xref: /dragonfly/sys/dev/drm/i915/intel_runtime_pm.c (revision 7d89978d)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70 
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 	switch (domain) {
75 	case POWER_DOMAIN_PIPE_A:
76 		return "PIPE_A";
77 	case POWER_DOMAIN_PIPE_B:
78 		return "PIPE_B";
79 	case POWER_DOMAIN_PIPE_C:
80 		return "PIPE_C";
81 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 		return "PIPE_A_PANEL_FITTER";
83 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 		return "PIPE_B_PANEL_FITTER";
85 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 		return "PIPE_C_PANEL_FITTER";
87 	case POWER_DOMAIN_TRANSCODER_A:
88 		return "TRANSCODER_A";
89 	case POWER_DOMAIN_TRANSCODER_B:
90 		return "TRANSCODER_B";
91 	case POWER_DOMAIN_TRANSCODER_C:
92 		return "TRANSCODER_C";
93 	case POWER_DOMAIN_TRANSCODER_EDP:
94 		return "TRANSCODER_EDP";
95 	case POWER_DOMAIN_TRANSCODER_DSI_A:
96 		return "TRANSCODER_DSI_A";
97 	case POWER_DOMAIN_TRANSCODER_DSI_C:
98 		return "TRANSCODER_DSI_C";
99 	case POWER_DOMAIN_PORT_DDI_A_LANES:
100 		return "PORT_DDI_A_LANES";
101 	case POWER_DOMAIN_PORT_DDI_B_LANES:
102 		return "PORT_DDI_B_LANES";
103 	case POWER_DOMAIN_PORT_DDI_C_LANES:
104 		return "PORT_DDI_C_LANES";
105 	case POWER_DOMAIN_PORT_DDI_D_LANES:
106 		return "PORT_DDI_D_LANES";
107 	case POWER_DOMAIN_PORT_DDI_E_LANES:
108 		return "PORT_DDI_E_LANES";
109 	case POWER_DOMAIN_PORT_DSI:
110 		return "PORT_DSI";
111 	case POWER_DOMAIN_PORT_CRT:
112 		return "PORT_CRT";
113 	case POWER_DOMAIN_PORT_OTHER:
114 		return "PORT_OTHER";
115 	case POWER_DOMAIN_VGA:
116 		return "VGA";
117 	case POWER_DOMAIN_AUDIO:
118 		return "AUDIO";
119 	case POWER_DOMAIN_PLLS:
120 		return "PLLS";
121 	case POWER_DOMAIN_AUX_A:
122 		return "AUX_A";
123 	case POWER_DOMAIN_AUX_B:
124 		return "AUX_B";
125 	case POWER_DOMAIN_AUX_C:
126 		return "AUX_C";
127 	case POWER_DOMAIN_AUX_D:
128 		return "AUX_D";
129 	case POWER_DOMAIN_GMBUS:
130 		return "GMBUS";
131 	case POWER_DOMAIN_INIT:
132 		return "INIT";
133 	case POWER_DOMAIN_MODESET:
134 		return "MODESET";
135 	default:
136 		MISSING_CASE(domain);
137 		return "?";
138 	}
139 }
140 
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 				    struct i915_power_well *power_well)
143 {
144 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 	power_well->ops->enable(dev_priv, power_well);
146 	power_well->hw_enabled = true;
147 }
148 
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 				     struct i915_power_well *power_well)
151 {
152 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 	power_well->hw_enabled = false;
154 	power_well->ops->disable(dev_priv, power_well);
155 }
156 
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 				 struct i915_power_well *power_well)
159 {
160 	if (!power_well->count++)
161 		intel_power_well_enable(dev_priv, power_well);
162 }
163 
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 				 struct i915_power_well *power_well)
166 {
167 	WARN(!power_well->count, "Use count on power well %s is already zero",
168 	     power_well->name);
169 
170 	if (!--power_well->count)
171 		intel_power_well_disable(dev_priv, power_well);
172 }
173 
174 /*
175  * We should only use the power well if we explicitly asked the hardware to
176  * enable it, so check if it's enabled and also check if we've requested it to
177  * be enabled.
178  */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 				   struct i915_power_well *power_well)
181 {
182 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185 
186 /**
187  * __intel_display_power_is_enabled - unlocked check for a power domain
188  * @dev_priv: i915 device instance
189  * @domain: power domain to check
190  *
191  * This is the unlocked version of intel_display_power_is_enabled() and should
192  * only be used from error capture and recovery code where deadlocks are
193  * possible.
194  *
195  * Returns:
196  * True when the power domain is enabled, false otherwise.
197  */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 				      enum intel_display_power_domain domain)
200 {
201 	struct i915_power_domains *power_domains;
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 	int i;
205 
206 	if (dev_priv->pm.suspended)
207 		return false;
208 
209 	power_domains = &dev_priv->power_domains;
210 
211 	is_enabled = true;
212 
213 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 		if (power_well->always_on)
215 			continue;
216 
217 		if (!power_well->hw_enabled) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @dev_priv: i915 device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains;
247 	bool ret;
248 
249 	power_domains = &dev_priv->power_domains;
250 
251 	mutex_lock(&power_domains->lock);
252 	ret = __intel_display_power_is_enabled(dev_priv, domain);
253 	mutex_unlock(&power_domains->lock);
254 
255 	return ret;
256 }
257 
258 /**
259  * intel_display_set_init_power - set the initial power domain state
260  * @dev_priv: i915 device instance
261  * @enable: whether to enable or disable the initial power domain state
262  *
263  * For simplicity our driver load/unload and system suspend/resume code assumes
264  * that all power domains are always enabled. This functions controls the state
265  * of this little hack. While the initial power domain state is enabled runtime
266  * pm is effectively disabled.
267  */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 				  bool enable)
270 {
271 	if (dev_priv->power_domains.init_power_on == enable)
272 		return;
273 
274 	if (enable)
275 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 	else
277 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278 
279 	dev_priv->power_domains.init_power_on = enable;
280 }
281 
282 /*
283  * Starting with Haswell, we have a "Power Down Well" that can be turned off
284  * when not needed anymore. We have 4 registers that can request the power well
285  * to be enabled, and it will only be disabled if none of the registers is
286  * requesting it to be enabled.
287  */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 	struct drm_device *dev = &dev_priv->drm;
291 
292 	/*
293 	 * After we re-enable the power well, if we touch VGA register 0x3d5
294 	 * we'll get unclaimed register interrupts. This stops after we write
295 	 * anything to the VGA MSR register. The vgacon module uses this
296 	 * register all the time, so if we unbind our driver and, as a
297 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 	 * console_unlock(). So make here we touch the VGA MSR register, making
299 	 * sure vgacon can keep working normally without triggering interrupts
300 	 * and error messages.
301 	 */
302 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
303 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
304 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
305 
306 	if (IS_BROADWELL(dev))
307 		gen8_irq_power_well_post_enable(dev_priv,
308 						1 << PIPE_C | 1 << PIPE_B);
309 }
310 
311 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
312 {
313 	if (IS_BROADWELL(dev_priv))
314 		gen8_irq_power_well_pre_disable(dev_priv,
315 						1 << PIPE_C | 1 << PIPE_B);
316 }
317 
318 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
319 				       struct i915_power_well *power_well)
320 {
321 	struct drm_device *dev = &dev_priv->drm;
322 
323 	/*
324 	 * After we re-enable the power well, if we touch VGA register 0x3d5
325 	 * we'll get unclaimed register interrupts. This stops after we write
326 	 * anything to the VGA MSR register. The vgacon module uses this
327 	 * register all the time, so if we unbind our driver and, as a
328 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
329 	 * console_unlock(). So make here we touch the VGA MSR register, making
330 	 * sure vgacon can keep working normally without triggering interrupts
331 	 * and error messages.
