xref: /dragonfly/sys/dev/drm/i915/intel_runtime_pm.c (revision abf903a5)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70 
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 	switch (domain) {
75 	case POWER_DOMAIN_PIPE_A:
76 		return "PIPE_A";
77 	case POWER_DOMAIN_PIPE_B:
78 		return "PIPE_B";
79 	case POWER_DOMAIN_PIPE_C:
80 		return "PIPE_C";
81 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 		return "PIPE_A_PANEL_FITTER";
83 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 		return "PIPE_B_PANEL_FITTER";
85 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 		return "PIPE_C_PANEL_FITTER";
87 	case POWER_DOMAIN_TRANSCODER_A:
88 		return "TRANSCODER_A";
89 	case POWER_DOMAIN_TRANSCODER_B:
90 		return "TRANSCODER_B";
91 	case POWER_DOMAIN_TRANSCODER_C:
92 		return "TRANSCODER_C";
93 	case POWER_DOMAIN_TRANSCODER_EDP:
94 		return "TRANSCODER_EDP";
95 	case POWER_DOMAIN_TRANSCODER_DSI_A:
96 		return "TRANSCODER_DSI_A";
97 	case POWER_DOMAIN_TRANSCODER_DSI_C:
98 		return "TRANSCODER_DSI_C";
99 	case POWER_DOMAIN_PORT_DDI_A_LANES:
100 		return "PORT_DDI_A_LANES";
101 	case POWER_DOMAIN_PORT_DDI_B_LANES:
102 		return "PORT_DDI_B_LANES";
103 	case POWER_DOMAIN_PORT_DDI_C_LANES:
104 		return "PORT_DDI_C_LANES";
105 	case POWER_DOMAIN_PORT_DDI_D_LANES:
106 		return "PORT_DDI_D_LANES";
107 	case POWER_DOMAIN_PORT_DDI_E_LANES:
108 		return "PORT_DDI_E_LANES";
109 	case POWER_DOMAIN_PORT_DSI:
110 		return "PORT_DSI";
111 	case POWER_DOMAIN_PORT_CRT:
112 		return "PORT_CRT";
113 	case POWER_DOMAIN_PORT_OTHER:
114 		return "PORT_OTHER";
115 	case POWER_DOMAIN_VGA:
116 		return "VGA";
117 	case POWER_DOMAIN_AUDIO:
118 		return "AUDIO";
119 	case POWER_DOMAIN_PLLS:
120 		return "PLLS";
121 	case POWER_DOMAIN_AUX_A:
122 		return "AUX_A";
123 	case POWER_DOMAIN_AUX_B:
124 		return "AUX_B";
125 	case POWER_DOMAIN_AUX_C:
126 		return "AUX_C";
127 	case POWER_DOMAIN_AUX_D:
128 		return "AUX_D";
129 	case POWER_DOMAIN_GMBUS:
130 		return "GMBUS";
131 	case POWER_DOMAIN_INIT:
132 		return "INIT";
133 	case POWER_DOMAIN_MODESET:
134 		return "MODESET";
135 	default:
136 		MISSING_CASE(domain);
137 		return "?";
138 	}
139 }
140 
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 				    struct i915_power_well *power_well)
143 {
144 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 	power_well->ops->enable(dev_priv, power_well);
146 	power_well->hw_enabled = true;
147 }
148 
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 				     struct i915_power_well *power_well)
151 {
152 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 	power_well->hw_enabled = false;
154 	power_well->ops->disable(dev_priv, power_well);
155 }
156 
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 				 struct i915_power_well *power_well)
159 {
160 	if (!power_well->count++)
161 		intel_power_well_enable(dev_priv, power_well);
162 }
163 
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 				 struct i915_power_well *power_well)
166 {
167 	WARN(!power_well->count, "Use count on power well %s is already zero",
168 	     power_well->name);
169 
170 	if (!--power_well->count)
171 		intel_power_well_disable(dev_priv, power_well);
172 }
173 
174 /*
175  * We should only use the power well if we explicitly asked the hardware to
176  * enable it, so check if it's enabled and also check if we've requested it to
177  * be enabled.
178  */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 				   struct i915_power_well *power_well)
181 {
182 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185 
186 /**
187  * __intel_display_power_is_enabled - unlocked check for a power domain
188  * @dev_priv: i915 device instance
189  * @domain: power domain to check
190  *
191  * This is the unlocked version of intel_display_power_is_enabled() and should
192  * only be used from error capture and recovery code where deadlocks are
193  * possible.
194  *
195  * Returns:
196  * True when the power domain is enabled, false otherwise.
197  */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 				      enum intel_display_power_domain domain)
200 {
201 	struct i915_power_domains *power_domains;
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 	int i;
205 
206 	if (dev_priv->pm.suspended)
207 		return false;
208 
209 	power_domains = &dev_priv->power_domains;
210 
211 	is_enabled = true;
212 
213 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 		if (power_well->always_on)
215 			continue;
216 
217 		if (!power_well->hw_enabled) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @dev_priv: i915 device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains;
247 	bool ret;
248 
249 	power_domains = &dev_priv->power_domains;
250 
251 	mutex_lock(&power_domains->lock);
252 	ret = __intel_display_power_is_enabled(dev_priv, domain);
253 	mutex_unlock(&power_domains->lock);
254 
255 	return ret;
256 }
257 
258 /**
259  * intel_display_set_init_power - set the initial power domain state
260  * @dev_priv: i915 device instance
261  * @enable: whether to enable or disable the initial power domain state
262  *
263  * For simplicity our driver load/unload and system suspend/resume code assumes
264  * that all power domains are always enabled. This functions controls the state
265  * of this little hack. While the initial power domain state is enabled runtime
266  * pm is effectively disabled.
267  */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 				  bool enable)
270 {
271 	if (dev_priv->power_domains.init_power_on == enable)
272 		return;
273 
274 	if (enable)
275 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 	else
277 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278 
279 	dev_priv->power_domains.init_power_on = enable;
280 }
281 
282 /*
283  * Starting with Haswell, we have a "Power Down Well" that can be turned off
284  * when not needed anymore. We have 4 registers that can request the power well
285  * to be enabled, and it will only be disabled if none of the registers is
286  * requesting it to be enabled.
287  */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 	struct pci_dev *pdev = dev_priv->drm.pdev;
291 
292 	/*
293 	 * After we re-enable the power well, if we touch VGA register 0x3d5
294 	 * we'll get unclaimed register interrupts. This stops after we write
295 	 * anything to the VGA MSR register. The vgacon module uses this
296 	 * register all the time, so if we unbind our driver and, as a
297 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 	 * console_unlock(). So make here we touch the VGA MSR register, making
299 	 * sure vgacon can keep working normally without triggering interrupts
300 	 * and error messages.
301 	 */
302 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
303 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
304 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
305 
306 	if (IS_BROADWELL(dev_priv))
307 		gen8_irq_power_well_post_enable(dev_priv,
308 						1 << PIPE_C | 1 << PIPE_B);
309 }
310 
311 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
312 {
313 	if (IS_BROADWELL(dev_priv))
314 		gen8_irq_power_well_pre_disable(dev_priv,
315 						1 << PIPE_C | 1 << PIPE_B);
316 }
317 
318 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
319 				       struct i915_power_well *power_well)
320 {
321 	struct pci_dev *pdev = dev_priv->drm.pdev;
322 
323 	/*
324 	 * After we re-enable the power well, if we touch VGA register 0x3d5
325 	 * we'll get unclaimed register interrupts. This stops after we write
326 	 * anything to the VGA MSR register. The vgacon module uses this
327 	 * register all the time, so if we unbind our driver and, as a
328 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
329 	 * console_unlock(). So make here we touch the VGA MSR register, making
330 	 * sure vgacon can keep working normally without triggering interrupts
331 	 * and error messages.
