xref: /dragonfly/sys/dev/drm/radeon/radeon_fence.c (revision 6a3cbbc2)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/firmware.h>
36 #include <drm/drmP.h>
37 #include "radeon_reg.h"
38 #include "radeon.h"
39 #include "radeon_trace.h"
40 
41 /*
42  * Fences
43  * Fences mark an event in the GPUs pipeline and are used
44  * for GPU/CPU synchronization.  When the fence is written,
45  * it is expected that all buffers associated with that fence
46  * are no longer in use by the associated ring on the GPU and
47  * that the the relevant GPU caches have been flushed.  Whether
48  * we use a scratch register or memory location depends on the asic
49  * and whether writeback is enabled.
50  */
51 
52 /**
53  * radeon_fence_write - write a fence value
54  *
55  * @rdev: radeon_device pointer
56  * @seq: sequence number to write
57  * @ring: ring index the fence is associated with
58  *
59  * Writes a fence value to memory or a scratch register (all asics).
60  */
61 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
62 {
63 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
64 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
65 		if (drv->cpu_addr) {
66 			*drv->cpu_addr = cpu_to_le32(seq);
67 		}
68 	} else {
69 		WREG32(drv->scratch_reg, seq);
70 	}
71 }
72 
73 /**
74  * radeon_fence_read - read a fence value
75  *
76  * @rdev: radeon_device pointer
77  * @ring: ring index the fence is associated with
78  *
79  * Reads a fence value from memory or a scratch register (all asics).
80  * Returns the value of the fence read from memory or register.
81  */
82 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
83 {
84 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
85 	u32 seq = 0;
86 
87 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
88 		if (drv->cpu_addr) {
89 			seq = le32_to_cpu(*drv->cpu_addr);
90 		} else {
91 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
92 		}
93 	} else {
94 		seq = RREG32(drv->scratch_reg);
95 	}
96 	return seq;
97 }
98 
99 /**
100  * radeon_fence_schedule_check - schedule lockup check
101  *
102  * @rdev: radeon_device pointer
103  * @ring: ring index we should work with
104  *
105  * Queues a delayed work item to check for lockups.
106  */
107 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
108 {
109 	/*
110 	 * Do not reset the timer here with mod_delayed_work,
111 	 * this can livelock in an interaction with TTM delayed destroy.
112 	 */
113 	queue_delayed_work(system_power_efficient_wq,
114 			   &rdev->fence_drv[ring].lockup_work,
115 			   RADEON_FENCE_JIFFIES_TIMEOUT);
116 }
117 
118 /**
119  * radeon_fence_emit - emit a fence on the requested ring
120  *
121  * @rdev: radeon_device pointer
122  * @fence: radeon fence object
123  * @ring: ring index the fence is associated with
124  *
125  * Emits a fence command on the requested ring (all asics).
126  * Returns 0 on success, -ENOMEM on failure.
127  */
128 int radeon_fence_emit(struct radeon_device *rdev,
129 		      struct radeon_fence **fence,
130 		      int ring)
131 {
132 	u64 seq;
133 
134 	/* we are protected by the ring emission mutex */
135 	*fence = kmalloc(sizeof(struct radeon_fence), M_DRM, M_WAITOK);
136 	if ((*fence) == NULL) {
137 		return -ENOMEM;
138 	}
139 	(*fence)->rdev = rdev;
140 	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
141 	(*fence)->ring = ring;
142 	(*fence)->is_vm_update = false;
143 	fence_init(&(*fence)->base, &radeon_fence_ops,
144 		   &rdev->fence_queue.lock, rdev->fence_context + ring, seq);
145 	radeon_fence_ring_emit(rdev, ring, *fence);
146 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
147 	radeon_fence_schedule_check(rdev, ring);
148 	return 0;
149 }
150 
151 /**
152  * radeon_fence_check_signaled - callback from fence_queue
153  *
154  * this function is called with fence_queue lock held, which is also used
155  * for the fence locking itself, so unlocked variants are used for
156  * fence_signal, and remove_wait_queue.
