xref: /dragonfly/sys/dev/drm/radeon/radeon_fence.c (revision 70675b40)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Dave Airlie
30  */
31 #include <drm/drmP.h>
32 #include "radeon_reg.h"
33 #include "radeon.h"
34 #ifdef TRACE_TODO
35 #include "radeon_trace.h"
36 #endif
37 
38 /*
39  * Fences
40  * Fences mark an event in the GPUs pipeline and are used
41  * for GPU/CPU synchronization.  When the fence is written,
42  * it is expected that all buffers associated with that fence
43  * are no longer in use by the associated ring on the GPU and
44  * that the the relevant GPU caches have been flushed.  Whether
45  * we use a scratch register or memory location depends on the asic
46  * and whether writeback is enabled.
47  */
48 
49 /**
50  * radeon_fence_write - write a fence value
51  *
52  * @rdev: radeon_device pointer
53  * @seq: sequence number to write
54  * @ring: ring index the fence is associated with
55  *
56  * Writes a fence value to memory or a scratch register (all asics).
57  */
58 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
59 {
60 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
61 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
62 		if (drv->cpu_addr) {
63 			*drv->cpu_addr = cpu_to_le32(seq);
64 		}
65 	} else {
66 		WREG32(drv->scratch_reg, seq);
67 	}
68 }
69 
70 /**
71  * radeon_fence_read - read a fence value
72  *
73  * @rdev: radeon_device pointer
74  * @ring: ring index the fence is associated with
75  *
76  * Reads a fence value from memory or a scratch register (all asics).
77  * Returns the value of the fence read from memory or register.
78  */
79 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
80 {
81 	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
82 	u32 seq = 0;
83 
84 	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
85 		if (drv->cpu_addr) {
86 			seq = le32_to_cpu(*drv->cpu_addr);
87 		} else {
88 			seq = lower_32_bits(atomic64_read(&drv->last_seq));
89 		}
90 	} else {
91 		seq = RREG32(drv->scratch_reg);
92 	}
93 	return seq;
94 }
95 
96 /**
97  * radeon_fence_schedule_check - schedule lockup check
98  *
99  * @rdev: radeon_device pointer
100  * @ring: ring index we should work with
101  *
102  * Queues a delayed work item to check for lockups.
103  */
104 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
105 {
106 	/*
107 	 * Do not reset the timer here with mod_delayed_work,
108 	 * this can livelock in an interaction with TTM delayed destroy.
109 	 */
110 	queue_delayed_work(system_power_efficient_wq,
111 			   &rdev->fence_drv[ring].lockup_work,
112 			   RADEON_FENCE_JIFFIES_TIMEOUT);
113 }
114 
115 /**
116  * radeon_fence_emit - emit a fence on the requested ring
117  *
118  * @rdev: radeon_device pointer
119  * @fence: radeon fence object
120  * @ring: ring index the fence is associated with
121  *
122  * Emits a fence command on the requested ring (all asics).
123  * Returns 0 on success, -ENOMEM on failure.
124  */
125 int radeon_fence_emit(struct radeon_device *rdev,
126 		      struct radeon_fence **fence,
127 		      int ring)
128 {
129 	/* we are protected by the ring emission mutex */
130 	*fence = kmalloc(sizeof(struct radeon_fence), M_DRM,
131 			 M_WAITOK);
132 	if ((*fence) == NULL) {
133 		return -ENOMEM;
134 	}
135 	refcount_init(&((*fence)->kref), 1);
136 	(*fence)->rdev = rdev;
137 	(*fence)->seq = ++rdev->fence_drv[ring].sync_seq[ring];
138 	(*fence)->ring = ring;
139 	radeon_fence_ring_emit(rdev, ring, *fence);
140 #ifdef TRACE_TODO
141 	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
142 #endif
143 	radeon_fence_schedule_check(rdev, ring);
144 	return 0;
145 }
146 
147 /**
148  * radeon_fence_activity - check for fence activity
149  *
150  * @rdev: radeon_device pointer
151  * @ring: ring index the fence is associated with
152  *
153  * Checks the current fence value and calculates the last
154  * signalled fence value. Returns true if activity occured
155  * on the ring, and the fence_queue should be waken up.
156  */
157 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
158 {
159 	uint64_t seq, last_seq, last_emitted;
160 	unsigned count_loop = 0;
161 	bool wake = false;
162 
163 	/* Note there is a scenario here for an infinite loop but it's
164 	 * very unlikely to happen. For it to happen, the current polling
165 	 * process need to be interrupted by another process and another
166 	 * process needs to update the last_seq btw the atomic read and
167 	 * xchg of the current process.