332 	 */
333 	if (power_well->data == SKL_DISP_PW_2) {
334 		vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
335 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
336 		vga_put(pdev, VGA_RSRC_LEGACY_IO);
337 
338 		gen8_irq_power_well_post_enable(dev_priv,
339 						1 << PIPE_C | 1 << PIPE_B);
340 	}
341 }
342 
343 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
344 				       struct i915_power_well *power_well)
345 {
346 	if (power_well->data == SKL_DISP_PW_2)
347 		gen8_irq_power_well_pre_disable(dev_priv,
348 						1 << PIPE_C | 1 << PIPE_B);
349 }
350 
351 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
352 			       struct i915_power_well *power_well, bool enable)
353 {
354 	bool is_enabled, enable_requested;
355 	uint32_t tmp;
356 
357 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
358 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
359 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
360 
361 	if (enable) {
362 		if (!enable_requested)
363 			I915_WRITE(HSW_PWR_WELL_DRIVER,
364 				   HSW_PWR_WELL_ENABLE_REQUEST);
365 
366 		if (!is_enabled) {
367 			DRM_DEBUG_KMS("Enabling power well\n");
368 			if (intel_wait_for_register(dev_priv,
369 						    HSW_PWR_WELL_DRIVER,
370 						    HSW_PWR_WELL_STATE_ENABLED,
371 						    HSW_PWR_WELL_STATE_ENABLED,
372 						    20))
373 				DRM_ERROR("Timeout enabling power well\n");
374 			hsw_power_well_post_enable(dev_priv);
375 		}
376 
377 	} else {
378 		if (enable_requested) {
379 			hsw_power_well_pre_disable(dev_priv);
380 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
381 			POSTING_READ(HSW_PWR_WELL_DRIVER);
382 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
383 		}
384 	}
385 }
386 
387 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
388 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
389 	BIT(POWER_DOMAIN_PIPE_B) |			\
390 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
391 	BIT(POWER_DOMAIN_PIPE_C) |			\
392 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
393 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
394 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
395 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
396 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
397 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
398 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
399 	BIT(POWER_DOMAIN_AUX_B) |                       \
400 	BIT(POWER_DOMAIN_AUX_C) |			\
401 	BIT(POWER_DOMAIN_AUX_D) |			\
402 	BIT(POWER_DOMAIN_AUDIO) |			\
403 	BIT(POWER_DOMAIN_VGA) |				\
404 	BIT(POWER_DOMAIN_INIT))
405 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
406 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
407 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
408 	BIT(POWER_DOMAIN_INIT))
409 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
410 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
411 	BIT(POWER_DOMAIN_INIT))
412 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
413 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
414 	BIT(POWER_DOMAIN_INIT))
415 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
416 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
417 	BIT(POWER_DOMAIN_INIT))
418 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
419 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
420 	BIT(POWER_DOMAIN_MODESET) |			\
421 	BIT(POWER_DOMAIN_AUX_A) |			\
422 	BIT(POWER_DOMAIN_INIT))
423 
424 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
425 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
426 	BIT(POWER_DOMAIN_PIPE_B) |			\
427 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
428 	BIT(POWER_DOMAIN_PIPE_C) |			\
429 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
430 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
431 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
432 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
433 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
434 	BIT(POWER_DOMAIN_AUX_B) |			\
435 	BIT(POWER_DOMAIN_AUX_C) |			\
436 	BIT(POWER_DOMAIN_AUDIO) |			\
437 	BIT(POWER_DOMAIN_VGA) |				\
438 	BIT(POWER_DOMAIN_GMBUS) |			\
439 	BIT(POWER_DOMAIN_INIT))
440 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
441 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
442 	BIT(POWER_DOMAIN_MODESET) |			\
443 	BIT(POWER_DOMAIN_AUX_A) |			\
444 	BIT(POWER_DOMAIN_INIT))
445 #define BXT_DPIO_CMN_A_POWER_DOMAINS (			\
446 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
447 	BIT(POWER_DOMAIN_AUX_A) |			\
448 	BIT(POWER_DOMAIN_INIT))
449 #define BXT_DPIO_CMN_BC_POWER_DOMAINS (			\
450 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
451 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
452 	BIT(POWER_DOMAIN_AUX_B) |			\
453 	BIT(POWER_DOMAIN_AUX_C) |			\
454 	BIT(POWER_DOMAIN_INIT))
455 
456 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
457 {
458 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
459 		  "DC9 already programmed to be enabled.\n");
460 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
461 		  "DC5 still not disabled to enable DC9.\n");
462 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
463 	WARN_ONCE(intel_irqs_enabled(dev_priv),
464 		  "Interrupts not disabled yet.\n");
465 
466 	 /*
467 	  * TODO: check for the following to verify the conditions to enter DC9
468 	  * state are satisfied:
469 	  * 1] Check relevant display engine registers to verify if mode set
470 	  * disable sequence was followed.
471 	  * 2] Check if display uninitialize sequence is initialized.
472 	  */
473 }
474 
475 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
476 {
477 	WARN_ONCE(intel_irqs_enabled(dev_priv),
478 		  "Interrupts not disabled yet.\n");
479 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
480 		  "DC5 still not disabled.\n");
481 
482 	 /*
483 	  * TODO: check for the following to verify DC9 state was indeed
484 	  * entered before programming to disable it:
485 	  * 1] Check relevant display engine registers to verify if mode
486 	  *  set disable sequence was followed.
487 	  * 2] Check if display uninitialize sequence is initialized.
488 	  */
489 }
490 
491 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
492 				u32 state)
493 {
494 	int rewrites = 0;
495 	int rereads = 0;
496 	u32 v;
497 
498 	I915_WRITE(DC_STATE_EN, state);
499 
500 	/* It has been observed that disabling the dc6 state sometimes
501 	 * doesn't stick and dmc keeps returning old value. Make sure
502 	 * the write really sticks enough times and also force rewrite until
503 	 * we are confident that state is exactly what we want.
504 	 */
505 	do  {
506 		v = I915_READ(DC_STATE_EN);
507 
508 		if (v != state) {
509 			I915_WRITE(DC_STATE_EN, state);
510 			rewrites++;
511 			rereads = 0;
512 		} else if (rereads++ > 5) {
513 			break;
514 		}
515 
516 	} while (rewrites < 100);
517 
518 	if (v != state)
519 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
520 			  state, v);
521 
522 	/* Most of the times we need one retry, avoid spam */
523 	if (rewrites > 1)
524 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
525 			      state, rewrites);
526 }
527 
528 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
529 {
530 	u32 mask;
531 
532 	mask = DC_STATE_EN_UPTO_DC5;
533 	if (IS_BROXTON(dev_priv))
534 		mask |= DC_STATE_EN_DC9;
535 	else
536 		mask |= DC_STATE_EN_UPTO_DC6;
537 
538 	return mask;
539 }
540 
541 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
542 {
543 	u32 val;
544 
545 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
546 
547 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
548 		      dev_priv->csr.dc_state, val);
549 	dev_priv->csr.dc_state = val;
550 }
551 
552 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
553 {
554 	uint32_t val;
555 	uint32_t mask;
556 
557 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
558 		state &= dev_priv->csr.allowed_dc_mask;
559 
560 	val = I915_READ(DC_STATE_EN);
561 	mask = gen9_dc_mask(dev_priv);
562 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
563 		      val & mask, state);
564 
565 	/* Check if DMC is ignoring our DC state requests */
566 	if ((val & mask) != dev_priv->csr.dc_state)
567 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
568 			  dev_priv->csr.dc_state, val & mask);
569 
570 	val &= ~mask;
571 	val |= state;
572 
573 	gen9_write_dc_state(dev_priv, val);
574 
575 	dev_priv->csr.dc_state = val & mask;
576 }
577 
578 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
579 {
580 	assert_can_enable_dc9(dev_priv);
581 
582 	DRM_DEBUG_KMS("Enabling DC9\n");
583 
584 	intel_power_sequencer_reset(dev_priv);
585 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
586 }
587 
588 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
589 {
590 	assert_can_disable_dc9(dev_priv);
591 
592 	DRM_DEBUG_KMS("Disabling DC9\n");
593 
594 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
595 
596 	intel_pps_unlock_regs_wa(dev_priv);
597 }
598 
599 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
600 {
601 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
602 		  "CSR program storage start is NULL\n");
603 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
604 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
605 }
606 
607 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
608 {
609 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
610 					SKL_DISP_PW_2);
611 
612 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
613 
614 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
615 		  "DC5 already programmed to be enabled.\n");
616 	assert_rpm_wakelock_held(dev_priv);
617 
618 	assert_csr_loaded(dev_priv);
619 }
620 
621 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
622 {
623 	assert_can_enable_dc5(dev_priv);
624 
625 	DRM_DEBUG_KMS("Enabling DC5\n");
626 
627 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
628 }
629 
630 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
631 {
632 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
633 		  "Backlight is not disabled.\n");
634 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
635 		  "DC6 already programmed to be enabled.\n");
636 
637 	assert_csr_loaded(dev_priv);
638 }
639 
640 void skl_enable_dc6(struct drm_i915_private *dev_priv)
641 {
642 	assert_can_enable_dc6(dev_priv);
643 
644 	DRM_DEBUG_KMS("Enabling DC6\n");
645 
646 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
647 
648 }
649 
650 void skl_disable_dc6(struct drm_i915_private *dev_priv)
651 {
652 	DRM_DEBUG_KMS("Disabling DC6\n");
653 
654 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
655 }
656 
657 static void
658 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
659 				  struct i915_power_well *power_well)
660 {
661 	enum skl_disp_power_wells power_well_id = power_well->data;
662 	u32 val;
663 	u32 mask;
664 
665 	mask = SKL_POWER_WELL_REQ(power_well_id);
666 
667 	val = I915_READ(HSW_PWR_WELL_KVMR);
668 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
669 		      power_well->name))
670 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
671 
672 	val = I915_READ(HSW_PWR_WELL_BIOS);
673 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
674 
675 	if (!(val & mask))
676 		return;
677 
678 	/*
679 	 * DMC is known to force on the request bits for power well 1 on SKL
680 	 * and BXT and the misc IO power well on SKL but we don't expect any
681 	 * other request bits to be set, so WARN for those.
