xref: /dragonfly/sys/dev/drm/i915/intel_runtime_pm.c (revision 6052a76a)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 
32 /**
33  * DOC: runtime pm
34  *
35  * The i915 driver supports dynamic enabling and disabling of entire hardware
36  * blocks at runtime. This is especially important on the display side where
37  * software is supposed to control many power gates manually on recent hardware,
38  * since on the GT side a lot of the power management is done by the hardware.
39  * But even there some manual control at the device level is required.
40  *
41  * Since i915 supports a diverse set of platforms with a unified codebase and
42  * hardware engineers just love to shuffle functionality around between power
43  * domains there's a sizeable amount of indirection required. This file provides
44  * generic functions to the driver for grabbing and releasing references for
45  * abstract power domains. It then maps those to the actual power wells
46  * present for a given platform.
47  */
48 
49 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
50 	for (i = 0;							\
51 	     i < (power_domains)->power_well_count &&			\
52 		 ((power_well) = &(power_domains)->power_wells[i]);	\
53 	     i++)							\
54 		for_each_if ((power_well)->domains & (domain_mask))
55 
56 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
57 	for (i = (power_domains)->power_well_count - 1;			 \
58 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
59 	     i--)							 \
60 		for_each_if ((power_well)->domains & (domain_mask))
61 
62 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
63 				    int power_well_id);
64 
65 const char *
66 intel_display_power_domain_str(enum intel_display_power_domain domain)
67 {
68 	switch (domain) {
69 	case POWER_DOMAIN_PIPE_A:
70 		return "PIPE_A";
71 	case POWER_DOMAIN_PIPE_B:
72 		return "PIPE_B";
73 	case POWER_DOMAIN_PIPE_C:
74 		return "PIPE_C";
75 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
76 		return "PIPE_A_PANEL_FITTER";
77 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
78 		return "PIPE_B_PANEL_FITTER";
79 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
80 		return "PIPE_C_PANEL_FITTER";
81 	case POWER_DOMAIN_TRANSCODER_A:
82 		return "TRANSCODER_A";
83 	case POWER_DOMAIN_TRANSCODER_B:
84 		return "TRANSCODER_B";
85 	case POWER_DOMAIN_TRANSCODER_C:
86 		return "TRANSCODER_C";
87 	case POWER_DOMAIN_TRANSCODER_EDP:
88 		return "TRANSCODER_EDP";
89 	case POWER_DOMAIN_PORT_DDI_A_LANES:
90 		return "PORT_DDI_A_LANES";
91 	case POWER_DOMAIN_PORT_DDI_B_LANES:
92 		return "PORT_DDI_B_LANES";
93 	case POWER_DOMAIN_PORT_DDI_C_LANES:
94 		return "PORT_DDI_C_LANES";
95 	case POWER_DOMAIN_PORT_DDI_D_LANES:
96 		return "PORT_DDI_D_LANES";
97 	case POWER_DOMAIN_PORT_DDI_E_LANES:
98 		return "PORT_DDI_E_LANES";
99 	case POWER_DOMAIN_PORT_DSI:
100 		return "PORT_DSI";
101 	case POWER_DOMAIN_PORT_CRT:
102 		return "PORT_CRT";
103 	case POWER_DOMAIN_PORT_OTHER:
104 		return "PORT_OTHER";
105 	case POWER_DOMAIN_VGA:
106 		return "VGA";
107 	case POWER_DOMAIN_AUDIO:
108 		return "AUDIO";
109 	case POWER_DOMAIN_PLLS:
110 		return "PLLS";
111 	case POWER_DOMAIN_AUX_A:
112 		return "AUX_A";
113 	case POWER_DOMAIN_AUX_B:
114 		return "AUX_B";
115 	case POWER_DOMAIN_AUX_C:
116 		return "AUX_C";
117 	case POWER_DOMAIN_AUX_D:
118 		return "AUX_D";
119 	case POWER_DOMAIN_GMBUS:
120 		return "GMBUS";
121 	case POWER_DOMAIN_INIT:
122 		return "INIT";
123 	case POWER_DOMAIN_MODESET:
124 		return "MODESET";
125 	default:
126 		MISSING_CASE(domain);
127 		return "?";
128 	}
129 }
130 
131 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
132 				    struct i915_power_well *power_well)
133 {
134 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
135 	power_well->ops->enable(dev_priv, power_well);
136 	power_well->hw_enabled = true;
137 }
138 
139 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
140 				     struct i915_power_well *power_well)
141 {
142 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
143 	power_well->hw_enabled = false;
144 	power_well->ops->disable(dev_priv, power_well);
145 }
146 
147 /*
148  * We should only use the power well if we explicitly asked the hardware to
149  * enable it, so check if it's enabled and also check if we've requested it to
150  * be enabled.
151  */
152 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
153 				   struct i915_power_well *power_well)
154 {
155 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
156 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
157 }
158 
159 /**
160  * __intel_display_power_is_enabled - unlocked check for a power domain
161  * @dev_priv: i915 device instance
162  * @domain: power domain to check
163  *
164  * This is the unlocked version of intel_display_power_is_enabled() and should
165  * only be used from error capture and recovery code where deadlocks are
166  * possible.
167  *
168  * Returns:
169  * True when the power domain is enabled, false otherwise.
170  */
171 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
172 				      enum intel_display_power_domain domain)
173 {
174 	struct i915_power_domains *power_domains;
175 	struct i915_power_well *power_well;
176 	bool is_enabled;
177 	int i;
178 
179 	if (dev_priv->pm.suspended)
180 		return false;
181 
182 	power_domains = &dev_priv->power_domains;
183 
184 	is_enabled = true;
185 
186 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
187 		if (power_well->always_on)
188 			continue;
189 
190 		if (!power_well->hw_enabled) {
191 			is_enabled = false;
192 			break;
193 		}
194 	}
195 
196 	return is_enabled;
197 }
198 
199 /**
200  * intel_display_power_is_enabled - check for a power domain
201  * @dev_priv: i915 device instance
202  * @domain: power domain to check
203  *
204  * This function can be used to check the hw power domain state. It is mostly
205  * used in hardware state readout functions. Everywhere else code should rely
206  * upon explicit power domain reference counting to ensure that the hardware
207  * block is powered up before accessing it.
208  *
209  * Callers must hold the relevant modesetting locks to ensure that concurrent
210  * threads can't disable the power well while the caller tries to read a few
211  * registers.
212  *
213  * Returns:
214  * True when the power domain is enabled, false otherwise.
215  */
216 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
217 				    enum intel_display_power_domain domain)
218 {
219 	struct i915_power_domains *power_domains;
220 	bool ret;
221 
222 	power_domains = &dev_priv->power_domains;
223 
224 	mutex_lock(&power_domains->lock);
225 	ret = __intel_display_power_is_enabled(dev_priv, domain);
226 	mutex_unlock(&power_domains->lock);
227 
228 	return ret;
229 }
230 
231 /**
232  * intel_display_set_init_power - set the initial power domain state
233  * @dev_priv: i915 device instance
234  * @enable: whether to enable or disable the initial power domain state
235  *
236  * For simplicity our driver load/unload and system suspend/resume code assumes
237  * that all power domains are always enabled. This functions controls the state
238  * of this little hack. While the initial power domain state is enabled runtime
239  * pm is effectively disabled.
240  */
241 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
242 				  bool enable)
243 {
244 	if (dev_priv->power_domains.init_power_on == enable)
245 		return;
246 
247 	if (enable)
248 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
249 	else
250 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
251 
252 	dev_priv->power_domains.init_power_on = enable;
253 }
254 
255 /*
256  * Starting with Haswell, we have a "Power Down Well" that can be turned off
257  * when not needed anymore. We have 4 registers that can request the power well
258  * to be enabled, and it will only be disabled if none of the registers is
259  * requesting it to be enabled.
260  */
261 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
262 {
263 	struct drm_device *dev = dev_priv->dev;
264 
265 	/*
266 	 * After we re-enable the power well, if we touch VGA register 0x3d5
267 	 * we'll get unclaimed register interrupts. This stops after we write
268 	 * anything to the VGA MSR register. The vgacon module uses this
269 	 * register all the time, so if we unbind our driver and, as a
270 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
271 	 * console_unlock(). So make here we touch the VGA MSR register, making
272 	 * sure vgacon can keep working normally without triggering interrupts
273 	 * and error messages.
274 	 */
275 #if 0
276 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
277 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
278 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
279 #endif
280 
281 	if (IS_BROADWELL(dev))
282 		gen8_irq_power_well_post_enable(dev_priv,
283 						1 << PIPE_C | 1 << PIPE_B);
284 }
285 
286 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
287 				       struct i915_power_well *power_well)
288 {
289 #if 0
290 	struct drm_device *dev = dev_priv->dev;
291 #endif
292 
293 	/*
294 	 * After we re-enable the power well, if we touch VGA register 0x3d5
295 	 * we'll get unclaimed register interrupts. This stops after we write
296 	 * anything to the VGA MSR register. The vgacon module uses this
297 	 * register all the time, so if we unbind our driver and, as a
298 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
299 	 * console_unlock(). So make here we touch the VGA MSR register, making
300 	 * sure vgacon can keep working normally without triggering interrupts
301 	 * and error messages.