157  */
158 static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
159 {
160 	struct radeon_fence *fence;
161 	u64 seq;
162 
163 	fence = container_of(wait, struct radeon_fence, fence_wake);
164 
165 	/*
166 	 * We cannot use radeon_fence_process here because we're already
167 	 * in the waitqueue, in a call from wake_up_all.
168 	 */
169 	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
170 	if (seq >= fence->seq) {
171 		int ret = fence_signal_locked(&fence->base);
172 
173 		if (!ret)
174 			FENCE_TRACE(&fence->base, "signaled from irq context\n");
175 		else
176 			FENCE_TRACE(&fence->base, "was already signaled\n");
177 
178 		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
179 		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
180 		fence_put(&fence->base);
181 	} else
182 		FENCE_TRACE(&fence->base, "pending\n");
183 	return 0;
184 }
185 
186 /**
187  * radeon_fence_activity - check for fence activity
188  *
189  * @rdev: radeon_device pointer
190  * @ring: ring index the fence is associated with
191  *
192  * Checks the current fence value and calculates the last
193  * signalled fence value. Returns true if activity occured
194  * on the ring, and the fence_queue should be waken up.
195  */
196 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
197 {
198 	uint64_t seq, last_seq, last_emitted;
199 	unsigned count_loop = 0;
200 	bool wake = false;
201 
202 	/* Note there is a scenario here for an infinite loop but it's
203 	 * very unlikely to happen. For it to happen, the current polling
204 	 * process need to be interrupted by another process and another
205 	 * process needs to update the last_seq btw the atomic read and
206 	 * xchg of the current process.
207 	 *
208 	 * More over for this to go in infinite loop there need to be
209 	 * continuously new fence signaled ie radeon_fence_read needs
210 	 * to return a different value each time for both the currently
211 	 * polling process and the other process that xchg the last_seq
212 	 * btw atomic read and xchg of the current process. And the
213 	 * value the other process set as last seq must be higher than
214 	 * the seq value we just read. Which means that current process
215 	 * need to be interrupted after radeon_fence_read and before
216 	 * atomic xchg.
217 	 *
218 	 * To be even more safe we count the number of time we loop and
219 	 * we bail after 10 loop just accepting the fact that we might
220 	 * have temporarly set the last_seq not to the true real last
221 	 * seq but to an older one.
222 	 */
223 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
224 	do {
225 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
226 		seq = radeon_fence_read(rdev, ring);
227 		seq |= last_seq & 0xffffffff00000000LL;
228 		if (seq < last_seq) {
229 			seq &= 0xffffffff;
230 			seq |= last_emitted & 0xffffffff00000000LL;
231 		}
232 
233 		if (seq <= last_seq || seq > last_emitted) {
234 			break;
235 		}
236 		/* If we loop over we don't want to return without
237 		 * checking if a fence is signaled as it means that the
238 		 * seq we just read is different from the previous on.
239 		 */
240 		wake = true;
241 		last_seq = seq;
242 		if ((count_loop++) > 10) {
243 			/* We looped over too many time leave with the
244 			 * fact that we might have set an older fence
245 			 * seq then the current real last seq as signaled
246 			 * by the hw.
247 			 */
248 			break;
249 		}
250 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
251 
252 	if (seq < last_emitted)
253 		radeon_fence_schedule_check(rdev, ring);
254 
255 	return wake;
256 }
257 
258 /**
259  * radeon_fence_check_lockup - check for hardware lockup
260  *
261  * @work: delayed work item
262  *
263  * Checks for fence activity and if there is none probe
264  * the hardware if a lockup occured.