682 	 */
683 	if (power_well_id == SKL_DISP_PW_1 ||
684 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
685 	     power_well_id == SKL_DISP_PW_MISC_IO))
686 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
687 				 "by DMC\n", power_well->name);
688 	else
689 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
690 			  power_well->name);
691 
692 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
693 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
694 }
695 
696 static void skl_set_power_well(struct drm_i915_private *dev_priv,
697 			struct i915_power_well *power_well, bool enable)
698 {
699 	uint32_t tmp, fuse_status;
700 	uint32_t req_mask, state_mask;
701 	bool is_enabled, enable_requested, check_fuse_status = false;
702 
703 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
704 	fuse_status = I915_READ(SKL_FUSE_STATUS);
705 
706 	switch (power_well->data) {
707 	case SKL_DISP_PW_1:
708 		if (intel_wait_for_register(dev_priv,
709 					    SKL_FUSE_STATUS,
710 					    SKL_FUSE_PG0_DIST_STATUS,
711 					    SKL_FUSE_PG0_DIST_STATUS,
712 					    1)) {
713 			DRM_ERROR("PG0 not enabled\n");
714 			return;
715 		}
716 		break;
717 	case SKL_DISP_PW_2:
718 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
719 			DRM_ERROR("PG1 in disabled state\n");
720 			return;
721 		}
722 		break;
723 	case SKL_DISP_PW_DDI_A_E:
724 	case SKL_DISP_PW_DDI_B:
725 	case SKL_DISP_PW_DDI_C:
726 	case SKL_DISP_PW_DDI_D:
727 	case SKL_DISP_PW_MISC_IO:
728 		break;
729 	default:
730 		WARN(1, "Unknown power well %lu\n", power_well->data);
731 		return;
732 	}
733 
734 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
735 	enable_requested = tmp & req_mask;
736 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
737 	is_enabled = tmp & state_mask;
738 
739 	if (!enable && enable_requested)
740 		skl_power_well_pre_disable(dev_priv, power_well);
741 
742 	if (enable) {
743 		if (!enable_requested) {
744 			WARN((tmp & state_mask) &&
745 				!I915_READ(HSW_PWR_WELL_BIOS),
746 				"Invalid for power well status to be enabled, unless done by the BIOS, \
747 				when request is to disable!\n");
748 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
749 		}
750 
751 		if (!is_enabled) {
752 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
753 			check_fuse_status = true;
754 		}
755 	} else {
756 		if (enable_requested) {
757 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
758 			POSTING_READ(HSW_PWR_WELL_DRIVER);
759 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
760 		}
761 
762 		if (IS_GEN9(dev_priv))
763 			gen9_sanitize_power_well_requests(dev_priv, power_well);
764 	}
765 
766 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
767 		     1))
768 		DRM_ERROR("%s %s timeout\n",
769 			  power_well->name, enable ? "enable" : "disable");
770 
771 	if (check_fuse_status) {
772 		if (power_well->data == SKL_DISP_PW_1) {
773 			if (intel_wait_for_register(dev_priv,
774 						    SKL_FUSE_STATUS,
775 						    SKL_FUSE_PG1_DIST_STATUS,
776 						    SKL_FUSE_PG1_DIST_STATUS,
777 						    1))
778 				DRM_ERROR("PG1 distributing status timeout\n");
779 		} else if (power_well->data == SKL_DISP_PW_2) {
780 			if (intel_wait_for_register(dev_priv,
781 						    SKL_FUSE_STATUS,
782 						    SKL_FUSE_PG2_DIST_STATUS,
783 						    SKL_FUSE_PG2_DIST_STATUS,
784 						    1))
785 				DRM_ERROR("PG2 distributing status timeout\n");
786 		}
787 	}
788 
789 	if (enable && !is_enabled)
790 		skl_power_well_post_enable(dev_priv, power_well);
791 }
792 
793 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
794 				   struct i915_power_well *power_well)
795 {
796 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
797 
798 	/*
799 	 * We're taking over the BIOS, so clear any requests made by it since
800 	 * the driver is in charge now.
801 	 */
802 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
803 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
804 }
805 
806 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
807 				  struct i915_power_well *power_well)
808 {
809 	hsw_set_power_well(dev_priv, power_well, true);
810 }
811 
812 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
813 				   struct i915_power_well *power_well)
814 {
815 	hsw_set_power_well(dev_priv, power_well, false);
816 }
817 
818 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
819 					struct i915_power_well *power_well)
820 {
821 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
822 		SKL_POWER_WELL_STATE(power_well->data);
823 
824 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
825 }
826 
827 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
828 				struct i915_power_well *power_well)
829 {
830 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
831 
832 	/* Clear any request made by BIOS as driver is taking over */
833 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
834 }
835 
836 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
837 				struct i915_power_well *power_well)
838 {
839 	skl_set_power_well(dev_priv, power_well, true);
840 }
841 
842 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
843 				struct i915_power_well *power_well)
844 {
845 	skl_set_power_well(dev_priv, power_well, false);
846 }
847 
848 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
849 {
850 	enum skl_disp_power_wells power_well_id = power_well->data;
851 
852 	return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
853 }
854 
855 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
856 					   struct i915_power_well *power_well)
857 {
858 	enum skl_disp_power_wells power_well_id = power_well->data;
859 	struct i915_power_well *cmn_a_well = NULL;
860 
861 	if (power_well_id == BXT_DPIO_CMN_BC) {
862 		/*
863 		 * We need to copy the GRC calibration value from the eDP PHY,
864 		 * so make sure it's powered up.
865 		 */
866 		cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
867 		intel_power_well_get(dev_priv, cmn_a_well);
868 	}
869 
870 	bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
871 
872 	if (cmn_a_well)
873 		intel_power_well_put(dev_priv, cmn_a_well);
874 }
875 
876 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
877 					    struct i915_power_well *power_well)
878 {
879 	bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
880 }
881 
882 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
883 					    struct i915_power_well *power_well)
884 {
885 	return bxt_ddi_phy_is_enabled(dev_priv,
886 				      bxt_power_well_to_phy(power_well));
887 }
888 
889 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
890 					    struct i915_power_well *power_well)
891 {
892 	if (power_well->count > 0)
893 		bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
894 	else
895 		bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
896 }
897 
898 
899 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
900 {
901 	struct i915_power_well *power_well;
902 
903 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
904 	if (power_well->count > 0)
905 		bxt_ddi_phy_verify_state(dev_priv,
906 					 bxt_power_well_to_phy(power_well));
907 
908 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
909 	if (power_well->count > 0)
910 		bxt_ddi_phy_verify_state(dev_priv,
911 					 bxt_power_well_to_phy(power_well));
912 }
913 
914 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
915 					   struct i915_power_well *power_well)
916 {
917 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
918 }
919 
920 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
921 {
922 	u32 tmp = I915_READ(DBUF_CTL);
923 
924 	WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
925 	     (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
926 	     "Unexpected DBuf power power state (0x%08x)\n", tmp);
927 }
928 
929 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
930 					  struct i915_power_well *power_well)
931 {
932 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
933 
934 	WARN_ON(dev_priv->cdclk_freq !=
935 		dev_priv->display.get_display_clock_speed(&dev_priv->drm));
936 
937 	gen9_assert_dbuf_enabled(dev_priv);
938 
939 	if (IS_BROXTON(dev_priv))
940 		bxt_verify_ddi_phy_power_wells(dev_priv);
941 }
942 
943 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
944 					   struct i915_power_well *power_well)
945 {
946 	if (!dev_priv->csr.dmc_payload)
947 		return;
948 
949 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
950 		skl_enable_dc6(dev_priv);
951 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
952 		gen9_enable_dc5(dev_priv);
953 }
954 
955 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
956 					   struct i915_power_well *power_well)
957 {
958 	if (power_well->count > 0)
959 		gen9_dc_off_power_well_enable(dev_priv, power_well);
960 	else
961 		gen9_dc_off_power_well_disable(dev_priv, power_well);
962 }
963 
964 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
965 					   struct i915_power_well *power_well)
966 {
967 }
968 
969 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
970 					     struct i915_power_well *power_well)
971 {
972 	return true;
973 }
974 
975 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
976 			       struct i915_power_well *power_well, bool enable)
977 {
978 	enum punit_power_well power_well_id = power_well->data;
979 	u32 mask;
980 	u32 state;
981 	u32 ctrl;
982 
983 	mask = PUNIT_PWRGT_MASK(power_well_id);
984 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
985 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
986 
987 	mutex_lock(&dev_priv->rps.hw_lock);
988 
989 #define COND \
990 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
991 
992 	if (COND)
993 		goto out;
994 
995 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
996 	ctrl &= ~mask;
997 	ctrl |= state;
998 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
999 
1000 	if (wait_for(COND, 100))
1001 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1002 			  state,
1003 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1004 
1005 #undef COND
1006 
1007 out:
1008 	mutex_unlock(&dev_priv->rps.hw_lock);
1009 }
1010 
1011 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1012 				   struct i915_power_well *power_well)
1013 {
1014 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1015 }
1016 
1017 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1018 				  struct i915_power_well *power_well)
1019 {
1020 	vlv_set_power_well(dev_priv, power_well, true);
1021 }
1022 
1023 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1024 				   struct i915_power_well *power_well)
1025 {
1026 	vlv_set_power_well(dev_priv, power_well, false);
1027 }
1028 
1029 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1030 				   struct i915_power_well *power_well)
1031 {
1032 	int power_well_id = power_well->data;
1033 	bool enabled = false;
1034 	u32 mask;
1035 	u32 state;
1036 	u32 ctrl;
1037 
1038 	mask = PUNIT_PWRGT_MASK(power_well_id);
1039 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1040 
1041 	mutex_lock(&dev_priv->rps.hw_lock);
1042 
1043 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1044 	/*
1045 	 * We only ever set the power-on and power-gate states, anything
1046 	 * else is unexpected.
1047 	 */
1048 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1049 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1050 	if (state == ctrl)
1051 		enabled = true;
1052 
1053 	/*
1054 	 * A transient state at this point would mean some unexpected party
1055 	 * is poking at the power controls too.
1056 	 */
1057 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1058 	WARN_ON(ctrl != state);
1059 
1060 	mutex_unlock(&dev_priv->rps.hw_lock);
1061 
1062 	return enabled;
1063 }
1064 
1065 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1066 {
1067 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
1068 
1069 	/*
1070 	 * Disable trickle feed and enable pnd deadline calculation
1071 	 */
1072 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1073 	I915_WRITE(CBR1_VLV, 0);
1074 
1075 	WARN_ON(dev_priv->rawclk_freq == 0);
1076 
1077 	I915_WRITE(RAWCLK_FREQ_VLV,
1078 		   DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1079 }
1080 
1081 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1082 {
1083 	struct intel_encoder *encoder;
1084 	enum i915_pipe pipe;
1085 
1086 	/*
1087 	 * Enable the CRI clock source so we can get at the
1088 	 * display and the reference clock for VGA
1089 	 * hotplug / manual detection. Supposedly DSI also
1090 	 * needs the ref clock up and running.
1091 	 *
1092 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
1093 	 */
1094 	for_each_pipe(&dev_priv->drm, pipe) {
1095 		u32 val = I915_READ(DPLL(pipe));
1096 
1097 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1098 		if (pipe != PIPE_A)
1099 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1100 
1101 		I915_WRITE(DPLL(pipe), val);
1102 	}
1103 
1104 	vlv_init_display_clock_gating(dev_priv);
1105 
1106 	spin_lock_irq(&dev_priv->irq_lock);
1107 	valleyview_enable_display_irqs(dev_priv);
1108 	spin_unlock_irq(&dev_priv->irq_lock);
1109 
1110 	/*
1111 	 * During driver initialization/resume we can avoid restoring the
1112 	 * part of the HW/SW state that will be inited anyway explicitly.
