------
292 	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
293 	 *	|-------------------------------------------------------------------
294 	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
295 	 *	|-------------------------------------------------------------------
296 	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
297 	 *	|-------------------------------------------------------------------
298 	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
299 	 *	|-------------------------------------------------------------------
300 	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
301 	 *	|-------------------------------------------------------------------
302 	 *
303 	 * Generalization:
304 	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
305 	 *  ie. transpose of g(x, y)
306 	 *
307 	 *	 sync from	sync from    sync from    sync from	sync from
308 	 *	    RCS		   VCS          BCS        VECS		 VCS2
309 	 *      --------------------------------------------------------------------
310 	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
311 	 *	|-------------------------------------------------------------------
312 	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
313 	 *	|-------------------------------------------------------------------
314 	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
315 	 *	|-------------------------------------------------------------------
316 	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
317 	 *	|-------------------------------------------------------------------
318 	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
319 	 *	|-------------------------------------------------------------------
320 	 *
321 	 * Generalization:
322 	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
323 	 *  ie. transpose of f(x, y)
324 	 */
325 	struct {
326 		union {
327 #define GEN6_SEMAPHORE_LAST	VECS_HW
328 #define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
329 #define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
330 			struct {
331 				/* our mbox written by others */
332 				u32		wait[GEN6_NUM_SEMAPHORES];
333 				/* mboxes this ring signals to */
334 				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
335 			} mbox;
336 			u64		signal_ggtt[I915_NUM_ENGINES];
337 		};
338 
339 		/* AKA wait() */
340 		int	(*sync_to)(struct drm_i915_gem_request *req,
341 				   struct drm_i915_gem_request *signal);
342 		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *out);
343 	} semaphore;
344 
345 	/* Execlists */
346 	struct tasklet_struct irq_tasklet;
347 	struct execlist_port {
348 		struct drm_i915_gem_request *request;
349 		unsigned int count;
350 	} execlist_port[2];
351 	struct rb_root execlist_queue;
352 	struct rb_node *execlist_first;
353 	unsigned int fw_domains;
354 	bool disable_lite_restore_wa;
355 	bool preempt_wa;
356 	u32 ctx_desc_template;
357 
358 	struct i915_gem_context *last_context;
359 
360 	struct intel_engine_hangcheck hangcheck;
361 
362 	bool needs_cmd_parser;
363 
364 	/*
365 	 * Table of commands the command parser needs to know about
366 	 * for this engine.
367 	 */
368 	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
369 
370 	/*
371 	 * Table of registers allowed in commands that read/write registers.
372 	 */
373 	const struct drm_i915_reg_table *reg_tables;
374 	int reg_table_count;
375 
376 	/*
377 	 * Returns the bitmask for the length field of the specified command.
378 	 * Return 0 for an unrecognized/invalid command.
379 	 *
380 	 * If the command parser finds an entry for a command in the engine's
381 	 * cmd_tables, it gets the command's length based on the table entry.
382 	 * If not, it calls this function to determine the per-engine length
383 	 * field encoding for the command (i.e. different opcode ranges use
384 	 * certain bits to encode the command length in the header).
385 	 */
386 	u32 (*get_cmd_length_mask)(u32 cmd_header);
387 };
388 
389 static inline unsigned
390 intel_engine_flag(const struct intel_engine_cs *engine)
391 {
392 	return 1 << engine->id;
393 }
394 
395 static inline void
396 intel_flush_status_page(struct intel_engine_cs *engine, int reg)
397 {
398 	mb();
399 	linux_clflush(&engine->status_page.page_addr[reg]);
400 	mb();
401 }
402 
403 static inline u32
404 intel_read_status_page(struct intel_engine_cs *engine, int reg)
405 {
406 	/* Ensure that the compiler doesn't optimize away the load. */
407 	return READ_ONCE(engine->status_page.page_addr[reg]);
408 }
409 
410 static inline void
411 intel_write_status_page(struct intel_engine_cs *engine,
412 			int reg, u32 value)
413 {
414 	engine->status_page.page_addr[reg] = value;
415 }
416 
417 /*
418  * Reads a dword out of the status page, which is written to from the command
419  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
420  * MI_STORE_DATA_IMM.
421  *
422  * The following dwords have a reserved meaning:
423  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
424  * 0x04: ring 0 head pointer
425  * 0x05: ring 1 head pointer (915-class)
426  * 0x06: ring 2 head pointer (915-class)
427  * 0x10-0x1b: Context status DWords (GM45)
428  * 0x1f: Last written status offset. (GM45)
429  * 0x20-0x2f: Reserved (Gen6+)
430  *
431  * The area from dword 0x30 to 0x3ff is available for driver usage.
