xref: /dragonfly/sys/dev/drm/i915/intel_runtime_pm.c (revision 4d18c287)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70 
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 	switch (domain) {
75 	case POWER_DOMAIN_PIPE_A:
76 		return "PIPE_A";
77 	case POWER_DOMAIN_PIPE_B:
78 		return "PIPE_B";
79 	case POWER_DOMAIN_PIPE_C:
80 		return "PIPE_C";
81 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 		return "PIPE_A_PANEL_FITTER";
83 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 		return "PIPE_B_PANEL_FITTER";
85 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 		return "PIPE_C_PANEL_FITTER";
87 	case POWER_DOMAIN_TRANSCODER_A:
88 		return "TRANSCODER_A";
89 	case POWER_DOMAIN_TRANSCODER_B:
90 		return "TRANSCODER_B";
91 	case POWER_DOMAIN_TRANSCODER_C:
92 		return "TRANSCODER_C";
93 	case POWER_DOMAIN_TRANSCODER_EDP:
94 		return "TRANSCODER_EDP";
95 	case POWER_DOMAIN_TRANSCODER_DSI_A:
96 		return "TRANSCODER_DSI_A";
97 	case POWER_DOMAIN_TRANSCODER_DSI_C:
98 		return "TRANSCODER_DSI_C";
99 	case POWER_DOMAIN_PORT_DDI_A_LANES:
100 		return "PORT_DDI_A_LANES";
101 	case POWER_DOMAIN_PORT_DDI_B_LANES:
102 		return "PORT_DDI_B_LANES";
103 	case POWER_DOMAIN_PORT_DDI_C_LANES:
104 		return "PORT_DDI_C_LANES";
105 	case POWER_DOMAIN_PORT_DDI_D_LANES:
106 		return "PORT_DDI_D_LANES";
107 	case POWER_DOMAIN_PORT_DDI_E_LANES:
108 		return "PORT_DDI_E_LANES";
109 	case POWER_DOMAIN_PORT_DSI:
110 		return "PORT_DSI";
111 	case POWER_DOMAIN_PORT_CRT:
112 		return "PORT_CRT";
113 	case POWER_DOMAIN_PORT_OTHER:
114 		return "PORT_OTHER";
115 	case POWER_DOMAIN_VGA:
116 		return "VGA";
117 	case POWER_DOMAIN_AUDIO:
118 		return "AUDIO";
119 	case POWER_DOMAIN_PLLS:
120 		return "PLLS";
121 	case POWER_DOMAIN_AUX_A:
122 		return "AUX_A";
123 	case POWER_DOMAIN_AUX_B:
124 		return "AUX_B";
125 	case POWER_DOMAIN_AUX_C:
126 		return "AUX_C";
127 	case POWER_DOMAIN_AUX_D:
128 		return "AUX_D";
129 	case POWER_DOMAIN_GMBUS:
130 		return "GMBUS";
131 	case POWER_DOMAIN_INIT:
132 		return "INIT";
133 	case POWER_DOMAIN_MODESET:
134 		return "MODESET";
135 	default:
136 		MISSING_CASE(domain);
137 		return "?";
138 	}
139 }
140 
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 				    struct i915_power_well *power_well)
143 {
144 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 	power_well->ops->enable(dev_priv, power_well);
146 	power_well->hw_enabled = true;
147 }
148 
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 				     struct i915_power_well *power_well)
151 {
152 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 	power_well->hw_enabled = false;
154 	power_well->ops->disable(dev_priv, power_well);
155 }
156 
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 				 struct i915_power_well *power_well)
159 {
160 	if (!power_well->count++)
161 		intel_power_well_enable(dev_priv, power_well);
162 }
163 
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 				 struct i915_power_well *power_well)
166 {
167 	WARN(!power_well->count, "Use count on power well %s is already zero",
168 	     power_well->name);
169 
170 	if (!--power_well->count)
171 		intel_power_well_disable(dev_priv, power_well);
172 }
173 
174 /*
175  * We should only use the power well if we explicitly asked the hardware to
176  * enable it, so check if it's enabled and also check if we've requested it to
177  * be enabled.
178  */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 				   struct i915_power_well *power_well)
181 {
182 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185 
186 /**
187  * __intel_display_power_is_enabled - unlocked check for a power domain
188  * @dev_priv: i915 device instance
189  * @domain: power domain to check
190  *
191  * This is the unlocked version of intel_display_power_is_enabled() and should
192  * only be used from error capture and recovery code where deadlocks are
193  * possible.
194  *
195  * Returns:
196  * True when the power domain is enabled, false otherwise.
197  */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 				      enum intel_display_power_domain domain)
200 {
201 	struct i915_power_domains *power_domains;
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 	int i;
205 
206 	if (dev_priv->pm.suspended)
207 		return false;
208 
209 	power_domains = &dev_priv->power_domains;
210 
211 	is_enabled = true;
212 
213 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 		if (power_well->always_on)
215 			continue;
216 
217 		if (!power_well->hw_enabled) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @dev_priv: i915 device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains;
247 	bool ret;
248 
249 	power_domains = &dev_priv->power_domains;
250 
251 	mutex_lock(&power_domains->lock);
252 	ret = __intel_display_power_is_enabled(dev_priv, domain);
253 	mutex_unlock(&power_domains->lock);
254 
255 	return ret;
256 }
257 
258 /**
259  * intel_display_set_init_power - set the initial power domain state
260  * @dev_priv: i915 device instance
261  * @enable: whether to enable or disable the initial power domain state
262  *
263  * For simplicity our driver load/unload and system suspend/resume code assumes
264  * that all power domains are always enabled. This functions controls the state
265  * of this little hack. While the initial power domain state is enabled runtime
266  * pm is effectively disabled.
267  */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 				  bool enable)
270 {
271 	if (dev_priv->power_domains.init_power_on == enable)
272 		return;
273 
274 	if (enable)
275 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 	else
277 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278 
279 	dev_priv->power_domains.init_power_on = enable;
280 }
281 
282 /*
283  * Starting with Haswell, we have a "Power Down Well" that can be turned off
284  * when not needed anymore. We have 4 registers that can request the power well
285  * to be enabled, and it will only be disabled if none of the registers is
286  * requesting it to be enabled.
287  */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 	struct drm_device *dev = &dev_priv->drm;
291 
292 	/*
293 	 * After we re-enable the power well, if we touch VGA register 0x3d5
294 	 * we'll get unclaimed register interrupts. This stops after we write
295 	 * anything to the VGA MSR register. The vgacon module uses this
296 	 * register all the time, so if we unbind our driver and, as a
297 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 	 * console_unlock(). So make here we touch the VGA MSR register, making
299 	 * sure vgacon can keep working normally without triggering interrupts
300 	 * and error messages.
301 	 */
302 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
303 #if 0
304 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 #endif
306 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
307 
308 	if (IS_BROADWELL(dev))
309 		gen8_irq_power_well_post_enable(dev_priv,
310 						1 << PIPE_C | 1 << PIPE_B);
311 }
312 
313 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
314 {
315 	if (IS_BROADWELL(dev_priv))
316 		gen8_irq_power_well_pre_disable(dev_priv,
317 						1 << PIPE_C | 1 << PIPE_B);
318 }
319 
320 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
321 				       struct i915_power_well *power_well)
322 {
323 	struct drm_device *dev = &dev_priv->drm;
324 
325 	/*
326 	 * After we re-enable the power well, if we touch VGA register 0x3d5
327 	 * we'll get unclaimed register interrupts. This stops after we write
328 	 * anything to the VGA MSR register. The vgacon module uses this
329 	 * register all the time, so if we unbind our driver and, as a
330 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
331 	 * console_unlock(). So make here we touch the VGA MSR register, making
332 	 * sure vgacon can keep working normally without triggering interrupts
333 	 * and error messages.