1113 	 */
1114 	if (dev_priv->power_domains.initializing)
1115 		return;
1116 
1117 	intel_hpd_init(dev_priv);
1118 
1119 	/* Re-enable the ADPA, if we have one */
1120 	for_each_intel_encoder(&dev_priv->drm, encoder) {
1121 		if (encoder->type == INTEL_OUTPUT_ANALOG)
1122 			intel_crt_reset(&encoder->base);
1123 	}
1124 
1125 	i915_redisable_vga_power_on(&dev_priv->drm);
1126 
1127 	intel_pps_unlock_regs_wa(dev_priv);
1128 }
1129 
1130 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1131 {
1132 	spin_lock_irq(&dev_priv->irq_lock);
1133 	valleyview_disable_display_irqs(dev_priv);
1134 	spin_unlock_irq(&dev_priv->irq_lock);
1135 
1136 	/* make sure we're done processing display irqs */
1137 	synchronize_irq(dev_priv->drm.irq);
1138 
1139 	intel_power_sequencer_reset(dev_priv);
1140 
1141 	intel_hpd_poll_init(dev_priv);
1142 }
1143 
1144 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1145 					  struct i915_power_well *power_well)
1146 {
1147 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1148 
1149 	vlv_set_power_well(dev_priv, power_well, true);
1150 
1151 	vlv_display_power_well_init(dev_priv);
1152 }
1153 
1154 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1155 					   struct i915_power_well *power_well)
1156 {
1157 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1158 
1159 	vlv_display_power_well_deinit(dev_priv);
1160 
1161 	vlv_set_power_well(dev_priv, power_well, false);
1162 }
1163 
1164 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1165 					   struct i915_power_well *power_well)
1166 {
1167 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1168 
1169 	/* since ref/cri clock was enabled */
1170 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1171 
1172 	vlv_set_power_well(dev_priv, power_well, true);
1173 
1174 	/*
1175 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1176 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1177 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1178 	 *   b.	The other bits such as sfr settings / modesel may all
1179 	 *	be set to 0.
1180 	 *
1181 	 * This should only be done on init and resume from S3 with
1182 	 * both PLLs disabled, or we risk losing DPIO and PLL
1183 	 * synchronization.
1184 	 */
1185 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1186 }
1187 
1188 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1189 					    struct i915_power_well *power_well)
1190 {
1191 	enum i915_pipe pipe;
1192 
1193 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1194 
1195 	for_each_pipe(dev_priv, pipe)
1196 		assert_pll_disabled(dev_priv, pipe);
1197 
1198 	/* Assert common reset */
1199 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1200 
1201 	vlv_set_power_well(dev_priv, power_well, false);
1202 }
1203 
1204 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1205 
1206 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1207 						 int power_well_id)
1208 {
1209 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1210 	int i;
1211 
1212 	for (i = 0; i < power_domains->power_well_count; i++) {
1213 		struct i915_power_well *power_well;
1214 
1215 		power_well = &power_domains->power_wells[i];
1216 		if (power_well->data == power_well_id)
1217 			return power_well;
1218 	}
1219 
1220 	return NULL;
1221 }
1222 
1223 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1224 
1225 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1226 {
1227 	struct i915_power_well *cmn_bc =
1228 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1229 	struct i915_power_well *cmn_d =
1230 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1231 	u32 phy_control = dev_priv->chv_phy_control;
1232 	u32 phy_status = 0;
1233 	u32 phy_status_mask = 0xffffffff;
1234 
1235 	/*
1236 	 * The BIOS can leave the PHY is some weird state
1237 	 * where it doesn't fully power down some parts.
1238 	 * Disable the asserts until the PHY has been fully
1239 	 * reset (ie. the power well has been disabled at
1240 	 * least once).
1241 	 */
1242 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1243 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1244 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1245 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1246 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1247 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1248 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1249 
1250 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1251 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1252 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1253 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1254 
1255 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1256 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1257 
1258 		/* this assumes override is only used to enable lanes */
1259 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1260 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1261 
1262 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1263 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1264 
1265 		/* CL1 is on whenever anything is on in either channel */
1266 		if (BITS_SET(phy_control,
1267 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1268 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1269 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1270 
1271 		/*
1272 		 * The DPLLB check accounts for the pipe B + port A usage
1273 		 * with CL2 powered up but all the lanes in the second channel
1274 		 * powered down.
1275 		 */
1276 		if (BITS_SET(phy_control,
1277 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1278 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1279 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1280 
1281 		if (BITS_SET(phy_control,
1282 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1283 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1284 		if (BITS_SET(phy_control,
1285 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1286 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1287 
1288 		if (BITS_SET(phy_control,
1289 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1290 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1291 		if (BITS_SET(phy_control,
1292 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1293 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1294 	}
1295 
1296 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1297 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1298 
1299 		/* this assumes override is only used to enable lanes */
1300 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1301 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1302 
1303 		if (BITS_SET(phy_control,
1304 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1305 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1306 
1307 		if (BITS_SET(phy_control,
1308 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1309 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1310 		if (BITS_SET(phy_control,
1311 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1312 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1313 	}
1314 
1315 	phy_status &= phy_status_mask;
1316 
1317 	/*
1318 	 * The PHY may be busy with some initial calibration and whatnot,
1319 	 * so the power state can take a while to actually change.
1320 	 */
1321 	if (intel_wait_for_register(dev_priv,
1322 				    DISPLAY_PHY_STATUS,
1323 				    phy_status_mask,
1324 				    phy_status,
1325 				    10))
1326 		DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1327 			  I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1328 			   phy_status, dev_priv->chv_phy_control);
1329 }
1330 
1331 #undef BITS_SET
1332 
1333 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1334 					   struct i915_power_well *power_well)
1335 {
1336 	enum dpio_phy phy;
1337 	enum i915_pipe pipe;
1338 	uint32_t tmp;
1339 
1340 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1341 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1342 
1343 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1344 		pipe = PIPE_A;
1345 		phy = DPIO_PHY0;
1346 	} else {
1347 		pipe = PIPE_C;
1348 		phy = DPIO_PHY1;
1349 	}
1350 
1351 	/* since ref/cri clock was enabled */
1352 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1353 	vlv_set_power_well(dev_priv, power_well, true);
1354 
1355 	/* Poll for phypwrgood signal */
1356 	if (intel_wait_for_register(dev_priv,
1357 				    DISPLAY_PHY_STATUS,
1358 				    PHY_POWERGOOD(phy),
1359 				    PHY_POWERGOOD(phy),
1360 				    1))
1361 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1362 
1363 	mutex_lock(&dev_priv->sb_lock);
1364 
1365 	/* Enable dynamic power down */
1366 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1367 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1368 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1369 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1370 
1371 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1372 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1373 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1374 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1375 	} else {
1376 		/*
1377 		 * Force the non-existing CL2 off. BXT does this
1378 		 * too, so maybe it saves some power even though
1379 		 * CL2 doesn't exist?
1380 		 */
1381 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1382 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1383 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1384 	}
1385 
1386 	mutex_unlock(&dev_priv->sb_lock);
1387 
1388 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1389 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1390 
1391 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1392 		      phy, dev_priv->chv_phy_control);
1393 
1394 	assert_chv_phy_status(dev_priv);
1395 }
1396 
1397 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1398 					    struct i915_power_well *power_well)
1399 {
1400 	enum dpio_phy phy;
1401 
1402 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1403 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1404 
1405 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1406 		phy = DPIO_PHY0;
1407 		assert_pll_disabled(dev_priv, PIPE_A);
1408 		assert_pll_disabled(dev_priv, PIPE_B);
1409 	} else {
1410 		phy = DPIO_PHY1;
1411 		assert_pll_disabled(dev_priv, PIPE_C);
1412 	}
1413 
1414 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1415 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1416 
1417 	vlv_set_power_well(dev_priv, power_well, false);
1418 
1419 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1420 		      phy, dev_priv->chv_phy_control);
1421 
1422 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1423 	dev_priv->chv_phy_assert[phy] = true;
1424 
1425 	assert_chv_phy_status(dev_priv);
1426 }
1427 
1428 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1429 				     enum dpio_channel ch, bool override, unsigned int mask)
1430 {
1431 	enum i915_pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1432 	u32 reg, val, expected, actual;
1433 
1434 	/*
1435 	 * The BIOS can leave the PHY is some weird state
1436 	 * where it doesn't fully power down some parts.
1437 	 * Disable the asserts until the PHY has been fully
1438 	 * reset (ie. the power well has been disabled at
1439 	 * least once).
1440 	 */
1441 	if (!dev_priv->chv_phy_assert[phy])
1442 		return;
1443 
1444 	if (ch == DPIO_CH0)
1445 		reg = _CHV_CMN_DW0_CH0;
1446 	else
1447 		reg = _CHV_CMN_DW6_CH1;
1448 
1449 	mutex_lock(&dev_priv->sb_lock);
1450 	val = vlv_dpio_read(dev_priv, pipe, reg);
1451 	mutex_unlock(&dev_priv->sb_lock);
1452 
1453 	/*
1454 	 * This assumes !override is only used when the port is disabled.
1455 	 * All lanes should power down even without the override when
1456 	 * the port is disabled.
1457 	 */
1458 	if (!override || mask == 0xf) {
1459 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1460 		/*
1461 		 * If CH1 common lane is not active anymore
1462 		 * (eg. for pipe B DPLL) the entire channel will
1463 		 * shut down, which causes the common lane registers
1464 		 * to read as 0. That means we can't actually check
1465 		 * the lane power down status bits, but as the entire
1466 		 * register reads as 0 it's a good indication that the
1467 		 * channel is indeed entirely powered down.