265  */
266 static void radeon_fence_check_lockup(struct work_struct *work)
267 {
268 	struct radeon_fence_driver *fence_drv;
269 	struct radeon_device *rdev;
270 	int ring;
271 
272 	fence_drv = container_of(work, struct radeon_fence_driver,
273 				 lockup_work.work);
274 	rdev = fence_drv->rdev;
275 	ring = fence_drv - &rdev->fence_drv[0];
276 
277 	if (!down_read_trylock(&rdev->exclusive_lock)) {
278 		/* just reschedule the check if a reset is going on */
279 		radeon_fence_schedule_check(rdev, ring);
280 		return;
281 	}
282 
283 	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
284 		unsigned long irqflags;
285 
286 		fence_drv->delayed_irq = false;
287 		spin_lock_irqsave(&rdev->irq.lock, irqflags);
288 		radeon_irq_set(rdev);
289 		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
290 	}
291 
292 	if (radeon_fence_activity(rdev, ring))
293 		wake_up_all(&rdev->fence_queue);
294 
295 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
296 
297 		/* good news we believe it's a lockup */
298 		dev_warn(rdev->dev, "GPU lockup (current fence id "
299 			 "0x%016lx last fence id 0x%016lx on ring %d)\n",
300 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
301 			 fence_drv->sync_seq[ring], ring);
302 
303 		/* remember that we need an reset */
304 		rdev->needs_reset = true;
305 		wake_up_all(&rdev->fence_queue);
306 	}
307 	up_read(&rdev->exclusive_lock);
308 }
309 
310 /**
311  * radeon_fence_process - process a fence
312  *
313  * @rdev: radeon_device pointer
314  * @ring: ring index the fence is associated with
315  *
316  * Checks the current fence value and wakes the fence queue
317  * if the sequence number has increased (all asics).
318  */
319 void radeon_fence_process(struct radeon_device *rdev, int ring)
320 {
321 	if (radeon_fence_activity(rdev, ring))
322 		wake_up_all(&rdev->fence_queue);
323 }
324 
325 /**
326  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
327  *
328  * @rdev: radeon device pointer
329  * @seq: sequence number
330  * @ring: ring index the fence is associated with
331  *
332  * Check if the last signaled fence sequnce number is >= the requested
333  * sequence number (all asics).
334  * Returns true if the fence has signaled (current fence value
335  * is >= requested value) or false if it has not (current fence
336  * value is < the requested value.  Helper function for
337  * radeon_fence_signaled().
338  */
339 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
340 				      u64 seq, unsigned ring)
341 {
342 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
343 		return true;
344 	}
345 	/* poll new last sequence at least once */
346 	radeon_fence_process(rdev, ring);
347 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
348 		return true;
349 	}
350 	return false;
351 }
352 
353 static bool radeon_fence_is_signaled(struct fence *f)
354 {
355 	struct radeon_fence *fence = to_radeon_fence(f);
356 	struct radeon_device *rdev = fence->rdev;
357 	unsigned ring = fence->ring;
358 	u64 seq = fence->seq;
359 
360 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
361 		return true;
362 	}
363 
364 	if (down_read_trylock(&rdev->exclusive_lock)) {
365 		radeon_fence_process(rdev, ring);
366 		up_read(&rdev->exclusive_lock);
367 
368 		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
369 			return true;
370 		}
371 	}
372 	return false;
373 }
374 
375 /**
376  * radeon_fence_enable_signaling - enable signalling on fence
377  * @fence: fence
378  *
379  * This function is called with fence_queue lock held, and adds a callback
380  * to fence_queue that checks if this fence is signaled, and if so it
381  * signals the fence and removes itself.
382  */
383 static bool radeon_fence_enable_signaling(struct fence *f)
384 {
385 	struct radeon_fence *fence = to_radeon_fence(f);
386 	struct radeon_device *rdev = fence->rdev;
387 
388 	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
389 		return false;
390 
391 	if (down_read_trylock(&rdev->exclusive_lock)) {
392 		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
393 
394 		if (radeon_fence_activity(rdev, fence->ring))
395 			wake_up_all_locked(&rdev->fence_queue);
396 
397 		/* did fence get signaled after we enabled the sw irq? */
398 		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
399 			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
400 			up_read(&rdev->exclusive_lock);
401 			return false;
402 		}
403 
404 		up_read(&rdev->exclusive_lock);
405 	} else {
406 		/* we're probably in a lockup, lets not fiddle too much */
407 		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
408 			rdev->fence_drv[fence->ring].delayed_irq = true;
409 		radeon_fence_schedule_check(rdev, fence->ring);
410 	}
411 
412 	fence->fence_wake.flags = 0;
413 	fence->fence_wake.private = NULL;
414 	fence->fence_wake.func = radeon_fence_check_signaled;
415 	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
416 	fence_get(f);
417 
418 	FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
419 	return true;
420 }
421 
422 /**
423  * radeon_fence_signaled - check if a fence has signaled
424  *
425  * @fence: radeon fence object
426  *
427  * Check if the requested fence has signaled (all asics).