334 	 */
335 	if (power_well->data == SKL_DISP_PW_2) {
336 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
337 #if 0
338 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
339 #endif
340 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
341 
342 		gen8_irq_power_well_post_enable(dev_priv,
343 						1 << PIPE_C | 1 << PIPE_B);
344 	}
345 }
346 
347 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
348 				       struct i915_power_well *power_well)
349 {
350 	if (power_well->data == SKL_DISP_PW_2)
351 		gen8_irq_power_well_pre_disable(dev_priv,
352 						1 << PIPE_C | 1 << PIPE_B);
353 }
354 
355 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
356 			       struct i915_power_well *power_well, bool enable)
357 {
358 	bool is_enabled, enable_requested;
359 	uint32_t tmp;
360 
361 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
362 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
363 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
364 
365 	if (enable) {
366 		if (!enable_requested)
367 			I915_WRITE(HSW_PWR_WELL_DRIVER,
368 				   HSW_PWR_WELL_ENABLE_REQUEST);
369 
370 		if (!is_enabled) {
371 			DRM_DEBUG_KMS("Enabling power well\n");
372 			if (intel_wait_for_register(dev_priv,
373 						    HSW_PWR_WELL_DRIVER,
374 						    HSW_PWR_WELL_STATE_ENABLED,
375 						    HSW_PWR_WELL_STATE_ENABLED,
376 						    20))
377 				DRM_ERROR("Timeout enabling power well\n");
378 			hsw_power_well_post_enable(dev_priv);
379 		}
380 
381 	} else {
382 		if (enable_requested) {
383 			hsw_power_well_pre_disable(dev_priv);
384 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
385 			POSTING_READ(HSW_PWR_WELL_DRIVER);
386 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
387 		}
388 	}
389 }
390 
391 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
392 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
393 	BIT(POWER_DOMAIN_PIPE_B) |			\
394 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
395 	BIT(POWER_DOMAIN_PIPE_C) |			\
396 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
397 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
398 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
399 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
400 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
401 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
402 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
403 	BIT(POWER_DOMAIN_AUX_B) |                       \
404 	BIT(POWER_DOMAIN_AUX_C) |			\
405 	BIT(POWER_DOMAIN_AUX_D) |			\
406 	BIT(POWER_DOMAIN_AUDIO) |			\
407 	BIT(POWER_DOMAIN_VGA) |				\
408 	BIT(POWER_DOMAIN_INIT))
409 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
410 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
411 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
412 	BIT(POWER_DOMAIN_INIT))
413 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
414 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
415 	BIT(POWER_DOMAIN_INIT))
416 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
417 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
418 	BIT(POWER_DOMAIN_INIT))
419 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
420 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
421 	BIT(POWER_DOMAIN_INIT))
422 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
423 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
424 	BIT(POWER_DOMAIN_MODESET) |			\
425 	BIT(POWER_DOMAIN_AUX_A) |			\
426 	BIT(POWER_DOMAIN_INIT))
427 
428 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
429 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
430 	BIT(POWER_DOMAIN_PIPE_B) |			\
431 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
432 	BIT(POWER_DOMAIN_PIPE_C) |			\
433 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
434 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
435 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
436 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
437 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
438 	BIT(POWER_DOMAIN_AUX_B) |			\
439 	BIT(POWER_DOMAIN_AUX_C) |			\
440 	BIT(POWER_DOMAIN_AUDIO) |			\
441 	BIT(POWER_DOMAIN_VGA) |				\
442 	BIT(POWER_DOMAIN_GMBUS) |			\
443 	BIT(POWER_DOMAIN_INIT))
444 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
445 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
446 	BIT(POWER_DOMAIN_MODESET) |			\
447 	BIT(POWER_DOMAIN_AUX_A) |			\
448 	BIT(POWER_DOMAIN_INIT))
449 #define BXT_DPIO_CMN_A_POWER_DOMAINS (			\
450 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
451 	BIT(POWER_DOMAIN_AUX_A) |			\
452 	BIT(POWER_DOMAIN_INIT))
453 #define BXT_DPIO_CMN_BC_POWER_DOMAINS (			\
454 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
455 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
456 	BIT(POWER_DOMAIN_AUX_B) |			\
457 	BIT(POWER_DOMAIN_AUX_C) |			\
458 	BIT(POWER_DOMAIN_INIT))
459 
460 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
461 {
462 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
463 		  "DC9 already programmed to be enabled.\n");
464 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
465 		  "DC5 still not disabled to enable DC9.\n");
466 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
467 	WARN_ONCE(intel_irqs_enabled(dev_priv),
468 		  "Interrupts not disabled yet.\n");
469 
470 	 /*
471 	  * TODO: check for the following to verify the conditions to enter DC9
472 	  * state are satisfied:
473 	  * 1] Check relevant display engine registers to verify if mode set
474 	  * disable sequence was followed.
475 	  * 2] Check if display uninitialize sequence is initialized.
476 	  */
477 }
478 
479 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
480 {
481 	WARN_ONCE(intel_irqs_enabled(dev_priv),
482 		  "Interrupts not disabled yet.\n");
483 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
484 		  "DC5 still not disabled.\n");
485 
486 	 /*
487 	  * TODO: check for the following to verify DC9 state was indeed
488 	  * entered before programming to disable it:
489 	  * 1] Check relevant display engine registers to verify if mode
490 	  *  set disable sequence was followed.
491 	  * 2] Check if display uninitialize sequence is initialized.
492 	  */
493 }
494 
495 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
496 				u32 state)
497 {
498 	int rewrites = 0;
499 	int rereads = 0;
500 	u32 v;
501 
502 	I915_WRITE(DC_STATE_EN, state);
503 
504 	/* It has been observed that disabling the dc6 state sometimes
505 	 * doesn't stick and dmc keeps returning old value. Make sure
506 	 * the write really sticks enough times and also force rewrite until
507 	 * we are confident that state is exactly what we want.
508 	 */
509 	do  {
510 		v = I915_READ(DC_STATE_EN);
511 
512 		if (v != state) {
513 			I915_WRITE(DC_STATE_EN, state);
514 			rewrites++;
515 			rereads = 0;
516 		} else if (rereads++ > 5) {
517 			break;
518 		}
519 
520 	} while (rewrites < 100);
521 
522 	if (v != state)
523 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
524 			  state, v);
525 
526 	/* Most of the times we need one retry, avoid spam */
527 	if (rewrites > 1)
528 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
529 			      state, rewrites);
530 }
531 
532 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
533 {
534 	u32 mask;
535 
536 	mask = DC_STATE_EN_UPTO_DC5;
537 	if (IS_BROXTON(dev_priv))
538 		mask |= DC_STATE_EN_DC9;
539 	else
540 		mask |= DC_STATE_EN_UPTO_DC6;
541 
542 	return mask;
543 }
544 
545 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
546 {
547 	u32 val;
548 
549 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
550 
551 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
552 		      dev_priv->csr.dc_state, val);
553 	dev_priv->csr.dc_state = val;
554 }
555 
556 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
557 {
558 	uint32_t val;
559 	uint32_t mask;
560 
561 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
562 		state &= dev_priv->csr.allowed_dc_mask;
563 
564 	val = I915_READ(DC_STATE_EN);
565 	mask = gen9_dc_mask(dev_priv);
566 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
567 		      val & mask, state);
568 
569 	/* Check if DMC is ignoring our DC state requests */
570 	if ((val & mask) != dev_priv->csr.dc_state)
571 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
572 			  dev_priv->csr.dc_state, val & mask);
573 
574 	val &= ~mask;
575 	val |= state;
576 
577 	gen9_write_dc_state(dev_priv, val);
578 
579 	dev_priv->csr.dc_state = val & mask;
580 }
581 
582 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
583 {
584 	assert_can_enable_dc9(dev_priv);
585 
586 	DRM_DEBUG_KMS("Enabling DC9\n");
587 
588 	intel_power_sequencer_reset(dev_priv);
589 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
590 }
591 
592 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
593 {
594 	assert_can_disable_dc9(dev_priv);
595 
596 	DRM_DEBUG_KMS("Disabling DC9\n");
597 
598 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
599 }
600 
601 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
602 {
603 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
604 		  "CSR program storage start is NULL\n");
605 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
606 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
607 }
608 
609 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
610 {
611 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
612 					SKL_DISP_PW_2);
613 
614 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
615 
616 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
617 		  "DC5 already programmed to be enabled.\n");
618 	assert_rpm_wakelock_held(dev_priv);
619 
620 	assert_csr_loaded(dev_priv);
621 }
622 
623 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
624 {
625 	assert_can_enable_dc5(dev_priv);
626 
627 	DRM_DEBUG_KMS("Enabling DC5\n");
628 
629 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
630 }
631 
632 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
633 {
634 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
635 		  "Backlight is not disabled.\n");
636 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
637 		  "DC6 already programmed to be enabled.\n");
638 
639 	assert_csr_loaded(dev_priv);
640 }
641 
642 void skl_enable_dc6(struct drm_i915_private *dev_priv)
643 {
644 	assert_can_enable_dc6(dev_priv);
645 
646 	DRM_DEBUG_KMS("Enabling DC6\n");
647 
648 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
649 
650 }
651 
652 void skl_disable_dc6(struct drm_i915_private *dev_priv)
653 {
654 	DRM_DEBUG_KMS("Disabling DC6\n");
655 
656 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
657 }
658 
659 static void
660 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
661 				  struct i915_power_well *power_well)
662 {
663 	enum skl_disp_power_wells power_well_id = power_well->data;
664 	u32 val;
665 	u32 mask;
666 
667 	mask = SKL_POWER_WELL_REQ(power_well_id);
668 
669 	val = I915_READ(HSW_PWR_WELL_KVMR);
670 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
671 		      power_well->name))
672 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
673 
674 	val = I915_READ(HSW_PWR_WELL_BIOS);
675 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
676 
677 	if (!(val & mask))
678 		return;
679 
680 	/*
681 	 * DMC is known to force on the request bits for power well 1 on SKL
682 	 * and BXT and the misc IO power well on SKL but we don't expect any
683 	 * other request bits to be set, so WARN for those.
684 	 */
685 	if (power_well_id == SKL_DISP_PW_1 ||
686 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
687 	     power_well_id == SKL_DISP_PW_MISC_IO))
688 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
689 				 "by DMC\n", power_well->name);
690 	else
691 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
692 			  power_well->name);
693 
694 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
695 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
696 }
697 
698 static void skl_set_power_well(struct drm_i915_private *dev_priv,
699 			struct i915_power_well *power_well, bool enable)
700 {
701 	uint32_t tmp, fuse_status;
702 	uint32_t req_mask, state_mask;
703 	bool is_enabled, enable_requested, check_fuse_status = false;
704 
705 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
706 	fuse_status = I915_READ(SKL_FUSE_STATUS);
707 
708 	switch (power_well->data) {
709 	case SKL_DISP_PW_1:
710 		if (intel_wait_for_register(dev_priv,
711 					    SKL_FUSE_STATUS,
712 					    SKL_FUSE_PG0_DIST_STATUS,
713 					    SKL_FUSE_PG0_DIST_STATUS,
714 					    1)) {
715 			DRM_ERROR("PG0 not enabled\n");
716 			return;
717 		}
718 		break;
719 	case SKL_DISP_PW_2:
720 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
721 			DRM_ERROR("PG1 in disabled state\n");
722 			return;
723 		}
724 		break;
725 	case SKL_DISP_PW_DDI_A_E:
726 	case SKL_DISP_PW_DDI_B:
727 	case SKL_DISP_PW_DDI_C:
728 	case SKL_DISP_PW_DDI_D:
729 	case SKL_DISP_PW_MISC_IO:
730 		break;
731 	default:
732 		WARN(1, "Unknown power well %lu\n", power_well->data);
733 		return;
734 	}
735 
736 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
737 	enable_requested = tmp & req_mask;
738 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
739 	is_enabled = tmp & state_mask;
740 
741 	if (!enable && enable_requested)
742 		skl_power_well_pre_disable(dev_priv, power_well);
743 
744 	if (enable) {
745 		if (!enable_requested) {
746 			WARN((tmp & state_mask) &&
747 				!I915_READ(HSW_PWR_WELL_BIOS),
748 				"Invalid for power well status to be enabled, unless done by the BIOS, \
749 				when request is to disable!\n");
750 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
751 		}
752 
753 		if (!is_enabled) {
754 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
755 			check_fuse_status = true;
756 		}
757 	} else {
758 		if (enable_requested) {
759 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
760 			POSTING_READ(HSW_PWR_WELL_DRIVER);
761 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
762 		}
763 
764 		if (IS_GEN9(dev_priv))
765 			gen9_sanitize_power_well_requests(dev_priv, power_well);
766 	}
767 
768 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
769 		     1))
770 		DRM_ERROR("%s %s timeout\n",
771 			  power_well->name, enable ? "enable" : "disable");
772 
773 	if (check_fuse_status) {
774 		if (power_well->data == SKL_DISP_PW_1) {
775 			if (intel_wait_for_register(dev_priv,
776 						    SKL_FUSE_STATUS,
777 						    SKL_FUSE_PG1_DIST_STATUS,
778 						    SKL_FUSE_PG1_DIST_STATUS,
779 						    1))
780 				DRM_ERROR("PG1 distributing status timeout\n");
781 		} else if (power_well->data == SKL_DISP_PW_2) {
782 			if (intel_wait_for_register(dev_priv,
783 						    SKL_FUSE_STATUS,
784 						    SKL_FUSE_PG2_DIST_STATUS,
785 						    SKL_FUSE_PG2_DIST_STATUS,
786 						    1))
787 				DRM_ERROR("PG2 distributing status timeout\n");
788 		}
789 	}
790 
791 	if (enable && !is_enabled)
792 		skl_power_well_post_enable(dev_priv, power_well);
793 }
794 
795 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
796 				   struct i915_power_well *power_well)
797 {
798 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
799 
800 	/*
801 	 * We're taking over the BIOS, so clear any requests made by it since
802 	 * the driver is in charge now.