332 	 */
333 	if (power_well->data == SKL_DISP_PW_2) {
334 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
335 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
336 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
337 
338 		gen8_irq_power_well_post_enable(dev_priv,
339 						1 << PIPE_C | 1 << PIPE_B);
340 	}
341 }
342 
343 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
344 				       struct i915_power_well *power_well)
345 {
346 	if (power_well->data == SKL_DISP_PW_2)
347 		gen8_irq_power_well_pre_disable(dev_priv,
348 						1 << PIPE_C | 1 << PIPE_B);
349 }
350 
351 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
352 			       struct i915_power_well *power_well, bool enable)
353 {
354 	bool is_enabled, enable_requested;
355 	uint32_t tmp;
356 
357 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
358 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
359 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
360 
361 	if (enable) {
362 		if (!enable_requested)
363 			I915_WRITE(HSW_PWR_WELL_DRIVER,
364 				   HSW_PWR_WELL_ENABLE_REQUEST);
365 
366 		if (!is_enabled) {
367 			DRM_DEBUG_KMS("Enabling power well\n");
368 			if (intel_wait_for_register(dev_priv,
369 						    HSW_PWR_WELL_DRIVER,
370 						    HSW_PWR_WELL_STATE_ENABLED,
371 						    HSW_PWR_WELL_STATE_ENABLED,
372 						    20))
373 				DRM_ERROR("Timeout enabling power well\n");
374 			hsw_power_well_post_enable(dev_priv);
375 		}
376 
377 	} else {
378 		if (enable_requested) {
379 			hsw_power_well_pre_disable(dev_priv);
380 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
381 			POSTING_READ(HSW_PWR_WELL_DRIVER);
382 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
383 		}
384 	}
385 }
386 
387 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
388 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
389 	BIT(POWER_DOMAIN_PIPE_B) |			\
390 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
391 	BIT(POWER_DOMAIN_PIPE_C) |			\
392 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
393 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
394 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
395 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
396 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
397 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
398 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
399 	BIT(POWER_DOMAIN_AUX_B) |                       \
400 	BIT(POWER_DOMAIN_AUX_C) |			\
401 	BIT(POWER_DOMAIN_AUX_D) |			\
402 	BIT(POWER_DOMAIN_AUDIO) |			\
403 	BIT(POWER_DOMAIN_VGA) |				\
404 	BIT(POWER_DOMAIN_INIT))
405 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
406 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
407 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
408 	BIT(POWER_DOMAIN_INIT))
409 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
410 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
411 	BIT(POWER_DOMAIN_INIT))
412 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
413 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
414 	BIT(POWER_DOMAIN_INIT))
415 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
416 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
417 	BIT(POWER_DOMAIN_INIT))
418 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
419 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
420 	BIT(POWER_DOMAIN_MODESET) |			\
421 	BIT(POWER_DOMAIN_AUX_A) |			\
422 	BIT(POWER_DOMAIN_INIT))
423 
424 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
425 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
426 	BIT(POWER_DOMAIN_PIPE_B) |			\
427 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
428 	BIT(POWER_DOMAIN_PIPE_C) |			\
429 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
430 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
431 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
432 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
433 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
434 	BIT(POWER_DOMAIN_AUX_B) |			\
435 	BIT(POWER_DOMAIN_AUX_C) |			\
436 	BIT(POWER_DOMAIN_AUDIO) |			\
437 	BIT(POWER_DOMAIN_VGA) |				\
438 	BIT(POWER_DOMAIN_GMBUS) |			\
439 	BIT(POWER_DOMAIN_INIT))
440 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
441 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
442 	BIT(POWER_DOMAIN_MODESET) |			\
443 	BIT(POWER_DOMAIN_AUX_A) |			\
444 	BIT(POWER_DOMAIN_INIT))
445 #define BXT_DPIO_CMN_A_POWER_DOMAINS (			\
446 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
447 	BIT(POWER_DOMAIN_AUX_A) |			\
448 	BIT(POWER_DOMAIN_INIT))
449 #define BXT_DPIO_CMN_BC_POWER_DOMAINS (			\
450 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
451 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
452 	BIT(POWER_DOMAIN_AUX_B) |			\
453 	BIT(POWER_DOMAIN_AUX_C) |			\
454 	BIT(POWER_DOMAIN_INIT))
455 
456 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
457 {
458 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
459 		  "DC9 already programmed to be enabled.\n");
460 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
461 		  "DC5 still not disabled to enable DC9.\n");
462 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
463 	WARN_ONCE(intel_irqs_enabled(dev_priv),
464 		  "Interrupts not disabled yet.\n");
465 
466 	 /*
467 	  * TODO: check for the following to verify the conditions to enter DC9
468 	  * state are satisfied:
469 	  * 1] Check relevant display engine registers to verify if mode set
470 	  * disable sequence was followed.
471 	  * 2] Check if display uninitialize sequence is initialized.
472 	  */
473 }
474 
475 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
476 {
477 	WARN_ONCE(intel_irqs_enabled(dev_priv),
478 		  "Interrupts not disabled yet.\n");
479 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
480 		  "DC5 still not disabled.\n");
481 
482 	 /*
483 	  * TODO: check for the following to verify DC9 state was indeed
484 	  * entered before programming to disable it:
485 	  * 1] Check relevant display engine registers to verify if mode
486 	  *  set disable sequence was followed.
487 	  * 2] Check if display uninitialize sequence is initialized.
488 	  */
489 }
490 
491 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
492 				u32 state)
493 {
494 	int rewrites = 0;
495 	int rereads = 0;
496 	u32 v;
497 
498 	I915_WRITE(DC_STATE_EN, state);
499 
500 	/* It has been observed that disabling the dc6 state sometimes
501 	 * doesn't stick and dmc keeps returning old value. Make sure
502 	 * the write really sticks enough times and also force rewrite until
503 	 * we are confident that state is exactly what we want.
504 	 */
505 	do  {
506 		v = I915_READ(DC_STATE_EN);
507 
508 		if (v != state) {
509 			I915_WRITE(DC_STATE_EN, state);
510 			rewrites++;
511 			rereads = 0;
512 		} else if (rereads++ > 5) {
513 			break;
514 		}
515 
516 	} while (rewrites < 100);
517 
518 	if (v != state)
519 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
520 			  state, v);
521 
522 	/* Most of the times we need one retry, avoid spam */
523 	if (rewrites > 1)
524 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
525 			      state, rewrites);
526 }
527 
528 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
529 {
530 	u32 mask;
531 
532 	mask = DC_STATE_EN_UPTO_DC5;
533 	if (IS_BROXTON(dev_priv))
534 		mask |= DC_STATE_EN_DC9;
535 	else
536 		mask |= DC_STATE_EN_UPTO_DC6;
537 
538 	return mask;
539 }
540 
541 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
542 {
543 	u32 val;
544 
545 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
546 
547 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
548 		      dev_priv->csr.dc_state, val);
549 	dev_priv->csr.dc_state = val;
550 }
551 
552 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
553 {
554 	uint32_t val;
555 	uint32_t mask;
556 
557 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
558 		state &= dev_priv->csr.allowed_dc_mask;
559 
560 	val = I915_READ(DC_STATE_EN);
561 	mask = gen9_dc_mask(dev_priv);
562 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
563 		      val & mask, state);
564 
565 	/* Check if DMC is ignoring our DC state requests */
566 	if ((val & mask) != dev_priv->csr.dc_state)
567 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
568 			  dev_priv->csr.dc_state, val & mask);
569 
570 	val &= ~mask;
571 	val |= state;
572 
573 	gen9_write_dc_state(dev_priv, val);
574 
575 	dev_priv->csr.dc_state = val & mask;
576 }
577 
578 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
579 {
580 	assert_can_enable_dc9(dev_priv);
581 
582 	DRM_DEBUG_KMS("Enabling DC9\n");
583 
584 	intel_power_sequencer_reset(dev_priv);
585 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
586 }
587 
588 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
589 {
590 	assert_can_disable_dc9(dev_priv);
591 
592 	DRM_DEBUG_KMS("Disabling DC9\n");
593 
594 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
595 }
596 
597 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
598 {
599 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
600 		  "CSR program storage start is NULL\n");
601 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
602 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
603 }
604 
605 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
606 {
607 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
608 					SKL_DISP_PW_2);
609 
610 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
611 
612 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
613 		  "DC5 already programmed to be enabled.\n");
614 	assert_rpm_wakelock_held(dev_priv);
615 
616 	assert_csr_loaded(dev_priv);
617 }
618 
619 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
620 {
621 	assert_can_enable_dc5(dev_priv);
622 
623 	DRM_DEBUG_KMS("Enabling DC5\n");
624 
625 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
626 }
627 
628 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
629 {
630 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
631 		  "Backlight is not disabled.\n");
632 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
633 		  "DC6 already programmed to be enabled.\n");
634 
635 	assert_csr_loaded(dev_priv);
636 }
637 
638 void skl_enable_dc6(struct drm_i915_private *dev_priv)
639 {
640 	assert_can_enable_dc6(dev_priv);
641 
642 	DRM_DEBUG_KMS("Enabling DC6\n");
643 
644 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
645 
646 }
647 
648 void skl_disable_dc6(struct drm_i915_private *dev_priv)
649 {
650 	DRM_DEBUG_KMS("Disabling DC6\n");
651 
652 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
653 }
654 
655 static void
656 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
657 				  struct i915_power_well *power_well)
658 {
659 	enum skl_disp_power_wells power_well_id = power_well->data;
660 	u32 val;
661 	u32 mask;
662 
663 	mask = SKL_POWER_WELL_REQ(power_well_id);
664 
665 	val = I915_READ(HSW_PWR_WELL_KVMR);
666 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
667 		      power_well->name))
668 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
669 
670 	val = I915_READ(HSW_PWR_WELL_BIOS);
671 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
672 
673 	if (!(val & mask))
674 		return;
675 
676 	/*
677 	 * DMC is known to force on the request bits for power well 1 on SKL
678 	 * and BXT and the misc IO power well on SKL but we don't expect any
679 	 * other request bits to be set, so WARN for those.
680 	 */
681 	if (power_well_id == SKL_DISP_PW_1 ||
682 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
683 	     power_well_id == SKL_DISP_PW_MISC_IO))
684 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
685 				 "by DMC\n", power_well->name);
686 	else
687 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
688 			  power_well->name);
689 
690 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
691 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
692 }
693 
694 static void skl_set_power_well(struct drm_i915_private *dev_priv,
695 			struct i915_power_well *power_well, bool enable)
696 {
697 	uint32_t tmp, fuse_status;
698 	uint32_t req_mask, state_mask;
699 	bool is_enabled, enable_requested, check_fuse_status = false;
700 
701 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
702 	fuse_status = I915_READ(SKL_FUSE_STATUS);
703 
704 	switch (power_well->data) {
705 	case SKL_DISP_PW_1:
706 		if (intel_wait_for_register(dev_priv,
707 					    SKL_FUSE_STATUS,
708 					    SKL_FUSE_PG0_DIST_STATUS,
709 					    SKL_FUSE_PG0_DIST_STATUS,
710 					    1)) {
711 			DRM_ERROR("PG0 not enabled\n");
712 			return;
713 		}
714 		break;
715 	case SKL_DISP_PW_2:
716 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
717 			DRM_ERROR("PG1 in disabled state\n");
718 			return;
719 		}
720 		break;
721 	case SKL_DISP_PW_DDI_A_E:
722 	case SKL_DISP_PW_DDI_B:
723 	case SKL_DISP_PW_DDI_C:
724 	case SKL_DISP_PW_DDI_D:
725 	case SKL_DISP_PW_MISC_IO:
726 		break;
727 	default:
728 		WARN(1, "Unknown power well %lu\n", power_well->data);
729 		return;
730 	}
731 
732 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
733 	enable_requested = tmp & req_mask;
734 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
735 	is_enabled = tmp & state_mask;
736 
737 	if (!enable && enable_requested)
738 		skl_power_well_pre_disable(dev_priv, power_well);
739 
740 	if (enable) {
741 		if (!enable_requested) {
742 			WARN((tmp & state_mask) &&
743 				!I915_READ(HSW_PWR_WELL_BIOS),
744 				"Invalid for power well status to be enabled, unless done by the BIOS, \
745 				when request is to disable!\n");
746 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
747 		}
748 
749 		if (!is_enabled) {
750 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
751 			check_fuse_status = true;
752 		}
753 	} else {
754 		if (enable_requested) {
755 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
756 			POSTING_READ(HSW_PWR_WELL_DRIVER);
757 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
758 		}
759 
760 		if (IS_GEN9(dev_priv))
761 			gen9_sanitize_power_well_requests(dev_priv, power_well);
762 	}
763 
764 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
765 		     1))
766 		DRM_ERROR("%s %s timeout\n",
767 			  power_well->name, enable ? "enable" : "disable");
768 
769 	if (check_fuse_status) {
770 		if (power_well->data == SKL_DISP_PW_1) {
771 			if (intel_wait_for_register(dev_priv,
772 						    SKL_FUSE_STATUS,
773 						    SKL_FUSE_PG1_DIST_STATUS,
774 						    SKL_FUSE_PG1_DIST_STATUS,
775 						    1))
776 				DRM_ERROR("PG1 distributing status timeout\n");
777 		} else if (power_well->data == SKL_DISP_PW_2) {
778 			if (intel_wait_for_register(dev_priv,
779 						    SKL_FUSE_STATUS,
780 						    SKL_FUSE_PG2_DIST_STATUS,
781 						    SKL_FUSE_PG2_DIST_STATUS,
782 						    1))
783 				DRM_ERROR("PG2 distributing status timeout\n");
784 		}
785 	}
786 
787 	if (enable && !is_enabled)
788 		skl_power_well_post_enable(dev_priv, power_well);
789 }
790 
791 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
792 				   struct i915_power_well *power_well)
793 {
794 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
795 
796 	/*
797 	 * We're taking over the BIOS, so clear any requests made by it since
798 	 * the driver is in charge now.