428  * Returns true if the fence has signaled or false if it has not.
429  */
430 bool radeon_fence_signaled(struct radeon_fence *fence)
431 {
432 	if (!fence)
433 		return true;
434 
435 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
436 		int ret;
437 
438 		ret = fence_signal(&fence->base);
439 		if (!ret)
440 			FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
441 		return true;
442 	}
443 	return false;
444 }
445 
446 /**
447  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
448  *
449  * @rdev: radeon device pointer
450  * @seq: sequence numbers
451  *
452  * Check if the last signaled fence sequnce number is >= the requested
453  * sequence number (all asics).
454  * Returns true if any has signaled (current value is >= requested value)
455  * or false if it has not. Helper function for radeon_fence_wait_seq.
456  */
457 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
458 {
459 	unsigned i;
460 
461 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
462 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
463 			return true;
464 	}
465 	return false;
466 }
467 
468 /**
469  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
470  *
471  * @rdev: radeon device pointer
472  * @target_seq: sequence number(s) we want to wait for
473  * @intr: use interruptable sleep
474  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
475  *
476  * Wait for the requested sequence number(s) to be written by any ring
477  * (all asics).  Sequnce number array is indexed by ring id.
478  * @intr selects whether to use interruptable (true) or non-interruptable
479  * (false) sleep when waiting for the sequence number.  Helper function
480  * for radeon_fence_wait_*().
481  * Returns remaining time if the sequence number has passed, 0 when
482  * the wait timeout, or an error for all other cases.
483  * -EDEADLK is returned when a GPU lockup has been detected.
484  */
485 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
486 					  u64 *target_seq, bool intr,
487 					  long timeout)
488 {
489 	long r;
490 	int i;
491 
492 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
493 		return timeout;
494 
495 	/* enable IRQs and tracing */
496 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
497 		if (!target_seq[i])
498 			continue;
499 
500 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
501 		radeon_irq_kms_sw_irq_get(rdev, i);
502 	}
503 
504 	if (intr) {
505 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
506 			radeon_fence_any_seq_signaled(rdev, target_seq)
507 			 || rdev->needs_reset), timeout);
508 	} else {
509 		r = wait_event_timeout(rdev->fence_queue, (
510 			radeon_fence_any_seq_signaled(rdev, target_seq)
511 			 || rdev->needs_reset), timeout);
512 	}
513 
514 	if (rdev->needs_reset)
515 		r = -EDEADLK;
516 
517 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
518 		if (!target_seq[i])
519 			continue;
520 
521 		radeon_irq_kms_sw_irq_put(rdev, i);
522 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
523 	}
524 
525 	return r;
526 }
527 
528 /**
529  * radeon_fence_wait_timeout - wait for a fence to signal with timeout
530  *
531  * @fence: radeon fence object
532  * @intr: use interruptible sleep
533  *
534  * Wait for the requested fence to signal (all asics).
535  * @intr selects whether to use interruptable (true) or non-interruptable
536  * (false) sleep when waiting for the fence.
537  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
538  * Returns remaining time if the sequence number has passed, 0 when
539  * the wait timeout, or an error for all other cases.
540  */
541 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
542 {
543 	u64 seq[RADEON_NUM_RINGS] = {};
544 	long r;
545 	int r_sig;
546 
547 	/*
548 	 * This function should not be called on !radeon fences.
549 	 * If this is the case, it would mean this function can
550 	 * also be called on radeon fences belonging to another card.
551 	 * exclusive_lock is not held in that case.