803 	 */
804 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
805 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
806 }
807 
808 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
809 				  struct i915_power_well *power_well)
810 {
811 	hsw_set_power_well(dev_priv, power_well, true);
812 }
813 
814 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
815 				   struct i915_power_well *power_well)
816 {
817 	hsw_set_power_well(dev_priv, power_well, false);
818 }
819 
820 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
821 					struct i915_power_well *power_well)
822 {
823 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
824 		SKL_POWER_WELL_STATE(power_well->data);
825 
826 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
827 }
828 
829 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
830 				struct i915_power_well *power_well)
831 {
832 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
833 
834 	/* Clear any request made by BIOS as driver is taking over */
835 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
836 }
837 
838 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
839 				struct i915_power_well *power_well)
840 {
841 	skl_set_power_well(dev_priv, power_well, true);
842 }
843 
844 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
845 				struct i915_power_well *power_well)
846 {
847 	skl_set_power_well(dev_priv, power_well, false);
848 }
849 
850 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
851 {
852 	enum skl_disp_power_wells power_well_id = power_well->data;
853 
854 	return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
855 }
856 
857 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
858 					   struct i915_power_well *power_well)
859 {
860 	enum skl_disp_power_wells power_well_id = power_well->data;
861 	struct i915_power_well *cmn_a_well;
862 
863 	if (power_well_id == BXT_DPIO_CMN_BC) {
864 		/*
865 		 * We need to copy the GRC calibration value from the eDP PHY,
866 		 * so make sure it's powered up.
867 		 */
868 		cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
869 		intel_power_well_get(dev_priv, cmn_a_well);
870 	}
871 
872 	bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
873 
874 	if (power_well_id == BXT_DPIO_CMN_BC)
875 		intel_power_well_put(dev_priv, cmn_a_well);
876 }
877 
878 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
879 					    struct i915_power_well *power_well)
880 {
881 	bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
882 }
883 
884 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
885 					    struct i915_power_well *power_well)
886 {
887 	return bxt_ddi_phy_is_enabled(dev_priv,
888 				      bxt_power_well_to_phy(power_well));
889 }
890 
891 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
892 					    struct i915_power_well *power_well)
893 {
894 	if (power_well->count > 0)
895 		bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
896 	else
897 		bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
898 }
899 
900 
901 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
902 {
903 	struct i915_power_well *power_well;
904 
905 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
906 	if (power_well->count > 0)
907 		bxt_ddi_phy_verify_state(dev_priv,
908 					 bxt_power_well_to_phy(power_well));
909 
910 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
911 	if (power_well->count > 0)
912 		bxt_ddi_phy_verify_state(dev_priv,
913 					 bxt_power_well_to_phy(power_well));
914 }
915 
916 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
917 					   struct i915_power_well *power_well)
918 {
919 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
920 }
921 
922 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
923 {
924 	u32 tmp = I915_READ(DBUF_CTL);
925 
926 	WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
927 	     (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
928 	     "Unexpected DBuf power power state (0x%08x)\n", tmp);
929 }
930 
931 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
932 					  struct i915_power_well *power_well)
933 {
934 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
935 
936 	WARN_ON(dev_priv->cdclk_freq !=
937 		dev_priv->display.get_display_clock_speed(&dev_priv->drm));
938 
939 	gen9_assert_dbuf_enabled(dev_priv);
940 
941 	if (IS_BROXTON(dev_priv))
942 		bxt_verify_ddi_phy_power_wells(dev_priv);
943 }
944 
945 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
946 					   struct i915_power_well *power_well)
947 {
948 	if (!dev_priv->csr.dmc_payload)
949 		return;
950 
951 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
952 		skl_enable_dc6(dev_priv);
953 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
954 		gen9_enable_dc5(dev_priv);
955 }
956 
957 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
958 					   struct i915_power_well *power_well)
959 {
960 	if (power_well->count > 0)
961 		gen9_dc_off_power_well_enable(dev_priv, power_well);
962 	else
963 		gen9_dc_off_power_well_disable(dev_priv, power_well);
964 }
965 
966 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
967 					   struct i915_power_well *power_well)
968 {
969 }
970 
971 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
972 					     struct i915_power_well *power_well)
973 {
974 	return true;
975 }
976 
977 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
978 			       struct i915_power_well *power_well, bool enable)
979 {
980 	enum punit_power_well power_well_id = power_well->data;
981 	u32 mask;
982 	u32 state;
983 	u32 ctrl;
984 
985 	mask = PUNIT_PWRGT_MASK(power_well_id);
986 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
987 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
988 
989 	mutex_lock(&dev_priv->rps.hw_lock);
990 
991 #define COND \
992 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
993 
994 	if (COND)
995 		goto out;
996 
997 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
998 	ctrl &= ~mask;
999 	ctrl |= state;
1000 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
1001 
1002 	if (wait_for(COND, 100))
1003 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1004 			  state,
1005 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1006 
1007 #undef COND
1008 
1009 out:
1010 	mutex_unlock(&dev_priv->rps.hw_lock);
1011 }
1012 
1013 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1014 				   struct i915_power_well *power_well)
1015 {
1016 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1017 }
1018 
1019 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1020 				  struct i915_power_well *power_well)
1021 {
1022 	vlv_set_power_well(dev_priv, power_well, true);
1023 }
1024 
1025 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1026 				   struct i915_power_well *power_well)
1027 {
1028 	vlv_set_power_well(dev_priv, power_well, false);
1029 }
1030 
1031 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1032 				   struct i915_power_well *power_well)
1033 {
1034 	int power_well_id = power_well->data;
1035 	bool enabled = false;
1036 	u32 mask;
1037 	u32 state;
1038 	u32 ctrl;
1039 
1040 	mask = PUNIT_PWRGT_MASK(power_well_id);
1041 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1042 
1043 	mutex_lock(&dev_priv->rps.hw_lock);
1044 
1045 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1046 	/*
1047 	 * We only ever set the power-on and power-gate states, anything
1048 	 * else is unexpected.
1049 	 */
1050 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1051 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1052 	if (state == ctrl)
1053 		enabled = true;
1054 
1055 	/*
1056 	 * A transient state at this point would mean some unexpected party
1057 	 * is poking at the power controls too.
1058 	 */
1059 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1060 	WARN_ON(ctrl != state);
1061 
1062 	mutex_unlock(&dev_priv->rps.hw_lock);
1063 
1064 	return enabled;
1065 }
1066 
1067 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1068 {
1069 	u32 val;
1070 
1071 	/*
1072 	 * On driver load, a pipe may be active and driving a DSI display.
1073 	 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
1074 	 * (and never recovering) in this case. intel_dsi_post_disable() will
1075 	 * clear it when we turn off the display.
1076 	 */
1077 	val = I915_READ(DSPCLK_GATE_D);
1078 	val &= DPOUNIT_CLOCK_GATE_DISABLE;
1079 	val |= VRHUNIT_CLOCK_GATE_DISABLE;
1080 	I915_WRITE(DSPCLK_GATE_D, val);
1081 
1082 	/*
1083 	 * Disable trickle feed and enable pnd deadline calculation
1084 	 */
1085 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1086 	I915_WRITE(CBR1_VLV, 0);
1087 
1088 	WARN_ON(dev_priv->rawclk_freq == 0);
1089 
1090 	I915_WRITE(RAWCLK_FREQ_VLV,
1091 		   DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1092 }
1093 
1094 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1095 {
1096 	struct intel_encoder *encoder;
1097 	enum i915_pipe pipe;
1098 
1099 	/*
1100 	 * Enable the CRI clock source so we can get at the
1101 	 * display and the reference clock for VGA
1102 	 * hotplug / manual detection. Supposedly DSI also
1103 	 * needs the ref clock up and running.
1104 	 *
1105 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
1106 	 */
1107 	for_each_pipe(&dev_priv->drm, pipe) {
1108 		u32 val = I915_READ(DPLL(pipe));
1109 
1110 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1111 		if (pipe != PIPE_A)
1112 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1113 
1114 		I915_WRITE(DPLL(pipe), val);
1115 	}
1116 
1117 	vlv_init_display_clock_gating(dev_priv);
1118 
1119 	spin_lock_irq(&dev_priv->irq_lock);
1120 	valleyview_enable_display_irqs(dev_priv);
1121 	spin_unlock_irq(&dev_priv->irq_lock);
1122 
1123 	/*
1124 	 * During driver initialization/resume we can avoid restoring the
1125 	 * part of the HW/SW state that will be inited anyway explicitly.