799 	 */
800 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
801 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
802 }
803 
804 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
805 				  struct i915_power_well *power_well)
806 {
807 	hsw_set_power_well(dev_priv, power_well, true);
808 }
809 
810 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
811 				   struct i915_power_well *power_well)
812 {
813 	hsw_set_power_well(dev_priv, power_well, false);
814 }
815 
816 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
817 					struct i915_power_well *power_well)
818 {
819 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
820 		SKL_POWER_WELL_STATE(power_well->data);
821 
822 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
823 }
824 
825 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
826 				struct i915_power_well *power_well)
827 {
828 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
829 
830 	/* Clear any request made by BIOS as driver is taking over */
831 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
832 }
833 
834 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
835 				struct i915_power_well *power_well)
836 {
837 	skl_set_power_well(dev_priv, power_well, true);
838 }
839 
840 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
841 				struct i915_power_well *power_well)
842 {
843 	skl_set_power_well(dev_priv, power_well, false);
844 }
845 
846 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
847 {
848 	enum skl_disp_power_wells power_well_id = power_well->data;
849 
850 	return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
851 }
852 
853 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
854 					   struct i915_power_well *power_well)
855 {
856 	enum skl_disp_power_wells power_well_id = power_well->data;
857 	struct i915_power_well *cmn_a_well;
858 
859 	if (power_well_id == BXT_DPIO_CMN_BC) {
860 		/*
861 		 * We need to copy the GRC calibration value from the eDP PHY,
862 		 * so make sure it's powered up.
863 		 */
864 		cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
865 		intel_power_well_get(dev_priv, cmn_a_well);
866 	}
867 
868 	bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
869 
870 	if (power_well_id == BXT_DPIO_CMN_BC)
871 		intel_power_well_put(dev_priv, cmn_a_well);
872 }
873 
874 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
875 					    struct i915_power_well *power_well)
876 {
877 	bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
878 }
879 
880 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
881 					    struct i915_power_well *power_well)
882 {
883 	return bxt_ddi_phy_is_enabled(dev_priv,
884 				      bxt_power_well_to_phy(power_well));
885 }
886 
887 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
888 					    struct i915_power_well *power_well)
889 {
890 	if (power_well->count > 0)
891 		bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
892 	else
893 		bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
894 }
895 
896 
897 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
898 {
899 	struct i915_power_well *power_well;
900 
901 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
902 	if (power_well->count > 0)
903 		bxt_ddi_phy_verify_state(dev_priv,
904 					 bxt_power_well_to_phy(power_well));
905 
906 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
907 	if (power_well->count > 0)
908 		bxt_ddi_phy_verify_state(dev_priv,
909 					 bxt_power_well_to_phy(power_well));
910 }
911 
912 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
913 					   struct i915_power_well *power_well)
914 {
915 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
916 }
917 
918 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
919 {
920 	u32 tmp = I915_READ(DBUF_CTL);
921 
922 	WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
923 	     (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
924 	     "Unexpected DBuf power power state (0x%08x)\n", tmp);
925 }
926 
927 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
928 					  struct i915_power_well *power_well)
929 {
930 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
931 
932 	WARN_ON(dev_priv->cdclk_freq !=
933 		dev_priv->display.get_display_clock_speed(&dev_priv->drm));
934 
935 	gen9_assert_dbuf_enabled(dev_priv);
936 
937 	if (IS_BROXTON(dev_priv))
938 		bxt_verify_ddi_phy_power_wells(dev_priv);
939 }
940 
941 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
942 					   struct i915_power_well *power_well)
943 {
944 	if (!dev_priv->csr.dmc_payload)
945 		return;
946 
947 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
948 		skl_enable_dc6(dev_priv);
949 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
950 		gen9_enable_dc5(dev_priv);
951 }
952 
953 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
954 					   struct i915_power_well *power_well)
955 {
956 	if (power_well->count > 0)
957 		gen9_dc_off_power_well_enable(dev_priv, power_well);
958 	else
959 		gen9_dc_off_power_well_disable(dev_priv, power_well);
960 }
961 
962 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
963 					   struct i915_power_well *power_well)
964 {
965 }
966 
967 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
968 					     struct i915_power_well *power_well)
969 {
970 	return true;
971 }
972 
973 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
974 			       struct i915_power_well *power_well, bool enable)
975 {
976 	enum punit_power_well power_well_id = power_well->data;
977 	u32 mask;
978 	u32 state;
979 	u32 ctrl;
980 
981 	mask = PUNIT_PWRGT_MASK(power_well_id);
982 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
983 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
984 
985 	mutex_lock(&dev_priv->rps.hw_lock);
986 
987 #define COND \
988 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
989 
990 	if (COND)
991 		goto out;
992 
993 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
994 	ctrl &= ~mask;
995 	ctrl |= state;
996 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
997 
998 	if (wait_for(COND, 100))
999 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1000 			  state,
1001 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1002 
1003 #undef COND
1004 
1005 out:
1006 	mutex_unlock(&dev_priv->rps.hw_lock);
1007 }
1008 
1009 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1010 				   struct i915_power_well *power_well)
1011 {
1012 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1013 }
1014 
1015 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1016 				  struct i915_power_well *power_well)
1017 {
1018 	vlv_set_power_well(dev_priv, power_well, true);
1019 }
1020 
1021 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1022 				   struct i915_power_well *power_well)
1023 {
1024 	vlv_set_power_well(dev_priv, power_well, false);
1025 }
1026 
1027 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1028 				   struct i915_power_well *power_well)
1029 {
1030 	int power_well_id = power_well->data;
1031 	bool enabled = false;
1032 	u32 mask;
1033 	u32 state;
1034 	u32 ctrl;
1035 
1036 	mask = PUNIT_PWRGT_MASK(power_well_id);
1037 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1038 
1039 	mutex_lock(&dev_priv->rps.hw_lock);
1040 
1041 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1042 	/*
1043 	 * We only ever set the power-on and power-gate states, anything
1044 	 * else is unexpected.
1045 	 */
1046 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1047 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1048 	if (state == ctrl)
1049 		enabled = true;
1050 
1051 	/*
1052 	 * A transient state at this point would mean some unexpected party
1053 	 * is poking at the power controls too.
1054 	 */
1055 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1056 	WARN_ON(ctrl != state);
1057 
1058 	mutex_unlock(&dev_priv->rps.hw_lock);
1059 
1060 	return enabled;
1061 }
1062 
1063 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1064 {
1065 	u32 val;
1066 
1067 	/*
1068 	 * On driver load, a pipe may be active and driving a DSI display.
1069 	 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
1070 	 * (and never recovering) in this case. intel_dsi_post_disable() will
1071 	 * clear it when we turn off the display.
1072 	 */
1073 	val = I915_READ(DSPCLK_GATE_D);
1074 	val &= DPOUNIT_CLOCK_GATE_DISABLE;
1075 	val |= VRHUNIT_CLOCK_GATE_DISABLE;
1076 	I915_WRITE(DSPCLK_GATE_D, val);
1077 
1078 	/*
1079 	 * Disable trickle feed and enable pnd deadline calculation
1080 	 */
1081 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1082 	I915_WRITE(CBR1_VLV, 0);
1083 
1084 	WARN_ON(dev_priv->rawclk_freq == 0);
1085 
1086 	I915_WRITE(RAWCLK_FREQ_VLV,
1087 		   DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1088 }
1089 
1090 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1091 {
1092 	struct intel_encoder *encoder;
1093 	enum i915_pipe pipe;
1094 
1095 	/*
1096 	 * Enable the CRI clock source so we can get at the
1097 	 * display and the reference clock for VGA
1098 	 * hotplug / manual detection. Supposedly DSI also
1099 	 * needs the ref clock up and running.
1100 	 *
1101 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
1102 	 */
1103 	for_each_pipe(&dev_priv->drm, pipe) {
1104 		u32 val = I915_READ(DPLL(pipe));
1105 
1106 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1107 		if (pipe != PIPE_A)
1108 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1109 
1110 		I915_WRITE(DPLL(pipe), val);
1111 	}
1112 
1113 	vlv_init_display_clock_gating(dev_priv);
1114 
1115 	spin_lock_irq(&dev_priv->irq_lock);
1116 	valleyview_enable_display_irqs(dev_priv);
1117 	spin_unlock_irq(&dev_priv->irq_lock);
1118 
1119 	/*
1120 	 * During driver initialization/resume we can avoid restoring the
1121 	 * part of the HW/SW state that will be inited anyway explicitly.