1468 		 */
1469 		if (ch == DPIO_CH1 && val == 0)
1470 			expected = 0;
1471 	} else if (mask != 0x0) {
1472 		expected = DPIO_ANYDL_POWERDOWN;
1473 	} else {
1474 		expected = 0;
1475 	}
1476 
1477 	if (ch == DPIO_CH0)
1478 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1479 	else
1480 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1481 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1482 
1483 	WARN(actual != expected,
1484 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1485 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1486 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1487 	     reg, val);
1488 }
1489 
1490 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1491 			  enum dpio_channel ch, bool override)
1492 {
1493 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1494 	bool was_override;
1495 
1496 	mutex_lock(&power_domains->lock);
1497 
1498 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1499 
1500 	if (override == was_override)
1501 		goto out;
1502 
1503 	if (override)
1504 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1505 	else
1506 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1507 
1508 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1509 
1510 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1511 		      phy, ch, dev_priv->chv_phy_control);
1512 
1513 	assert_chv_phy_status(dev_priv);
1514 
1515 out:
1516 	mutex_unlock(&power_domains->lock);
1517 
1518 	return was_override;
1519 }
1520 
1521 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1522 			     bool override, unsigned int mask)
1523 {
1524 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1525 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1526 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1527 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1528 
1529 	mutex_lock(&power_domains->lock);
1530 
1531 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1532 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1533 
1534 	if (override)
1535 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1536 	else
1537 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1538 
1539 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1540 
1541 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1542 		      phy, ch, mask, dev_priv->chv_phy_control);
1543 
1544 	assert_chv_phy_status(dev_priv);
1545 
1546 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1547 
1548 	mutex_unlock(&power_domains->lock);
1549 }
1550 
1551 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1552 					struct i915_power_well *power_well)
1553 {
1554 	enum i915_pipe pipe = power_well->data;
1555 	bool enabled;
1556 	u32 state, ctrl;
1557 
1558 	mutex_lock(&dev_priv->rps.hw_lock);
1559 
1560 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1561 	/*
1562 	 * We only ever set the power-on and power-gate states, anything
1563 	 * else is unexpected.
1564 	 */
1565 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1566 	enabled = state == DP_SSS_PWR_ON(pipe);
1567 
1568 	/*
1569 	 * A transient state at this point would mean some unexpected party
1570 	 * is poking at the power controls too.
1571 	 */
1572 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1573 	WARN_ON(ctrl << 16 != state);
1574 
1575 	mutex_unlock(&dev_priv->rps.hw_lock);
1576 
1577 	return enabled;
1578 }
1579 
1580 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1581 				    struct i915_power_well *power_well,
1582 				    bool enable)
1583 {
1584 	enum i915_pipe pipe = power_well->data;
1585 	u32 state;
1586 	u32 ctrl;
1587 
1588 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1589 
1590 	mutex_lock(&dev_priv->rps.hw_lock);
1591 
1592 #define COND \
1593 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1594 
1595 	if (COND)
1596 		goto out;
1597 
1598 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1599 	ctrl &= ~DP_SSC_MASK(pipe);
1600 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1601 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1602 
1603 	if (wait_for(COND, 100))
1604 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1605 			  state,
1606 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1607 
1608 #undef COND
1609 
1610 out:
1611 	mutex_unlock(&dev_priv->rps.hw_lock);
1612 }
1613 
1614 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1615 					struct i915_power_well *power_well)
1616 {
1617 	WARN_ON_ONCE(power_well->data != PIPE_A);
1618 
1619 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1620 }
1621 
1622 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1623 				       struct i915_power_well *power_well)
1624 {
1625 	WARN_ON_ONCE(power_well->data != PIPE_A);
1626 
1627 	chv_set_pipe_power_well(dev_priv, power_well, true);
1628 
1629 	vlv_display_power_well_init(dev_priv);
1630 }
1631 
1632 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1633 					struct i915_power_well *power_well)
1634 {
1635 	WARN_ON_ONCE(power_well->data != PIPE_A);
1636 
1637 	vlv_display_power_well_deinit(dev_priv);
1638 
1639 	chv_set_pipe_power_well(dev_priv, power_well, false);
1640 }
1641 
1642 static void
1643 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1644 				 enum intel_display_power_domain domain)
1645 {
1646 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1647 	struct i915_power_well *power_well;
1648 	int i;
1649 
1650 	for_each_power_well(i, power_well, BIT(domain), power_domains)
1651 		intel_power_well_get(dev_priv, power_well);
1652 
1653 	power_domains->domain_use_count[domain]++;
1654 }
1655 
1656 /**
1657  * intel_display_power_get - grab a power domain reference
1658  * @dev_priv: i915 device instance
1659  * @domain: power domain to reference
1660  *
1661  * This function grabs a power domain reference for @domain and ensures that the
1662  * power domain and all its parents are powered up. Therefore users should only
1663  * grab a reference to the innermost power domain they need.
1664  *
1665  * Any power domain reference obtained by this function must have a symmetric
1666  * call to intel_display_power_put() to release the reference again.
1667  */
1668 void intel_display_power_get(struct drm_i915_private *dev_priv,
1669 			     enum intel_display_power_domain domain)
1670 {
1671 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1672 
1673 	intel_runtime_pm_get(dev_priv);
1674 
1675 	mutex_lock(&power_domains->lock);
1676 
1677 	__intel_display_power_get_domain(dev_priv, domain);
1678 
1679 	mutex_unlock(&power_domains->lock);
1680 }
1681 
1682 /**
1683  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1684  * @dev_priv: i915 device instance
1685  * @domain: power domain to reference
1686  *
1687  * This function grabs a power domain reference for @domain and ensures that the
1688  * power domain and all its parents are powered up. Therefore users should only
1689  * grab a reference to the innermost power domain they need.
1690  *
1691  * Any power domain reference obtained by this function must have a symmetric
1692  * call to intel_display_power_put() to release the reference again.
1693  */
1694 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1695 					enum intel_display_power_domain domain)
1696 {
1697 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1698 	bool is_enabled;
1699 
1700 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1701 		return false;
1702 
1703 	mutex_lock(&power_domains->lock);
1704 
1705 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1706 		__intel_display_power_get_domain(dev_priv, domain);
1707 		is_enabled = true;
1708 	} else {
1709 		is_enabled = false;
1710 	}
1711 
1712 	mutex_unlock(&power_domains->lock);
1713 
1714 	if (!is_enabled)
1715 		intel_runtime_pm_put(dev_priv);
1716 
1717 	return is_enabled;
1718 }
1719 
1720 /**
1721  * intel_display_power_put - release a power domain reference
1722  * @dev_priv: i915 device instance
1723  * @domain: power domain to reference
1724  *
1725  * This function drops the power domain reference obtained by
1726  * intel_display_power_get() and might power down the corresponding hardware
1727  * block right away if this is the last reference.
1728  */
1729 void intel_display_power_put(struct drm_i915_private *dev_priv,
1730 			     enum intel_display_power_domain domain)
1731 {
1732 	struct i915_power_domains *power_domains;
1733 	struct i915_power_well *power_well;
1734 	int i;
1735 
1736 	power_domains = &dev_priv->power_domains;
1737 
1738 	mutex_lock(&power_domains->lock);
1739 
1740 	WARN(!power_domains->domain_use_count[domain],
1741 	     "Use count on domain %s is already zero\n",
1742 	     intel_display_power_domain_str(domain));
1743 	power_domains->domain_use_count[domain]--;
1744 
1745 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1746 		intel_power_well_put(dev_priv, power_well);
1747 
1748 	mutex_unlock(&power_domains->lock);
1749 
1750 	intel_runtime_pm_put(dev_priv);
1751 }
1752 
1753 #define HSW_DISPLAY_POWER_DOMAINS (			\
1754 	BIT(POWER_DOMAIN_PIPE_B) |			\
1755 	BIT(POWER_DOMAIN_PIPE_C) |			\
1756 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1757 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1758 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1759 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1760 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1761 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1762 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1763 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1764 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1765 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1766 	BIT(POWER_DOMAIN_VGA) |				\
1767 	BIT(POWER_DOMAIN_AUDIO) |			\
1768 	BIT(POWER_DOMAIN_INIT))
1769 
1770 #define BDW_DISPLAY_POWER_DOMAINS (			\
1771 	BIT(POWER_DOMAIN_PIPE_B) |			\
1772 	BIT(POWER_DOMAIN_PIPE_C) |			\
1773 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1774 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1775 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1776 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1777 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1778 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1779 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1780 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1781 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1782 	BIT(POWER_DOMAIN_VGA) |				\
1783 	BIT(POWER_DOMAIN_AUDIO) |			\
1784 	BIT(POWER_DOMAIN_INIT))
1785 
1786 #define VLV_DISPLAY_POWER_DOMAINS (		\
1787 	BIT(POWER_DOMAIN_PIPE_A) |		\
1788 	BIT(POWER_DOMAIN_PIPE_B) |		\
1789 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1790 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1791 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1792 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1793 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1794 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1795 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1796 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1797 	BIT(POWER_DOMAIN_VGA) |			\
1798 	BIT(POWER_DOMAIN_AUDIO) |		\
1799 	BIT(POWER_DOMAIN_AUX_B) |		\
1800 	BIT(POWER_DOMAIN_AUX_C) |		\
1801 	BIT(POWER_DOMAIN_GMBUS) |		\
1802 	BIT(POWER_DOMAIN_INIT))
1803 
1804 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1805 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1806 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1807 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1808 	BIT(POWER_DOMAIN_AUX_B) |		\
1809 	BIT(POWER_DOMAIN_AUX_C) |		\
1810 	BIT(POWER_DOMAIN_INIT))
1811 
1812 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1813 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1814 	BIT(POWER_DOMAIN_AUX_B) |		\
1815 	BIT(POWER_DOMAIN_INIT))
1816 
1817 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1818 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1819 	BIT(POWER_DOMAIN_AUX_B) |		\
1820 	BIT(POWER_DOMAIN_INIT))
1821 
1822 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1823 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1824 	BIT(POWER_DOMAIN_AUX_C) |		\
1825 	BIT(POWER_DOMAIN_INIT))