302 	 */
303 	if (power_well->data == SKL_DISP_PW_2) {
304 #if 0
305 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
306 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
307 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
308 #endif
309 
310 		gen8_irq_power_well_post_enable(dev_priv,
311 						1 << PIPE_C | 1 << PIPE_B);
312 	}
313 }
314 
315 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
316 			       struct i915_power_well *power_well, bool enable)
317 {
318 	bool is_enabled, enable_requested;
319 	uint32_t tmp;
320 
321 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
322 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
323 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
324 
325 	if (enable) {
326 		if (!enable_requested)
327 			I915_WRITE(HSW_PWR_WELL_DRIVER,
328 				   HSW_PWR_WELL_ENABLE_REQUEST);
329 
330 		if (!is_enabled) {
331 			DRM_DEBUG_KMS("Enabling power well\n");
332 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
333 				      HSW_PWR_WELL_STATE_ENABLED), 20))
334 				DRM_ERROR("Timeout enabling power well\n");
335 			hsw_power_well_post_enable(dev_priv);
336 		}
337 
338 	} else {
339 		if (enable_requested) {
340 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
341 			POSTING_READ(HSW_PWR_WELL_DRIVER);
342 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
343 		}
344 	}
345 }
346 
347 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
348 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
349 	BIT(POWER_DOMAIN_PIPE_B) |			\
350 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
351 	BIT(POWER_DOMAIN_PIPE_C) |			\
352 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
353 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
354 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
355 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
356 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
357 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
358 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
359 	BIT(POWER_DOMAIN_AUX_B) |                       \
360 	BIT(POWER_DOMAIN_AUX_C) |			\
361 	BIT(POWER_DOMAIN_AUX_D) |			\
362 	BIT(POWER_DOMAIN_AUDIO) |			\
363 	BIT(POWER_DOMAIN_VGA) |				\
364 	BIT(POWER_DOMAIN_INIT))
365 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
366 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
367 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
368 	BIT(POWER_DOMAIN_INIT))
369 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
370 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
371 	BIT(POWER_DOMAIN_INIT))
372 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
373 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
374 	BIT(POWER_DOMAIN_INIT))
375 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
376 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
377 	BIT(POWER_DOMAIN_INIT))
378 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
379 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
380 	BIT(POWER_DOMAIN_MODESET) |			\
381 	BIT(POWER_DOMAIN_AUX_A) |			\
382 	BIT(POWER_DOMAIN_INIT))
383 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
384 	(POWER_DOMAIN_MASK & ~(				\
385 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
386 	SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) |		\
387 	BIT(POWER_DOMAIN_INIT))
388 
389 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
390 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
391 	BIT(POWER_DOMAIN_PIPE_B) |			\
392 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
393 	BIT(POWER_DOMAIN_PIPE_C) |			\
394 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
395 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
396 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
397 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
398 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
399 	BIT(POWER_DOMAIN_AUX_B) |			\
400 	BIT(POWER_DOMAIN_AUX_C) |			\
401 	BIT(POWER_DOMAIN_AUDIO) |			\
402 	BIT(POWER_DOMAIN_VGA) |				\
403 	BIT(POWER_DOMAIN_GMBUS) |			\
404 	BIT(POWER_DOMAIN_INIT))
405 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS (		\
406 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
407 	BIT(POWER_DOMAIN_PIPE_A) |			\
408 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
409 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
410 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
411 	BIT(POWER_DOMAIN_AUX_A) |			\
412 	BIT(POWER_DOMAIN_PLLS) |			\
413 	BIT(POWER_DOMAIN_INIT))
414 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
415 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
416 	BIT(POWER_DOMAIN_MODESET) |			\
417 	BIT(POWER_DOMAIN_AUX_A) |			\
418 	BIT(POWER_DOMAIN_INIT))
419 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
420 	(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS |	\
421 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) |	\
422 	BIT(POWER_DOMAIN_INIT))
423 
424 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
425 {
426 	struct drm_device *dev = dev_priv->dev;
427 
428 	WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
429 	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
430 		"DC9 already programmed to be enabled.\n");
431 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
432 		"DC5 still not disabled to enable DC9.\n");
433 	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
434 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
435 
436 	 /*
437 	  * TODO: check for the following to verify the conditions to enter DC9
438 	  * state are satisfied:
439 	  * 1] Check relevant display engine registers to verify if mode set
440 	  * disable sequence was followed.
441 	  * 2] Check if display uninitialize sequence is initialized.
442 	  */
443 }
444 
445 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
446 {
447 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
448 	WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
449 		"DC9 already programmed to be disabled.\n");
450 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
451 		"DC5 still not disabled.\n");
452 
453 	 /*
454 	  * TODO: check for the following to verify DC9 state was indeed
455 	  * entered before programming to disable it:
456 	  * 1] Check relevant display engine registers to verify if mode
457 	  *  set disable sequence was followed.
458 	  * 2] Check if display uninitialize sequence is initialized.
459 	  */
460 }
461 
462 static void gen9_set_dc_state_debugmask_memory_up(
463 			struct drm_i915_private *dev_priv)
464 {
465 	uint32_t val;
466 
467 	/* The below bit doesn't need to be cleared ever afterwards */
468 	val = I915_READ(DC_STATE_DEBUG);
469 	if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
470 		val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
471 		I915_WRITE(DC_STATE_DEBUG, val);
472 		POSTING_READ(DC_STATE_DEBUG);
473 	}
474 }
475 
476 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
477 				u32 state)
478 {
479 	int rewrites = 0;
480 	int rereads = 0;
481 	u32 v;
482 
483 	I915_WRITE(DC_STATE_EN, state);
484 
485 	/* It has been observed that disabling the dc6 state sometimes
486 	 * doesn't stick and dmc keeps returning old value. Make sure
487 	 * the write really sticks enough times and also force rewrite until
488 	 * we are confident that state is exactly what we want.
489 	 */
490 	do  {
491 		v = I915_READ(DC_STATE_EN);
492 
493 		if (v != state) {
494 			I915_WRITE(DC_STATE_EN, state);
495 			rewrites++;
496 			rereads = 0;
497 		} else if (rereads++ > 5) {
498 			break;
499 		}
500 
501 	} while (rewrites < 100);
502 
503 	if (v != state)
504 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
505 			  state, v);
506 
507 	/* Most of the times we need one retry, avoid spam */
508 	if (rewrites > 1)
509 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
510 			      state, rewrites);
511 }
512 
513 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
514 {
515 	uint32_t val;
516 	uint32_t mask;
517 
518 	mask = DC_STATE_EN_UPTO_DC5;
519 	if (IS_BROXTON(dev_priv))
520 		mask |= DC_STATE_EN_DC9;
521 	else
522 		mask |= DC_STATE_EN_UPTO_DC6;
523 
524 	WARN_ON_ONCE(state & ~mask);
525 
526 	if (i915.enable_dc == 0)
527 		state = DC_STATE_DISABLE;
528 	else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
529 		state = DC_STATE_EN_UPTO_DC5;
530 
531 	if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
532 		gen9_set_dc_state_debugmask_memory_up(dev_priv);
533 
534 	val = I915_READ(DC_STATE_EN);
535 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
536 		      val & mask, state);
537 
538 	/* Check if DMC is ignoring our DC state requests */
539 	if ((val & mask) != dev_priv->csr.dc_state)
540 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
541 			  dev_priv->csr.dc_state, val & mask);
542 
543 	val &= ~mask;
544 	val |= state;
545 
546 	gen9_write_dc_state(dev_priv, val);
547 
548 	dev_priv->csr.dc_state = val & mask;
549 }
550 
551 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
552 {
553 	assert_can_enable_dc9(dev_priv);
554 
555 	DRM_DEBUG_KMS("Enabling DC9\n");
556 
557 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
558 }
559 
560 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
561 {
562 	assert_can_disable_dc9(dev_priv);
563 
564 	DRM_DEBUG_KMS("Disabling DC9\n");
565 
566 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
567 }
568 
569 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
570 {
571 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
572 		  "CSR program storage start is NULL\n");
573 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
574 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
575 }
576 
577 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
578 {
579 	struct drm_device *dev = dev_priv->dev;
580 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
581 					SKL_DISP_PW_2);
582 
583 	WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n");
584 	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
585 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
586 
587 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
588 		  "DC5 already programmed to be enabled.\n");
589 	assert_rpm_wakelock_held(dev_priv);
590 
591 	assert_csr_loaded(dev_priv);
592 }
593 
594 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
595 {
596 	/*
597 	 * During initialization, the firmware may not be loaded yet.
598 	 * We still want to make sure that the DC enabling flag is cleared.