1122 	 */
1123 	if (dev_priv->power_domains.initializing)
1124 		return;
1125 
1126 	intel_hpd_init(dev_priv);
1127 
1128 	/* Re-enable the ADPA, if we have one */
1129 	for_each_intel_encoder(&dev_priv->drm, encoder) {
1130 		if (encoder->type == INTEL_OUTPUT_ANALOG)
1131 			intel_crt_reset(&encoder->base);
1132 	}
1133 
1134 	i915_redisable_vga_power_on(&dev_priv->drm);
1135 }
1136 
1137 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1138 {
1139 	spin_lock_irq(&dev_priv->irq_lock);
1140 	valleyview_disable_display_irqs(dev_priv);
1141 	spin_unlock_irq(&dev_priv->irq_lock);
1142 
1143 	/* make sure we're done processing display irqs */
1144 	synchronize_irq(dev_priv->drm.irq);
1145 
1146 	intel_power_sequencer_reset(dev_priv);
1147 
1148 	intel_hpd_poll_init(dev_priv);
1149 }
1150 
1151 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1152 					  struct i915_power_well *power_well)
1153 {
1154 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1155 
1156 	vlv_set_power_well(dev_priv, power_well, true);
1157 
1158 	vlv_display_power_well_init(dev_priv);
1159 }
1160 
1161 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1162 					   struct i915_power_well *power_well)
1163 {
1164 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1165 
1166 	vlv_display_power_well_deinit(dev_priv);
1167 
1168 	vlv_set_power_well(dev_priv, power_well, false);
1169 }
1170 
1171 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1172 					   struct i915_power_well *power_well)
1173 {
1174 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1175 
1176 	/* since ref/cri clock was enabled */
1177 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1178 
1179 	vlv_set_power_well(dev_priv, power_well, true);
1180 
1181 	/*
1182 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1183 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1184 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1185 	 *   b.	The other bits such as sfr settings / modesel may all
1186 	 *	be set to 0.
1187 	 *
1188 	 * This should only be done on init and resume from S3 with
1189 	 * both PLLs disabled, or we risk losing DPIO and PLL
1190 	 * synchronization.
1191 	 */
1192 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1193 }
1194 
1195 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1196 					    struct i915_power_well *power_well)
1197 {
1198 	enum i915_pipe pipe;
1199 
1200 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1201 
1202 	for_each_pipe(dev_priv, pipe)
1203 		assert_pll_disabled(dev_priv, pipe);
1204 
1205 	/* Assert common reset */
1206 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1207 
1208 	vlv_set_power_well(dev_priv, power_well, false);
1209 }
1210 
1211 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1212 
1213 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1214 						 int power_well_id)
1215 {
1216 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1217 	int i;
1218 
1219 	for (i = 0; i < power_domains->power_well_count; i++) {
1220 		struct i915_power_well *power_well;
1221 
1222 		power_well = &power_domains->power_wells[i];
1223 		if (power_well->data == power_well_id)
1224 			return power_well;
1225 	}
1226 
1227 	return NULL;
1228 }
1229 
1230 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1231 
1232 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1233 {
1234 	struct i915_power_well *cmn_bc =
1235 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1236 	struct i915_power_well *cmn_d =
1237 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1238 	u32 phy_control = dev_priv->chv_phy_control;
1239 	u32 phy_status = 0;
1240 	u32 phy_status_mask = 0xffffffff;
1241 
1242 	/*
1243 	 * The BIOS can leave the PHY is some weird state
1244 	 * where it doesn't fully power down some parts.
1245 	 * Disable the asserts until the PHY has been fully
1246 	 * reset (ie. the power well has been disabled at
1247 	 * least once).
1248 	 */
1249 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1250 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1251 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1252 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1253 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1254 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1255 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1256 
1257 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1258 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1259 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1260 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1261 
1262 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1263 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1264 
1265 		/* this assumes override is only used to enable lanes */
1266 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1267 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1268 
1269 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1270 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1271 
1272 		/* CL1 is on whenever anything is on in either channel */
1273 		if (BITS_SET(phy_control,
1274 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1275 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1276 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1277 
1278 		/*
1279 		 * The DPLLB check accounts for the pipe B + port A usage
1280 		 * with CL2 powered up but all the lanes in the second channel
1281 		 * powered down.
1282 		 */
1283 		if (BITS_SET(phy_control,
1284 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1285 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1286 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1287 
1288 		if (BITS_SET(phy_control,
1289 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1290 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1291 		if (BITS_SET(phy_control,
1292 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1293 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1294 
1295 		if (BITS_SET(phy_control,
1296 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1297 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1298 		if (BITS_SET(phy_control,
1299 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1300 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1301 	}
1302 
1303 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1304 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1305 
1306 		/* this assumes override is only used to enable lanes */
1307 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1308 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1309 
1310 		if (BITS_SET(phy_control,
1311 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1312 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1313 
1314 		if (BITS_SET(phy_control,
1315 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1316 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1317 		if (BITS_SET(phy_control,
1318 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1319 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1320 	}
1321 
1322 	phy_status &= phy_status_mask;
1323 
1324 	/*
1325 	 * The PHY may be busy with some initial calibration and whatnot,
1326 	 * so the power state can take a while to actually change.
1327 	 */
1328 	if (intel_wait_for_register(dev_priv,
1329 				    DISPLAY_PHY_STATUS,
1330 				    phy_status_mask,
1331 				    phy_status,
1332 				    10))
1333 		DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1334 			  I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1335 			   phy_status, dev_priv->chv_phy_control);
1336 }
1337 
1338 #undef BITS_SET
1339 
1340 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1341 					   struct i915_power_well *power_well)
1342 {
1343 	enum dpio_phy phy;
1344 	enum i915_pipe pipe;
1345 	uint32_t tmp;
1346 
1347 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1348 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1349 
1350 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1351 		pipe = PIPE_A;
1352 		phy = DPIO_PHY0;
1353 	} else {
1354 		pipe = PIPE_C;
1355 		phy = DPIO_PHY1;
1356 	}
1357 
1358 	/* since ref/cri clock was enabled */
1359 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1360 	vlv_set_power_well(dev_priv, power_well, true);
1361 
1362 	/* Poll for phypwrgood signal */
1363 	if (intel_wait_for_register(dev_priv,
1364 				    DISPLAY_PHY_STATUS,
1365 				    PHY_POWERGOOD(phy),
1366 				    PHY_POWERGOOD(phy),
1367 				    1))
1368 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1369 
1370 	mutex_lock(&dev_priv->sb_lock);
1371 
1372 	/* Enable dynamic power down */
1373 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1374 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1375 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1376 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1377 
1378 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1379 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1380 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1381 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1382 	} else {
1383 		/*
1384 		 * Force the non-existing CL2 off. BXT does this
1385 		 * too, so maybe it saves some power even though
1386 		 * CL2 doesn't exist?
1387 		 */
1388 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1389 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1390 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1391 	}
1392 
1393 	mutex_unlock(&dev_priv->sb_lock);
1394 
1395 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1396 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1397 
1398 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1399 		      phy, dev_priv->chv_phy_control);
1400 
1401 	assert_chv_phy_status(dev_priv);
1402 }
1403 
1404 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1405 					    struct i915_power_well *power_well)
1406 {
1407 	enum dpio_phy phy;
1408 
1409 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1410 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1411 
1412 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1413 		phy = DPIO_PHY0;
1414 		assert_pll_disabled(dev_priv, PIPE_A);
1415 		assert_pll_disabled(dev_priv, PIPE_B);
1416 	} else {
1417 		phy = DPIO_PHY1;
1418 		assert_pll_disabled(dev_priv, PIPE_C);
1419 	}
1420 
1421 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1422 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1423 
1424 	vlv_set_power_well(dev_priv, power_well, false);
1425 
1426 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1427 		      phy, dev_priv->chv_phy_control);
1428 
1429 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1430 	dev_priv->chv_phy_assert[phy] = true;
1431 
1432 	assert_chv_phy_status(dev_priv);
1433 }
1434 
1435 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1436 				     enum dpio_channel ch, bool override, unsigned int mask)
1437 {
1438 	enum i915_pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1439 	u32 reg, val, expected, actual;
1440 
1441 	/*
1442 	 * The BIOS can leave the PHY is some weird state
1443 	 * where it doesn't fully power down some parts.
1444 	 * Disable the asserts until the PHY has been fully
1445 	 * reset (ie. the power well has been disabled at
1446 	 * least once).
1447 	 */
1448 	if (!dev_priv->chv_phy_assert[phy])
1449 		return;
1450 
1451 	if (ch == DPIO_CH0)
1452 		reg = _CHV_CMN_DW0_CH0;
1453 	else
1454 		reg = _CHV_CMN_DW6_CH1;
1455 
1456 	mutex_lock(&dev_priv->sb_lock);
1457 	val = vlv_dpio_read(dev_priv, pipe, reg);
1458 	mutex_unlock(&dev_priv->sb_lock);
1459 
1460 	/*
1461 	 * This assumes !override is only used when the port is disabled.
1462 	 * All lanes should power down even without the override when
1463 	 * the port is disabled.
1464 	 */
1465 	if (!override || mask == 0xf) {
1466 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1467 		/*
1468 		 * If CH1 common lane is not active anymore
1469 		 * (eg. for pipe B DPLL) the entire channel will
1470 		 * shut down, which causes the common lane registers
1471 		 * to read as 0. That means we can't actually check
1472 		 * the lane power down status bits, but as the entire
1473 		 * register reads as 0 it's a good indication that the
1474 		 * channel is indeed entirely powered down.