168 	 *
169 	 * More over for this to go in infinite loop there need to be
170 	 * continuously new fence signaled ie radeon_fence_read needs
171 	 * to return a different value each time for both the currently
172 	 * polling process and the other process that xchg the last_seq
173 	 * btw atomic read and xchg of the current process. And the
174 	 * value the other process set as last seq must be higher than
175 	 * the seq value we just read. Which means that current process
176 	 * need to be interrupted after radeon_fence_read and before
177 	 * atomic xchg.
178 	 *
179 	 * To be even more safe we count the number of time we loop and
180 	 * we bail after 10 loop just accepting the fact that we might
181 	 * have temporarly set the last_seq not to the true real last
182 	 * seq but to an older one.
183 	 */
184 	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
185 	do {
186 		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
187 		seq = radeon_fence_read(rdev, ring);
188 		seq |= last_seq & 0xffffffff00000000LL;
189 		if (seq < last_seq) {
190 			seq &= 0xffffffff;
191 			seq |= last_emitted & 0xffffffff00000000LL;
192 		}
193 
194 		if (seq <= last_seq || seq > last_emitted) {
195 			break;
196 		}
197 		/* If we loop over we don't want to return without
198 		 * checking if a fence is signaled as it means that the
199 		 * seq we just read is different from the previous on.
200 		 */
201 		wake = true;
202 		last_seq = seq;
203 		if ((count_loop++) > 10) {
204 			/* We looped over too many time leave with the
205 			 * fact that we might have set an older fence
206 			 * seq then the current real last seq as signaled
207 			 * by the hw.
208 			 */
209 			break;
210 		}
211 	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
212 
213 	if (seq < last_emitted)
214 		radeon_fence_schedule_check(rdev, ring);
215 
216 	return wake;
217 }
218 
219 /**
220  * radeon_fence_check_lockup - check for hardware lockup
221  *
222  * @work: delayed work item
223  *
224  * Checks for fence activity and if there is none probe
225  * the hardware if a lockup occured.
226  */
227 static void radeon_fence_check_lockup(struct work_struct *work)
228 {
229 	struct radeon_fence_driver *fence_drv;
230 	struct radeon_device *rdev;
231 	int ring;
232 
233 	fence_drv = container_of(work, struct radeon_fence_driver,
234 				 lockup_work.work);
235 	rdev = fence_drv->rdev;
236 	ring = fence_drv - &rdev->fence_drv[0];
237 
238 	if (lockmgr(&rdev->exclusive_lock, LK_EXCLUSIVE|LK_NOWAIT)) {
239 		/* just reschedule the check if a reset is going on */
240 		radeon_fence_schedule_check(rdev, ring);
241 		return;
242 	}
243 
244 	if (radeon_fence_activity(rdev, ring))
245 		wake_up_all(&rdev->fence_queue);
246 
247 	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
248 
249 		/* good news we believe it's a lockup */
250 		dev_warn(rdev->dev, "GPU lockup (current fence id "
251 			 "0x%016lx last fence id 0x%016lx on ring %d)\n",
252 			 (uint64_t)atomic64_read(&fence_drv->last_seq),
253 			 fence_drv->sync_seq[ring], ring);
254 
255 		/* remember that we need an reset */
256 		rdev->needs_reset = true;
257 		wake_up_all(&rdev->fence_queue);
258 	}
259 	lockmgr(&rdev->exclusive_lock, LK_RELEASE);
260 }
261 
262 /**
263  * radeon_fence_process - process a fence
264  *
265  * @rdev: radeon_device pointer
266  * @ring: ring index the fence is associated with
267  *
268  * Checks the current fence value and wakes the fence queue
269  * if the sequence number has increased (all asics).
270  */
271 void radeon_fence_process(struct radeon_device *rdev, int ring)
272 {
273 	if (radeon_fence_activity(rdev, ring))
274 		wake_up_all(&rdev->fence_queue);
275 }
276 
277 /**
278  * radeon_fence_destroy - destroy a fence
279  *
280  * @kref: fence kref
281  *
282  * Frees the fence object (all asics).
283  */
284 static void radeon_fence_destroy(struct radeon_fence *fence)
285 {
286 
287 	kfree(fence);
288 }
289 
290 /**
291  * radeon_fence_seq_signaled - check if a fence sequence number has signaled
292  *
293  * @rdev: radeon device pointer
294  * @seq: sequence number
295  * @ring: ring index the fence is associated with
296  *
297  * Check if the last signaled fence sequnce number is >= the requested
298  * sequence number (all asics).