552 	 */
553 	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
554 		return fence_wait(&fence->base, intr);
555 
556 	seq[fence->ring] = fence->seq;
557 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
558 	if (r <= 0) {
559 		return r;
560 	}
561 
562 	r_sig = fence_signal(&fence->base);
563 	if (!r_sig)
564 		FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
565 	return r;
566 }
567 
568 /**
569  * radeon_fence_wait - wait for a fence to signal
570  *
571  * @fence: radeon fence object
572  * @intr: use interruptible sleep
573  *
574  * Wait for the requested fence to signal (all asics).
575  * @intr selects whether to use interruptable (true) or non-interruptable
576  * (false) sleep when waiting for the fence.
577  * Returns 0 if the fence has passed, error for all other cases.
578  */
579 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
580 {
581 	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
582 	if (r > 0) {
583 		return 0;
584 	} else {
585 		return r;
586 	}
587 }
588 
589 /**
590  * radeon_fence_wait_any - wait for a fence to signal on any ring
591  *
592  * @rdev: radeon device pointer
593  * @fences: radeon fence object(s)
594  * @intr: use interruptable sleep
595  *
596  * Wait for any requested fence to signal (all asics).  Fence
597  * array is indexed by ring id.  @intr selects whether to use
598  * interruptable (true) or non-interruptable (false) sleep when
599  * waiting for the fences. Used by the suballocator.
600  * Returns 0 if any fence has passed, error for all other cases.
601  */
602 int radeon_fence_wait_any(struct radeon_device *rdev,
603 			  struct radeon_fence **fences,
604 			  bool intr)
605 {
606 	u64 seq[RADEON_NUM_RINGS];
607 	unsigned i, num_rings = 0;
608 	long r;
609 
610 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
611 		seq[i] = 0;
612 
613 		if (!fences[i]) {
614 			continue;
615 		}
616 
617 		seq[i] = fences[i]->seq;
618 		++num_rings;
619 	}
620 
621 	/* nothing to wait for ? */
622 	if (num_rings == 0)
623 		return -ENOENT;
624 
625 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
626 	if (r < 0) {
627 		return r;
628 	}
629 	return 0;
630 }
631 
632 /**
633  * radeon_fence_wait_next - wait for the next fence to signal
634  *
635  * @rdev: radeon device pointer
636  * @ring: ring index the fence is associated with
637  *
638  * Wait for the next fence on the requested ring to signal (all asics).
639  * Returns 0 if the next fence has passed, error for all other cases.
640  * Caller must hold ring lock.
641  */
642 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
643 {
644 	u64 seq[RADEON_NUM_RINGS] = {};
645 	long r;
646 
647 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
648 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
649 		/* nothing to wait for, last_seq is
650 		   already the last emited fence */
651 		return -ENOENT;
652 	}
653 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
654 	if (r < 0)
655 		return r;
656 	return 0;
657 }
658 
659 /**
660  * radeon_fence_wait_empty - wait for all fences to signal
661  *
662  * @rdev: radeon device pointer
663  * @ring: ring index the fence is associated with
664  *
665  * Wait for all fences on the requested ring to signal (all asics).
666  * Returns 0 if the fences have passed, error for all other cases.
667  * Caller must hold ring lock.
668  */
669 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
670 {
671 	u64 seq[RADEON_NUM_RINGS] = {};
672 	long r;
673 
674 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
675 	if (!seq[ring])
676 		return 0;
677 
678 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
679 	if (r < 0) {
680 		if (r == -EDEADLK)
681 			return -EDEADLK;
682 
683 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
684 			ring, r);
685 	}
686 	return 0;
687 }
688 
689 /**
690  * radeon_fence_ref - take a ref on a fence
691  *
692  * @fence: radeon fence object
693  *
694  * Take a reference on a fence (all asics).
695  * Returns the fence.
696  */
697 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
698 {
699 	fence_get(&fence->base);
700 	return fence;
701 }
702 
703 /**
704  * radeon_fence_unref - remove a ref on a fence
705  *
706  * @fence: radeon fence object
707  *
708  * Remove a reference on a fence (all asics).