1475 		 */
1476 		if (ch == DPIO_CH1 && val == 0)
1477 			expected = 0;
1478 	} else if (mask != 0x0) {
1479 		expected = DPIO_ANYDL_POWERDOWN;
1480 	} else {
1481 		expected = 0;
1482 	}
1483 
1484 	if (ch == DPIO_CH0)
1485 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1486 	else
1487 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1488 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1489 
1490 	WARN(actual != expected,
1491 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1492 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1493 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1494 	     reg, val);
1495 }
1496 
1497 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1498 			  enum dpio_channel ch, bool override)
1499 {
1500 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1501 	bool was_override;
1502 
1503 	mutex_lock(&power_domains->lock);
1504 
1505 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1506 
1507 	if (override == was_override)
1508 		goto out;
1509 
1510 	if (override)
1511 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1512 	else
1513 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1514 
1515 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1516 
1517 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1518 		      phy, ch, dev_priv->chv_phy_control);
1519 
1520 	assert_chv_phy_status(dev_priv);
1521 
1522 out:
1523 	mutex_unlock(&power_domains->lock);
1524 
1525 	return was_override;
1526 }
1527 
1528 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1529 			     bool override, unsigned int mask)
1530 {
1531 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1532 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1533 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1534 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1535 
1536 	mutex_lock(&power_domains->lock);
1537 
1538 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1539 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1540 
1541 	if (override)
1542 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1543 	else
1544 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1545 
1546 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1547 
1548 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1549 		      phy, ch, mask, dev_priv->chv_phy_control);
1550 
1551 	assert_chv_phy_status(dev_priv);
1552 
1553 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1554 
1555 	mutex_unlock(&power_domains->lock);
1556 }
1557 
1558 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1559 					struct i915_power_well *power_well)
1560 {
1561 	enum i915_pipe pipe = power_well->data;
1562 	bool enabled;
1563 	u32 state, ctrl;
1564 
1565 	mutex_lock(&dev_priv->rps.hw_lock);
1566 
1567 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1568 	/*
1569 	 * We only ever set the power-on and power-gate states, anything
1570 	 * else is unexpected.
1571 	 */
1572 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1573 	enabled = state == DP_SSS_PWR_ON(pipe);
1574 
1575 	/*
1576 	 * A transient state at this point would mean some unexpected party
1577 	 * is poking at the power controls too.
1578 	 */
1579 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1580 	WARN_ON(ctrl << 16 != state);
1581 
1582 	mutex_unlock(&dev_priv->rps.hw_lock);
1583 
1584 	return enabled;
1585 }
1586 
1587 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1588 				    struct i915_power_well *power_well,
1589 				    bool enable)
1590 {
1591 	enum i915_pipe pipe = power_well->data;
1592 	u32 state;
1593 	u32 ctrl;
1594 
1595 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1596 
1597 	mutex_lock(&dev_priv->rps.hw_lock);
1598 
1599 #define COND \
1600 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1601 
1602 	if (COND)
1603 		goto out;
1604 
1605 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1606 	ctrl &= ~DP_SSC_MASK(pipe);
1607 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1608 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1609 
1610 	if (wait_for(COND, 100))
1611 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1612 			  state,
1613 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1614 
1615 #undef COND
1616 
1617 out:
1618 	mutex_unlock(&dev_priv->rps.hw_lock);
1619 }
1620 
1621 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1622 					struct i915_power_well *power_well)
1623 {
1624 	WARN_ON_ONCE(power_well->data != PIPE_A);
1625 
1626 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1627 }
1628 
1629 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1630 				       struct i915_power_well *power_well)
1631 {
1632 	WARN_ON_ONCE(power_well->data != PIPE_A);
1633 
1634 	chv_set_pipe_power_well(dev_priv, power_well, true);
1635 
1636 	vlv_display_power_well_init(dev_priv);
1637 }
1638 
1639 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1640 					struct i915_power_well *power_well)
1641 {
1642 	WARN_ON_ONCE(power_well->data != PIPE_A);
1643 
1644 	vlv_display_power_well_deinit(dev_priv);
1645 
1646 	chv_set_pipe_power_well(dev_priv, power_well, false);
1647 }
1648 
1649 static void
1650 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1651 				 enum intel_display_power_domain domain)
1652 {
1653 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1654 	struct i915_power_well *power_well;
1655 	int i;
1656 
1657 	for_each_power_well(i, power_well, BIT(domain), power_domains)
1658 		intel_power_well_get(dev_priv, power_well);
1659 
1660 	power_domains->domain_use_count[domain]++;
1661 }
1662 
1663 /**
1664  * intel_display_power_get - grab a power domain reference
1665  * @dev_priv: i915 device instance
1666  * @domain: power domain to reference
1667  *
1668  * This function grabs a power domain reference for @domain and ensures that the
1669  * power domain and all its parents are powered up. Therefore users should only
1670  * grab a reference to the innermost power domain they need.
1671  *
1672  * Any power domain reference obtained by this function must have a symmetric
1673  * call to intel_display_power_put() to release the reference again.
1674  */
1675 void intel_display_power_get(struct drm_i915_private *dev_priv,
1676 			     enum intel_display_power_domain domain)
1677 {
1678 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1679 
1680 	intel_runtime_pm_get(dev_priv);
1681 
1682 	mutex_lock(&power_domains->lock);
1683 
1684 	__intel_display_power_get_domain(dev_priv, domain);
1685 
1686 	mutex_unlock(&power_domains->lock);
1687 }
1688 
1689 /**
1690  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1691  * @dev_priv: i915 device instance
1692  * @domain: power domain to reference
1693  *
1694  * This function grabs a power domain reference for @domain and ensures that the
1695  * power domain and all its parents are powered up. Therefore users should only
1696  * grab a reference to the innermost power domain they need.
1697  *
1698  * Any power domain reference obtained by this function must have a symmetric
1699  * call to intel_display_power_put() to release the reference again.
1700  */
1701 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1702 					enum intel_display_power_domain domain)
1703 {
1704 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1705 	bool is_enabled;
1706 
1707 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1708 		return false;
1709 
1710 	mutex_lock(&power_domains->lock);
1711 
1712 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1713 		__intel_display_power_get_domain(dev_priv, domain);
1714 		is_enabled = true;
1715 	} else {
1716 		is_enabled = false;
1717 	}
1718 
1719 	mutex_unlock(&power_domains->lock);
1720 
1721 	if (!is_enabled)
1722 		intel_runtime_pm_put(dev_priv);
1723 
1724 	return is_enabled;
1725 }
1726 
1727 /**
1728  * intel_display_power_put - release a power domain reference
1729  * @dev_priv: i915 device instance
1730  * @domain: power domain to reference
1731  *
1732  * This function drops the power domain reference obtained by
1733  * intel_display_power_get() and might power down the corresponding hardware
1734  * block right away if this is the last reference.
1735  */
1736 void intel_display_power_put(struct drm_i915_private *dev_priv,
1737 			     enum intel_display_power_domain domain)
1738 {
1739 	struct i915_power_domains *power_domains;
1740 	struct i915_power_well *power_well;
1741 	int i;
1742 
1743 	power_domains = &dev_priv->power_domains;
1744 
1745 	mutex_lock(&power_domains->lock);
1746 
1747 	WARN(!power_domains->domain_use_count[domain],
1748 	     "Use count on domain %s is already zero\n",
1749 	     intel_display_power_domain_str(domain));
1750 	power_domains->domain_use_count[domain]--;
1751 
1752 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1753 		intel_power_well_put(dev_priv, power_well);
1754 
1755 	mutex_unlock(&power_domains->lock);
1756 
1757 	intel_runtime_pm_put(dev_priv);
1758 }
1759 
1760 #define HSW_DISPLAY_POWER_DOMAINS (			\
1761 	BIT(POWER_DOMAIN_PIPE_B) |			\
1762 	BIT(POWER_DOMAIN_PIPE_C) |			\
1763 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1764 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1765 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1766 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1767 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1768 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1769 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1770 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1771 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1772 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1773 	BIT(POWER_DOMAIN_VGA) |				\
1774 	BIT(POWER_DOMAIN_AUDIO) |			\
1775 	BIT(POWER_DOMAIN_INIT))
1776 
1777 #define BDW_DISPLAY_POWER_DOMAINS (			\
1778 	BIT(POWER_DOMAIN_PIPE_B) |			\
1779 	BIT(POWER_DOMAIN_PIPE_C) |			\
1780 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1781 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1782 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1783 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1784 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1785 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1786 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1787 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1788 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1789 	BIT(POWER_DOMAIN_VGA) |				\
1790 	BIT(POWER_DOMAIN_AUDIO) |			\
1791 	BIT(POWER_DOMAIN_INIT))
1792 
1793 #define VLV_DISPLAY_POWER_DOMAINS (		\
1794 	BIT(POWER_DOMAIN_PIPE_A) |		\
1795 	BIT(POWER_DOMAIN_PIPE_B) |		\
1796 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1797 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1798 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1799 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1800 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1801 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1802 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1803 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1804 	BIT(POWER_DOMAIN_VGA) |			\
1805 	BIT(POWER_DOMAIN_AUDIO) |		\
1806 	BIT(POWER_DOMAIN_AUX_B) |		\
1807 	BIT(POWER_DOMAIN_AUX_C) |		\
1808 	BIT(POWER_DOMAIN_GMBUS) |		\
1809 	BIT(POWER_DOMAIN_INIT))
1810 
1811 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1812 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1813 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1814 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1815 	BIT(POWER_DOMAIN_AUX_B) |		\
1816 	BIT(POWER_DOMAIN_AUX_C) |		\
1817 	BIT(POWER_DOMAIN_INIT))
1818 
1819 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1820 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1821 	BIT(POWER_DOMAIN_AUX_B) |		\
1822 	BIT(POWER_DOMAIN_INIT))
1823 
1824 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1825 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1826 	BIT(POWER_DOMAIN_AUX_B) |		\
1827 	BIT(POWER_DOMAIN_INIT))
1828 
1829 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1830 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1831 	BIT(POWER_DOMAIN_AUX_C) |		\
1832 	BIT(POWER_DOMAIN_INIT))