599 	 */
600 	if (dev_priv->power_domains.initializing)
601 		return;
602 
603 	assert_rpm_wakelock_held(dev_priv);
604 }
605 
606 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
607 {
608 	assert_can_enable_dc5(dev_priv);
609 
610 	DRM_DEBUG_KMS("Enabling DC5\n");
611 
612 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
613 }
614 
615 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
616 {
617 	struct drm_device *dev = dev_priv->dev;
618 
619 	WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n");
620 	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
621 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
622 		  "Backlight is not disabled.\n");
623 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
624 		  "DC6 already programmed to be enabled.\n");
625 
626 	assert_csr_loaded(dev_priv);
627 }
628 
629 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
630 {
631 	/*
632 	 * During initialization, the firmware may not be loaded yet.
633 	 * We still want to make sure that the DC enabling flag is cleared.
634 	 */
635 	if (dev_priv->power_domains.initializing)
636 		return;
637 
638 	WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
639 		  "DC6 already programmed to be disabled.\n");
640 }
641 
642 static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
643 {
644 	assert_can_disable_dc5(dev_priv);
645 
646 	if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
647 		assert_can_disable_dc6(dev_priv);
648 
649 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
650 }
651 
652 void skl_enable_dc6(struct drm_i915_private *dev_priv)
653 {
654 	assert_can_enable_dc6(dev_priv);
655 
656 	DRM_DEBUG_KMS("Enabling DC6\n");
657 
658 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
659 
660 }
661 
662 void skl_disable_dc6(struct drm_i915_private *dev_priv)
663 {
664 	assert_can_disable_dc6(dev_priv);
665 
666 	DRM_DEBUG_KMS("Disabling DC6\n");
667 
668 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
669 }
670 
671 static void skl_set_power_well(struct drm_i915_private *dev_priv,
672 			struct i915_power_well *power_well, bool enable)
673 {
674 	struct drm_device *dev = dev_priv->dev;
675 	uint32_t tmp, fuse_status;
676 	uint32_t req_mask, state_mask;
677 	bool is_enabled, enable_requested, check_fuse_status = false;
678 
679 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
680 	fuse_status = I915_READ(SKL_FUSE_STATUS);
681 
682 	switch (power_well->data) {
683 	case SKL_DISP_PW_1:
684 		if (wait_for((I915_READ(SKL_FUSE_STATUS) &
685 			SKL_FUSE_PG0_DIST_STATUS), 1)) {
686 			DRM_ERROR("PG0 not enabled\n");
687 			return;
688 		}
689 		break;
690 	case SKL_DISP_PW_2:
691 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
692 			DRM_ERROR("PG1 in disabled state\n");
693 			return;
694 		}
695 		break;
696 	case SKL_DISP_PW_DDI_A_E:
697 	case SKL_DISP_PW_DDI_B:
698 	case SKL_DISP_PW_DDI_C:
699 	case SKL_DISP_PW_DDI_D:
700 	case SKL_DISP_PW_MISC_IO:
701 		break;
702 	default:
703 		WARN(1, "Unknown power well %lu\n", power_well->data);
704 		return;
705 	}
706 
707 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
708 	enable_requested = tmp & req_mask;
709 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
710 	is_enabled = tmp & state_mask;
711 
712 	if (enable) {
713 		if (!enable_requested) {
714 			WARN((tmp & state_mask) &&
715 				!I915_READ(HSW_PWR_WELL_BIOS),
716 				"Invalid for power well status to be enabled, unless done by the BIOS, \
717 				when request is to disable!\n");
718 			if (power_well->data == SKL_DISP_PW_2) {
719 				/*
720 				 * DDI buffer programming unnecessary during
721 				 * driver-load/resume as it's already done
722 				 * during modeset initialization then. It's
723 				 * also invalid here as encoder list is still
724 				 * uninitialized.
725 				 */
726 				if (!dev_priv->power_domains.initializing)
727 					intel_prepare_ddi(dev);
728 			}
729 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
730 		}
731 
732 		if (!is_enabled) {
733 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
734 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
735 				state_mask), 1))
736 				DRM_ERROR("%s enable timeout\n",
737 					power_well->name);
738 			check_fuse_status = true;
739 		}
740 	} else {
741 		if (enable_requested) {
742 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
743 			POSTING_READ(HSW_PWR_WELL_DRIVER);
744 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
745 		}
746 	}
747 
748 	if (check_fuse_status) {
749 		if (power_well->data == SKL_DISP_PW_1) {
750 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
751 				SKL_FUSE_PG1_DIST_STATUS), 1))
752 				DRM_ERROR("PG1 distributing status timeout\n");
753 		} else if (power_well->data == SKL_DISP_PW_2) {
754 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
755 				SKL_FUSE_PG2_DIST_STATUS), 1))
756 				DRM_ERROR("PG2 distributing status timeout\n");
757 		}
758 	}
759 
760 	if (enable && !is_enabled)
761 		skl_power_well_post_enable(dev_priv, power_well);
762 }
763 
764 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
765 				   struct i915_power_well *power_well)
766 {
767 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
768 
769 	/*
770 	 * We're taking over the BIOS, so clear any requests made by it since
771 	 * the driver is in charge now.
772 	 */
773 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
774 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
775 }
776 
777 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
778 				  struct i915_power_well *power_well)
779 {
780 	hsw_set_power_well(dev_priv, power_well, true);
781 }
782 
783 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
784 				   struct i915_power_well *power_well)
785 {
786 	hsw_set_power_well(dev_priv, power_well, false);
787 }
788 
789 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
790 					struct i915_power_well *power_well)
791 {
792 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
793 		SKL_POWER_WELL_STATE(power_well->data);
794 
795 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
796 }
797 
798 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
799 				struct i915_power_well *power_well)
800 {
801 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
802 
803 	/* Clear any request made by BIOS as driver is taking over */
804 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
805 }
806 
807 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
808 				struct i915_power_well *power_well)
809 {
810 	skl_set_power_well(dev_priv, power_well, true);
811 }
812 
813 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
814 				struct i915_power_well *power_well)
815 {
816 	skl_set_power_well(dev_priv, power_well, false);
817 }
818 
819 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
820 					   struct i915_power_well *power_well)
821 {
822 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
823 }
824 
825 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
826 					  struct i915_power_well *power_well)
827 {
828 	gen9_disable_dc5_dc6(dev_priv);
829 }
830 
831 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
832 					   struct i915_power_well *power_well)
833 {
834 	if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
835 		skl_enable_dc6(dev_priv);
836 	else
837 		gen9_enable_dc5(dev_priv);
838 }
839 
840 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
841 					   struct i915_power_well *power_well)
842 {
843 	if (power_well->count > 0) {
844 		gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
845 	} else {
846 		if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 &&
847 		    i915.enable_dc != 1)
848 			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
849 		else
850 			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
851 	}
852 }
853 
854 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
855 					   struct i915_power_well *power_well)
856 {
857 }
858 
859 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
860 					     struct i915_power_well *power_well)
861 {
862 	return true;
863 }
864 
865 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
866 			       struct i915_power_well *power_well, bool enable)
867 {
868 	enum punit_power_well power_well_id = power_well->data;
869 	u32 mask;
870 	u32 state;
871 	u32 ctrl;
872 
873 	mask = PUNIT_PWRGT_MASK(power_well_id);
874 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
875 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
876 
877 	mutex_lock(&dev_priv->rps.hw_lock);
878 
879 #define COND \
880 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
881 
882 	if (COND)
883 		goto out;
884 
885 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
886 	ctrl &= ~mask;
887 	ctrl |= state;
888 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
889 
890 	if (wait_for(COND, 100))
891 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
892 			  state,
893 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
894 
895 #undef COND
896 
897 out:
898 	mutex_unlock(&dev_priv->rps.hw_lock);
899 }
900 
901 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
902 				   struct i915_power_well *power_well)
903 {
904 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
905 }
906 
907 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
908 				  struct i915_power_well *power_well)
909 {
910 	vlv_set_power_well(dev_priv, power_well, true);
911 }
912 
913 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
914 				   struct i915_power_well *power_well)
915 {
916 	vlv_set_power_well(dev_priv, power_well, false);
917 }
918 
919 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
920 				   struct i915_power_well *power_well)
921 {
922 	int power_well_id = power_well->data;
923 	bool enabled = false;
924 	u32 mask;
925 	u32 state;
926 	u32 ctrl;
927 
928 	mask = PUNIT_PWRGT_MASK(power_well_id);
929 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
930 
931 	mutex_lock(&dev_priv->rps.hw_lock);
932 
933 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
934 	/*
935 	 * We only ever set the power-on and power-gate states, anything
936 	 * else is unexpected.
937 	 */
938 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
939 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
940 	if (state == ctrl)
941 		enabled = true;
942 
943 	/*
944 	 * A transient state at this point would mean some unexpected party
945 	 * is poking at the power controls too.
