xref: /dragonfly/sys/dev/drm/include/linux/ww_mutex.h (revision 0ca59c34)
1 /*
2  * Copyright (c) 2015 Michael Neumann <mneumann@ntecs.de>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef _LINUX_WW_MUTEX_H_
28 #define _LINUX_WW_MUTEX_H_
29 
30 /*
31  * A basic, unoptimized implementation of wound/wait mutexes for DragonFly
32  * modelled after the Linux API [1].
33  *
34  * [1]: http://lxr.free-electrons.com/source/include/linux/ww_mutex.h
35  */
36 
37 #include <sys/errno.h>
38 #include <sys/types.h>
39 #include <machine/atomic.h>
40 #include <sys/spinlock.h>
41 #include <sys/spinlock2.h>
42 #include <sys/stdbool.h>
43 
44 struct ww_class {
45 	volatile u_long			stamp;
46 	const char			*name;
47 };
48 
49 struct ww_acquire_ctx {
50 	u_long				stamp;
51 	struct ww_class			*ww_class;
52 };
53 
54 struct ww_mutex {
55 	struct spinlock			lock;
56 	volatile int			acquired;
57 	volatile struct ww_acquire_ctx	*ctx;
58 	volatile struct thread		*owner;
59 };
60 
61 #define DEFINE_WW_CLASS(classname)	\
62 	struct ww_class classname = {	\
63 		.stamp = 0,		\
64 		.name = #classname	\
65 	}
66 
67 static inline void
68 ww_acquire_init(struct ww_acquire_ctx *ctx, struct ww_class *ww_class) {
69 	ctx->stamp = atomic_fetchadd_long(&ww_class->stamp, 1);
70 	ctx->ww_class = ww_class;
71 }
72 
73 static inline void
74 ww_acquire_done(__unused struct ww_acquire_ctx *ctx) {
75 }
76 
77 static inline void
78 ww_acquire_fini(__unused struct ww_acquire_ctx *ctx) {
79 }
80 
81 static inline void
82 ww_mutex_init(struct ww_mutex *lock, struct ww_class *ww_class) {
83 	spin_init(&lock->lock, ww_class->name);
84 	lock->acquired = 0;
85 	lock->ctx = NULL;
86 	lock->owner = NULL;
87 }
88 
89 static inline bool
90 ww_mutex_is_locked(struct ww_mutex *lock) {
91 	bool res = false;
92 	spin_lock(&lock->lock);
93 	if (lock->acquired > 0) res = true;
94 	spin_unlock(&lock->lock);
95 	return res;
96 }
97 
98 /*
99  * Return 1 if lock could be acquired, else 0 (contended).
100  */
101 static inline int
102 ww_mutex_trylock(struct ww_mutex *lock) {
103 	int res = 1;
104 	KKASSERT(curthread);
105 
106 	spin_lock(&lock->lock);
107 	/*
108 	 * In case no one holds the ww_mutex yet, we acquire it.
109 	 */
110 	if (lock->acquired == 0) {
111 		KKASSERT(lock->ctx == NULL);
112 		lock->acquired += 1;
113 		lock->owner = curthread;
114 	}
115 	/*
116 	 * In case we already hold the ww_mutex, increase a count.
117 	 */
118 	else if (lock->owner == curthread) {
119 		lock->acquired += 1;
120 	}
121 	else {
122 		res = 0;
123 	}
124 	spin_unlock(&lock->lock);
125 	return res;
126 }
127 
128 /*
129  * When `slow` is `true`, it will always block if the ww_mutex is contended.
130  * It is assumed that the called will not hold any (ww_mutex) resources when
131  * calling the slow path as this could lead to deadlocks.
132  *
133  * When `intr` is `true`, the ssleep will be interruptable.
134  */
135 static inline int
136 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx, bool slow, bool intr) {
137 	int err;
138 
139 	KKASSERT(curthread);
140 
141 	spin_lock(&lock->lock);
142 	for (;;) {
143 		/*
144 		 * In case no one holds the ww_mutex yet, we acquire it.