432  */
433 #define I915_GEM_HWS_INDEX		0x30
434 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
435 #define I915_GEM_HWS_SCRATCH_INDEX	0x40
436 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
437 
438 struct intel_ring *
439 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
440 int intel_ring_pin(struct intel_ring *ring);
441 void intel_ring_unpin(struct intel_ring *ring);
442 void intel_ring_free(struct intel_ring *ring);
443 
444 void intel_engine_stop(struct intel_engine_cs *engine);
445 void intel_engine_cleanup(struct intel_engine_cs *engine);
446 
447 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
448 
449 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
450 
451 int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
452 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
453 
454 static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
455 {
456 	*(uint32_t *)(ring->vaddr + ring->tail) = data;
457 	ring->tail += 4;
458 }
459 
460 static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
461 {
462 	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
463 }
464 
465 static inline void intel_ring_advance(struct intel_ring *ring)
466 {
467 	/* Dummy function.
468 	 *
469 	 * This serves as a placeholder in the code so that the reader
470 	 * can compare against the preceding intel_ring_begin() and
471 	 * check that the number of dwords emitted matches the space
472 	 * reserved for the command packet (i.e. the value passed to
473 	 * intel_ring_begin()).
474 	 */
475 }
476 
477 static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
478 {
479 	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
480 	u32 offset = addr - ring->vaddr;
481 	return offset & (ring->size - 1);
482 }
483 
484 int __intel_ring_space(int head, int tail, int size);
485 void intel_ring_update_space(struct intel_ring *ring);
486 
487 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
488 
489 void intel_engine_setup_common(struct intel_engine_cs *engine);
490 int intel_engine_init_common(struct intel_engine_cs *engine);
491 int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
492 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
493 
494 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
495 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
496 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
497 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
498 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
499 
500 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
501 u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
502 
503 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
504 {
505 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
506 }
507 
508 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
509 {
510 	/* We are only peeking at the tail of the submit queue (and not the
511 	 * queue itself) in order to gain a hint as to the current active
512 	 * state of the engine. Callers are not expected to be taking
513 	 * engine->timeline->lock, nor are they expected to be concerned
514 	 * wtih serialising this hint with anything, so document it as
515 	 * a hint and nothing more.
516 	 */
517 	return READ_ONCE(engine->timeline->last_submitted_seqno);
518 }
519 
520 int init_workarounds_ring(struct intel_engine_cs *engine);
521 
522 void intel_engine_get_instdone(struct intel_engine_cs *engine,
523 			       struct intel_instdone *instdone);
524 
525 /*
526  * Arbitrary size for largest possible 'add request' sequence. The code paths
527  * are complex and variable. Empirical measurement shows that the worst case
528  * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
529  * we need to allocate double the largest single packet within that emission
530  * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
531  */
532 #define MIN_SPACE_FOR_ADD_REQUEST 336
533 
534 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
535 {
536 	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
537 }
538 
539 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
540 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
541 
542 static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
543 {
544 	wait->tsk = current;
545 	wait->seqno = seqno;
546 }
547 
548 static inline bool intel_wait_complete(const struct intel_wait *wait)
549 {
550 	return RB_EMPTY_NODE(&wait->node);
551 }
552 
553 bool intel_engine_add_wait(struct intel_engine_cs *engine,
554 			   struct intel_wait *wait);
555 void intel_engine_remove_wait(struct intel_engine_cs *engine,
556 			      struct intel_wait *wait);
557 void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
558 
559 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
560 {
561 	return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
562 }
563 
564 static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
565 {
566 	bool wakeup = false;
567 
568 	/* Note that for this not to dangerously chase a dangling pointer,
569 	 * we must hold the rcu_read_lock here.
570 	 *
571 	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
572 	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
573 	 * is unlikely to be beneficial.
574 	 */
575 	if (intel_engine_has_waiter(engine)) {
576 		struct task_struct *tsk;
577 
578 		rcu_read_lock();
579 		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
580 		if (tsk)
581 			wakeup = wake_up_process(tsk);
582 		rcu_read_unlock();
583 	}
584 
585 	return wakeup;
586 }
587 
588 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
589 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
590 unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
591 
592 #endif /* _INTEL_RINGBUFFER_H_ */
593