946 	 */
947 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
948 	WARN_ON(ctrl != state);
949 
950 	mutex_unlock(&dev_priv->rps.hw_lock);
951 
952 	return enabled;
953 }
954 
955 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
956 {
957 	enum i915_pipe pipe;
958 
959 	/*
960 	 * Enable the CRI clock source so we can get at the
961 	 * display and the reference clock for VGA
962 	 * hotplug / manual detection. Supposedly DSI also
963 	 * needs the ref clock up and running.
964 	 *
965 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
966 	 */
967 	for_each_pipe(dev_priv->dev, pipe) {
968 		u32 val = I915_READ(DPLL(pipe));
969 
970 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
971 		if (pipe != PIPE_A)
972 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
973 
974 		I915_WRITE(DPLL(pipe), val);
975 	}
976 
977 	spin_lock_irq(&dev_priv->irq_lock);
978 	valleyview_enable_display_irqs(dev_priv);
979 	spin_unlock_irq(&dev_priv->irq_lock);
980 
981 	/*
982 	 * During driver initialization/resume we can avoid restoring the
983 	 * part of the HW/SW state that will be inited anyway explicitly.
984 	 */
985 	if (dev_priv->power_domains.initializing)
986 		return;
987 
988 	intel_hpd_init(dev_priv);
989 
990 	i915_redisable_vga_power_on(dev_priv->dev);
991 }
992 
993 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
994 {
995 	spin_lock_irq(&dev_priv->irq_lock);
996 	valleyview_disable_display_irqs(dev_priv);
997 	spin_unlock_irq(&dev_priv->irq_lock);
998 
999 	vlv_power_sequencer_reset(dev_priv);
1000 }
1001 
1002 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1003 					  struct i915_power_well *power_well)
1004 {
1005 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1006 
1007 	vlv_set_power_well(dev_priv, power_well, true);
1008 
1009 	vlv_display_power_well_init(dev_priv);
1010 }
1011 
1012 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1013 					   struct i915_power_well *power_well)
1014 {
1015 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1016 
1017 	vlv_display_power_well_deinit(dev_priv);
1018 
1019 	vlv_set_power_well(dev_priv, power_well, false);
1020 }
1021 
1022 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1023 					   struct i915_power_well *power_well)
1024 {
1025 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1026 
1027 	/* since ref/cri clock was enabled */
1028 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1029 
1030 	vlv_set_power_well(dev_priv, power_well, true);
1031 
1032 	/*
1033 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1034 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1035 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1036 	 *   b.	The other bits such as sfr settings / modesel may all
1037 	 *	be set to 0.
1038 	 *
1039 	 * This should only be done on init and resume from S3 with
1040 	 * both PLLs disabled, or we risk losing DPIO and PLL
1041 	 * synchronization.
1042 	 */
1043 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1044 }
1045 
1046 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1047 					    struct i915_power_well *power_well)
1048 {
1049 	enum i915_pipe pipe;
1050 
1051 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1052 
1053 	for_each_pipe(dev_priv, pipe)
1054 		assert_pll_disabled(dev_priv, pipe);
1055 
1056 	/* Assert common reset */
1057 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1058 
1059 	vlv_set_power_well(dev_priv, power_well, false);
1060 }
1061 
1062 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1063 
1064 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1065 						 int power_well_id)
1066 {
1067 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1068 	int i;
1069 
1070 	for (i = 0; i < power_domains->power_well_count; i++) {
1071 		struct i915_power_well *power_well;
1072 
1073 		power_well = &power_domains->power_wells[i];
1074 		if (power_well->data == power_well_id)
1075 			return power_well;
1076 	}
1077 
1078 	return NULL;
1079 }
1080 
1081 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1082 
1083 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1084 {
1085 	struct i915_power_well *cmn_bc =
1086 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1087 	struct i915_power_well *cmn_d =
1088 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1089 	u32 phy_control = dev_priv->chv_phy_control;
1090 	u32 phy_status = 0;
1091 	u32 phy_status_mask = 0xffffffff;
1092 	u32 tmp;
1093 
1094 	/*
1095 	 * The BIOS can leave the PHY is some weird state
1096 	 * where it doesn't fully power down some parts.
1097 	 * Disable the asserts until the PHY has been fully
1098 	 * reset (ie. the power well has been disabled at
1099 	 * least once).
1100 	 */
1101 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1102 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1103 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1104 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1105 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1106 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1107 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1108 
1109 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1110 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1111 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1112 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1113 
1114 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1115 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1116 
1117 		/* this assumes override is only used to enable lanes */
1118 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1119 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1120 
1121 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1122 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1123 
1124 		/* CL1 is on whenever anything is on in either channel */
1125 		if (BITS_SET(phy_control,
1126 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1127 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1128 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1129 
1130 		/*
1131 		 * The DPLLB check accounts for the pipe B + port A usage
1132 		 * with CL2 powered up but all the lanes in the second channel
1133 		 * powered down.
1134 		 */
1135 		if (BITS_SET(phy_control,
1136 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1137 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1138 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1139 
1140 		if (BITS_SET(phy_control,
1141 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1142 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1143 		if (BITS_SET(phy_control,
1144 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1145 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1146 
1147 		if (BITS_SET(phy_control,
1148 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1149 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1150 		if (BITS_SET(phy_control,
1151 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1152 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1153 	}
1154 
1155 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1156 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1157 
1158 		/* this assumes override is only used to enable lanes */
1159 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1160 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1161 
1162 		if (BITS_SET(phy_control,
1163 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1164 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1165 
1166 		if (BITS_SET(phy_control,
1167 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1168 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1169 		if (BITS_SET(phy_control,
1170 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1171 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1172 	}
1173 
1174 	phy_status &= phy_status_mask;
1175 
1176 	/*
1177 	 * The PHY may be busy with some initial calibration and whatnot,
1178 	 * so the power state can take a while to actually change.
1179 	 */
1180 	if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1181 		WARN(phy_status != tmp,
1182 		     "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1183 		     tmp, phy_status, dev_priv->chv_phy_control);
1184 }
1185 
1186 #undef BITS_SET
1187 
1188 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1189 					   struct i915_power_well *power_well)
1190 {
1191 	enum dpio_phy phy;
1192 	enum i915_pipe pipe;
1193 	uint32_t tmp;
1194 
1195 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1196 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1197 
1198 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1199 		pipe = PIPE_A;
1200 		phy = DPIO_PHY0;
1201 	} else {
1202 		pipe = PIPE_C;
1203 		phy = DPIO_PHY1;
1204 	}
1205 
1206 	/* since ref/cri clock was enabled */
1207 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1208 	vlv_set_power_well(dev_priv, power_well, true);
1209 
1210 	/* Poll for phypwrgood signal */
1211 	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1212 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1213 
1214 	mutex_lock(&dev_priv->sb_lock);
1215 
1216 	/* Enable dynamic power down */
1217 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1218 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1219 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1220 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1221 
1222 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1223 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1224 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1225 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1226 	} else {
1227 		/*
1228 		 * Force the non-existing CL2 off. BXT does this
1229 		 * too, so maybe it saves some power even though
1230 		 * CL2 doesn't exist?
1231 		 */
1232 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1233 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1234 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1235 	}
1236 
1237 	mutex_unlock(&dev_priv->sb_lock);
1238 
1239 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1240 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1241 
1242 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1243 		      phy, dev_priv->chv_phy_control);
1244 
1245 	assert_chv_phy_status(dev_priv);
1246 }
1247 
1248 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1249 					    struct i915_power_well *power_well)
1250 {
1251 	enum dpio_phy phy;
1252 
1253 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1254 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1255 
1256 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1257 		phy = DPIO_PHY0;
1258 		assert_pll_disabled(dev_priv, PIPE_A);
1259 		assert_pll_disabled(dev_priv, PIPE_B);
1260 	} else {
1261 		phy = DPIO_PHY1;
1262 		assert_pll_disabled(dev_priv, PIPE_C);
1263 	}
1264 
1265 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1266 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1267 
1268 	vlv_set_power_well(dev_priv, power_well, false);
1269 
1270 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1271 		      phy, dev_priv->chv_phy_control);
1272 
1273 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1274 	dev_priv->chv_phy_assert[phy] = true;
1275 
1276 	assert_chv_phy_status(dev_priv);
1277 }
1278 
1279 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1280 				     enum dpio_channel ch, bool override, unsigned int mask)
1281 {
1282 	enum i915_pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1283 	u32 reg, val, expected, actual;
1284 
1285 	/*
1286 	 * The BIOS can leave the PHY is some weird state
1287 	 * where it doesn't fully power down some parts.
1288 	 * Disable the asserts until the PHY has been fully
1289 	 * reset (ie. the power well has been disabled at
1290 	 * least once).