1126 	 */
1127 	if (dev_priv->power_domains.initializing)
1128 		return;
1129 
1130 	intel_hpd_init(dev_priv);
1131 
1132 	/* Re-enable the ADPA, if we have one */
1133 	for_each_intel_encoder(&dev_priv->drm, encoder) {
1134 		if (encoder->type == INTEL_OUTPUT_ANALOG)
1135 			intel_crt_reset(&encoder->base);
1136 	}
1137 
1138 	i915_redisable_vga_power_on(&dev_priv->drm);
1139 }
1140 
1141 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1142 {
1143 	spin_lock_irq(&dev_priv->irq_lock);
1144 	valleyview_disable_display_irqs(dev_priv);
1145 	spin_unlock_irq(&dev_priv->irq_lock);
1146 
1147 	/* make sure we're done processing display irqs */
1148 	synchronize_irq(dev_priv->drm.irq);
1149 
1150 	intel_power_sequencer_reset(dev_priv);
1151 
1152 	intel_hpd_poll_init(dev_priv);
1153 }
1154 
1155 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1156 					  struct i915_power_well *power_well)
1157 {
1158 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1159 
1160 	vlv_set_power_well(dev_priv, power_well, true);
1161 
1162 	vlv_display_power_well_init(dev_priv);
1163 }
1164 
1165 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1166 					   struct i915_power_well *power_well)
1167 {
1168 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1169 
1170 	vlv_display_power_well_deinit(dev_priv);
1171 
1172 	vlv_set_power_well(dev_priv, power_well, false);
1173 }
1174 
1175 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1176 					   struct i915_power_well *power_well)
1177 {
1178 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1179 
1180 	/* since ref/cri clock was enabled */
1181 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1182 
1183 	vlv_set_power_well(dev_priv, power_well, true);
1184 
1185 	/*
1186 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1187 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1188 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1189 	 *   b.	The other bits such as sfr settings / modesel may all
1190 	 *	be set to 0.
1191 	 *
1192 	 * This should only be done on init and resume from S3 with
1193 	 * both PLLs disabled, or we risk losing DPIO and PLL
1194 	 * synchronization.
1195 	 */
1196 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1197 }
1198 
1199 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1200 					    struct i915_power_well *power_well)
1201 {
1202 	enum i915_pipe pipe;
1203 
1204 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1205 
1206 	for_each_pipe(dev_priv, pipe)
1207 		assert_pll_disabled(dev_priv, pipe);
1208 
1209 	/* Assert common reset */
1210 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1211 
1212 	vlv_set_power_well(dev_priv, power_well, false);
1213 }
1214 
1215 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1216 
1217 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1218 						 int power_well_id)
1219 {
1220 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1221 	int i;
1222 
1223 	for (i = 0; i < power_domains->power_well_count; i++) {
1224 		struct i915_power_well *power_well;
1225 
1226 		power_well = &power_domains->power_wells[i];
1227 		if (power_well->data == power_well_id)
1228 			return power_well;
1229 	}
1230 
1231 	return NULL;
1232 }
1233 
1234 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1235 
1236 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1237 {
1238 	struct i915_power_well *cmn_bc =
1239 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1240 	struct i915_power_well *cmn_d =
1241 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1242 	u32 phy_control = dev_priv->chv_phy_control;
1243 	u32 phy_status = 0;
1244 	u32 phy_status_mask = 0xffffffff;
1245 
1246 	/*
1247 	 * The BIOS can leave the PHY is some weird state
1248 	 * where it doesn't fully power down some parts.
1249 	 * Disable the asserts until the PHY has been fully
1250 	 * reset (ie. the power well has been disabled at
1251 	 * least once).
1252 	 */
1253 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1254 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1255 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1256 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1257 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1258 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1259 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1260 
1261 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1262 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1263 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1264 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1265 
1266 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1267 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1268 
1269 		/* this assumes override is only used to enable lanes */
1270 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1271 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1272 
1273 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1274 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1275 
1276 		/* CL1 is on whenever anything is on in either channel */
1277 		if (BITS_SET(phy_control,
1278 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1279 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1280 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1281 
1282 		/*
1283 		 * The DPLLB check accounts for the pipe B + port A usage
1284 		 * with CL2 powered up but all the lanes in the second channel
1285 		 * powered down.
1286 		 */
1287 		if (BITS_SET(phy_control,
1288 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1289 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1290 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1291 
1292 		if (BITS_SET(phy_control,
1293 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1294 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1295 		if (BITS_SET(phy_control,
1296 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1297 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1298 
1299 		if (BITS_SET(phy_control,
1300 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1301 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1302 		if (BITS_SET(phy_control,
1303 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1304 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1305 	}
1306 
1307 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1308 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1309 
1310 		/* this assumes override is only used to enable lanes */
1311 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1312 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1313 
1314 		if (BITS_SET(phy_control,
1315 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1316 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1317 
1318 		if (BITS_SET(phy_control,
1319 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1320 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1321 		if (BITS_SET(phy_control,
1322 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1323 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1324 	}
1325 
1326 	phy_status &= phy_status_mask;
1327 
1328 	/*
1329 	 * The PHY may be busy with some initial calibration and whatnot,
1330 	 * so the power state can take a while to actually change.
1331 	 */
1332 	if (intel_wait_for_register(dev_priv,
1333 				    DISPLAY_PHY_STATUS,
1334 				    phy_status_mask,
1335 				    phy_status,
1336 				    10))
1337 		DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1338 			  I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1339 			   phy_status, dev_priv->chv_phy_control);
1340 }
1341 
1342 #undef BITS_SET
1343 
1344 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1345 					   struct i915_power_well *power_well)
1346 {
1347 	enum dpio_phy phy;
1348 	enum i915_pipe pipe;
1349 	uint32_t tmp;
1350 
1351 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1352 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1353 
1354 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1355 		pipe = PIPE_A;
1356 		phy = DPIO_PHY0;
1357 	} else {
1358 		pipe = PIPE_C;
1359 		phy = DPIO_PHY1;
1360 	}
1361 
1362 	/* since ref/cri clock was enabled */
1363 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1364 	vlv_set_power_well(dev_priv, power_well, true);
1365 
1366 	/* Poll for phypwrgood signal */
1367 	if (intel_wait_for_register(dev_priv,
1368 				    DISPLAY_PHY_STATUS,
1369 				    PHY_POWERGOOD(phy),
1370 				    PHY_POWERGOOD(phy),
1371 				    1))
1372 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1373 
1374 	mutex_lock(&dev_priv->sb_lock);
1375 
1376 	/* Enable dynamic power down */
1377 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1378 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1379 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1380 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1381 
1382 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1383 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1384 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1385 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1386 	} else {
1387 		/*
1388 		 * Force the non-existing CL2 off. BXT does this
1389 		 * too, so maybe it saves some power even though
1390 		 * CL2 doesn't exist?
1391 		 */
1392 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1393 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1394 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1395 	}
1396 
1397 	mutex_unlock(&dev_priv->sb_lock);
1398 
1399 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1400 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1401 
1402 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1403 		      phy, dev_priv->chv_phy_control);
1404 
1405 	assert_chv_phy_status(dev_priv);
1406 }
1407 
1408 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1409 					    struct i915_power_well *power_well)
1410 {
1411 	enum dpio_phy phy;
1412 
1413 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1414 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1415 
1416 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1417 		phy = DPIO_PHY0;
1418 		assert_pll_disabled(dev_priv, PIPE_A);
1419 		assert_pll_disabled(dev_priv, PIPE_B);
1420 	} else {
1421 		phy = DPIO_PHY1;
1422 		assert_pll_disabled(dev_priv, PIPE_C);
1423 	}
1424 
1425 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1426 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1427 
1428 	vlv_set_power_well(dev_priv, power_well, false);
1429 
1430 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1431 		      phy, dev_priv->chv_phy_control);
1432 
1433 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1434 	dev_priv->chv_phy_assert[phy] = true;
1435 
1436 	assert_chv_phy_status(dev_priv);
1437 }
1438 
1439 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1440 				     enum dpio_channel ch, bool override, unsigned int mask)
1441 {
1442 	enum i915_pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1443 	u32 reg, val, expected, actual;
1444 
1445 	/*
1446 	 * The BIOS can leave the PHY is some weird state
1447 	 * where it doesn't fully power down some parts.
1448 	 * Disable the asserts until the PHY has been fully
1449 	 * reset (ie. the power well has been disabled at
1450 	 * least once).
1451 	 */
1452 	if (!dev_priv->chv_phy_assert[phy])
1453 		return;
1454 
1455 	if (ch == DPIO_CH0)
1456 		reg = _CHV_CMN_DW0_CH0;
1457 	else
1458 		reg = _CHV_CMN_DW6_CH1;
1459 
1460 	mutex_lock(&dev_priv->sb_lock);
1461 	val = vlv_dpio_read(dev_priv, pipe, reg);
1462 	mutex_unlock(&dev_priv->sb_lock);
1463 
1464 	/*
1465 	 * This assumes !override is only used when the port is disabled.
1466 	 * All lanes should power down even without the override when
1467 	 * the port is disabled.
1468 	 */
1469 	if (!override || mask == 0xf) {
1470 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1471 		/*
1472 		 * If CH1 common lane is not active anymore
1473 		 * (eg. for pipe B DPLL) the entire channel will
1474 		 * shut down, which causes the common lane registers
1475 		 * to read as 0. That means we can't actually check
1476 		 * the lane power down status bits, but as the entire
1477 		 * register reads as 0 it's a good indication that the
1478 		 * channel is indeed entirely powered down.