1833 
1834 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1835 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1836 	BIT(POWER_DOMAIN_AUX_C) |		\
1837 	BIT(POWER_DOMAIN_INIT))
1838 
1839 #define CHV_DISPLAY_POWER_DOMAINS (		\
1840 	BIT(POWER_DOMAIN_PIPE_A) |		\
1841 	BIT(POWER_DOMAIN_PIPE_B) |		\
1842 	BIT(POWER_DOMAIN_PIPE_C) |		\
1843 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1844 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1845 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1846 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1847 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1848 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1849 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1850 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1851 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1852 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1853 	BIT(POWER_DOMAIN_VGA) |			\
1854 	BIT(POWER_DOMAIN_AUDIO) |		\
1855 	BIT(POWER_DOMAIN_AUX_B) |		\
1856 	BIT(POWER_DOMAIN_AUX_C) |		\
1857 	BIT(POWER_DOMAIN_AUX_D) |		\
1858 	BIT(POWER_DOMAIN_GMBUS) |		\
1859 	BIT(POWER_DOMAIN_INIT))
1860 
1861 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1862 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1863 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1864 	BIT(POWER_DOMAIN_AUX_B) |		\
1865 	BIT(POWER_DOMAIN_AUX_C) |		\
1866 	BIT(POWER_DOMAIN_INIT))
1867 
1868 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1869 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1870 	BIT(POWER_DOMAIN_AUX_D) |		\
1871 	BIT(POWER_DOMAIN_INIT))
1872 
1873 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1874 	.sync_hw = i9xx_always_on_power_well_noop,
1875 	.enable = i9xx_always_on_power_well_noop,
1876 	.disable = i9xx_always_on_power_well_noop,
1877 	.is_enabled = i9xx_always_on_power_well_enabled,
1878 };
1879 
1880 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1881 	.sync_hw = chv_pipe_power_well_sync_hw,
1882 	.enable = chv_pipe_power_well_enable,
1883 	.disable = chv_pipe_power_well_disable,
1884 	.is_enabled = chv_pipe_power_well_enabled,
1885 };
1886 
1887 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1888 	.sync_hw = vlv_power_well_sync_hw,
1889 	.enable = chv_dpio_cmn_power_well_enable,
1890 	.disable = chv_dpio_cmn_power_well_disable,
1891 	.is_enabled = vlv_power_well_enabled,
1892 };
1893 
1894 static struct i915_power_well i9xx_always_on_power_well[] = {
1895 	{
1896 		.name = "always-on",
1897 		.always_on = 1,
1898 		.domains = POWER_DOMAIN_MASK,
1899 		.ops = &i9xx_always_on_power_well_ops,
1900 	},
1901 };
1902 
1903 static const struct i915_power_well_ops hsw_power_well_ops = {
1904 	.sync_hw = hsw_power_well_sync_hw,
1905 	.enable = hsw_power_well_enable,
1906 	.disable = hsw_power_well_disable,
1907 	.is_enabled = hsw_power_well_enabled,
1908 };
1909 
1910 static const struct i915_power_well_ops skl_power_well_ops = {
1911 	.sync_hw = skl_power_well_sync_hw,
1912 	.enable = skl_power_well_enable,
1913 	.disable = skl_power_well_disable,
1914 	.is_enabled = skl_power_well_enabled,
1915 };
1916 
1917 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1918 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1919 	.enable = gen9_dc_off_power_well_enable,
1920 	.disable = gen9_dc_off_power_well_disable,
1921 	.is_enabled = gen9_dc_off_power_well_enabled,
1922 };
1923 
1924 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1925 	.sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1926 	.enable = bxt_dpio_cmn_power_well_enable,
1927 	.disable = bxt_dpio_cmn_power_well_disable,
1928 	.is_enabled = bxt_dpio_cmn_power_well_enabled,
1929 };
1930 
1931 static struct i915_power_well hsw_power_wells[] = {
1932 	{
1933 		.name = "always-on",
1934 		.always_on = 1,
1935 		.domains = POWER_DOMAIN_MASK,
1936 		.ops = &i9xx_always_on_power_well_ops,
1937 	},
1938 	{
1939 		.name = "display",
1940 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1941 		.ops = &hsw_power_well_ops,
1942 	},
1943 };
1944 
1945 static struct i915_power_well bdw_power_wells[] = {
1946 	{
1947 		.name = "always-on",
1948 		.always_on = 1,
1949 		.domains = POWER_DOMAIN_MASK,
1950 		.ops = &i9xx_always_on_power_well_ops,
1951 	},
1952 	{
1953 		.name = "display",
1954 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1955 		.ops = &hsw_power_well_ops,
1956 	},
1957 };
1958 
1959 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1960 	.sync_hw = vlv_power_well_sync_hw,
1961 	.enable = vlv_display_power_well_enable,
1962 	.disable = vlv_display_power_well_disable,
1963 	.is_enabled = vlv_power_well_enabled,
1964 };
1965 
1966 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1967 	.sync_hw = vlv_power_well_sync_hw,
1968 	.enable = vlv_dpio_cmn_power_well_enable,
1969 	.disable = vlv_dpio_cmn_power_well_disable,
1970 	.is_enabled = vlv_power_well_enabled,
1971 };
1972 
1973 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1974 	.sync_hw = vlv_power_well_sync_hw,
1975 	.enable = vlv_power_well_enable,
1976 	.disable = vlv_power_well_disable,
1977 	.is_enabled = vlv_power_well_enabled,
1978 };
1979 
1980 static struct i915_power_well vlv_power_wells[] = {
1981 	{
1982 		.name = "always-on",
1983 		.always_on = 1,
1984 		.domains = POWER_DOMAIN_MASK,
1985 		.ops = &i9xx_always_on_power_well_ops,
1986 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1987 	},
1988 	{
1989 		.name = "display",
1990 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1991 		.data = PUNIT_POWER_WELL_DISP2D,
1992 		.ops = &vlv_display_power_well_ops,
1993 	},
1994 	{
1995 		.name = "dpio-tx-b-01",
1996 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1997 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1998 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1999 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2000 		.ops = &vlv_dpio_power_well_ops,
2001 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
2002 	},
2003 	{
2004 		.name = "dpio-tx-b-23",
2005 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2006 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2007 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2008 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2009 		.ops = &vlv_dpio_power_well_ops,
2010 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2011 	},
2012 	{
2013 		.name = "dpio-tx-c-01",
2014 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2015 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2016 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2017 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2018 		.ops = &vlv_dpio_power_well_ops,
2019 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2020 	},
2021 	{
2022 		.name = "dpio-tx-c-23",
2023 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2024 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2025 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2026 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2027 		.ops = &vlv_dpio_power_well_ops,
2028 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2029 	},
2030 	{
2031 		.name = "dpio-common",
2032 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2033 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2034 		.ops = &vlv_dpio_cmn_power_well_ops,
2035 	},
2036 };
2037 
2038 static struct i915_power_well chv_power_wells[] = {
2039 	{
2040 		.name = "always-on",
2041 		.always_on = 1,
2042 		.domains = POWER_DOMAIN_MASK,
2043 		.ops = &i9xx_always_on_power_well_ops,
2044 	},
2045 	{
2046 		.name = "display",
2047 		/*
2048 		 * Pipe A power well is the new disp2d well. Pipe B and C
2049 		 * power wells don't actually exist. Pipe A power well is
2050 		 * required for any pipe to work.
2051 		 */
2052 		.domains = CHV_DISPLAY_POWER_DOMAINS,
2053 		.data = PIPE_A,
2054 		.ops = &chv_pipe_power_well_ops,
2055 	},
2056 	{
2057 		.name = "dpio-common-bc",
2058 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2059 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2060 		.ops = &chv_dpio_cmn_power_well_ops,
2061 	},
2062 	{
2063 		.name = "dpio-common-d",
2064 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2065 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
2066 		.ops = &chv_dpio_cmn_power_well_ops,
2067 	},
2068 };
2069 
2070 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2071 				    int power_well_id)
2072 {
2073 	struct i915_power_well *power_well;
2074 	bool ret;
2075 
2076 	power_well = lookup_power_well(dev_priv, power_well_id);
2077 	ret = power_well->ops->is_enabled(dev_priv, power_well);
2078 
2079 	return ret;
2080 }
2081 
2082 static struct i915_power_well skl_power_wells[] = {
2083 	{
2084 		.name = "always-on",
2085 		.always_on = 1,
2086 		.domains = POWER_DOMAIN_MASK,
2087 		.ops = &i9xx_always_on_power_well_ops,
2088 		.data = SKL_DISP_PW_ALWAYS_ON,
2089 	},
2090 	{
2091 		.name = "power well 1",
2092 		/* Handled by the DMC firmware */
2093 		.domains = 0,
2094 		.ops = &skl_power_well_ops,
2095 		.data = SKL_DISP_PW_1,
2096 	},
2097 	{
2098 		.name = "MISC IO power well",
2099 		/* Handled by the DMC firmware */
2100 		.domains = 0,
2101 		.ops = &skl_power_well_ops,
2102 		.data = SKL_DISP_PW_MISC_IO,
2103 	},
2104 	{
2105 		.name = "DC off",
2106 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2107 		.ops = &gen9_dc_off_power_well_ops,
2108 		.data = SKL_DISP_PW_DC_OFF,
2109 	},
2110 	{
2111 		.name = "power well 2",
2112 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2113 		.ops = &skl_power_well_ops,
2114 		.data = SKL_DISP_PW_2,
2115 	},
2116 	{
2117 		.name = "DDI A/E power well",
2118 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2119 		.ops = &skl_power_well_ops,
2120 		.data = SKL_DISP_PW_DDI_A_E,
2121 	},
2122 	{
2123 		.name = "DDI B power well",
2124 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2125 		.ops = &skl_power_well_ops,
2126 		.data = SKL_DISP_PW_DDI_B,
2127 	},
2128 	{
2129 		.name = "DDI C power well",
2130 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2131 		.ops = &skl_power_well_ops,
2132 		.data = SKL_DISP_PW_DDI_C,
2133 	},
2134 	{
2135 		.name = "DDI D power well",
2136 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2137 		.ops = &skl_power_well_ops,
2138 		.data = SKL_DISP_PW_DDI_D,
2139 	},
2140 };
2141 
2142 static struct i915_power_well bxt_power_wells[] = {
2143 	{
2144 		.name = "always-on",
2145 		.always_on = 1,
2146 		.domains = POWER_DOMAIN_MASK,
2147 		.ops = &i9xx_always_on_power_well_ops,
2148 	},
2149 	{
2150 		.name = "power well 1",
2151 		.domains = 0,
2152 		.ops = &skl_power_well_ops,
2153 		.data = SKL_DISP_PW_1,
2154 	},
2155 	{
2156 		.name = "DC off",
2157 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2158 		.ops = &gen9_dc_off_power_well_ops,
2159 		.data = SKL_DISP_PW_DC_OFF,
2160 	},
2161 	{
2162 		.name = "power well 2",
2163 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2164 		.ops = &skl_power_well_ops,
2165 		.data = SKL_DISP_PW_2,
2166 	},
2167 	{
2168 		.name = "dpio-common-a",
2169 		.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2170 		.ops = &bxt_dpio_cmn_power_well_ops,
2171 		.data = BXT_DPIO_CMN_A,
2172 	},
2173 	{
2174 		.name = "dpio-common-bc",
2175 		.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2176 		.ops = &bxt_dpio_cmn_power_well_ops,
2177 		.data = BXT_DPIO_CMN_BC,
2178 	},
2179 };
2180 
2181 static int
2182 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2183 				   int disable_power_well)
2184 {
2185 	if (disable_power_well >= 0)
2186 		return !!disable_power_well;
2187 
2188 	return 1;
2189 }
2190 
2191 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2192 				    int enable_dc)
2193 {
2194 	uint32_t mask;
2195 	int requested_dc;
2196 	int max_dc;
2197 
2198 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2199 		max_dc = 2;
2200 		mask = 0;
2201 	} else if (IS_BROXTON(dev_priv)) {
2202 		max_dc = 1;
2203 		/*
2204 		 * DC9 has a separate HW flow from the rest of the DC states,
2205 		 * not depending on the DMC firmware. It's needed by system
2206 		 * suspend/resume, so allow it unconditionally.