1291 	 */
1292 	if (!dev_priv->chv_phy_assert[phy])
1293 		return;
1294 
1295 	if (ch == DPIO_CH0)
1296 		reg = _CHV_CMN_DW0_CH0;
1297 	else
1298 		reg = _CHV_CMN_DW6_CH1;
1299 
1300 	mutex_lock(&dev_priv->sb_lock);
1301 	val = vlv_dpio_read(dev_priv, pipe, reg);
1302 	mutex_unlock(&dev_priv->sb_lock);
1303 
1304 	/*
1305 	 * This assumes !override is only used when the port is disabled.
1306 	 * All lanes should power down even without the override when
1307 	 * the port is disabled.
1308 	 */
1309 	if (!override || mask == 0xf) {
1310 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1311 		/*
1312 		 * If CH1 common lane is not active anymore
1313 		 * (eg. for pipe B DPLL) the entire channel will
1314 		 * shut down, which causes the common lane registers
1315 		 * to read as 0. That means we can't actually check
1316 		 * the lane power down status bits, but as the entire
1317 		 * register reads as 0 it's a good indication that the
1318 		 * channel is indeed entirely powered down.
1319 		 */
1320 		if (ch == DPIO_CH1 && val == 0)
1321 			expected = 0;
1322 	} else if (mask != 0x0) {
1323 		expected = DPIO_ANYDL_POWERDOWN;
1324 	} else {
1325 		expected = 0;
1326 	}
1327 
1328 	if (ch == DPIO_CH0)
1329 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1330 	else
1331 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1332 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1333 
1334 	WARN(actual != expected,
1335 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1336 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1337 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1338 	     reg, val);
1339 }
1340 
1341 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1342 			  enum dpio_channel ch, bool override)
1343 {
1344 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1345 	bool was_override;
1346 
1347 	mutex_lock(&power_domains->lock);
1348 
1349 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1350 
1351 	if (override == was_override)
1352 		goto out;
1353 
1354 	if (override)
1355 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1356 	else
1357 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1358 
1359 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1360 
1361 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1362 		      phy, ch, dev_priv->chv_phy_control);
1363 
1364 	assert_chv_phy_status(dev_priv);
1365 
1366 out:
1367 	mutex_unlock(&power_domains->lock);
1368 
1369 	return was_override;
1370 }
1371 
1372 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1373 			     bool override, unsigned int mask)
1374 {
1375 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1376 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1377 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1378 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1379 
1380 	mutex_lock(&power_domains->lock);
1381 
1382 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1383 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1384 
1385 	if (override)
1386 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1387 	else
1388 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1389 
1390 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1391 
1392 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1393 		      phy, ch, mask, dev_priv->chv_phy_control);
1394 
1395 	assert_chv_phy_status(dev_priv);
1396 
1397 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1398 
1399 	mutex_unlock(&power_domains->lock);
1400 }
1401 
1402 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1403 					struct i915_power_well *power_well)
1404 {
1405 	enum i915_pipe pipe = power_well->data;
1406 	bool enabled;
1407 	u32 state, ctrl;
1408 
1409 	mutex_lock(&dev_priv->rps.hw_lock);
1410 
1411 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1412 	/*
1413 	 * We only ever set the power-on and power-gate states, anything
1414 	 * else is unexpected.
1415 	 */
1416 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1417 	enabled = state == DP_SSS_PWR_ON(pipe);
1418 
1419 	/*
1420 	 * A transient state at this point would mean some unexpected party
1421 	 * is poking at the power controls too.
1422 	 */
1423 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1424 	WARN_ON(ctrl << 16 != state);
1425 
1426 	mutex_unlock(&dev_priv->rps.hw_lock);
1427 
1428 	return enabled;
1429 }
1430 
1431 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1432 				    struct i915_power_well *power_well,
1433 				    bool enable)
1434 {
1435 	enum i915_pipe pipe = power_well->data;
1436 	u32 state;
1437 	u32 ctrl;
1438 
1439 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1440 
1441 	mutex_lock(&dev_priv->rps.hw_lock);
1442 
1443 #define COND \
1444 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1445 
1446 	if (COND)
1447 		goto out;
1448 
1449 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1450 	ctrl &= ~DP_SSC_MASK(pipe);
1451 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1452 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1453 
1454 	if (wait_for(COND, 100))
1455 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1456 			  state,
1457 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1458 
1459 #undef COND
1460 
1461 out:
1462 	mutex_unlock(&dev_priv->rps.hw_lock);
1463 }
1464 
1465 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1466 					struct i915_power_well *power_well)
1467 {
1468 	WARN_ON_ONCE(power_well->data != PIPE_A);
1469 
1470 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1471 }
1472 
1473 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1474 				       struct i915_power_well *power_well)
1475 {
1476 	WARN_ON_ONCE(power_well->data != PIPE_A);
1477 
1478 	chv_set_pipe_power_well(dev_priv, power_well, true);
1479 
1480 	vlv_display_power_well_init(dev_priv);
1481 }
1482 
1483 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1484 					struct i915_power_well *power_well)
1485 {
1486 	WARN_ON_ONCE(power_well->data != PIPE_A);
1487 
1488 	vlv_display_power_well_deinit(dev_priv);
1489 
1490 	chv_set_pipe_power_well(dev_priv, power_well, false);
1491 }
1492 
1493 static void
1494 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1495 				 enum intel_display_power_domain domain)
1496 {
1497 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1498 	struct i915_power_well *power_well;
1499 	int i;
1500 
1501 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
1502 		if (!power_well->count++)
1503 			intel_power_well_enable(dev_priv, power_well);
1504 	}
1505 
1506 	power_domains->domain_use_count[domain]++;
1507 }
1508 
1509 /**
1510  * intel_display_power_get - grab a power domain reference
1511  * @dev_priv: i915 device instance
1512  * @domain: power domain to reference
1513  *
1514  * This function grabs a power domain reference for @domain and ensures that the
1515  * power domain and all its parents are powered up. Therefore users should only
1516  * grab a reference to the innermost power domain they need.
1517  *
1518  * Any power domain reference obtained by this function must have a symmetric
1519  * call to intel_display_power_put() to release the reference again.
1520  */
1521 void intel_display_power_get(struct drm_i915_private *dev_priv,
1522 			     enum intel_display_power_domain domain)
1523 {
1524 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1525 
1526 	intel_runtime_pm_get(dev_priv);
1527 
1528 	mutex_lock(&power_domains->lock);
1529 
1530 	__intel_display_power_get_domain(dev_priv, domain);
1531 
1532 	mutex_unlock(&power_domains->lock);
1533 }
1534 
1535 /**
1536  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1537  * @dev_priv: i915 device instance
1538  * @domain: power domain to reference
1539  *
1540  * This function grabs a power domain reference for @domain and ensures that the
1541  * power domain and all its parents are powered up. Therefore users should only
1542  * grab a reference to the innermost power domain they need.
1543  *
1544  * Any power domain reference obtained by this function must have a symmetric
1545  * call to intel_display_power_put() to release the reference again.
1546  */
1547 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1548 					enum intel_display_power_domain domain)
1549 {
1550 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1551 	bool is_enabled;
1552 
1553 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1554 		return false;
1555 
1556 	mutex_lock(&power_domains->lock);
1557 
1558 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1559 		__intel_display_power_get_domain(dev_priv, domain);
1560 		is_enabled = true;
1561 	} else {
1562 		is_enabled = false;
1563 	}
1564 
1565 	mutex_unlock(&power_domains->lock);
1566 
1567 	if (!is_enabled)
1568 		intel_runtime_pm_put(dev_priv);
1569 
1570 	return is_enabled;
1571 }
1572 
1573 /**
1574  * intel_display_power_put - release a power domain reference
1575  * @dev_priv: i915 device instance
1576  * @domain: power domain to reference
1577  *
1578  * This function drops the power domain reference obtained by
1579  * intel_display_power_get() and might power down the corresponding hardware
1580  * block right away if this is the last reference.