1479 		 */
1480 		if (ch == DPIO_CH1 && val == 0)
1481 			expected = 0;
1482 	} else if (mask != 0x0) {
1483 		expected = DPIO_ANYDL_POWERDOWN;
1484 	} else {
1485 		expected = 0;
1486 	}
1487 
1488 	if (ch == DPIO_CH0)
1489 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1490 	else
1491 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1492 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1493 
1494 	WARN(actual != expected,
1495 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1496 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1497 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1498 	     reg, val);
1499 }
1500 
1501 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1502 			  enum dpio_channel ch, bool override)
1503 {
1504 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1505 	bool was_override;
1506 
1507 	mutex_lock(&power_domains->lock);
1508 
1509 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1510 
1511 	if (override == was_override)
1512 		goto out;
1513 
1514 	if (override)
1515 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1516 	else
1517 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1518 
1519 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1520 
1521 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1522 		      phy, ch, dev_priv->chv_phy_control);
1523 
1524 	assert_chv_phy_status(dev_priv);
1525 
1526 out:
1527 	mutex_unlock(&power_domains->lock);
1528 
1529 	return was_override;
1530 }
1531 
1532 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1533 			     bool override, unsigned int mask)
1534 {
1535 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1536 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1537 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1538 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1539 
1540 	mutex_lock(&power_domains->lock);
1541 
1542 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1543 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1544 
1545 	if (override)
1546 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1547 	else
1548 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1549 
1550 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1551 
1552 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1553 		      phy, ch, mask, dev_priv->chv_phy_control);
1554 
1555 	assert_chv_phy_status(dev_priv);
1556 
1557 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1558 
1559 	mutex_unlock(&power_domains->lock);
1560 }
1561 
1562 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1563 					struct i915_power_well *power_well)
1564 {
1565 	enum i915_pipe pipe = power_well->data;
1566 	bool enabled;
1567 	u32 state, ctrl;
1568 
1569 	mutex_lock(&dev_priv->rps.hw_lock);
1570 
1571 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1572 	/*
1573 	 * We only ever set the power-on and power-gate states, anything
1574 	 * else is unexpected.
1575 	 */
1576 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1577 	enabled = state == DP_SSS_PWR_ON(pipe);
1578 
1579 	/*
1580 	 * A transient state at this point would mean some unexpected party
1581 	 * is poking at the power controls too.
1582 	 */
1583 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1584 	WARN_ON(ctrl << 16 != state);
1585 
1586 	mutex_unlock(&dev_priv->rps.hw_lock);
1587 
1588 	return enabled;
1589 }
1590 
1591 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1592 				    struct i915_power_well *power_well,
1593 				    bool enable)
1594 {
1595 	enum i915_pipe pipe = power_well->data;
1596 	u32 state;
1597 	u32 ctrl;
1598 
1599 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1600 
1601 	mutex_lock(&dev_priv->rps.hw_lock);
1602 
1603 #define COND \
1604 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1605 
1606 	if (COND)
1607 		goto out;
1608 
1609 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1610 	ctrl &= ~DP_SSC_MASK(pipe);
1611 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1612 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1613 
1614 	if (wait_for(COND, 100))
1615 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1616 			  state,
1617 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1618 
1619 #undef COND
1620 
1621 out:
1622 	mutex_unlock(&dev_priv->rps.hw_lock);
1623 }
1624 
1625 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1626 					struct i915_power_well *power_well)
1627 {
1628 	WARN_ON_ONCE(power_well->data != PIPE_A);
1629 
1630 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1631 }
1632 
1633 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1634 				       struct i915_power_well *power_well)
1635 {
1636 	WARN_ON_ONCE(power_well->data != PIPE_A);
1637 
1638 	chv_set_pipe_power_well(dev_priv, power_well, true);
1639 
1640 	vlv_display_power_well_init(dev_priv);
1641 }
1642 
1643 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1644 					struct i915_power_well *power_well)
1645 {
1646 	WARN_ON_ONCE(power_well->data != PIPE_A);
1647 
1648 	vlv_display_power_well_deinit(dev_priv);
1649 
1650 	chv_set_pipe_power_well(dev_priv, power_well, false);
1651 }
1652 
1653 static void
1654 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1655 				 enum intel_display_power_domain domain)
1656 {
1657 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1658 	struct i915_power_well *power_well;
1659 	int i;
1660 
1661 	for_each_power_well(i, power_well, BIT(domain), power_domains)
1662 		intel_power_well_get(dev_priv, power_well);
1663 
1664 	power_domains->domain_use_count[domain]++;
1665 }
1666 
1667 /**
1668  * intel_display_power_get - grab a power domain reference
1669  * @dev_priv: i915 device instance
1670  * @domain: power domain to reference
1671  *
1672  * This function grabs a power domain reference for @domain and ensures that the
1673  * power domain and all its parents are powered up. Therefore users should only
1674  * grab a reference to the innermost power domain they need.
1675  *
1676  * Any power domain reference obtained by this function must have a symmetric
1677  * call to intel_display_power_put() to release the reference again.
1678  */
1679 void intel_display_power_get(struct drm_i915_private *dev_priv,
1680 			     enum intel_display_power_domain domain)
1681 {
1682 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1683 
1684 	intel_runtime_pm_get(dev_priv);
1685 
1686 	mutex_lock(&power_domains->lock);
1687 
1688 	__intel_display_power_get_domain(dev_priv, domain);
1689 
1690 	mutex_unlock(&power_domains->lock);
1691 }
1692 
1693 /**
1694  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1695  * @dev_priv: i915 device instance
1696  * @domain: power domain to reference
1697  *
1698  * This function grabs a power domain reference for @domain and ensures that the
1699  * power domain and all its parents are powered up. Therefore users should only
1700  * grab a reference to the innermost power domain they need.
1701  *
1702  * Any power domain reference obtained by this function must have a symmetric
1703  * call to intel_display_power_put() to release the reference again.
1704  */
1705 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1706 					enum intel_display_power_domain domain)
1707 {
1708 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1709 	bool is_enabled;
1710 
1711 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1712 		return false;
1713 
1714 	mutex_lock(&power_domains->lock);
1715 
1716 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1717 		__intel_display_power_get_domain(dev_priv, domain);
1718 		is_enabled = true;
1719 	} else {
1720 		is_enabled = false;
1721 	}
1722 
1723 	mutex_unlock(&power_domains->lock);
1724 
1725 	if (!is_enabled)
1726 		intel_runtime_pm_put(dev_priv);
1727 
1728 	return is_enabled;
1729 }
1730 
1731 /**
1732  * intel_display_power_put - release a power domain reference
1733  * @dev_priv: i915 device instance
1734  * @domain: power domain to reference
1735  *
1736  * This function drops the power domain reference obtained by
1737  * intel_display_power_get() and might power down the corresponding hardware
1738  * block right away if this is the last reference.
1739  */
1740 void intel_display_power_put(struct drm_i915_private *dev_priv,
1741 			     enum intel_display_power_domain domain)
1742 {
1743 	struct i915_power_domains *power_domains;
1744 	struct i915_power_well *power_well;
1745 	int i;
1746 
1747 	power_domains = &dev_priv->power_domains;
1748 
1749 	mutex_lock(&power_domains->lock);
1750 
1751 	WARN(!power_domains->domain_use_count[domain],
1752 	     "Use count on domain %s is already zero\n",
1753 	     intel_display_power_domain_str(domain));
1754 	power_domains->domain_use_count[domain]--;
1755 
1756 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1757 		intel_power_well_put(dev_priv, power_well);
1758 
1759 	mutex_unlock(&power_domains->lock);
1760 
1761 	intel_runtime_pm_put(dev_priv);
1762 }
1763 
1764 #define HSW_DISPLAY_POWER_DOMAINS (			\
1765 	BIT(POWER_DOMAIN_PIPE_B) |			\
1766 	BIT(POWER_DOMAIN_PIPE_C) |			\
1767 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1768 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1769 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1770 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1771 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1772 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1773 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1774 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1775 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1776 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1777 	BIT(POWER_DOMAIN_VGA) |				\
1778 	BIT(POWER_DOMAIN_AUDIO) |			\
1779 	BIT(POWER_DOMAIN_INIT))
1780 
1781 #define BDW_DISPLAY_POWER_DOMAINS (			\
1782 	BIT(POWER_DOMAIN_PIPE_B) |			\
1783 	BIT(POWER_DOMAIN_PIPE_C) |			\
1784 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1785 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1786 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1787 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1788 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1789 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1790 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1791 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1792 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1793 	BIT(POWER_DOMAIN_VGA) |				\
1794 	BIT(POWER_DOMAIN_AUDIO) |			\
1795 	BIT(POWER_DOMAIN_INIT))
1796 
1797 #define VLV_DISPLAY_POWER_DOMAINS (		\
1798 	BIT(POWER_DOMAIN_PIPE_A) |		\
1799 	BIT(POWER_DOMAIN_PIPE_B) |		\
1800 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1801 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1802 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1803 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1804 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1805 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1806 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1807 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1808 	BIT(POWER_DOMAIN_VGA) |			\
1809 	BIT(POWER_DOMAIN_AUDIO) |		\
1810 	BIT(POWER_DOMAIN_AUX_B) |		\
1811 	BIT(POWER_DOMAIN_AUX_C) |		\
1812 	BIT(POWER_DOMAIN_GMBUS) |		\
1813 	BIT(POWER_DOMAIN_INIT))
1814 
1815 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1816 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1817 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1818 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1819 	BIT(POWER_DOMAIN_AUX_B) |		\
1820 	BIT(POWER_DOMAIN_AUX_C) |		\
1821 	BIT(POWER_DOMAIN_INIT))
1822 
1823 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1824 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1825 	BIT(POWER_DOMAIN_AUX_B) |		\
1826 	BIT(POWER_DOMAIN_INIT))
1827 
1828 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1829 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1830 	BIT(POWER_DOMAIN_AUX_B) |		\
1831 	BIT(POWER_DOMAIN_INIT))
1832 
1833 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1834 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1835 	BIT(POWER_DOMAIN_AUX_C) |		\
1836 	BIT(POWER_DOMAIN_INIT))