1826 
1827 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1828 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1829 	BIT(POWER_DOMAIN_AUX_C) |		\
1830 	BIT(POWER_DOMAIN_INIT))
1831 
1832 #define CHV_DISPLAY_POWER_DOMAINS (		\
1833 	BIT(POWER_DOMAIN_PIPE_A) |		\
1834 	BIT(POWER_DOMAIN_PIPE_B) |		\
1835 	BIT(POWER_DOMAIN_PIPE_C) |		\
1836 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1837 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1838 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1839 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1840 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1841 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1842 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1843 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1844 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1845 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1846 	BIT(POWER_DOMAIN_VGA) |			\
1847 	BIT(POWER_DOMAIN_AUDIO) |		\
1848 	BIT(POWER_DOMAIN_AUX_B) |		\
1849 	BIT(POWER_DOMAIN_AUX_C) |		\
1850 	BIT(POWER_DOMAIN_AUX_D) |		\
1851 	BIT(POWER_DOMAIN_GMBUS) |		\
1852 	BIT(POWER_DOMAIN_INIT))
1853 
1854 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1855 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1856 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1857 	BIT(POWER_DOMAIN_AUX_B) |		\
1858 	BIT(POWER_DOMAIN_AUX_C) |		\
1859 	BIT(POWER_DOMAIN_INIT))
1860 
1861 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1862 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1863 	BIT(POWER_DOMAIN_AUX_D) |		\
1864 	BIT(POWER_DOMAIN_INIT))
1865 
1866 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1867 	.sync_hw = i9xx_always_on_power_well_noop,
1868 	.enable = i9xx_always_on_power_well_noop,
1869 	.disable = i9xx_always_on_power_well_noop,
1870 	.is_enabled = i9xx_always_on_power_well_enabled,
1871 };
1872 
1873 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1874 	.sync_hw = chv_pipe_power_well_sync_hw,
1875 	.enable = chv_pipe_power_well_enable,
1876 	.disable = chv_pipe_power_well_disable,
1877 	.is_enabled = chv_pipe_power_well_enabled,
1878 };
1879 
1880 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1881 	.sync_hw = vlv_power_well_sync_hw,
1882 	.enable = chv_dpio_cmn_power_well_enable,
1883 	.disable = chv_dpio_cmn_power_well_disable,
1884 	.is_enabled = vlv_power_well_enabled,
1885 };
1886 
1887 static struct i915_power_well i9xx_always_on_power_well[] = {
1888 	{
1889 		.name = "always-on",
1890 		.always_on = 1,
1891 		.domains = POWER_DOMAIN_MASK,
1892 		.ops = &i9xx_always_on_power_well_ops,
1893 	},
1894 };
1895 
1896 static const struct i915_power_well_ops hsw_power_well_ops = {
1897 	.sync_hw = hsw_power_well_sync_hw,
1898 	.enable = hsw_power_well_enable,
1899 	.disable = hsw_power_well_disable,
1900 	.is_enabled = hsw_power_well_enabled,
1901 };
1902 
1903 static const struct i915_power_well_ops skl_power_well_ops = {
1904 	.sync_hw = skl_power_well_sync_hw,
1905 	.enable = skl_power_well_enable,
1906 	.disable = skl_power_well_disable,
1907 	.is_enabled = skl_power_well_enabled,
1908 };
1909 
1910 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1911 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1912 	.enable = gen9_dc_off_power_well_enable,
1913 	.disable = gen9_dc_off_power_well_disable,
1914 	.is_enabled = gen9_dc_off_power_well_enabled,
1915 };
1916 
1917 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1918 	.sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1919 	.enable = bxt_dpio_cmn_power_well_enable,
1920 	.disable = bxt_dpio_cmn_power_well_disable,
1921 	.is_enabled = bxt_dpio_cmn_power_well_enabled,
1922 };
1923 
1924 static struct i915_power_well hsw_power_wells[] = {
1925 	{
1926 		.name = "always-on",
1927 		.always_on = 1,
1928 		.domains = POWER_DOMAIN_MASK,
1929 		.ops = &i9xx_always_on_power_well_ops,
1930 	},
1931 	{
1932 		.name = "display",
1933 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1934 		.ops = &hsw_power_well_ops,
1935 	},
1936 };
1937 
1938 static struct i915_power_well bdw_power_wells[] = {
1939 	{
1940 		.name = "always-on",
1941 		.always_on = 1,
1942 		.domains = POWER_DOMAIN_MASK,
1943 		.ops = &i9xx_always_on_power_well_ops,
1944 	},
1945 	{
1946 		.name = "display",
1947 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1948 		.ops = &hsw_power_well_ops,
1949 	},
1950 };
1951 
1952 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1953 	.sync_hw = vlv_power_well_sync_hw,
1954 	.enable = vlv_display_power_well_enable,
1955 	.disable = vlv_display_power_well_disable,
1956 	.is_enabled = vlv_power_well_enabled,
1957 };
1958 
1959 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1960 	.sync_hw = vlv_power_well_sync_hw,
1961 	.enable = vlv_dpio_cmn_power_well_enable,
1962 	.disable = vlv_dpio_cmn_power_well_disable,
1963 	.is_enabled = vlv_power_well_enabled,
1964 };
1965 
1966 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1967 	.sync_hw = vlv_power_well_sync_hw,
1968 	.enable = vlv_power_well_enable,
1969 	.disable = vlv_power_well_disable,
1970 	.is_enabled = vlv_power_well_enabled,
1971 };
1972 
1973 static struct i915_power_well vlv_power_wells[] = {
1974 	{
1975 		.name = "always-on",
1976 		.always_on = 1,
1977 		.domains = POWER_DOMAIN_MASK,
1978 		.ops = &i9xx_always_on_power_well_ops,
1979 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1980 	},
1981 	{
1982 		.name = "display",
1983 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1984 		.data = PUNIT_POWER_WELL_DISP2D,
1985 		.ops = &vlv_display_power_well_ops,
1986 	},
1987 	{
1988 		.name = "dpio-tx-b-01",
1989 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1990 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1991 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1992 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1993 		.ops = &vlv_dpio_power_well_ops,
1994 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1995 	},
1996 	{
1997 		.name = "dpio-tx-b-23",
1998 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1999 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2000 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2001 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2002 		.ops = &vlv_dpio_power_well_ops,
2003 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2004 	},
2005 	{
2006 		.name = "dpio-tx-c-01",
2007 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2008 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2009 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2010 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2011 		.ops = &vlv_dpio_power_well_ops,
2012 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2013 	},
2014 	{
2015 		.name = "dpio-tx-c-23",
2016 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2017 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2018 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2019 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2020 		.ops = &vlv_dpio_power_well_ops,
2021 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2022 	},
2023 	{
2024 		.name = "dpio-common",
2025 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2026 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2027 		.ops = &vlv_dpio_cmn_power_well_ops,
2028 	},
2029 };
2030 
2031 static struct i915_power_well chv_power_wells[] = {
2032 	{
2033 		.name = "always-on",
2034 		.always_on = 1,
2035 		.domains = POWER_DOMAIN_MASK,
2036 		.ops = &i9xx_always_on_power_well_ops,
2037 	},
2038 	{
2039 		.name = "display",
2040 		/*
2041 		 * Pipe A power well is the new disp2d well. Pipe B and C
2042 		 * power wells don't actually exist. Pipe A power well is
2043 		 * required for any pipe to work.
2044 		 */
2045 		.domains = CHV_DISPLAY_POWER_DOMAINS,
2046 		.data = PIPE_A,
2047 		.ops = &chv_pipe_power_well_ops,
2048 	},
2049 	{
2050 		.name = "dpio-common-bc",
2051 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2052 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2053 		.ops = &chv_dpio_cmn_power_well_ops,
2054 	},
2055 	{
2056 		.name = "dpio-common-d",
2057 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2058 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
2059 		.ops = &chv_dpio_cmn_power_well_ops,
2060 	},
2061 };
2062 
2063 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2064 				    int power_well_id)
2065 {
2066 	struct i915_power_well *power_well;
2067 	bool ret;
2068 
2069 	power_well = lookup_power_well(dev_priv, power_well_id);
2070 	ret = power_well->ops->is_enabled(dev_priv, power_well);
2071 
2072 	return ret;
2073 }
2074 
2075 static struct i915_power_well skl_power_wells[] = {
2076 	{
2077 		.name = "always-on",
2078 		.always_on = 1,
2079 		.domains = POWER_DOMAIN_MASK,
2080 		.ops = &i9xx_always_on_power_well_ops,
2081 		.data = SKL_DISP_PW_ALWAYS_ON,
2082 	},
2083 	{
2084 		.name = "power well 1",
2085 		/* Handled by the DMC firmware */
2086 		.domains = 0,
2087 		.ops = &skl_power_well_ops,
2088 		.data = SKL_DISP_PW_1,
2089 	},
2090 	{
2091 		.name = "MISC IO power well",
2092 		/* Handled by the DMC firmware */
2093 		.domains = 0,
2094 		.ops = &skl_power_well_ops,
2095 		.data = SKL_DISP_PW_MISC_IO,
2096 	},
2097 	{
2098 		.name = "DC off",
2099 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2100 		.ops = &gen9_dc_off_power_well_ops,
2101 		.data = SKL_DISP_PW_DC_OFF,
2102 	},
2103 	{
2104 		.name = "power well 2",
2105 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2106 		.ops = &skl_power_well_ops,
2107 		.data = SKL_DISP_PW_2,
2108 	},
2109 	{
2110 		.name = "DDI A/E power well",
2111 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2112 		.ops = &skl_power_well_ops,
2113 		.data = SKL_DISP_PW_DDI_A_E,
2114 	},
2115 	{
2116 		.name = "DDI B power well",
2117 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2118 		.ops = &skl_power_well_ops,
2119 		.data = SKL_DISP_PW_DDI_B,
2120 	},
2121 	{
2122 		.name = "DDI C power well",
2123 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2124 		.ops = &skl_power_well_ops,
2125 		.data = SKL_DISP_PW_DDI_C,
2126 	},
2127 	{
2128 		.name = "DDI D power well",
2129 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2130 		.ops = &skl_power_well_ops,
2131 		.data = SKL_DISP_PW_DDI_D,
2132 	},
2133 };
2134 
2135 static struct i915_power_well bxt_power_wells[] = {
2136 	{
2137 		.name = "always-on",
2138 		.always_on = 1,
2139 		.domains = POWER_DOMAIN_MASK,
2140 		.ops = &i9xx_always_on_power_well_ops,
2141 	},
2142 	{
2143 		.name = "power well 1",
2144 		.domains = 0,
2145 		.ops = &skl_power_well_ops,
2146 		.data = SKL_DISP_PW_1,
2147 	},
2148 	{
2149 		.name = "DC off",
2150 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2151 		.ops = &gen9_dc_off_power_well_ops,
2152 		.data = SKL_DISP_PW_DC_OFF,
2153 	},
2154 	{
2155 		.name = "power well 2",
2156 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2157 		.ops = &skl_power_well_ops,
2158 		.data = SKL_DISP_PW_2,
2159 	},
2160 	{
2161 		.name = "dpio-common-a",
2162 		.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2163 		.ops = &bxt_dpio_cmn_power_well_ops,
2164 		.data = BXT_DPIO_CMN_A,
2165 	},
2166 	{
2167 		.name = "dpio-common-bc",
2168 		.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2169 		.ops = &bxt_dpio_cmn_power_well_ops,
2170 		.data = BXT_DPIO_CMN_BC,
2171 	},
2172 };
2173 
2174 static int
2175 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2176 				   int disable_power_well)
2177 {
2178 	if (disable_power_well >= 0)
2179 		return !!disable_power_well;
2180 
2181 	return 1;
2182 }
2183 
2184 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2185 				    int enable_dc)
2186 {
2187 	uint32_t mask;
2188 	int requested_dc;
2189 	int max_dc;
2190 
2191 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2192 		max_dc = 2;
2193 		mask = 0;
2194 	} else if (IS_BROXTON(dev_priv)) {
2195 		max_dc = 1;
2196 		/*
2197 		 * DC9 has a separate HW flow from the rest of the DC states,
2198 		 * not depending on the DMC firmware. It's needed by system
2199 		 * suspend/resume, so allow it unconditionally.