299  * Returns true if the fence has signaled (current fence value
300  * is >= requested value) or false if it has not (current fence
301  * value is < the requested value.  Helper function for
302  * radeon_fence_signaled().
303  */
304 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
305 				      u64 seq, unsigned ring)
306 {
307 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
308 		return true;
309 	}
310 	/* poll new last sequence at least once */
311 	radeon_fence_process(rdev, ring);
312 	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
313 		return true;
314 	}
315 	return false;
316 }
317 
318 /**
319  * radeon_fence_signaled - check if a fence has signaled
320  *
321  * @fence: radeon fence object
322  *
323  * Check if the requested fence has signaled (all asics).
324  * Returns true if the fence has signaled or false if it has not.
325  */
326 bool radeon_fence_signaled(struct radeon_fence *fence)
327 {
328 	if (!fence)
329 		return true;
330 	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring))
331 		return true;
332 	return false;
333 }
334 
335 /**
336  * radeon_fence_any_seq_signaled - check if any sequence number is signaled
337  *
338  * @rdev: radeon device pointer
339  * @seq: sequence numbers
340  *
341  * Check if the last signaled fence sequnce number is >= the requested
342  * sequence number (all asics).
343  * Returns true if any has signaled (current value is >= requested value)
344  * or false if it has not. Helper function for radeon_fence_wait_seq.
345  */
346 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
347 {
348 	unsigned i;
349 
350 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
351 		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
352 			return true;
353 	}
354 	return false;
355 }
356 
357 /**
358  * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
359  *
360  * @rdev: radeon device pointer
361  * @target_seq: sequence number(s) we want to wait for
362  * @intr: use interruptable sleep
363  * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
364  *
365  * Wait for the requested sequence number(s) to be written by any ring
366  * (all asics).  Sequnce number array is indexed by ring id.
367  * @intr selects whether to use interruptable (true) or non-interruptable
368  * (false) sleep when waiting for the sequence number.  Helper function
369  * for radeon_fence_wait_*().
370  * Returns remaining time if the sequence number has passed, 0 when
371  * the wait timeout, or an error for all other cases.
372  * -EDEADLK is returned when a GPU lockup has been detected.
373  */
374 static int radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
375 					  u64 *target_seq, bool intr,
376 					  int timeout)
377 {
378 	long r;
379 	int i;
380 
381 	if (radeon_fence_any_seq_signaled(rdev, target_seq))
382 		return timeout;
383 
384 	/* enable IRQs and tracing */
385 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
386 		if (!target_seq[i])
387 			continue;
388 
389 #ifdef TRACE_TODO
390 		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
391 #endif
392 		radeon_irq_kms_sw_irq_get(rdev, i);
393 	}
394 
395 	if (intr) {
396 		r = wait_event_interruptible_timeout(rdev->fence_queue, (
397 			radeon_fence_any_seq_signaled(rdev, target_seq)
398 			 || rdev->needs_reset), timeout);
399 	} else {
400 		r = wait_event_timeout(rdev->fence_queue, (
401 			radeon_fence_any_seq_signaled(rdev, target_seq)
402 			 || rdev->needs_reset), timeout);
403 	}
404 
405 	if (rdev->needs_reset)
406 		r = -EDEADLK;
407 
408 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
409 		if (!target_seq[i])
410 			continue;
411 
412 		radeon_irq_kms_sw_irq_put(rdev, i);
413 #ifdef TRACE_TODO
414 		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
415 #endif
416 	}
417 
418 	return r;
419 }
420 
421 /**
422  * radeon_fence_wait - wait for a fence to signal
423  *
424  * @fence: radeon fence object
425  * @intr: use interruptible sleep
426  *
427  * Wait for the requested fence to signal (all asics).
428  * @intr selects whether to use interruptable (true) or non-interruptable
429  * (false) sleep when waiting for the fence.
430  * Returns 0 if the fence has passed, error for all other cases.