1837 
1838 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1839 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1840 	BIT(POWER_DOMAIN_AUX_C) |		\
1841 	BIT(POWER_DOMAIN_INIT))
1842 
1843 #define CHV_DISPLAY_POWER_DOMAINS (		\
1844 	BIT(POWER_DOMAIN_PIPE_A) |		\
1845 	BIT(POWER_DOMAIN_PIPE_B) |		\
1846 	BIT(POWER_DOMAIN_PIPE_C) |		\
1847 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1848 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1849 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1850 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1851 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1852 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1853 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1854 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1855 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1856 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1857 	BIT(POWER_DOMAIN_VGA) |			\
1858 	BIT(POWER_DOMAIN_AUDIO) |		\
1859 	BIT(POWER_DOMAIN_AUX_B) |		\
1860 	BIT(POWER_DOMAIN_AUX_C) |		\
1861 	BIT(POWER_DOMAIN_AUX_D) |		\
1862 	BIT(POWER_DOMAIN_GMBUS) |		\
1863 	BIT(POWER_DOMAIN_INIT))
1864 
1865 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1866 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1867 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1868 	BIT(POWER_DOMAIN_AUX_B) |		\
1869 	BIT(POWER_DOMAIN_AUX_C) |		\
1870 	BIT(POWER_DOMAIN_INIT))
1871 
1872 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1873 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1874 	BIT(POWER_DOMAIN_AUX_D) |		\
1875 	BIT(POWER_DOMAIN_INIT))
1876 
1877 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1878 	.sync_hw = i9xx_always_on_power_well_noop,
1879 	.enable = i9xx_always_on_power_well_noop,
1880 	.disable = i9xx_always_on_power_well_noop,
1881 	.is_enabled = i9xx_always_on_power_well_enabled,
1882 };
1883 
1884 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1885 	.sync_hw = chv_pipe_power_well_sync_hw,
1886 	.enable = chv_pipe_power_well_enable,
1887 	.disable = chv_pipe_power_well_disable,
1888 	.is_enabled = chv_pipe_power_well_enabled,
1889 };
1890 
1891 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1892 	.sync_hw = vlv_power_well_sync_hw,
1893 	.enable = chv_dpio_cmn_power_well_enable,
1894 	.disable = chv_dpio_cmn_power_well_disable,
1895 	.is_enabled = vlv_power_well_enabled,
1896 };
1897 
1898 static struct i915_power_well i9xx_always_on_power_well[] = {
1899 	{
1900 		.name = "always-on",
1901 		.always_on = 1,
1902 		.domains = POWER_DOMAIN_MASK,
1903 		.ops = &i9xx_always_on_power_well_ops,
1904 	},
1905 };
1906 
1907 static const struct i915_power_well_ops hsw_power_well_ops = {
1908 	.sync_hw = hsw_power_well_sync_hw,
1909 	.enable = hsw_power_well_enable,
1910 	.disable = hsw_power_well_disable,
1911 	.is_enabled = hsw_power_well_enabled,
1912 };
1913 
1914 static const struct i915_power_well_ops skl_power_well_ops = {
1915 	.sync_hw = skl_power_well_sync_hw,
1916 	.enable = skl_power_well_enable,
1917 	.disable = skl_power_well_disable,
1918 	.is_enabled = skl_power_well_enabled,
1919 };
1920 
1921 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1922 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1923 	.enable = gen9_dc_off_power_well_enable,
1924 	.disable = gen9_dc_off_power_well_disable,
1925 	.is_enabled = gen9_dc_off_power_well_enabled,
1926 };
1927 
1928 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1929 	.sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1930 	.enable = bxt_dpio_cmn_power_well_enable,
1931 	.disable = bxt_dpio_cmn_power_well_disable,
1932 	.is_enabled = bxt_dpio_cmn_power_well_enabled,
1933 };
1934 
1935 static struct i915_power_well hsw_power_wells[] = {
1936 	{
1937 		.name = "always-on",
1938 		.always_on = 1,
1939 		.domains = POWER_DOMAIN_MASK,
1940 		.ops = &i9xx_always_on_power_well_ops,
1941 	},
1942 	{
1943 		.name = "display",
1944 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1945 		.ops = &hsw_power_well_ops,
1946 	},
1947 };
1948 
1949 static struct i915_power_well bdw_power_wells[] = {
1950 	{
1951 		.name = "always-on",
1952 		.always_on = 1,
1953 		.domains = POWER_DOMAIN_MASK,
1954 		.ops = &i9xx_always_on_power_well_ops,
1955 	},
1956 	{
1957 		.name = "display",
1958 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1959 		.ops = &hsw_power_well_ops,
1960 	},
1961 };
1962 
1963 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1964 	.sync_hw = vlv_power_well_sync_hw,
1965 	.enable = vlv_display_power_well_enable,
1966 	.disable = vlv_display_power_well_disable,
1967 	.is_enabled = vlv_power_well_enabled,
1968 };
1969 
1970 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1971 	.sync_hw = vlv_power_well_sync_hw,
1972 	.enable = vlv_dpio_cmn_power_well_enable,
1973 	.disable = vlv_dpio_cmn_power_well_disable,
1974 	.is_enabled = vlv_power_well_enabled,
1975 };
1976 
1977 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1978 	.sync_hw = vlv_power_well_sync_hw,
1979 	.enable = vlv_power_well_enable,
1980 	.disable = vlv_power_well_disable,
1981 	.is_enabled = vlv_power_well_enabled,
1982 };
1983 
1984 static struct i915_power_well vlv_power_wells[] = {
1985 	{
1986 		.name = "always-on",
1987 		.always_on = 1,
1988 		.domains = POWER_DOMAIN_MASK,
1989 		.ops = &i9xx_always_on_power_well_ops,
1990 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1991 	},
1992 	{
1993 		.name = "display",
1994 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1995 		.data = PUNIT_POWER_WELL_DISP2D,
1996 		.ops = &vlv_display_power_well_ops,
1997 	},
1998 	{
1999 		.name = "dpio-tx-b-01",
2000 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2001 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2002 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2003 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2004 		.ops = &vlv_dpio_power_well_ops,
2005 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
2006 	},
2007 	{
2008 		.name = "dpio-tx-b-23",
2009 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2010 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2011 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2012 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2013 		.ops = &vlv_dpio_power_well_ops,
2014 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2015 	},
2016 	{
2017 		.name = "dpio-tx-c-01",
2018 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2019 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2020 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2021 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2022 		.ops = &vlv_dpio_power_well_ops,
2023 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2024 	},
2025 	{
2026 		.name = "dpio-tx-c-23",
2027 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2028 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2029 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2030 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2031 		.ops = &vlv_dpio_power_well_ops,
2032 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2033 	},
2034 	{
2035 		.name = "dpio-common",
2036 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2037 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2038 		.ops = &vlv_dpio_cmn_power_well_ops,
2039 	},
2040 };
2041 
2042 static struct i915_power_well chv_power_wells[] = {
2043 	{
2044 		.name = "always-on",
2045 		.always_on = 1,
2046 		.domains = POWER_DOMAIN_MASK,
2047 		.ops = &i9xx_always_on_power_well_ops,
2048 	},
2049 	{
2050 		.name = "display",
2051 		/*
2052 		 * Pipe A power well is the new disp2d well. Pipe B and C
2053 		 * power wells don't actually exist. Pipe A power well is
2054 		 * required for any pipe to work.
2055 		 */
2056 		.domains = CHV_DISPLAY_POWER_DOMAINS,
2057 		.data = PIPE_A,
2058 		.ops = &chv_pipe_power_well_ops,
2059 	},
2060 	{
2061 		.name = "dpio-common-bc",
2062 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2063 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2064 		.ops = &chv_dpio_cmn_power_well_ops,
2065 	},
2066 	{
2067 		.name = "dpio-common-d",
2068 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2069 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
2070 		.ops = &chv_dpio_cmn_power_well_ops,
2071 	},
2072 };
2073 
2074 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2075 				    int power_well_id)
2076 {
2077 	struct i915_power_well *power_well;
2078 	bool ret;
2079 
2080 	power_well = lookup_power_well(dev_priv, power_well_id);
2081 	ret = power_well->ops->is_enabled(dev_priv, power_well);
2082 
2083 	return ret;
2084 }
2085 
2086 static struct i915_power_well skl_power_wells[] = {
2087 	{
2088 		.name = "always-on",
2089 		.always_on = 1,
2090 		.domains = POWER_DOMAIN_MASK,
2091 		.ops = &i9xx_always_on_power_well_ops,
2092 		.data = SKL_DISP_PW_ALWAYS_ON,
2093 	},
2094 	{
2095 		.name = "power well 1",
2096 		/* Handled by the DMC firmware */
2097 		.domains = 0,
2098 		.ops = &skl_power_well_ops,
2099 		.data = SKL_DISP_PW_1,
2100 	},
2101 	{
2102 		.name = "MISC IO power well",
2103 		/* Handled by the DMC firmware */
2104 		.domains = 0,
2105 		.ops = &skl_power_well_ops,
2106 		.data = SKL_DISP_PW_MISC_IO,
2107 	},
2108 	{
2109 		.name = "DC off",
2110 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2111 		.ops = &gen9_dc_off_power_well_ops,
2112 		.data = SKL_DISP_PW_DC_OFF,
2113 	},
2114 	{
2115 		.name = "power well 2",
2116 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2117 		.ops = &skl_power_well_ops,
2118 		.data = SKL_DISP_PW_2,
2119 	},
2120 	{
2121 		.name = "DDI A/E power well",
2122 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2123 		.ops = &skl_power_well_ops,
2124 		.data = SKL_DISP_PW_DDI_A_E,
2125 	},
2126 	{
2127 		.name = "DDI B power well",
2128 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2129 		.ops = &skl_power_well_ops,
2130 		.data = SKL_DISP_PW_DDI_B,
2131 	},
2132 	{
2133 		.name = "DDI C power well",
2134 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2135 		.ops = &skl_power_well_ops,
2136 		.data = SKL_DISP_PW_DDI_C,
2137 	},
2138 	{
2139 		.name = "DDI D power well",
2140 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2141 		.ops = &skl_power_well_ops,
2142 		.data = SKL_DISP_PW_DDI_D,
2143 	},
2144 };
2145 
2146 static struct i915_power_well bxt_power_wells[] = {
2147 	{
2148 		.name = "always-on",
2149 		.always_on = 1,
2150 		.domains = POWER_DOMAIN_MASK,
2151 		.ops = &i9xx_always_on_power_well_ops,
2152 	},
2153 	{
2154 		.name = "power well 1",
2155 		.domains = 0,
2156 		.ops = &skl_power_well_ops,
2157 		.data = SKL_DISP_PW_1,
2158 	},
2159 	{
2160 		.name = "DC off",
2161 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2162 		.ops = &gen9_dc_off_power_well_ops,
2163 		.data = SKL_DISP_PW_DC_OFF,
2164 	},
2165 	{
2166 		.name = "power well 2",
2167 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2168 		.ops = &skl_power_well_ops,
2169 		.data = SKL_DISP_PW_2,
2170 	},
2171 	{
2172 		.name = "dpio-common-a",
2173 		.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2174 		.ops = &bxt_dpio_cmn_power_well_ops,
2175 		.data = BXT_DPIO_CMN_A,
2176 	},
2177 	{
2178 		.name = "dpio-common-bc",
2179 		.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2180 		.ops = &bxt_dpio_cmn_power_well_ops,
2181 		.data = BXT_DPIO_CMN_BC,
2182 	},
2183 };
2184 
2185 static int
2186 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2187 				   int disable_power_well)
2188 {
2189 	if (disable_power_well >= 0)
2190 		return !!disable_power_well;
2191 
2192 	return 1;
2193 }
2194 
2195 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2196 				    int enable_dc)
2197 {
2198 	uint32_t mask;
2199 	int requested_dc;
2200 	int max_dc;
2201 
2202 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2203 		max_dc = 2;
2204 		mask = 0;
2205 	} else if (IS_BROXTON(dev_priv)) {
2206 		max_dc = 1;
2207 		/*
2208 		 * DC9 has a separate HW flow from the rest of the DC states,
2209 		 * not depending on the DMC firmware. It's needed by system
2210 		 * suspend/resume, so allow it unconditionally.