145 		 */
146 		if (lock->acquired == 0) {
147 			KKASSERT(lock->ctx == NULL);
148 			lock->acquired += 1;
149 			lock->ctx = ctx;
150 			lock->owner = curthread;
151 			err = 0;
152 			break;
153 		}
154 		/*
155 		 * In case we already hold the ww_mutex, simply increase
156 		 * a count and return -ALREADY.
157 		 */
158 		else if (lock->owner == curthread) {
159 			KKASSERT(lock->ctx == ctx);
160 			lock->acquired += 1;
161 			err = -EALREADY;
162 			break;
163 		}
164 		/*
165 		 * This is the contention case where the ww_mutex is
166 		 * already held by another context.
167 		 */
168 		else {
169 			/*
170 			 * Three cases:
171 			 *
172 			 * - We are in the slow-path (first lock to obtain).
173                          *
174 			 * - No context was specified. We assume a single
175 			 *   resouce, so there is no danger of a deadlock.
176                          *
177 			 * - An `older` process (`ctx`) tries to acquire a
178 			 *   lock already held by a `younger` process.
179                          *   We put the `older` process to sleep until
180                          *   the `younger` process gives up all it's
181                          *   resources.
182 			 */
183 			if (slow || ctx == NULL || ctx->stamp < lock->ctx->stamp) {
184 				int s = ssleep(lock, &lock->lock,
185 					       intr ? PCATCH : 0,
186 					       ctx ? ctx->ww_class->name : "ww_mutex_lock", 0);
187 				if (intr && (s == EINTR || s == ERESTART)) {
188 					// XXX: Should we handle ERESTART?
189 					err = -EINTR;
190 					break;
191 				}
192 			}
193 			/*
194 			 * If a `younger` process tries to acquire a lock
195 			 * already held by an `older` process, we `wound` it,
196 			 * i.e. we return -EDEADLK because there is a potential
197 			 * risk for a deadlock. The `younger` process then
198 			 * should give up all it's resources and try again to
199 			 * acquire the lock in question, this time in a
200 			 * blocking manner.
201 			 */
202 			else {
203 				err = -EDEADLK;
204 				break;
205 			}
206 		}
207 
208 	} /* for */
209 	spin_unlock(&lock->lock);
210 	return err;
211 }
212 
213 static inline int
214 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) {
215 	return __ww_mutex_lock(lock, ctx, false, false);
216 }
217 
218 static inline void
219 ww_mutex_lock_slow(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) {
220 	(void)__ww_mutex_lock(lock, ctx, true, false);
221 }
222 
223 static inline int
224 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) {
225 	return __ww_mutex_lock(lock, ctx, false, true);
226 }
227 
228 static inline int __must_check
229 ww_mutex_lock_slow_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) {
230 	return __ww_mutex_lock(lock, ctx, true, true);
231 }
232 
233 static inline void
234 ww_mutex_unlock(struct ww_mutex *lock) {
235 	spin_lock(&lock->lock);
236 	KKASSERT(lock->owner == curthread);
237 	KKASSERT(lock->acquired > 0);
238 
239 	--lock->acquired;
240 	if (lock->acquired > 0) {
241 		spin_unlock(&lock->lock);
242 		return;
243 	}
244 
245 	KKASSERT(lock->acquired == 0);
246 	lock->ctx = NULL;
247 	lock->owner = NULL;
248 	spin_unlock(&lock->lock);
249 	wakeup(lock);
250 }
251 
252 static inline void
253 ww_mutex_destroy(struct ww_mutex *lock) {
254 	KKASSERT(lock->acquired == 0);
255 	KKASSERT(lock->ctx == NULL);
256 	KKASSERT(lock->owner == NULL);
257 	spin_uninit(&lock->lock);
258 }
259 
260 #endif	/* _LINUX_WW_MUTEX_H_ */
261