709  */
710 void radeon_fence_unref(struct radeon_fence **fence)
711 {
712 	struct radeon_fence *tmp = *fence;
713 
714 	*fence = NULL;
715 	if (tmp) {
716 		fence_put(&tmp->base);
717 	}
718 }
719 
720 /**
721  * radeon_fence_count_emitted - get the count of emitted fences
722  *
723  * @rdev: radeon device pointer
724  * @ring: ring index the fence is associated with
725  *
726  * Get the number of fences emitted on the requested ring (all asics).
727  * Returns the number of emitted fences on the ring.  Used by the
728  * dynpm code to ring track activity.
729  */
730 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
731 {
732 	uint64_t emitted;
733 
734 	/* We are not protected by ring lock when reading the last sequence
735 	 * but it's ok to report slightly wrong fence count here.
736 	 */
737 	radeon_fence_process(rdev, ring);
738 	emitted = rdev->fence_drv[ring].sync_seq[ring]
739 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
740 	/* to avoid 32bits warp around */
741 	if (emitted > 0x10000000) {
742 		emitted = 0x10000000;
743 	}
744 	return (unsigned)emitted;
745 }
746 
747 /**
748  * radeon_fence_need_sync - do we need a semaphore
749  *
750  * @fence: radeon fence object
751  * @dst_ring: which ring to check against
752  *
753  * Check if the fence needs to be synced against another ring
754  * (all asics).  If so, we need to emit a semaphore.
755  * Returns true if we need to sync with another ring, false if
756  * not.
757  */
758 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
759 {
760 	struct radeon_fence_driver *fdrv;
761 
762 	if (!fence) {
763 		return false;
764 	}
765 
766 	if (fence->ring == dst_ring) {
767 		return false;
768 	}
769 
770 	/* we are protected by the ring mutex */
771 	fdrv = &fence->rdev->fence_drv[dst_ring];
772 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
773 		return false;
774 	}
775 
776 	return true;
777 }
778 
779 /**
780  * radeon_fence_note_sync - record the sync point
781  *
782  * @fence: radeon fence object
783  * @dst_ring: which ring to check against
784  *
785  * Note the sequence number at which point the fence will
786  * be synced with the requested ring (all asics).
787  */
788 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
789 {
790 	struct radeon_fence_driver *dst, *src;
791 	unsigned i;
792 
793 	if (!fence) {
794 		return;
795 	}
796 
797 	if (fence->ring == dst_ring) {
798 		return;
799 	}
800 
801 	/* we are protected by the ring mutex */
802 	src = &fence->rdev->fence_drv[fence->ring];
803 	dst = &fence->rdev->fence_drv[dst_ring];
804 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
805 		if (i == dst_ring) {
806 			continue;
807 		}
808 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
809 	}
810 }
811 
812 /**
813  * radeon_fence_driver_start_ring - make the fence driver
814  * ready for use on the requested ring.
815  *
816  * @rdev: radeon device pointer
817  * @ring: ring index to start the fence driver on
818  *
819  * Make the fence driver ready for processing (all asics).
820  * Not all asics have all rings, so each asic will only
821  * start the fence driver on the rings it has.
822  * Returns 0 for success, errors for failure.
823  */
824 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
825 {
826 	uint64_t index;
827 	int r;
828 
829 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
830 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
831 		rdev->fence_drv[ring].scratch_reg = 0;
832 		if (ring != R600_RING_TYPE_UVD_INDEX) {
833 			index = R600_WB_EVENT_OFFSET + ring * 4;
834 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
835 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
836 							 index;
837 
838 		} else {
839 			/* put fence directly behind firmware */
840 			index = ALIGN(rdev->uvd_fw->datasize, 8);
841 			rdev->fence_drv[ring].cpu_addr = (void*)((uint8_t*)rdev->uvd.cpu_addr + index);
842 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
843 		}
844 
845 	} else {
846 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
847 		if (r) {
848 			dev_err(rdev->dev, "fence failed to get scratch register\n");
849 			return r;
850 		}
851 		index = RADEON_WB_SCRATCH_OFFSET +
852 			rdev->fence_drv[ring].scratch_reg -
853 			rdev->scratch.reg_base;
854 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
855 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
856 	}
857 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
858 	rdev->fence_drv[ring].initialized = true;
859 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016lx and cpu addr 0x%p\n",
860 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
861 	return 0;
862 }
863 
864 /**
865  * radeon_fence_driver_init_ring - init the fence driver
866  * for the requested ring.