2211 		 */
2212 		mask = DC_STATE_EN_DC9;
2213 	} else {
2214 		max_dc = 0;
2215 		mask = 0;
2216 	}
2217 
2218 	if (!i915.disable_power_well)
2219 		max_dc = 0;
2220 
2221 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2222 		requested_dc = enable_dc;
2223 	} else if (enable_dc == -1) {
2224 		requested_dc = max_dc;
2225 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2226 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2227 			      enable_dc, max_dc);
2228 		requested_dc = max_dc;
2229 	} else {
2230 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2231 		requested_dc = max_dc;
2232 	}
2233 
2234 	if (requested_dc > 1)
2235 		mask |= DC_STATE_EN_UPTO_DC6;
2236 	if (requested_dc > 0)
2237 		mask |= DC_STATE_EN_UPTO_DC5;
2238 
2239 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2240 
2241 	return mask;
2242 }
2243 
2244 #define set_power_wells(power_domains, __power_wells) ({		\
2245 	(power_domains)->power_wells = (__power_wells);			\
2246 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2247 })
2248 
2249 /**
2250  * intel_power_domains_init - initializes the power domain structures
2251  * @dev_priv: i915 device instance
2252  *
2253  * Initializes the power domain structures for @dev_priv depending upon the
2254  * supported platform.
2255  */
2256 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2257 {
2258 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2259 
2260 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2261 						     i915.disable_power_well);
2262 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2263 							    i915.enable_dc);
2264 
2265 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2266 
2267 	lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE);
2268 
2269 	/*
2270 	 * The enabling order will be from lower to higher indexed wells,
2271 	 * the disabling order is reversed.
2272 	 */
2273 	if (IS_HASWELL(dev_priv)) {
2274 		set_power_wells(power_domains, hsw_power_wells);
2275 	} else if (IS_BROADWELL(dev_priv)) {
2276 		set_power_wells(power_domains, bdw_power_wells);
2277 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2278 		set_power_wells(power_domains, skl_power_wells);
2279 	} else if (IS_BROXTON(dev_priv)) {
2280 		set_power_wells(power_domains, bxt_power_wells);
2281 	} else if (IS_CHERRYVIEW(dev_priv)) {
2282 		set_power_wells(power_domains, chv_power_wells);
2283 	} else if (IS_VALLEYVIEW(dev_priv)) {
2284 		set_power_wells(power_domains, vlv_power_wells);
2285 	} else {
2286 		set_power_wells(power_domains, i9xx_always_on_power_well);
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 /**
2293  * intel_power_domains_fini - finalizes the power domain structures
2294  * @dev_priv: i915 device instance
2295  *
2296  * Finalizes the power domain structures for @dev_priv depending upon the
2297  * supported platform. This function also disables runtime pm and ensures that
2298  * the device stays powered up so that the driver can be reloaded.
2299  */
2300 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2301 {
2302 #if 0
2303 	struct device *device = &dev_priv->drm.pdev->dev;
2304 #endif
2305 
2306 	/*
2307 	 * The i915.ko module is still not prepared to be loaded when
2308 	 * the power well is not enabled, so just enable it in case
2309 	 * we're going to unload/reload.
2310 	 * The following also reacquires the RPM reference the core passed
2311 	 * to the driver during loading, which is dropped in
2312 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2313 	 * device to the core with this reference held.
2314 	 */
2315 	intel_display_set_init_power(dev_priv, true);
2316 
2317 	/* Remove the refcount we took to keep power well support disabled. */
2318 	if (!i915.disable_power_well)
2319 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2320 
2321 	/*
2322 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2323 	 * the platform doesn't support runtime PM.
2324 	 */
2325 #if 0
2326 	if (!HAS_RUNTIME_PM(dev_priv))
2327 		pm_runtime_put(device);
2328 #endif
2329 }
2330 
2331 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2332 {
2333 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2334 	struct i915_power_well *power_well;
2335 	int i;
2336 
2337 	mutex_lock(&power_domains->lock);
2338 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2339 		power_well->ops->sync_hw(dev_priv, power_well);
2340 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2341 								     power_well);
2342 	}
2343 	mutex_unlock(&power_domains->lock);
2344 }
2345 
2346 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2347 {
2348 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2349 	POSTING_READ(DBUF_CTL);
2350 
2351 	udelay(10);
2352 
2353 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2354 		DRM_ERROR("DBuf power enable timeout\n");
2355 }
2356 
2357 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2358 {
2359 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2360 	POSTING_READ(DBUF_CTL);
2361 
2362 	udelay(10);
2363 
2364 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2365 		DRM_ERROR("DBuf power disable timeout!\n");
2366 }
2367 
2368 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2369 				   bool resume)
2370 {
2371 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2372 	struct i915_power_well *well;
2373 	uint32_t val;
2374 
2375 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2376 
2377 	/* enable PCH reset handshake */
2378 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2379 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2380 
2381 	/* enable PG1 and Misc I/O */
2382 	mutex_lock(&power_domains->lock);
2383 
2384 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2385 	intel_power_well_enable(dev_priv, well);
2386 
2387 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2388 	intel_power_well_enable(dev_priv, well);
2389 
2390 	mutex_unlock(&power_domains->lock);
2391 
2392 	skl_init_cdclk(dev_priv);
2393 
2394 	gen9_dbuf_enable(dev_priv);
2395 
2396 	if (resume && dev_priv->csr.dmc_payload)
2397 		intel_csr_load_program(dev_priv);
2398 }
2399 
2400 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2401 {
2402 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2403 	struct i915_power_well *well;
2404 
2405 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2406 
2407 	gen9_dbuf_disable(dev_priv);
2408 
2409 	skl_uninit_cdclk(dev_priv);
2410 
2411 	/* The spec doesn't call for removing the reset handshake flag */
2412 	/* disable PG1 and Misc I/O */
2413 
2414 	mutex_lock(&power_domains->lock);
2415 
2416 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2417 	intel_power_well_disable(dev_priv, well);
2418 
2419 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2420 	intel_power_well_disable(dev_priv, well);
2421 
2422 	mutex_unlock(&power_domains->lock);
2423 }
2424 
2425 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2426 			   bool resume)
2427 {
2428 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2429 	struct i915_power_well *well;
2430 	uint32_t val;
2431 
2432 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2433 
2434 	/*
2435 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2436 	 * or else the reset will hang because there is no PCH to respond.
2437 	 * Move the handshake programming to initialization sequence.
2438 	 * Previously was left up to BIOS.
2439 	 */
2440 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2441 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2442 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2443 
2444 	/* Enable PG1 */
2445 	mutex_lock(&power_domains->lock);
2446 
2447 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2448 	intel_power_well_enable(dev_priv, well);
2449 
2450 	mutex_unlock(&power_domains->lock);
2451 
2452 	bxt_init_cdclk(dev_priv);
2453 
2454 	gen9_dbuf_enable(dev_priv);
2455 
2456 	if (resume && dev_priv->csr.dmc_payload)
2457 		intel_csr_load_program(dev_priv);
2458 }
2459 
2460 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2461 {
2462 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2463 	struct i915_power_well *well;
2464 
2465 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2466 
2467 	gen9_dbuf_disable(dev_priv);
2468 
2469 	bxt_uninit_cdclk(dev_priv);
2470 
2471 	/* The spec doesn't call for removing the reset handshake flag */
2472 
2473 	/* Disable PG1 */
2474 	mutex_lock(&power_domains->lock);
2475 
2476 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2477 	intel_power_well_disable(dev_priv, well);
2478 
2479 	mutex_unlock(&power_domains->lock);
2480 }
2481 
2482 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2483 {
2484 	struct i915_power_well *cmn_bc =
2485 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2486 	struct i915_power_well *cmn_d =
2487 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2488 
2489 	/*
2490 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2491 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2492 	 * instead maintain a shadow copy ourselves. Use the actual
2493 	 * power well state and lane status to reconstruct the
2494 	 * expected initial value.