431  */
432 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
433 {
434 	u64 seq[RADEON_NUM_RINGS] = {};
435 	int r;
436 
437 	if (fence == NULL) {
438 		WARN(1, "Querying an invalid fence : %p !\n", fence);
439 		return -EINVAL;
440 	}
441 
442 	seq[fence->ring] = fence->seq;
443 	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, INT_MAX);
444 	if (r < 0) {
445 		return r;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * radeon_fence_wait_any - wait for a fence to signal on any ring
453  *
454  * @rdev: radeon device pointer
455  * @fences: radeon fence object(s)
456  * @intr: use interruptable sleep
457  *
458  * Wait for any requested fence to signal (all asics).  Fence
459  * array is indexed by ring id.  @intr selects whether to use
460  * interruptable (true) or non-interruptable (false) sleep when
461  * waiting for the fences. Used by the suballocator.
462  * Returns 0 if any fence has passed, error for all other cases.
463  */
464 int radeon_fence_wait_any(struct radeon_device *rdev,
465 			  struct radeon_fence **fences,
466 			  bool intr)
467 {
468 	u64 seq[RADEON_NUM_RINGS];
469 	unsigned i, num_rings = 0;
470 	int r;
471 
472 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
473 		seq[i] = 0;
474 
475 		if (!fences[i]) {
476 			continue;
477 		}
478 
479 		seq[i] = fences[i]->seq;
480 		++num_rings;
481 	}
482 
483 	/* nothing to wait for ? */
484 	if (num_rings == 0)
485 		return -ENOENT;
486 
487 	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, INT_MAX);
488 	if (r < 0) {
489 		return r;
490 	}
491 	return 0;
492 }
493 
494 /**
495  * radeon_fence_wait_next - wait for the next fence to signal
496  *
497  * @rdev: radeon device pointer
498  * @ring: ring index the fence is associated with
499  *
500  * Wait for the next fence on the requested ring to signal (all asics).
501  * Returns 0 if the next fence has passed, error for all other cases.
502  * Caller must hold ring lock.
503  */
504 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
505 {
506 	uint64_t seq[RADEON_NUM_RINGS] = {};
507 	int r;
508 
509 	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
510 	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
511 		/* nothing to wait for, last_seq is
512 		   already the last emited fence */
513 		return -ENOENT;
514 	}
515 	r = radeon_fence_wait_seq_timeout(rdev, (u64 *)seq, false, INT_MAX);
516 	if (r < 0)
517 		return r;
518 	return 0;
519 }
520 
521 /**
522  * radeon_fence_wait_empty - wait for all fences to signal
523  *
524  * @rdev: radeon device pointer
525  * @ring: ring index the fence is associated with
526  *
527  * Wait for all fences on the requested ring to signal (all asics).
528  * Returns 0 if the fences have passed, error for all other cases.
529  * Caller must hold ring lock.
530  */
531 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
532 {
533 	u64 seq[RADEON_NUM_RINGS] = {};
534 	int r;
535 
536 	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
537 	if (!seq[ring])
538 		return 0;
539 
540 	r = radeon_fence_wait_seq_timeout(rdev, seq, false, INT_MAX);
541 	if (r < 0) {
542 		if (r == -EDEADLK)
543 			return -EDEADLK;
544 
545 		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%d)\n",
546 			ring, r);
547 	}
548 	return 0;
549 }
550 
551 /**
552  * radeon_fence_ref - take a ref on a fence
553  *
554  * @fence: radeon fence object
555  *
556  * Take a reference on a fence (all asics).
557  * Returns the fence.
558  */
559 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
560 {
561 	refcount_acquire(&fence->kref);
562 	return fence;
563 }
564 
565 /**
566  * radeon_fence_unref - remove a ref on a fence
567  *
568  * @fence: radeon fence object
569  *
570  * Remove a reference on a fence (all asics).
571  */
572 void radeon_fence_unref(struct radeon_fence **fence)
573 {
574 	struct radeon_fence *tmp = *fence;
575 
576 	*fence = NULL;
577 	if (tmp) {
578 		if (refcount_release(&tmp->kref)) {
579 			radeon_fence_destroy(tmp);
580 		}
581 	}
582 }
583 
584 /**
585  * radeon_fence_count_emitted - get the count of emitted fences
586  *
587  * @rdev: radeon device pointer
588  * @ring: ring index the fence is associated with
589  *
590  * Get the number of fences emitted on the requested ring (all asics).
591  * Returns the number of emitted fences on the ring.  Used by the
592  * dynpm code to ring track activity.
593  */
594 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
595 {
596 	uint64_t emitted;
597 
598 	/* We are not protected by ring lock when reading the last sequence
599 	 * but it's ok to report slightly wrong fence count here.