1581  */
1582 void intel_display_power_put(struct drm_i915_private *dev_priv,
1583 			     enum intel_display_power_domain domain)
1584 {
1585 	struct i915_power_domains *power_domains;
1586 	struct i915_power_well *power_well;
1587 	int i;
1588 
1589 	power_domains = &dev_priv->power_domains;
1590 
1591 	mutex_lock(&power_domains->lock);
1592 
1593 	WARN(!power_domains->domain_use_count[domain],
1594 	     "Use count on domain %s is already zero\n",
1595 	     intel_display_power_domain_str(domain));
1596 	power_domains->domain_use_count[domain]--;
1597 
1598 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1599 		WARN(!power_well->count,
1600 		     "Use count on power well %s is already zero",
1601 		     power_well->name);
1602 
1603 		if (!--power_well->count)
1604 			intel_power_well_disable(dev_priv, power_well);
1605 	}
1606 
1607 	mutex_unlock(&power_domains->lock);
1608 
1609 	intel_runtime_pm_put(dev_priv);
1610 }
1611 
1612 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
1613 	BIT(POWER_DOMAIN_PIPE_A) |			\
1614 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
1615 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
1616 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1617 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1618 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1619 	BIT(POWER_DOMAIN_PORT_CRT) |			\
1620 	BIT(POWER_DOMAIN_PLLS) |			\
1621 	BIT(POWER_DOMAIN_AUX_A) |			\
1622 	BIT(POWER_DOMAIN_AUX_B) |			\
1623 	BIT(POWER_DOMAIN_AUX_C) |			\
1624 	BIT(POWER_DOMAIN_AUX_D) |			\
1625 	BIT(POWER_DOMAIN_GMBUS) |			\
1626 	BIT(POWER_DOMAIN_INIT))
1627 #define HSW_DISPLAY_POWER_DOMAINS (				\
1628 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
1629 	BIT(POWER_DOMAIN_INIT))
1630 
1631 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
1632 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
1633 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1634 #define BDW_DISPLAY_POWER_DOMAINS (				\
1635 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
1636 	BIT(POWER_DOMAIN_INIT))
1637 
1638 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
1639 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
1640 
1641 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1642 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1643 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1644 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1645 	BIT(POWER_DOMAIN_AUX_B) |		\
1646 	BIT(POWER_DOMAIN_AUX_C) |		\
1647 	BIT(POWER_DOMAIN_INIT))
1648 
1649 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1650 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1651 	BIT(POWER_DOMAIN_AUX_B) |		\
1652 	BIT(POWER_DOMAIN_INIT))
1653 
1654 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1655 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1656 	BIT(POWER_DOMAIN_AUX_B) |		\
1657 	BIT(POWER_DOMAIN_INIT))
1658 
1659 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1660 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1661 	BIT(POWER_DOMAIN_AUX_C) |		\
1662 	BIT(POWER_DOMAIN_INIT))
1663 
1664 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1665 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1666 	BIT(POWER_DOMAIN_AUX_C) |		\
1667 	BIT(POWER_DOMAIN_INIT))
1668 
1669 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1670 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1671 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1672 	BIT(POWER_DOMAIN_AUX_B) |		\
1673 	BIT(POWER_DOMAIN_AUX_C) |		\
1674 	BIT(POWER_DOMAIN_INIT))
1675 
1676 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1677 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1678 	BIT(POWER_DOMAIN_AUX_D) |		\
1679 	BIT(POWER_DOMAIN_INIT))
1680 
1681 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1682 	.sync_hw = i9xx_always_on_power_well_noop,
1683 	.enable = i9xx_always_on_power_well_noop,
1684 	.disable = i9xx_always_on_power_well_noop,
1685 	.is_enabled = i9xx_always_on_power_well_enabled,
1686 };
1687 
1688 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1689 	.sync_hw = chv_pipe_power_well_sync_hw,
1690 	.enable = chv_pipe_power_well_enable,
1691 	.disable = chv_pipe_power_well_disable,
1692 	.is_enabled = chv_pipe_power_well_enabled,
1693 };
1694 
1695 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1696 	.sync_hw = vlv_power_well_sync_hw,
1697 	.enable = chv_dpio_cmn_power_well_enable,
1698 	.disable = chv_dpio_cmn_power_well_disable,
1699 	.is_enabled = vlv_power_well_enabled,
1700 };
1701 
1702 static struct i915_power_well i9xx_always_on_power_well[] = {
1703 	{
1704 		.name = "always-on",
1705 		.always_on = 1,
1706 		.domains = POWER_DOMAIN_MASK,
1707 		.ops = &i9xx_always_on_power_well_ops,
1708 	},
1709 };
1710 
1711 static const struct i915_power_well_ops hsw_power_well_ops = {
1712 	.sync_hw = hsw_power_well_sync_hw,
1713 	.enable = hsw_power_well_enable,
1714 	.disable = hsw_power_well_disable,
1715 	.is_enabled = hsw_power_well_enabled,
1716 };
1717 
1718 static const struct i915_power_well_ops skl_power_well_ops = {
1719 	.sync_hw = skl_power_well_sync_hw,
1720 	.enable = skl_power_well_enable,
1721 	.disable = skl_power_well_disable,
1722 	.is_enabled = skl_power_well_enabled,
1723 };
1724 
1725 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1726 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1727 	.enable = gen9_dc_off_power_well_enable,
1728 	.disable = gen9_dc_off_power_well_disable,
1729 	.is_enabled = gen9_dc_off_power_well_enabled,
1730 };
1731 
1732 static struct i915_power_well hsw_power_wells[] = {
1733 	{
1734 		.name = "always-on",
1735 		.always_on = 1,
1736 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1737 		.ops = &i9xx_always_on_power_well_ops,
1738 	},
1739 	{
1740 		.name = "display",
1741 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1742 		.ops = &hsw_power_well_ops,
1743 	},
1744 };
1745 
1746 static struct i915_power_well bdw_power_wells[] = {
1747 	{
1748 		.name = "always-on",
1749 		.always_on = 1,
1750 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1751 		.ops = &i9xx_always_on_power_well_ops,
1752 	},
1753 	{
1754 		.name = "display",
1755 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1756 		.ops = &hsw_power_well_ops,
1757 	},
1758 };
1759 
1760 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1761 	.sync_hw = vlv_power_well_sync_hw,
1762 	.enable = vlv_display_power_well_enable,
1763 	.disable = vlv_display_power_well_disable,
1764 	.is_enabled = vlv_power_well_enabled,
1765 };
1766 
1767 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1768 	.sync_hw = vlv_power_well_sync_hw,
1769 	.enable = vlv_dpio_cmn_power_well_enable,
1770 	.disable = vlv_dpio_cmn_power_well_disable,
1771 	.is_enabled = vlv_power_well_enabled,
1772 };
1773 
1774 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1775 	.sync_hw = vlv_power_well_sync_hw,
1776 	.enable = vlv_power_well_enable,
1777 	.disable = vlv_power_well_disable,
1778 	.is_enabled = vlv_power_well_enabled,
1779 };
1780 
1781 static struct i915_power_well vlv_power_wells[] = {
1782 	{
1783 		.name = "always-on",
1784 		.always_on = 1,
1785 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1786 		.ops = &i9xx_always_on_power_well_ops,
1787 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1788 	},
1789 	{
1790 		.name = "display",
1791 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1792 		.data = PUNIT_POWER_WELL_DISP2D,
1793 		.ops = &vlv_display_power_well_ops,
1794 	},
1795 	{
1796 		.name = "dpio-tx-b-01",
1797 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1798 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1799 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1800 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1801 		.ops = &vlv_dpio_power_well_ops,
1802 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1803 	},
1804 	{
1805 		.name = "dpio-tx-b-23",
1806 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1807 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1808 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1809 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1810 		.ops = &vlv_dpio_power_well_ops,
1811 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1812 	},
1813 	{
1814 		.name = "dpio-tx-c-01",
1815 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1816 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1817 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1818 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1819 		.ops = &vlv_dpio_power_well_ops,
1820 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1821 	},
1822 	{
1823 		.name = "dpio-tx-c-23",
1824 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1825 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1826 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1827 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1828 		.ops = &vlv_dpio_power_well_ops,
1829 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1830 	},
1831 	{
1832 		.name = "dpio-common",
1833 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1834 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1835 		.ops = &vlv_dpio_cmn_power_well_ops,
1836 	},
1837 };
1838 
1839 static struct i915_power_well chv_power_wells[] = {
1840 	{
1841 		.name = "always-on",
1842 		.always_on = 1,
1843 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1844 		.ops = &i9xx_always_on_power_well_ops,
1845 	},
1846 	{
1847 		.name = "display",
1848 		/*
1849 		 * Pipe A power well is the new disp2d well. Pipe B and C
1850 		 * power wells don't actually exist. Pipe A power well is
1851 		 * required for any pipe to work.