2207 		 */
2208 		mask = DC_STATE_EN_DC9;
2209 	} else {
2210 		max_dc = 0;
2211 		mask = 0;
2212 	}
2213 
2214 	if (!i915.disable_power_well)
2215 		max_dc = 0;
2216 
2217 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2218 		requested_dc = enable_dc;
2219 	} else if (enable_dc == -1) {
2220 		requested_dc = max_dc;
2221 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2222 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2223 			      enable_dc, max_dc);
2224 		requested_dc = max_dc;
2225 	} else {
2226 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2227 		requested_dc = max_dc;
2228 	}
2229 
2230 	if (requested_dc > 1)
2231 		mask |= DC_STATE_EN_UPTO_DC6;
2232 	if (requested_dc > 0)
2233 		mask |= DC_STATE_EN_UPTO_DC5;
2234 
2235 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2236 
2237 	return mask;
2238 }
2239 
2240 #define set_power_wells(power_domains, __power_wells) ({		\
2241 	(power_domains)->power_wells = (__power_wells);			\
2242 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2243 })
2244 
2245 /**
2246  * intel_power_domains_init - initializes the power domain structures
2247  * @dev_priv: i915 device instance
2248  *
2249  * Initializes the power domain structures for @dev_priv depending upon the
2250  * supported platform.
2251  */
2252 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2253 {
2254 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2255 
2256 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2257 						     i915.disable_power_well);
2258 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2259 							    i915.enable_dc);
2260 
2261 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2262 
2263 	lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE);
2264 
2265 	/*
2266 	 * The enabling order will be from lower to higher indexed wells,
2267 	 * the disabling order is reversed.
2268 	 */
2269 	if (IS_HASWELL(dev_priv)) {
2270 		set_power_wells(power_domains, hsw_power_wells);
2271 	} else if (IS_BROADWELL(dev_priv)) {
2272 		set_power_wells(power_domains, bdw_power_wells);
2273 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2274 		set_power_wells(power_domains, skl_power_wells);
2275 	} else if (IS_BROXTON(dev_priv)) {
2276 		set_power_wells(power_domains, bxt_power_wells);
2277 	} else if (IS_CHERRYVIEW(dev_priv)) {
2278 		set_power_wells(power_domains, chv_power_wells);
2279 	} else if (IS_VALLEYVIEW(dev_priv)) {
2280 		set_power_wells(power_domains, vlv_power_wells);
2281 	} else {
2282 		set_power_wells(power_domains, i9xx_always_on_power_well);
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 /**
2289  * intel_power_domains_fini - finalizes the power domain structures
2290  * @dev_priv: i915 device instance
2291  *
2292  * Finalizes the power domain structures for @dev_priv depending upon the
2293  * supported platform. This function also disables runtime pm and ensures that
2294  * the device stays powered up so that the driver can be reloaded.
2295  */
2296 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2297 {
2298 #if 0
2299 	struct device *device = &dev_priv->drm.pdev->dev;
2300 #endif
2301 
2302 	/*
2303 	 * The i915.ko module is still not prepared to be loaded when
2304 	 * the power well is not enabled, so just enable it in case
2305 	 * we're going to unload/reload.
2306 	 * The following also reacquires the RPM reference the core passed
2307 	 * to the driver during loading, which is dropped in
2308 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2309 	 * device to the core with this reference held.
2310 	 */
2311 	intel_display_set_init_power(dev_priv, true);
2312 
2313 	/* Remove the refcount we took to keep power well support disabled. */
2314 	if (!i915.disable_power_well)
2315 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2316 
2317 	/*
2318 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2319 	 * the platform doesn't support runtime PM.
2320 	 */
2321 #if 0
2322 	if (!HAS_RUNTIME_PM(dev_priv))
2323 		pm_runtime_put(device);
2324 #endif
2325 }
2326 
2327 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2328 {
2329 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2330 	struct i915_power_well *power_well;
2331 	int i;
2332 
2333 	mutex_lock(&power_domains->lock);
2334 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2335 		power_well->ops->sync_hw(dev_priv, power_well);
2336 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2337 								     power_well);
2338 	}
2339 	mutex_unlock(&power_domains->lock);
2340 }
2341 
2342 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2343 {
2344 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2345 	POSTING_READ(DBUF_CTL);
2346 
2347 	udelay(10);
2348 
2349 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2350 		DRM_ERROR("DBuf power enable timeout\n");
2351 }
2352 
2353 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2354 {
2355 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2356 	POSTING_READ(DBUF_CTL);
2357 
2358 	udelay(10);
2359 
2360 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2361 		DRM_ERROR("DBuf power disable timeout!\n");
2362 }
2363 
2364 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2365 				   bool resume)
2366 {
2367 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2368 	struct i915_power_well *well;
2369 	uint32_t val;
2370 
2371 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2372 
2373 	/* enable PCH reset handshake */
2374 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2375 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2376 
2377 	/* enable PG1 and Misc I/O */
2378 	mutex_lock(&power_domains->lock);
2379 
2380 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2381 	intel_power_well_enable(dev_priv, well);
2382 
2383 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2384 	intel_power_well_enable(dev_priv, well);
2385 
2386 	mutex_unlock(&power_domains->lock);
2387 
2388 	skl_init_cdclk(dev_priv);
2389 
2390 	gen9_dbuf_enable(dev_priv);
2391 
2392 	if (resume && dev_priv->csr.dmc_payload)
2393 		intel_csr_load_program(dev_priv);
2394 }
2395 
2396 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2397 {
2398 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2399 	struct i915_power_well *well;
2400 
2401 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2402 
2403 	gen9_dbuf_disable(dev_priv);
2404 
2405 	skl_uninit_cdclk(dev_priv);
2406 
2407 	/* The spec doesn't call for removing the reset handshake flag */
2408 	/* disable PG1 and Misc I/O */
2409 
2410 	mutex_lock(&power_domains->lock);
2411 
2412 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2413 	intel_power_well_disable(dev_priv, well);
2414 
2415 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2416 	intel_power_well_disable(dev_priv, well);
2417 
2418 	mutex_unlock(&power_domains->lock);
2419 }
2420 
2421 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2422 			   bool resume)
2423 {
2424 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2425 	struct i915_power_well *well;
2426 	uint32_t val;
2427 
2428 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2429 
2430 	/*
2431 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2432 	 * or else the reset will hang because there is no PCH to respond.
2433 	 * Move the handshake programming to initialization sequence.
2434 	 * Previously was left up to BIOS.
2435 	 */
2436 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2437 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2438 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2439 
2440 	/* Enable PG1 */
2441 	mutex_lock(&power_domains->lock);
2442 
2443 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2444 	intel_power_well_enable(dev_priv, well);
2445 
2446 	mutex_unlock(&power_domains->lock);
2447 
2448 	bxt_init_cdclk(dev_priv);
2449 
2450 	gen9_dbuf_enable(dev_priv);
2451 
2452 	if (resume && dev_priv->csr.dmc_payload)
2453 		intel_csr_load_program(dev_priv);
2454 }
2455 
2456 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2457 {
2458 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2459 	struct i915_power_well *well;
2460 
2461 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2462 
2463 	gen9_dbuf_disable(dev_priv);
2464 
2465 	bxt_uninit_cdclk(dev_priv);
2466 
2467 	/* The spec doesn't call for removing the reset handshake flag */
2468 
2469 	/* Disable PG1 */
2470 	mutex_lock(&power_domains->lock);
2471 
2472 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2473 	intel_power_well_disable(dev_priv, well);
2474 
2475 	mutex_unlock(&power_domains->lock);
2476 }
2477 
2478 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2479 {
2480 	struct i915_power_well *cmn_bc =
2481 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2482 	struct i915_power_well *cmn_d =
2483 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2484 
2485 	/*
2486 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2487 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2488 	 * instead maintain a shadow copy ourselves. Use the actual
2489 	 * power well state and lane status to reconstruct the
2490 	 * expected initial value.