2200 		 */
2201 		mask = DC_STATE_EN_DC9;
2202 	} else {
2203 		max_dc = 0;
2204 		mask = 0;
2205 	}
2206 
2207 	if (!i915.disable_power_well)
2208 		max_dc = 0;
2209 
2210 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2211 		requested_dc = enable_dc;
2212 	} else if (enable_dc == -1) {
2213 		requested_dc = max_dc;
2214 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2215 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2216 			      enable_dc, max_dc);
2217 		requested_dc = max_dc;
2218 	} else {
2219 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2220 		requested_dc = max_dc;
2221 	}
2222 
2223 	if (requested_dc > 1)
2224 		mask |= DC_STATE_EN_UPTO_DC6;
2225 	if (requested_dc > 0)
2226 		mask |= DC_STATE_EN_UPTO_DC5;
2227 
2228 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2229 
2230 	return mask;
2231 }
2232 
2233 #define set_power_wells(power_domains, __power_wells) ({		\
2234 	(power_domains)->power_wells = (__power_wells);			\
2235 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2236 })
2237 
2238 /**
2239  * intel_power_domains_init - initializes the power domain structures
2240  * @dev_priv: i915 device instance
2241  *
2242  * Initializes the power domain structures for @dev_priv depending upon the
2243  * supported platform.
2244  */
2245 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2246 {
2247 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2248 
2249 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2250 						     i915.disable_power_well);
2251 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2252 							    i915.enable_dc);
2253 
2254 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2255 
2256 	lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE);
2257 
2258 	/*
2259 	 * The enabling order will be from lower to higher indexed wells,
2260 	 * the disabling order is reversed.
2261 	 */
2262 	if (IS_HASWELL(dev_priv)) {
2263 		set_power_wells(power_domains, hsw_power_wells);
2264 	} else if (IS_BROADWELL(dev_priv)) {
2265 		set_power_wells(power_domains, bdw_power_wells);
2266 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2267 		set_power_wells(power_domains, skl_power_wells);
2268 	} else if (IS_BROXTON(dev_priv)) {
2269 		set_power_wells(power_domains, bxt_power_wells);
2270 	} else if (IS_CHERRYVIEW(dev_priv)) {
2271 		set_power_wells(power_domains, chv_power_wells);
2272 	} else if (IS_VALLEYVIEW(dev_priv)) {
2273 		set_power_wells(power_domains, vlv_power_wells);
2274 	} else {
2275 		set_power_wells(power_domains, i9xx_always_on_power_well);
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 /**
2282  * intel_power_domains_fini - finalizes the power domain structures
2283  * @dev_priv: i915 device instance
2284  *
2285  * Finalizes the power domain structures for @dev_priv depending upon the
2286  * supported platform. This function also disables runtime pm and ensures that
2287  * the device stays powered up so that the driver can be reloaded.
2288  */
2289 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2290 {
2291 #if 0
2292 	struct device *kdev = &dev_priv->drm.pdev->dev;
2293 #endif
2294 
2295 	/*
2296 	 * The i915.ko module is still not prepared to be loaded when
2297 	 * the power well is not enabled, so just enable it in case
2298 	 * we're going to unload/reload.
2299 	 * The following also reacquires the RPM reference the core passed
2300 	 * to the driver during loading, which is dropped in
2301 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2302 	 * device to the core with this reference held.
2303 	 */
2304 	intel_display_set_init_power(dev_priv, true);
2305 
2306 	/* Remove the refcount we took to keep power well support disabled. */
2307 	if (!i915.disable_power_well)
2308 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2309 
2310 	/*
2311 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2312 	 * the platform doesn't support runtime PM.
2313 	 */
2314 #if 0
2315 	if (!HAS_RUNTIME_PM(dev_priv))
2316 		pm_runtime_put(kdev);
2317 #endif
2318 }
2319 
2320 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2321 {
2322 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2323 	struct i915_power_well *power_well;
2324 	int i;
2325 
2326 	mutex_lock(&power_domains->lock);
2327 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2328 		power_well->ops->sync_hw(dev_priv, power_well);
2329 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2330 								     power_well);
2331 	}
2332 	mutex_unlock(&power_domains->lock);
2333 }
2334 
2335 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2336 {
2337 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2338 	POSTING_READ(DBUF_CTL);
2339 
2340 	udelay(10);
2341 
2342 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2343 		DRM_ERROR("DBuf power enable timeout\n");
2344 }
2345 
2346 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2347 {
2348 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2349 	POSTING_READ(DBUF_CTL);
2350 
2351 	udelay(10);
2352 
2353 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2354 		DRM_ERROR("DBuf power disable timeout!\n");
2355 }
2356 
2357 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2358 				   bool resume)
2359 {
2360 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2361 	struct i915_power_well *well;
2362 	uint32_t val;
2363 
2364 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2365 
2366 	/* enable PCH reset handshake */
2367 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2368 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2369 
2370 	/* enable PG1 and Misc I/O */
2371 	mutex_lock(&power_domains->lock);
2372 
2373 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2374 	intel_power_well_enable(dev_priv, well);
2375 
2376 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2377 	intel_power_well_enable(dev_priv, well);
2378 
2379 	mutex_unlock(&power_domains->lock);
2380 
2381 	skl_init_cdclk(dev_priv);
2382 
2383 	gen9_dbuf_enable(dev_priv);
2384 
2385 	if (resume && dev_priv->csr.dmc_payload)
2386 		intel_csr_load_program(dev_priv);
2387 }
2388 
2389 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2390 {
2391 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2392 	struct i915_power_well *well;
2393 
2394 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2395 
2396 	gen9_dbuf_disable(dev_priv);
2397 
2398 	skl_uninit_cdclk(dev_priv);
2399 
2400 	/* The spec doesn't call for removing the reset handshake flag */
2401 	/* disable PG1 and Misc I/O */
2402 
2403 	mutex_lock(&power_domains->lock);
2404 
2405 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2406 	intel_power_well_disable(dev_priv, well);
2407 
2408 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2409 	intel_power_well_disable(dev_priv, well);
2410 
2411 	mutex_unlock(&power_domains->lock);
2412 }
2413 
2414 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2415 			   bool resume)
2416 {
2417 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2418 	struct i915_power_well *well;
2419 	uint32_t val;
2420 
2421 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2422 
2423 	/*
2424 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2425 	 * or else the reset will hang because there is no PCH to respond.
2426 	 * Move the handshake programming to initialization sequence.
2427 	 * Previously was left up to BIOS.
2428 	 */
2429 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2430 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2431 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2432 
2433 	/* Enable PG1 */
2434 	mutex_lock(&power_domains->lock);
2435 
2436 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2437 	intel_power_well_enable(dev_priv, well);
2438 
2439 	mutex_unlock(&power_domains->lock);
2440 
2441 	bxt_init_cdclk(dev_priv);
2442 
2443 	gen9_dbuf_enable(dev_priv);
2444 
2445 	if (resume && dev_priv->csr.dmc_payload)
2446 		intel_csr_load_program(dev_priv);
2447 }
2448 
2449 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2450 {
2451 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2452 	struct i915_power_well *well;
2453 
2454 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2455 
2456 	gen9_dbuf_disable(dev_priv);
2457 
2458 	bxt_uninit_cdclk(dev_priv);
2459 
2460 	/* The spec doesn't call for removing the reset handshake flag */
2461 
2462 	/* Disable PG1 */
2463 	mutex_lock(&power_domains->lock);
2464 
2465 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2466 	intel_power_well_disable(dev_priv, well);
2467 
2468 	mutex_unlock(&power_domains->lock);
2469 }
2470 
2471 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2472 {
2473 	struct i915_power_well *cmn_bc =
2474 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2475 	struct i915_power_well *cmn_d =
2476 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2477 
2478 	/*
2479 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2480 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2481 	 * instead maintain a shadow copy ourselves. Use the actual
2482 	 * power well state and lane status to reconstruct the
2483 	 * expected initial value.