1852 		 */
1853 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1854 		.data = PIPE_A,
1855 		.ops = &chv_pipe_power_well_ops,
1856 	},
1857 	{
1858 		.name = "dpio-common-bc",
1859 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1860 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1861 		.ops = &chv_dpio_cmn_power_well_ops,
1862 	},
1863 	{
1864 		.name = "dpio-common-d",
1865 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1866 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
1867 		.ops = &chv_dpio_cmn_power_well_ops,
1868 	},
1869 };
1870 
1871 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1872 				    int power_well_id)
1873 {
1874 	struct i915_power_well *power_well;
1875 	bool ret;
1876 
1877 	power_well = lookup_power_well(dev_priv, power_well_id);
1878 	ret = power_well->ops->is_enabled(dev_priv, power_well);
1879 
1880 	return ret;
1881 }
1882 
1883 static struct i915_power_well skl_power_wells[] = {
1884 	{
1885 		.name = "always-on",
1886 		.always_on = 1,
1887 		.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1888 		.ops = &i9xx_always_on_power_well_ops,
1889 		.data = SKL_DISP_PW_ALWAYS_ON,
1890 	},
1891 	{
1892 		.name = "power well 1",
1893 		/* Handled by the DMC firmware */
1894 		.domains = 0,
1895 		.ops = &skl_power_well_ops,
1896 		.data = SKL_DISP_PW_1,
1897 	},
1898 	{
1899 		.name = "MISC IO power well",
1900 		/* Handled by the DMC firmware */
1901 		.domains = 0,
1902 		.ops = &skl_power_well_ops,
1903 		.data = SKL_DISP_PW_MISC_IO,
1904 	},
1905 	{
1906 		.name = "DC off",
1907 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1908 		.ops = &gen9_dc_off_power_well_ops,
1909 		.data = SKL_DISP_PW_DC_OFF,
1910 	},
1911 	{
1912 		.name = "power well 2",
1913 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1914 		.ops = &skl_power_well_ops,
1915 		.data = SKL_DISP_PW_2,
1916 	},
1917 	{
1918 		.name = "DDI A/E power well",
1919 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1920 		.ops = &skl_power_well_ops,
1921 		.data = SKL_DISP_PW_DDI_A_E,
1922 	},
1923 	{
1924 		.name = "DDI B power well",
1925 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1926 		.ops = &skl_power_well_ops,
1927 		.data = SKL_DISP_PW_DDI_B,
1928 	},
1929 	{
1930 		.name = "DDI C power well",
1931 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1932 		.ops = &skl_power_well_ops,
1933 		.data = SKL_DISP_PW_DDI_C,
1934 	},
1935 	{
1936 		.name = "DDI D power well",
1937 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1938 		.ops = &skl_power_well_ops,
1939 		.data = SKL_DISP_PW_DDI_D,
1940 	},
1941 };
1942 
1943 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1944 {
1945 	struct i915_power_well *well;
1946 
1947 	if (!IS_SKYLAKE(dev_priv))
1948 		return;
1949 
1950 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1951 	intel_power_well_enable(dev_priv, well);
1952 
1953 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1954 	intel_power_well_enable(dev_priv, well);
1955 }
1956 
1957 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1958 {
1959 	struct i915_power_well *well;
1960 
1961 	if (!IS_SKYLAKE(dev_priv))
1962 		return;
1963 
1964 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1965 	intel_power_well_disable(dev_priv, well);
1966 
1967 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1968 	intel_power_well_disable(dev_priv, well);
1969 }
1970 
1971 static struct i915_power_well bxt_power_wells[] = {
1972 	{
1973 		.name = "always-on",
1974 		.always_on = 1,
1975 		.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1976 		.ops = &i9xx_always_on_power_well_ops,
1977 	},
1978 	{
1979 		.name = "power well 1",
1980 		.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1981 		.ops = &skl_power_well_ops,
1982 		.data = SKL_DISP_PW_1,
1983 	},
1984 	{
1985 		.name = "DC off",
1986 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
1987 		.ops = &gen9_dc_off_power_well_ops,
1988 		.data = SKL_DISP_PW_DC_OFF,
1989 	},
1990 	{
1991 		.name = "power well 2",
1992 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1993 		.ops = &skl_power_well_ops,
1994 		.data = SKL_DISP_PW_2,
1995 	},
1996 };
1997 
1998 static int
1999 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2000 				   int disable_power_well)
2001 {
2002 	if (disable_power_well >= 0)
2003 		return !!disable_power_well;
2004 
2005 	if (IS_BROXTON(dev_priv)) {
2006 		DRM_DEBUG_KMS("Disabling display power well support\n");
2007 		return 0;
2008 	}
2009 
2010 	return 1;
2011 }
2012 
2013 #define set_power_wells(power_domains, __power_wells) ({		\
2014 	(power_domains)->power_wells = (__power_wells);			\
2015 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2016 })
2017 
2018 /**
2019  * intel_power_domains_init - initializes the power domain structures
2020  * @dev_priv: i915 device instance
2021  *
2022  * Initializes the power domain structures for @dev_priv depending upon the
2023  * supported platform.
2024  */
2025 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2026 {
2027 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2028 
2029 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2030 						     i915.disable_power_well);
2031 
2032 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2033 
2034 	lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE);
2035 
2036 	/*
2037 	 * The enabling order will be from lower to higher indexed wells,
2038 	 * the disabling order is reversed.
2039 	 */
2040 	if (IS_HASWELL(dev_priv->dev)) {
2041 		set_power_wells(power_domains, hsw_power_wells);
2042 	} else if (IS_BROADWELL(dev_priv->dev)) {
2043 		set_power_wells(power_domains, bdw_power_wells);
2044 	} else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
2045 		set_power_wells(power_domains, skl_power_wells);
2046 	} else if (IS_BROXTON(dev_priv->dev)) {
2047 		set_power_wells(power_domains, bxt_power_wells);
2048 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
2049 		set_power_wells(power_domains, chv_power_wells);
2050 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
2051 		set_power_wells(power_domains, vlv_power_wells);
2052 	} else {
2053 		set_power_wells(power_domains, i9xx_always_on_power_well);
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  * intel_power_domains_fini - finalizes the power domain structures
2061  * @dev_priv: i915 device instance
2062  *
2063  * Finalizes the power domain structures for @dev_priv depending upon the
2064  * supported platform. This function also disables runtime pm and ensures that
2065  * the device stays powered up so that the driver can be reloaded.
2066  */
2067 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2068 {
2069 #if 0
2070 	struct device *device = &dev_priv->dev->pdev->dev;
2071 #endif
2072 
2073 	/*
2074 	 * The i915.ko module is still not prepared to be loaded when
2075 	 * the power well is not enabled, so just enable it in case
2076 	 * we're going to unload/reload.
2077 	 * The following also reacquires the RPM reference the core passed
2078 	 * to the driver during loading, which is dropped in
2079 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2080 	 * device to the core with this reference held.
2081 	 */
2082 	intel_display_set_init_power(dev_priv, true);
2083 
2084 	/* Remove the refcount we took to keep power well support disabled. */
2085 	if (!i915.disable_power_well)
2086 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2087 
2088 	/*
2089 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2090 	 * the platform doesn't support runtime PM.
2091 	 */
2092 #if 0
2093 	if (!HAS_RUNTIME_PM(dev_priv))
2094 		pm_runtime_put(device);
2095 #endif
2096 }
2097 
2098 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2099 {
2100 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2101 	struct i915_power_well *power_well;
2102 	int i;
2103 
2104 	mutex_lock(&power_domains->lock);
2105 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2106 		power_well->ops->sync_hw(dev_priv, power_well);
2107 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2108 								     power_well);
2109 	}
2110 	mutex_unlock(&power_domains->lock);
2111 }
2112 
2113 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2114 				  bool resume)
2115 {
2116 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2117 	uint32_t val;
2118 
2119 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2120 
2121 	/* enable PCH reset handshake */
2122 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2123 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2124 
2125 	/* enable PG1 and Misc I/O */
2126 	mutex_lock(&power_domains->lock);
2127 	skl_pw1_misc_io_init(dev_priv);
2128 	mutex_unlock(&power_domains->lock);
2129 
2130 	if (!resume)
2131 		return;
2132 
2133 	skl_init_cdclk(dev_priv);
2134 
2135 	if (dev_priv->csr.dmc_payload)
2136 		intel_csr_load_program(dev_priv);
2137 }
2138 
2139 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2140 {
2141 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2142 
2143 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2144 
2145 	skl_uninit_cdclk(dev_priv);
2146 
2147 	/* The spec doesn't call for removing the reset handshake flag */
2148 	/* disable PG1 and Misc I/O */
2149 	mutex_lock(&power_domains->lock);
2150 	skl_pw1_misc_io_fini(dev_priv);
2151 	mutex_unlock(&power_domains->lock);
2152 }
2153 
2154 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2155 {
2156 	struct i915_power_well *cmn_bc =
2157 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2158 	struct i915_power_well *cmn_d =
2159 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2160 
2161 	/*
2162 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2163 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2164 	 * instead maintain a shadow copy ourselves. Use the actual
2165 	 * power well state and lane status to reconstruct the
2166 	 * expected initial value.
2167 	 */
2168 	dev_priv->chv_phy_control =
2169 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2170 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2171 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2172 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2173 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2174 
2175 	/*
2176 	 * If all lanes are disabled we leave the override disabled
2177 	 * with all power down bits cleared to match the state we
2178 	 * would use after disabling the port. Otherwise enable the
2179 	 * override and set the lane powerdown bits accding to the
2180 	 * current lane status.