2491 	 */
2492 	dev_priv->chv_phy_control =
2493 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2494 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2495 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2496 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2497 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2498 
2499 	/*
2500 	 * If all lanes are disabled we leave the override disabled
2501 	 * with all power down bits cleared to match the state we
2502 	 * would use after disabling the port. Otherwise enable the
2503 	 * override and set the lane powerdown bits accding to the
2504 	 * current lane status.
2505 	 */
2506 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2507 		uint32_t status = I915_READ(DPLL(PIPE_A));
2508 		unsigned int mask;
2509 
2510 		mask = status & DPLL_PORTB_READY_MASK;
2511 		if (mask == 0xf)
2512 			mask = 0x0;
2513 		else
2514 			dev_priv->chv_phy_control |=
2515 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2516 
2517 		dev_priv->chv_phy_control |=
2518 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2519 
2520 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2521 		if (mask == 0xf)
2522 			mask = 0x0;
2523 		else
2524 			dev_priv->chv_phy_control |=
2525 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2526 
2527 		dev_priv->chv_phy_control |=
2528 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2529 
2530 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2531 
2532 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2533 	} else {
2534 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2535 	}
2536 
2537 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2538 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2539 		unsigned int mask;
2540 
2541 		mask = status & DPLL_PORTD_READY_MASK;
2542 
2543 		if (mask == 0xf)
2544 			mask = 0x0;
2545 		else
2546 			dev_priv->chv_phy_control |=
2547 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2548 
2549 		dev_priv->chv_phy_control |=
2550 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2551 
2552 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2553 
2554 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2555 	} else {
2556 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2557 	}
2558 
2559 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2560 
2561 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2562 		      dev_priv->chv_phy_control);
2563 }
2564 
2565 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2566 {
2567 	struct i915_power_well *cmn =
2568 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2569 	struct i915_power_well *disp2d =
2570 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2571 
2572 	/* If the display might be already active skip this */
2573 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2574 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2575 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2576 		return;
2577 
2578 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2579 
2580 	/* cmnlane needs DPLL registers */
2581 	disp2d->ops->enable(dev_priv, disp2d);
2582 
2583 	/*
2584 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2585 	 * Need to assert and de-assert PHY SB reset by gating the
2586 	 * common lane power, then un-gating it.
2587 	 * Simply ungating isn't enough to reset the PHY enough to get
2588 	 * ports and lanes running.
2589 	 */
2590 	cmn->ops->disable(dev_priv, cmn);
2591 }
2592 
2593 /**
2594  * intel_power_domains_init_hw - initialize hardware power domain state
2595  * @dev_priv: i915 device instance
2596  * @resume: Called from resume code paths or not
2597  *
2598  * This function initializes the hardware power domain state and enables all
2599  * power domains using intel_display_set_init_power().
2600  */
2601 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2602 {
2603 	struct drm_device *dev = &dev_priv->drm;
2604 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2605 
2606 	power_domains->initializing = true;
2607 
2608 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2609 		skl_display_core_init(dev_priv, resume);
2610 	} else if (IS_BROXTON(dev)) {
2611 		bxt_display_core_init(dev_priv, resume);
2612 	} else if (IS_CHERRYVIEW(dev)) {
2613 		mutex_lock(&power_domains->lock);
2614 		chv_phy_control_init(dev_priv);
2615 		mutex_unlock(&power_domains->lock);
2616 	} else if (IS_VALLEYVIEW(dev)) {
2617 		mutex_lock(&power_domains->lock);
2618 		vlv_cmnlane_wa(dev_priv);
2619 		mutex_unlock(&power_domains->lock);
2620 	}
2621 
2622 	/* For now, we need the power well to be always enabled. */
2623 	intel_display_set_init_power(dev_priv, true);
2624 	/* Disable power support if the user asked so. */
2625 	if (!i915.disable_power_well)
2626 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2627 	intel_power_domains_sync_hw(dev_priv);
2628 	power_domains->initializing = false;
2629 }
2630 
2631 /**
2632  * intel_power_domains_suspend - suspend power domain state
2633  * @dev_priv: i915 device instance
2634  *
2635  * This function prepares the hardware power domain state before entering
2636  * system suspend. It must be paired with intel_power_domains_init_hw().
2637  */
2638 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2639 {
2640 	/*
2641 	 * Even if power well support was disabled we still want to disable
2642 	 * power wells while we are system suspended.
2643 	 */
2644 	if (!i915.disable_power_well)
2645 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2646 
2647 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2648 		skl_display_core_uninit(dev_priv);
2649 	else if (IS_BROXTON(dev_priv))
2650 		bxt_display_core_uninit(dev_priv);
2651 }
2652 
2653 /**
2654  * intel_runtime_pm_get - grab a runtime pm reference
2655  * @dev_priv: i915 device instance
2656  *
2657  * This function grabs a device-level runtime pm reference (mostly used for GEM
2658  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2659  *
2660  * Any runtime pm reference obtained by this function must have a symmetric
2661  * call to intel_runtime_pm_put() to release the reference again.
2662  */
2663 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2664 {
2665 	struct drm_device *dev = &dev_priv->drm;
2666 	struct device *device = &dev->pdev->dev;
2667 
2668 	pm_runtime_get_sync(device);
2669 
2670 	atomic_inc(&dev_priv->pm.wakeref_count);
2671 	assert_rpm_wakelock_held(dev_priv);
2672 }
2673 
2674 /**
2675  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2676  * @dev_priv: i915 device instance
2677  *
2678  * This function grabs a device-level runtime pm reference if the device is
2679  * already in use and ensures that it is powered up.
2680  *
2681  * Any runtime pm reference obtained by this function must have a symmetric
2682  * call to intel_runtime_pm_put() to release the reference again.
2683  */
2684 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2685 {
2686 #ifndef __DragonFly__
2687 	struct drm_device *dev = &dev_priv->drm;
2688 	struct device *device = &dev->pdev->dev;
2689 
2690 	if (IS_ENABLED(CONFIG_PM)) {
2691 		int ret = pm_runtime_get_if_in_use(device);
2692 
2693 		/*
2694 		 * In cases runtime PM is disabled by the RPM core and we get
2695 		 * an -EINVAL return value we are not supposed to call this
2696 		 * function, since the power state is undefined. This applies
2697 		 * atm to the late/early system suspend/resume handlers.
2698 		 */
2699 		WARN_ON_ONCE(ret < 0);
2700 		if (ret <= 0)
2701 			return false;
2702 	}
2703 
2704 	atomic_inc(&dev_priv->pm.wakeref_count);
2705 	assert_rpm_wakelock_held(dev_priv);
2706 #endif
2707 
2708 	return true;
2709 }
2710 
2711 /**
2712  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2713  * @dev_priv: i915 device instance
2714  *
2715  * This function grabs a device-level runtime pm reference (mostly used for GEM
2716  * code to ensure the GTT or GT is on).
2717  *
2718  * It will _not_ power up the device but instead only check that it's powered
2719  * on.  Therefore it is only valid to call this functions from contexts where
2720  * the device is known to be powered up and where trying to power it up would
2721  * result in hilarity and deadlocks. That pretty much means only the system
2722  * suspend/resume code where this is used to grab runtime pm references for
2723  * delayed setup down in work items.
2724  *
2725  * Any runtime pm reference obtained by this function must have a symmetric
2726  * call to intel_runtime_pm_put() to release the reference again.
2727  */
2728 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2729 {
2730 #if 0
2731 	struct drm_device *dev = &dev_priv->drm;
2732 	struct device *device = &dev->pdev->dev;
2733 #endif
2734 
2735 	assert_rpm_wakelock_held(dev_priv);
2736 #if 0
2737 	pm_runtime_get_noresume(device);
2738 #endif
2739 
2740 	atomic_inc(&dev_priv->pm.wakeref_count);
2741 }
2742 
2743 /**
2744  * intel_runtime_pm_put - release a runtime pm reference
2745  * @dev_priv: i915 device instance
2746  *
2747  * This function drops the device-level runtime pm reference obtained by
2748  * intel_runtime_pm_get() and might power down the corresponding
2749  * hardware block right away if this is the last reference.
2750  */
2751 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2752 {
2753 	struct drm_device *dev = &dev_priv->drm;
2754 	struct device *device = &dev->pdev->dev;
2755 
2756 	assert_rpm_wakelock_held(dev_priv);
2757 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2758 		atomic_inc(&dev_priv->pm.atomic_seq);
2759 
2760 	pm_runtime_mark_last_busy(device);
2761 	pm_runtime_put_autosuspend(device);
2762 }
2763 
2764 /**
2765  * intel_runtime_pm_enable - enable runtime pm
2766  * @dev_priv: i915 device instance
2767  *
2768  * This function enables runtime pm at the end of the driver load sequence.
2769  *
2770  * Note that this function does currently not enable runtime pm for the
2771  * subordinate display power domains. That is only done on the first modeset
2772  * using intel_display_set_init_power().
2773  */
2774 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2775 {
2776 #if 0
2777 	struct drm_device *dev = &dev_priv->drm;
2778 	struct device *device = &dev->pdev->dev;
2779 
2780 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2781 	pm_runtime_mark_last_busy(device);
2782 
2783 	/*
2784 	 * Take a permanent reference to disable the RPM functionality and drop
2785 	 * it only when unloading the driver. Use the low level get/put helpers,
2786 	 * so the driver's own RPM reference tracking asserts also work on
2787 	 * platforms without RPM support.
2788 	 */
2789 	if (!HAS_RUNTIME_PM(dev)) {
2790 		pm_runtime_dont_use_autosuspend(device);
2791 		pm_runtime_get_sync(device);
2792 	} else {
2793 		pm_runtime_use_autosuspend(device);
2794 	}
2795 
2796 	/*
2797 	 * The core calls the driver load handler with an RPM reference held.
2798 	 * We drop that here and will reacquire it during unloading in
2799 	 * intel_power_domains_fini().
2800 	 */
2801 	pm_runtime_put_autosuspend(device);
2802 #endif
2803 }
2804 
2805