2484 	 */
2485 	dev_priv->chv_phy_control =
2486 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2487 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2488 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2489 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2490 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2491 
2492 	/*
2493 	 * If all lanes are disabled we leave the override disabled
2494 	 * with all power down bits cleared to match the state we
2495 	 * would use after disabling the port. Otherwise enable the
2496 	 * override and set the lane powerdown bits accding to the
2497 	 * current lane status.
2498 	 */
2499 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2500 		uint32_t status = I915_READ(DPLL(PIPE_A));
2501 		unsigned int mask;
2502 
2503 		mask = status & DPLL_PORTB_READY_MASK;
2504 		if (mask == 0xf)
2505 			mask = 0x0;
2506 		else
2507 			dev_priv->chv_phy_control |=
2508 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2509 
2510 		dev_priv->chv_phy_control |=
2511 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2512 
2513 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2514 		if (mask == 0xf)
2515 			mask = 0x0;
2516 		else
2517 			dev_priv->chv_phy_control |=
2518 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2519 
2520 		dev_priv->chv_phy_control |=
2521 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2522 
2523 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2524 
2525 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2526 	} else {
2527 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2528 	}
2529 
2530 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2531 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2532 		unsigned int mask;
2533 
2534 		mask = status & DPLL_PORTD_READY_MASK;
2535 
2536 		if (mask == 0xf)
2537 			mask = 0x0;
2538 		else
2539 			dev_priv->chv_phy_control |=
2540 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2541 
2542 		dev_priv->chv_phy_control |=
2543 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2544 
2545 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2546 
2547 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2548 	} else {
2549 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2550 	}
2551 
2552 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2553 
2554 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2555 		      dev_priv->chv_phy_control);
2556 }
2557 
2558 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2559 {
2560 	struct i915_power_well *cmn =
2561 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2562 	struct i915_power_well *disp2d =
2563 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2564 
2565 	/* If the display might be already active skip this */
2566 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2567 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2568 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2569 		return;
2570 
2571 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2572 
2573 	/* cmnlane needs DPLL registers */
2574 	disp2d->ops->enable(dev_priv, disp2d);
2575 
2576 	/*
2577 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2578 	 * Need to assert and de-assert PHY SB reset by gating the
2579 	 * common lane power, then un-gating it.
2580 	 * Simply ungating isn't enough to reset the PHY enough to get
2581 	 * ports and lanes running.
2582 	 */
2583 	cmn->ops->disable(dev_priv, cmn);
2584 }
2585 
2586 /**
2587  * intel_power_domains_init_hw - initialize hardware power domain state
2588  * @dev_priv: i915 device instance
2589  * @resume: Called from resume code paths or not
2590  *
2591  * This function initializes the hardware power domain state and enables all
2592  * power domains using intel_display_set_init_power().
2593  */
2594 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2595 {
2596 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2597 
2598 	power_domains->initializing = true;
2599 
2600 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2601 		skl_display_core_init(dev_priv, resume);
2602 	} else if (IS_BROXTON(dev_priv)) {
2603 		bxt_display_core_init(dev_priv, resume);
2604 	} else if (IS_CHERRYVIEW(dev_priv)) {
2605 		mutex_lock(&power_domains->lock);
2606 		chv_phy_control_init(dev_priv);
2607 		mutex_unlock(&power_domains->lock);
2608 	} else if (IS_VALLEYVIEW(dev_priv)) {
2609 		mutex_lock(&power_domains->lock);
2610 		vlv_cmnlane_wa(dev_priv);
2611 		mutex_unlock(&power_domains->lock);
2612 	}
2613 
2614 	/* For now, we need the power well to be always enabled. */
2615 	intel_display_set_init_power(dev_priv, true);
2616 	/* Disable power support if the user asked so. */
2617 	if (!i915.disable_power_well)
2618 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2619 	intel_power_domains_sync_hw(dev_priv);
2620 	power_domains->initializing = false;
2621 }
2622 
2623 /**
2624  * intel_power_domains_suspend - suspend power domain state
2625  * @dev_priv: i915 device instance
2626  *
2627  * This function prepares the hardware power domain state before entering
2628  * system suspend. It must be paired with intel_power_domains_init_hw().
2629  */
2630 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2631 {
2632 	/*
2633 	 * Even if power well support was disabled we still want to disable
2634 	 * power wells while we are system suspended.
2635 	 */
2636 	if (!i915.disable_power_well)
2637 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2638 
2639 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2640 		skl_display_core_uninit(dev_priv);
2641 	else if (IS_BROXTON(dev_priv))
2642 		bxt_display_core_uninit(dev_priv);
2643 }
2644 
2645 /**
2646  * intel_runtime_pm_get - grab a runtime pm reference
2647  * @dev_priv: i915 device instance
2648  *
2649  * This function grabs a device-level runtime pm reference (mostly used for GEM
2650  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2651  *
2652  * Any runtime pm reference obtained by this function must have a symmetric
2653  * call to intel_runtime_pm_put() to release the reference again.
2654  */
2655 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2656 {
2657 	struct pci_dev *pdev = dev_priv->drm.pdev;
2658 	struct device *kdev = &pdev->dev;
2659 
2660 	pm_runtime_get_sync(kdev);
2661 
2662 	atomic_inc(&dev_priv->pm.wakeref_count);
2663 	assert_rpm_wakelock_held(dev_priv);
2664 }
2665 
2666 /**
2667  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2668  * @dev_priv: i915 device instance
2669  *
2670  * This function grabs a device-level runtime pm reference if the device is
2671  * already in use and ensures that it is powered up.
2672  *
2673  * Any runtime pm reference obtained by this function must have a symmetric
2674  * call to intel_runtime_pm_put() to release the reference again.
2675  */
2676 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2677 {
2678 #ifndef __DragonFly__
2679 	struct pci_dev *pdev = dev_priv->drm.pdev;
2680 	struct device *kdev = &pdev->dev;
2681 
2682 	if (IS_ENABLED(CONFIG_PM)) {
2683 		int ret = pm_runtime_get_if_in_use(kdev);
2684 
2685 		/*
2686 		 * In cases runtime PM is disabled by the RPM core and we get
2687 		 * an -EINVAL return value we are not supposed to call this
2688 		 * function, since the power state is undefined. This applies
2689 		 * atm to the late/early system suspend/resume handlers.
2690 		 */
2691 		WARN_ON_ONCE(ret < 0);
2692 		if (ret <= 0)
2693 			return false;
2694 	}
2695 
2696 	atomic_inc(&dev_priv->pm.wakeref_count);
2697 	assert_rpm_wakelock_held(dev_priv);
2698 #endif
2699 
2700 	return true;
2701 }
2702 
2703 /**
2704  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2705  * @dev_priv: i915 device instance
2706  *
2707  * This function grabs a device-level runtime pm reference (mostly used for GEM
2708  * code to ensure the GTT or GT is on).
2709  *
2710  * It will _not_ power up the device but instead only check that it's powered
2711  * on.  Therefore it is only valid to call this functions from contexts where
2712  * the device is known to be powered up and where trying to power it up would
2713  * result in hilarity and deadlocks. That pretty much means only the system
2714  * suspend/resume code where this is used to grab runtime pm references for
2715  * delayed setup down in work items.
2716  *
2717  * Any runtime pm reference obtained by this function must have a symmetric
2718  * call to intel_runtime_pm_put() to release the reference again.
2719  */
2720 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2721 {
2722 #if 0
2723 	struct pci_dev *pdev = dev_priv->drm.pdev;
2724 	struct device *kdev = &pdev->dev;
2725 #endif
2726 
2727 	assert_rpm_wakelock_held(dev_priv);
2728 #if 0
2729 	pm_runtime_get_noresume(kdev);
2730 #endif
2731 
2732 	atomic_inc(&dev_priv->pm.wakeref_count);
2733 }
2734 
2735 /**
2736  * intel_runtime_pm_put - release a runtime pm reference
2737  * @dev_priv: i915 device instance
2738  *
2739  * This function drops the device-level runtime pm reference obtained by
2740  * intel_runtime_pm_get() and might power down the corresponding
2741  * hardware block right away if this is the last reference.
2742  */
2743 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2744 {
2745 	struct pci_dev *pdev = dev_priv->drm.pdev;
2746 	struct device *kdev = &pdev->dev;
2747 
2748 	assert_rpm_wakelock_held(dev_priv);
2749 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2750 		atomic_inc(&dev_priv->pm.atomic_seq);
2751 
2752 	pm_runtime_mark_last_busy(kdev);
2753 	pm_runtime_put_autosuspend(kdev);
2754 }
2755 
2756 /**
2757  * intel_runtime_pm_enable - enable runtime pm
2758  * @dev_priv: i915 device instance
2759  *
2760  * This function enables runtime pm at the end of the driver load sequence.
2761  *
2762  * Note that this function does currently not enable runtime pm for the
2763  * subordinate display power domains. That is only done on the first modeset
2764  * using intel_display_set_init_power().
2765  */
2766 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2767 {
2768 #if 0
2769 	struct pci_dev *pdev = dev_priv->drm.pdev;
2770 	struct device *kdev = &pdev->dev;
2771 
2772 	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
2773 	pm_runtime_mark_last_busy(kdev);
2774 
2775 	/*
2776 	 * Take a permanent reference to disable the RPM functionality and drop
2777 	 * it only when unloading the driver. Use the low level get/put helpers,
2778 	 * so the driver's own RPM reference tracking asserts also work on
2779 	 * platforms without RPM support.
2780 	 */
2781 	if (!HAS_RUNTIME_PM(dev_priv)) {
2782 		pm_runtime_dont_use_autosuspend(kdev);
2783 		pm_runtime_get_sync(kdev);
2784 	} else {
2785 		pm_runtime_use_autosuspend(kdev);
2786 	}
2787 
2788 	/*
2789 	 * The core calls the driver load handler with an RPM reference held.
2790 	 * We drop that here and will reacquire it during unloading in
2791 	 * intel_power_domains_fini().
2792 	 */
2793 	pm_runtime_put_autosuspend(kdev);
2794 #endif
2795 }
2796