867  *
868  * @rdev: radeon device pointer
869  * @ring: ring index to start the fence driver on
870  *
871  * Init the fence driver for the requested ring (all asics).
872  * Helper function for radeon_fence_driver_init().
873  */
874 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
875 {
876 	int i;
877 
878 	rdev->fence_drv[ring].scratch_reg = -1;
879 	rdev->fence_drv[ring].cpu_addr = NULL;
880 	rdev->fence_drv[ring].gpu_addr = 0;
881 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
882 		rdev->fence_drv[ring].sync_seq[i] = 0;
883 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
884 	rdev->fence_drv[ring].initialized = false;
885 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
886 			  radeon_fence_check_lockup);
887 	rdev->fence_drv[ring].rdev = rdev;
888 }
889 
890 /**
891  * radeon_fence_driver_init - init the fence driver
892  * for all possible rings.
893  *
894  * @rdev: radeon device pointer
895  *
896  * Init the fence driver for all possible rings (all asics).
897  * Not all asics have all rings, so each asic will only
898  * start the fence driver on the rings it has using
899  * radeon_fence_driver_start_ring().
900  * Returns 0 for success.
901  */
902 int radeon_fence_driver_init(struct radeon_device *rdev)
903 {
904 	int ring;
905 
906 	init_waitqueue_head(&rdev->fence_queue);
907 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
908 		radeon_fence_driver_init_ring(rdev, ring);
909 	}
910 	if (radeon_debugfs_fence_init(rdev)) {
911 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
912 	}
913 	return 0;
914 }
915 
916 /**
917  * radeon_fence_driver_fini - tear down the fence driver
918  * for all possible rings.
919  *
920  * @rdev: radeon device pointer
921  *
922  * Tear down the fence driver for all possible rings (all asics).
923  */
924 void radeon_fence_driver_fini(struct radeon_device *rdev)
925 {
926 	int ring, r;
927 
928 	mutex_lock(&rdev->ring_lock);
929 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
930 		if (!rdev->fence_drv[ring].initialized)
931 			continue;
932 		r = radeon_fence_wait_empty(rdev, ring);
933 		if (r) {
934 			/* no need to trigger GPU reset as we are unloading */
935 			radeon_fence_driver_force_completion(rdev, ring);
936 		}
937 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
938 		wake_up_all(&rdev->fence_queue);
939 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
940 		rdev->fence_drv[ring].initialized = false;
941 	}
942 	mutex_unlock(&rdev->ring_lock);
943 }
944 
945 /**
946  * radeon_fence_driver_force_completion - force all fence waiter to complete
947  *
948  * @rdev: radeon device pointer
949  * @ring: the ring to complete
950  *
951  * In case of GPU reset failure make sure no process keep waiting on fence
952  * that will never complete.
953  */
954 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
955 {
956 	if (rdev->fence_drv[ring].initialized) {
957 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
958 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
959 	}
960 }
961 
962 
963 /*
964  * Fence debugfs
965  */
966 #if defined(CONFIG_DEBUG_FS)
967 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
968 {
969 	struct drm_info_node *node = (struct drm_info_node *)m->private;
970 	struct drm_device *dev = node->minor->dev;
971 	struct radeon_device *rdev = dev->dev_private;
972 	int i, j;
973 
974 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
975 		if (!rdev->fence_drv[i].initialized)
976 			continue;
977 
978 		radeon_fence_process(rdev, i);
979 
980 		seq_printf(m, "--- ring %d ---\n", i);
981 		seq_printf(m, "Last signaled fence 0x%016llx\n",
982 			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
983 		seq_printf(m, "Last emitted        0x%016llx\n",
984 			   rdev->fence_drv[i].sync_seq[i]);
985 
986 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
987 			if (i != j && rdev->fence_drv[j].initialized)
988 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
989 					   j, rdev->fence_drv[i].sync_seq[j]);
990 		}
991 	}
992 	return 0;
993 }
994 
995 /**
996  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
997  *
998  * Manually trigger a gpu reset at the next fence wait.