600 	 */
601 	radeon_fence_process(rdev, ring);
602 	emitted = rdev->fence_drv[ring].sync_seq[ring]
603 		- atomic64_read(&rdev->fence_drv[ring].last_seq);
604 	/* to avoid 32bits warp around */
605 	if (emitted > 0x10000000) {
606 		emitted = 0x10000000;
607 	}
608 	return (unsigned)emitted;
609 }
610 
611 /**
612  * radeon_fence_need_sync - do we need a semaphore
613  *
614  * @fence: radeon fence object
615  * @dst_ring: which ring to check against
616  *
617  * Check if the fence needs to be synced against another ring
618  * (all asics).  If so, we need to emit a semaphore.
619  * Returns true if we need to sync with another ring, false if
620  * not.
621  */
622 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
623 {
624 	struct radeon_fence_driver *fdrv;
625 
626 	if (!fence) {
627 		return false;
628 	}
629 
630 	if (fence->ring == dst_ring) {
631 		return false;
632 	}
633 
634 	/* we are protected by the ring mutex */
635 	fdrv = &fence->rdev->fence_drv[dst_ring];
636 	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
637 		return false;
638 	}
639 
640 	return true;
641 }
642 
643 /**
644  * radeon_fence_note_sync - record the sync point
645  *
646  * @fence: radeon fence object
647  * @dst_ring: which ring to check against
648  *
649  * Note the sequence number at which point the fence will
650  * be synced with the requested ring (all asics).
651  */
652 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
653 {
654 	struct radeon_fence_driver *dst, *src;
655 	unsigned i;
656 
657 	if (!fence) {
658 		return;
659 	}
660 
661 	if (fence->ring == dst_ring) {
662 		return;
663 	}
664 
665 	/* we are protected by the ring mutex */
666 	src = &fence->rdev->fence_drv[fence->ring];
667 	dst = &fence->rdev->fence_drv[dst_ring];
668 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
669 		if (i == dst_ring) {
670 			continue;
671 		}
672 		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
673 	}
674 }
675 
676 /**
677  * radeon_fence_driver_start_ring - make the fence driver
678  * ready for use on the requested ring.
679  *
680  * @rdev: radeon device pointer
681  * @ring: ring index to start the fence driver on
682  *
683  * Make the fence driver ready for processing (all asics).
684  * Not all asics have all rings, so each asic will only
685  * start the fence driver on the rings it has.
686  * Returns 0 for success, errors for failure.
687  */
688 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
689 {
690 	uint64_t index;
691 	int r;
692 
693 	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
694 	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
695 		rdev->fence_drv[ring].scratch_reg = 0;
696 		if (ring != R600_RING_TYPE_UVD_INDEX) {
697 			index = R600_WB_EVENT_OFFSET + ring * 4;
698 			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
699 			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
700 							 index;
701 
702 		} else {
703 			/* put fence directly behind firmware */
704 			index = ALIGN(rdev->uvd_fw->datasize, 8);
705 			rdev->fence_drv[ring].cpu_addr = (void*)((uint8_t*)rdev->uvd.cpu_addr + index);
706 			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
707 		}
708 
709 	} else {
710 		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
711 		if (r) {
712 			dev_err(rdev->dev, "fence failed to get scratch register\n");
713 			return r;
714 		}
715 		index = RADEON_WB_SCRATCH_OFFSET +
716 			rdev->fence_drv[ring].scratch_reg -
717 			rdev->scratch.reg_base;
718 		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
719 		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
720 	}
721 	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
722 	rdev->fence_drv[ring].initialized = true;
723 	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016jx and cpu addr 0x%p\n",
724 		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
725 	return 0;
726 }
727 
728 /**
729  * radeon_fence_driver_init_ring - init the fence driver
730  * for the requested ring.
731  *
732  * @rdev: radeon device pointer
733  * @ring: ring index to start the fence driver on
734  *
735  * Init the fence driver for the requested ring (all asics).
736  * Helper function for radeon_fence_driver_init().
737  */
738 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
739 {
740 	int i;
741 
742 	rdev->fence_drv[ring].scratch_reg = -1;
743 	rdev->fence_drv[ring].cpu_addr = NULL;
744 	rdev->fence_drv[ring].gpu_addr = 0;
745 	for (i = 0; i < RADEON_NUM_RINGS; ++i)
746 		rdev->fence_drv[ring].sync_seq[i] = 0;
747 	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
748 	rdev->fence_drv[ring].initialized = false;
749 	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
750 			  radeon_fence_check_lockup);
751 	rdev->fence_drv[ring].rdev = rdev;
752 }
753 
754 /**
755  * radeon_fence_driver_init - init the fence driver
756  * for all possible rings.