2495 	 */
2496 	dev_priv->chv_phy_control =
2497 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2498 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2499 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2500 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2501 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2502 
2503 	/*
2504 	 * If all lanes are disabled we leave the override disabled
2505 	 * with all power down bits cleared to match the state we
2506 	 * would use after disabling the port. Otherwise enable the
2507 	 * override and set the lane powerdown bits accding to the
2508 	 * current lane status.
2509 	 */
2510 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2511 		uint32_t status = I915_READ(DPLL(PIPE_A));
2512 		unsigned int mask;
2513 
2514 		mask = status & DPLL_PORTB_READY_MASK;
2515 		if (mask == 0xf)
2516 			mask = 0x0;
2517 		else
2518 			dev_priv->chv_phy_control |=
2519 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2520 
2521 		dev_priv->chv_phy_control |=
2522 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2523 
2524 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2525 		if (mask == 0xf)
2526 			mask = 0x0;
2527 		else
2528 			dev_priv->chv_phy_control |=
2529 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2530 
2531 		dev_priv->chv_phy_control |=
2532 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2533 
2534 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2535 
2536 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2537 	} else {
2538 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2539 	}
2540 
2541 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2542 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2543 		unsigned int mask;
2544 
2545 		mask = status & DPLL_PORTD_READY_MASK;
2546 
2547 		if (mask == 0xf)
2548 			mask = 0x0;
2549 		else
2550 			dev_priv->chv_phy_control |=
2551 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2552 
2553 		dev_priv->chv_phy_control |=
2554 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2555 
2556 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2557 
2558 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2559 	} else {
2560 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2561 	}
2562 
2563 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2564 
2565 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2566 		      dev_priv->chv_phy_control);
2567 }
2568 
2569 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2570 {
2571 	struct i915_power_well *cmn =
2572 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2573 	struct i915_power_well *disp2d =
2574 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2575 
2576 	/* If the display might be already active skip this */
2577 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2578 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2579 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2580 		return;
2581 
2582 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2583 
2584 	/* cmnlane needs DPLL registers */
2585 	disp2d->ops->enable(dev_priv, disp2d);
2586 
2587 	/*
2588 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2589 	 * Need to assert and de-assert PHY SB reset by gating the
2590 	 * common lane power, then un-gating it.
2591 	 * Simply ungating isn't enough to reset the PHY enough to get
2592 	 * ports and lanes running.
2593 	 */
2594 	cmn->ops->disable(dev_priv, cmn);
2595 }
2596 
2597 /**
2598  * intel_power_domains_init_hw - initialize hardware power domain state
2599  * @dev_priv: i915 device instance
2600  * @resume: Called from resume code paths or not
2601  *
2602  * This function initializes the hardware power domain state and enables all
2603  * power domains using intel_display_set_init_power().
2604  */
2605 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2606 {
2607 	struct drm_device *dev = &dev_priv->drm;
2608 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2609 
2610 	power_domains->initializing = true;
2611 
2612 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2613 		skl_display_core_init(dev_priv, resume);
2614 	} else if (IS_BROXTON(dev)) {
2615 		bxt_display_core_init(dev_priv, resume);
2616 	} else if (IS_CHERRYVIEW(dev)) {
2617 		mutex_lock(&power_domains->lock);
2618 		chv_phy_control_init(dev_priv);
2619 		mutex_unlock(&power_domains->lock);
2620 	} else if (IS_VALLEYVIEW(dev)) {
2621 		mutex_lock(&power_domains->lock);
2622 		vlv_cmnlane_wa(dev_priv);
2623 		mutex_unlock(&power_domains->lock);
2624 	}
2625 
2626 	/* For now, we need the power well to be always enabled. */
2627 	intel_display_set_init_power(dev_priv, true);
2628 	/* Disable power support if the user asked so. */
2629 	if (!i915.disable_power_well)
2630 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2631 	intel_power_domains_sync_hw(dev_priv);
2632 	power_domains->initializing = false;
2633 }
2634 
2635 /**
2636  * intel_power_domains_suspend - suspend power domain state
2637  * @dev_priv: i915 device instance
2638  *
2639  * This function prepares the hardware power domain state before entering
2640  * system suspend. It must be paired with intel_power_domains_init_hw().
2641  */
2642 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2643 {
2644 	/*
2645 	 * Even if power well support was disabled we still want to disable
2646 	 * power wells while we are system suspended.
2647 	 */
2648 	if (!i915.disable_power_well)
2649 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2650 
2651 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2652 		skl_display_core_uninit(dev_priv);
2653 	else if (IS_BROXTON(dev_priv))
2654 		bxt_display_core_uninit(dev_priv);
2655 }
2656 
2657 /**
2658  * intel_runtime_pm_get - grab a runtime pm reference
2659  * @dev_priv: i915 device instance
2660  *
2661  * This function grabs a device-level runtime pm reference (mostly used for GEM
2662  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2663  *
2664  * Any runtime pm reference obtained by this function must have a symmetric
2665  * call to intel_runtime_pm_put() to release the reference again.
2666  */
2667 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2668 {
2669 	struct drm_device *dev = &dev_priv->drm;
2670 	struct device *device = &dev->pdev->dev;
2671 
2672 	pm_runtime_get_sync(device);
2673 
2674 	atomic_inc(&dev_priv->pm.wakeref_count);
2675 	assert_rpm_wakelock_held(dev_priv);
2676 }
2677 
2678 /**
2679  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2680  * @dev_priv: i915 device instance
2681  *
2682  * This function grabs a device-level runtime pm reference if the device is
2683  * already in use and ensures that it is powered up.
2684  *
2685  * Any runtime pm reference obtained by this function must have a symmetric
2686  * call to intel_runtime_pm_put() to release the reference again.
2687  */
2688 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2689 {
2690 #ifndef __DragonFly__
2691 	struct drm_device *dev = &dev_priv->drm;
2692 	struct device *device = &dev->pdev->dev;
2693 
2694 	if (IS_ENABLED(CONFIG_PM)) {
2695 		int ret = pm_runtime_get_if_in_use(device);
2696 
2697 		/*
2698 		 * In cases runtime PM is disabled by the RPM core and we get
2699 		 * an -EINVAL return value we are not supposed to call this
2700 		 * function, since the power state is undefined. This applies
2701 		 * atm to the late/early system suspend/resume handlers.
2702 		 */
2703 		WARN_ON_ONCE(ret < 0);
2704 		if (ret <= 0)
2705 			return false;
2706 	}
2707 
2708 	atomic_inc(&dev_priv->pm.wakeref_count);
2709 	assert_rpm_wakelock_held(dev_priv);
2710 #endif
2711 
2712 	return true;
2713 }
2714 
2715 /**
2716  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2717  * @dev_priv: i915 device instance
2718  *
2719  * This function grabs a device-level runtime pm reference (mostly used for GEM
2720  * code to ensure the GTT or GT is on).
2721  *
2722  * It will _not_ power up the device but instead only check that it's powered
2723  * on.  Therefore it is only valid to call this functions from contexts where
2724  * the device is known to be powered up and where trying to power it up would
2725  * result in hilarity and deadlocks. That pretty much means only the system
2726  * suspend/resume code where this is used to grab runtime pm references for
2727  * delayed setup down in work items.
2728  *
2729  * Any runtime pm reference obtained by this function must have a symmetric
2730  * call to intel_runtime_pm_put() to release the reference again.
2731  */
2732 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2733 {
2734 #if 0
2735 	struct drm_device *dev = &dev_priv->drm;
2736 	struct device *device = &dev->pdev->dev;
2737 #endif
2738 
2739 	assert_rpm_wakelock_held(dev_priv);
2740 #if 0
2741 	pm_runtime_get_noresume(device);
2742 #endif
2743 
2744 	atomic_inc(&dev_priv->pm.wakeref_count);
2745 }
2746 
2747 /**
2748  * intel_runtime_pm_put - release a runtime pm reference
2749  * @dev_priv: i915 device instance
2750  *
2751  * This function drops the device-level runtime pm reference obtained by
2752  * intel_runtime_pm_get() and might power down the corresponding
2753  * hardware block right away if this is the last reference.
2754  */
2755 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2756 {
2757 	struct drm_device *dev = &dev_priv->drm;
2758 	struct device *device = &dev->pdev->dev;
2759 
2760 	assert_rpm_wakelock_held(dev_priv);
2761 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2762 		atomic_inc(&dev_priv->pm.atomic_seq);
2763 
2764 	pm_runtime_mark_last_busy(device);
2765 	pm_runtime_put_autosuspend(device);
2766 }
2767 
2768 /**
2769  * intel_runtime_pm_enable - enable runtime pm
2770  * @dev_priv: i915 device instance
2771  *
2772  * This function enables runtime pm at the end of the driver load sequence.
2773  *
2774  * Note that this function does currently not enable runtime pm for the
2775  * subordinate display power domains. That is only done on the first modeset
2776  * using intel_display_set_init_power().
2777  */
2778 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2779 {
2780 #if 0
2781 	struct drm_device *dev = &dev_priv->drm;
2782 	struct device *device = &dev->pdev->dev;
2783 
2784 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2785 	pm_runtime_mark_last_busy(device);
2786 
2787 	/*
2788 	 * Take a permanent reference to disable the RPM functionality and drop
2789 	 * it only when unloading the driver. Use the low level get/put helpers,
2790 	 * so the driver's own RPM reference tracking asserts also work on
2791 	 * platforms without RPM support.
2792 	 */
2793 	if (!HAS_RUNTIME_PM(dev)) {
2794 		pm_runtime_dont_use_autosuspend(device);
2795 		pm_runtime_get_sync(device);
2796 	} else {
2797 		pm_runtime_use_autosuspend(device);
2798 	}
2799 
2800 	/*
2801 	 * The core calls the driver load handler with an RPM reference held.
2802 	 * We drop that here and will reacquire it during unloading in
2803 	 * intel_power_domains_fini().
2804 	 */
2805 	pm_runtime_put_autosuspend(device);
2806 #endif
2807 }
2808 
2809