999  */
1000 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1001 {
1002 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1003 	struct drm_device *dev = node->minor->dev;
1004 	struct radeon_device *rdev = dev->dev_private;
1005 
1006 	down_read(&rdev->exclusive_lock);
1007 	seq_printf(m, "%d\n", rdev->needs_reset);
1008 	rdev->needs_reset = true;
1009 	wake_up_all(&rdev->fence_queue);
1010 	up_read(&rdev->exclusive_lock);
1011 
1012 	return 0;
1013 }
1014 
1015 static struct drm_info_list radeon_debugfs_fence_list[] = {
1016 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1017 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1018 };
1019 #endif
1020 
1021 int radeon_debugfs_fence_init(struct radeon_device *rdev)
1022 {
1023 #if defined(CONFIG_DEBUG_FS)
1024 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1025 #else
1026 	return 0;
1027 #endif
1028 }
1029 
1030 static const char *radeon_fence_get_driver_name(struct fence *fence)
1031 {
1032 	return "radeon";
1033 }
1034 
1035 static const char *radeon_fence_get_timeline_name(struct fence *f)
1036 {
1037 	struct radeon_fence *fence = to_radeon_fence(f);
1038 	switch (fence->ring) {
1039 	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1040 	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1041 	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1042 	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1043 	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1044 	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1045 	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1046 	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1047 	default: WARN_ON_ONCE(1); return "radeon.unk";
1048 	}
1049 }
1050 
1051 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1052 {
1053 	return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1054 }
1055 
1056 struct radeon_wait_cb {
1057 	struct fence_cb base;
1058 	struct task_struct *task;
1059 };
1060 
1061 static void
1062 radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1063 {
1064 	struct radeon_wait_cb *wait =
1065 		container_of(cb, struct radeon_wait_cb, base);
1066 
1067 	wake_up_process(wait->task);
1068 }
1069 
1070 static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1071 					     signed long t)
1072 {
1073 	struct radeon_fence *fence = to_radeon_fence(f);
1074 	struct radeon_device *rdev = fence->rdev;
1075 	struct radeon_wait_cb cb;
1076 
1077 	cb.task = current;
1078 
1079 	if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1080 		return t;
1081 
1082 	while (t > 0) {
1083 		if (intr)
1084 			set_current_state(TASK_INTERRUPTIBLE);
1085 		else
1086 			set_current_state(TASK_UNINTERRUPTIBLE);
1087 
1088 		/*
1089 		 * radeon_test_signaled must be called after
1090 		 * set_current_state to prevent a race with wake_up_process
1091 		 */
1092 		if (radeon_test_signaled(fence))
1093 			break;
1094 
1095 		if (rdev->needs_reset) {
1096 			t = -EDEADLK;
1097 			break;
1098 		}
1099 
1100 		t = schedule_timeout(t);
1101 
1102 		if (t > 0 && intr && signal_pending(current))
1103 			t = -ERESTARTSYS;
1104 	}
1105 
1106 	__set_current_state(TASK_RUNNING);
1107 	fence_remove_callback(f, &cb.base);
1108 
1109 	return t;
1110 }
1111 
1112 const struct fence_ops radeon_fence_ops = {
1113 	.get_driver_name = radeon_fence_get_driver_name,
1114 	.get_timeline_name = radeon_fence_get_timeline_name,
1115 	.enable_signaling = radeon_fence_enable_signaling,
1116 	.signaled = radeon_fence_is_signaled,
1117 	.wait = radeon_fence_default_wait,
1118 	.release = NULL,
1119 };
1120