757  *
758  * @rdev: radeon device pointer
759  *
760  * Init the fence driver for all possible rings (all asics).
761  * Not all asics have all rings, so each asic will only
762  * start the fence driver on the rings it has using
763  * radeon_fence_driver_start_ring().
764  * Returns 0 for success.
765  */
766 int radeon_fence_driver_init(struct radeon_device *rdev)
767 {
768 	int ring;
769 
770 	init_waitqueue_head(&rdev->fence_queue);
771 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
772 		radeon_fence_driver_init_ring(rdev, ring);
773 	}
774 	if (radeon_debugfs_fence_init(rdev)) {
775 		dev_err(rdev->dev, "fence debugfs file creation failed\n");
776 	}
777 	return 0;
778 }
779 
780 /**
781  * radeon_fence_driver_fini - tear down the fence driver
782  * for all possible rings.
783  *
784  * @rdev: radeon device pointer
785  *
786  * Tear down the fence driver for all possible rings (all asics).
787  */
788 void radeon_fence_driver_fini(struct radeon_device *rdev)
789 {
790 	int ring, r;
791 
792 	lockmgr(&rdev->ring_lock, LK_EXCLUSIVE);
793 	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
794 		if (!rdev->fence_drv[ring].initialized)
795 			continue;
796 		r = radeon_fence_wait_empty(rdev, ring);
797 		if (r) {
798 			/* no need to trigger GPU reset as we are unloading */
799 			radeon_fence_driver_force_completion(rdev, ring);
800 		}
801 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
802 		wake_up_all(&rdev->fence_queue);
803 		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
804 		rdev->fence_drv[ring].initialized = false;
805 	}
806 	lockmgr(&rdev->ring_lock, LK_RELEASE);
807 }
808 
809 /**
810  * radeon_fence_driver_force_completion - force all fence waiter to complete
811  *
812  * @rdev: radeon device pointer
813  * @ring: the ring to complete
814  *
815  * In case of GPU reset failure make sure no process keep waiting on fence
816  * that will never complete.
817  */
818 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
819 {
820 	if (rdev->fence_drv[ring].initialized) {
821 		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
822 		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
823 	}
824 }
825 
826 
827 /*
828  * Fence debugfs
829  */
830 #if defined(CONFIG_DEBUG_FS)
831 static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
832 {
833 	struct drm_info_node *node = (struct drm_info_node *)m->private;
834 	struct drm_device *dev = node->minor->dev;
835 	struct radeon_device *rdev = dev->dev_private;
836 	int i, j;
837 
838 	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
839 		if (!rdev->fence_drv[i].initialized)
840 			continue;
841 
842 		radeon_fence_process(rdev, i);
843 
844 		seq_printf(m, "--- ring %d ---\n", i);
845 		seq_printf(m, "Last signaled fence 0x%016llx\n",
846 			   (unsigned long long)atomic_load_acq_64(&rdev->fence_drv[i].last_seq));
847 		seq_printf(m, "Last emitted        0x%016llx\n",
848 			   rdev->fence_drv[i].sync_seq[i]);
849 
850 		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
851 			if (i != j && rdev->fence_drv[j].initialized)
852 				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
853 					   j, rdev->fence_drv[i].sync_seq[j]);
854 		}
855 	}
856 	return 0;
857 }
858 
859 /**
860  * radeon_debugfs_gpu_reset - manually trigger a gpu reset
861  *
862  * Manually trigger a gpu reset at the next fence wait.
863  */
864 static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
865 {
866 	struct drm_info_node *node = (struct drm_info_node *) m->private;
867 	struct drm_device *dev = node->minor->dev;
868 	struct radeon_device *rdev = dev->dev_private;
869 
870 	down_read(&rdev->exclusive_lock);
871 	seq_printf(m, "%d\n", rdev->needs_reset);
872 	rdev->needs_reset = true;
873 	wake_up_all(&rdev->fence_queue);
874 	up_read(&rdev->exclusive_lock);
875 
876 	return 0;
877 }
878 
879 static struct drm_info_list radeon_debugfs_fence_list[] = {
880 	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
881 	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
882 };
883 #endif
884 
885 int radeon_debugfs_fence_init(struct radeon_device *rdev)
886 {
887 #if defined(CONFIG_DEBUG_FS)
888 	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
889 #else
890 	return 0;
891 #endif
892 }
893