2181 	 */
2182 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2183 		uint32_t status = I915_READ(DPLL(PIPE_A));
2184 		unsigned int mask;
2185 
2186 		mask = status & DPLL_PORTB_READY_MASK;
2187 		if (mask == 0xf)
2188 			mask = 0x0;
2189 		else
2190 			dev_priv->chv_phy_control |=
2191 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2192 
2193 		dev_priv->chv_phy_control |=
2194 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2195 
2196 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2197 		if (mask == 0xf)
2198 			mask = 0x0;
2199 		else
2200 			dev_priv->chv_phy_control |=
2201 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2202 
2203 		dev_priv->chv_phy_control |=
2204 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2205 
2206 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2207 
2208 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2209 	} else {
2210 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2211 	}
2212 
2213 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2214 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2215 		unsigned int mask;
2216 
2217 		mask = status & DPLL_PORTD_READY_MASK;
2218 
2219 		if (mask == 0xf)
2220 			mask = 0x0;
2221 		else
2222 			dev_priv->chv_phy_control |=
2223 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2224 
2225 		dev_priv->chv_phy_control |=
2226 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2227 
2228 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2229 
2230 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2231 	} else {
2232 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2233 	}
2234 
2235 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2236 
2237 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2238 		      dev_priv->chv_phy_control);
2239 }
2240 
2241 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2242 {
2243 	struct i915_power_well *cmn =
2244 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2245 	struct i915_power_well *disp2d =
2246 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2247 
2248 	/* If the display might be already active skip this */
2249 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2250 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2251 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2252 		return;
2253 
2254 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2255 
2256 	/* cmnlane needs DPLL registers */
2257 	disp2d->ops->enable(dev_priv, disp2d);
2258 
2259 	/*
2260 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2261 	 * Need to assert and de-assert PHY SB reset by gating the
2262 	 * common lane power, then un-gating it.
2263 	 * Simply ungating isn't enough to reset the PHY enough to get
2264 	 * ports and lanes running.
2265 	 */
2266 	cmn->ops->disable(dev_priv, cmn);
2267 }
2268 
2269 /**
2270  * intel_power_domains_init_hw - initialize hardware power domain state
2271  * @dev_priv: i915 device instance
2272  *
2273  * This function initializes the hardware power domain state and enables all
2274  * power domains using intel_display_set_init_power().
2275  */
2276 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2277 {
2278 	struct drm_device *dev = dev_priv->dev;
2279 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2280 
2281 	power_domains->initializing = true;
2282 
2283 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2284 		skl_display_core_init(dev_priv, resume);
2285 	} else if (IS_CHERRYVIEW(dev)) {
2286 		mutex_lock(&power_domains->lock);
2287 		chv_phy_control_init(dev_priv);
2288 		mutex_unlock(&power_domains->lock);
2289 	} else if (IS_VALLEYVIEW(dev)) {
2290 		mutex_lock(&power_domains->lock);
2291 		vlv_cmnlane_wa(dev_priv);
2292 		mutex_unlock(&power_domains->lock);
2293 	}
2294 
2295 	/* For now, we need the power well to be always enabled. */
2296 	intel_display_set_init_power(dev_priv, true);
2297 	/* Disable power support if the user asked so. */
2298 	if (!i915.disable_power_well)
2299 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2300 	intel_power_domains_sync_hw(dev_priv);
2301 	power_domains->initializing = false;
2302 }
2303 
2304 /**
2305  * intel_power_domains_suspend - suspend power domain state
2306  * @dev_priv: i915 device instance
2307  *
2308  * This function prepares the hardware power domain state before entering
2309  * system suspend. It must be paired with intel_power_domains_init_hw().
2310  */
2311 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2312 {
2313 	/*
2314 	 * Even if power well support was disabled we still want to disable
2315 	 * power wells while we are system suspended.
2316 	 */
2317 	if (!i915.disable_power_well)
2318 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2319 
2320 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2321 		skl_display_core_uninit(dev_priv);
2322 }
2323 
2324 /**
2325  * intel_runtime_pm_get - grab a runtime pm reference
2326  * @dev_priv: i915 device instance
2327  *
2328  * This function grabs a device-level runtime pm reference (mostly used for GEM
2329  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2330  *
2331  * Any runtime pm reference obtained by this function must have a symmetric
2332  * call to intel_runtime_pm_put() to release the reference again.
2333  */
2334 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2335 {
2336 #if 0
2337 	struct drm_device *dev = dev_priv->dev;
2338 	struct device *device = &dev->pdev->dev;
2339 
2340 	pm_runtime_get_sync(device);
2341 #endif
2342 
2343 	atomic_inc(&dev_priv->pm.wakeref_count);
2344 	assert_rpm_wakelock_held(dev_priv);
2345 }
2346 
2347 /**
2348  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2349  * @dev_priv: i915 device instance
2350  *
2351  * This function grabs a device-level runtime pm reference if the device is
2352  * already in use and ensures that it is powered up.
2353  *
2354  * Any runtime pm reference obtained by this function must have a symmetric
2355  * call to intel_runtime_pm_put() to release the reference again.
2356  */
2357 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2358 {
2359 #ifndef __DragonFly__
2360 	struct drm_device *dev = dev_priv->dev;
2361 	struct device *device = &dev->pdev->dev;
2362 
2363 	if (IS_ENABLED(CONFIG_PM)) {
2364 		int ret = pm_runtime_get_if_in_use(device);
2365 
2366 		/*
2367 		 * In cases runtime PM is disabled by the RPM core and we get
2368 		 * an -EINVAL return value we are not supposed to call this
2369 		 * function, since the power state is undefined. This applies
2370 		 * atm to the late/early system suspend/resume handlers.
2371 		 */
2372 		WARN_ON_ONCE(ret < 0);
2373 		if (ret <= 0)
2374 			return false;
2375 	}
2376 
2377 	atomic_inc(&dev_priv->pm.wakeref_count);
2378 	assert_rpm_wakelock_held(dev_priv);
2379 #endif
2380 
2381 	return true;
2382 }
2383 
2384 /**
2385  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2386  * @dev_priv: i915 device instance
2387  *
2388  * This function grabs a device-level runtime pm reference (mostly used for GEM
2389  * code to ensure the GTT or GT is on).
2390  *
2391  * It will _not_ power up the device but instead only check that it's powered
2392  * on.  Therefore it is only valid to call this functions from contexts where
2393  * the device is known to be powered up and where trying to power it up would
2394  * result in hilarity and deadlocks. That pretty much means only the system
2395  * suspend/resume code where this is used to grab runtime pm references for
2396  * delayed setup down in work items.
2397  *
2398  * Any runtime pm reference obtained by this function must have a symmetric
2399  * call to intel_runtime_pm_put() to release the reference again.
2400  */
2401 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2402 {
2403 #if 0
2404 	struct drm_device *dev = dev_priv->dev;
2405 	struct device *device = &dev->pdev->dev;
2406 #endif
2407 
2408 	assert_rpm_wakelock_held(dev_priv);
2409 #if 0
2410 	pm_runtime_get_noresume(device);
2411 #endif
2412 
2413 	atomic_inc(&dev_priv->pm.wakeref_count);
2414 }
2415 
2416 /**
2417  * intel_runtime_pm_put - release a runtime pm reference
2418  * @dev_priv: i915 device instance
2419  *
2420  * This function drops the device-level runtime pm reference obtained by
2421  * intel_runtime_pm_get() and might power down the corresponding
2422  * hardware block right away if this is the last reference.
2423  */
2424 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2425 {
2426 #if 0
2427 	struct drm_device *dev = dev_priv->dev;
2428 	struct device *device = &dev->pdev->dev;
2429 
2430 	assert_rpm_wakelock_held(dev_priv);
2431 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2432 		atomic_inc(&dev_priv->pm.atomic_seq);
2433 
2434 	pm_runtime_mark_last_busy(device);
2435 	pm_runtime_put_autosuspend(device);
2436 #endif
2437 }
2438 
2439 /**
2440  * intel_runtime_pm_enable - enable runtime pm
2441  * @dev_priv: i915 device instance
2442  *
2443  * This function enables runtime pm at the end of the driver load sequence.
2444  *
2445  * Note that this function does currently not enable runtime pm for the
2446  * subordinate display power domains. That is only done on the first modeset
2447  * using intel_display_set_init_power().
2448  */
2449 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2450 {
2451 #if 0
2452 	struct drm_device *dev = dev_priv->dev;
2453 	struct device *device = &dev->pdev->dev;
2454 
2455 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2456 	pm_runtime_mark_last_busy(device);
2457 
2458 	/*
2459 	 * Take a permanent reference to disable the RPM functionality and drop
2460 	 * it only when unloading the driver. Use the low level get/put helpers,
2461 	 * so the driver's own RPM reference tracking asserts also work on
2462 	 * platforms without RPM support.
2463 	 */
2464 	if (!HAS_RUNTIME_PM(dev)) {
2465 		pm_runtime_dont_use_autosuspend(device);
2466 		pm_runtime_get_sync(device);
2467 	} else {
2468 		pm_runtime_use_autosuspend(device);
2469 	}
2470 
2471 	/*
2472 	 * The core calls the driver load handler with an RPM reference held.
2473 	 * We drop that here and will reacquire it during unloading in
2474 	 * intel_power_domains_fini().
2475 	 */
2476 	pm_runtime_put_autosuspend(device);
2477 #endif
2478 }
2479 
2480