xref: /dragonfly/sys/dev/drm/ttm/ttm_bo.c (revision ae071d8d)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  *
30  * $FreeBSD: head/sys/dev/drm2/ttm/ttm_bo.c 248060 2013-03-08 18:11:02Z dumbbell $
31  */
32 
33 #include <drm/drmP.h>
34 #include <dev/drm/ttm/ttm_module.h>
35 #include <dev/drm/ttm/ttm_bo_driver.h>
36 #include <dev/drm/ttm/ttm_placement.h>
37 
38 #define TTM_ASSERT_LOCKED(param)
39 #define TTM_DEBUG(fmt, arg...)
40 #define TTM_BO_HASH_ORDER 13
41 
42 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
43 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
44 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
45 
46 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
47 
48 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
49 {
50 	int i;
51 
52 	for (i = 0; i <= TTM_PL_PRIV5; i++)
53 		if (flags & (1 << i)) {
54 			*mem_type = i;
55 			return 0;
56 		}
57 	return -EINVAL;
58 }
59 
60 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
61 {
62 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
63 
64 	kprintf("    has_type: %d\n", man->has_type);
65 	kprintf("    use_type: %d\n", man->use_type);
66 	kprintf("    flags: 0x%08X\n", man->flags);
67 	kprintf("    gpu_offset: 0x%08lX\n", man->gpu_offset);
68 	kprintf("    size: %ju\n", (uintmax_t)man->size);
69 	kprintf("    available_caching: 0x%08X\n", man->available_caching);
70 	kprintf("    default_caching: 0x%08X\n", man->default_caching);
71 	if (mem_type != TTM_PL_SYSTEM)
72 		(*man->func->debug)(man, TTM_PFX);
73 }
74 
75 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
76 					struct ttm_placement *placement)
77 {
78 	int i, ret, mem_type;
79 
80 	kprintf("No space for %p (%lu pages, %luK, %luM)\n",
81 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
82 	       bo->mem.size >> 20);
83 	for (i = 0; i < placement->num_placement; i++) {
84 		ret = ttm_mem_type_from_flags(placement->placement[i],
85 						&mem_type);
86 		if (ret)
87 			return;
88 		kprintf("  placement[%d]=0x%08X (%d)\n",
89 		       i, placement->placement[i], mem_type);
90 		ttm_mem_type_debug(bo->bdev, mem_type);
91 	}
92 }
93 
94 #if 0
95 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
96     char *buffer)
97 {
98 
99 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
100 			(unsigned long) atomic_read(&glob->bo_count));
101 }
102 #endif
103 
104 static inline uint32_t ttm_bo_type_flags(unsigned type)
105 {
106 	return 1 << (type);
107 }
108 
109 static void ttm_bo_release_list(struct kref *list_kref)
110 {
111 	struct ttm_buffer_object *bo =
112 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
113 	struct ttm_bo_device *bdev = bo->bdev;
114 	size_t acc_size = bo->acc_size;
115 
116 	BUG_ON(atomic_read(&bo->list_kref.refcount));
117 	BUG_ON(atomic_read(&bo->kref.refcount));
118 	BUG_ON(atomic_read(&bo->cpu_writers));
119 	BUG_ON(bo->sync_obj != NULL);
120 	BUG_ON(bo->mem.mm_node != NULL);
121 	BUG_ON(!list_empty(&bo->lru));
122 	BUG_ON(!list_empty(&bo->ddestroy));
123 
124 	if (bo->ttm)
125 		ttm_tt_destroy(bo->ttm);
126 	atomic_dec(&bo->glob->bo_count);
127 	if (bo->destroy)
128 		bo->destroy(bo);
129 	else {
130 		kfree(bo, M_TTM_BO);
131 	}
132 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
133 }
134 
135 static int
136 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
137 {
138 	const char *wmsg;
139 	int flags, ret;
140 
141 	ret = 0;
142 	if (interruptible) {
143 		flags = PCATCH;
144 		wmsg = "ttbowi";
145 	} else {
146 		flags = 0;
147 		wmsg = "ttbowu";
148 	}
149 	while (ttm_bo_is_reserved(bo)) {
150 		ret = -lksleep(bo, &bo->glob->lru_lock, 0, wmsg, 0);
151 		if (ret != 0)
152 			break;
153 	}
154 	return (ret);
155 }
156 
157 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
158 {
159 	struct ttm_bo_device *bdev = bo->bdev;
160 	struct ttm_mem_type_manager *man;
161 
162 	BUG_ON(!ttm_bo_is_reserved(bo));
163 
164 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
165 
166 		BUG_ON(!list_empty(&bo->lru));
167 
168 		man = &bdev->man[bo->mem.mem_type];
169 		list_add_tail(&bo->lru, &man->lru);
170 		kref_get(&bo->list_kref);
171 
172 		if (bo->ttm != NULL) {
173 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
174 			kref_get(&bo->list_kref);
175 		}
176 	}
177 }
178 
179 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
180 {
181 	int put_count = 0;
182 
183 	if (!list_empty(&bo->swap)) {
184 		list_del_init(&bo->swap);
185 		++put_count;
186 	}
187 	if (!list_empty(&bo->lru)) {
188 		list_del_init(&bo->lru);
189 		++put_count;
190 	}
191 
192 	/*
193 	 * TODO: Add a driver hook to delete from
194 	 * driver-specific LRU's here.
195 	 */
196 
197 	return put_count;
198 }
199 
200 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
201 			  bool interruptible,
202 			  bool no_wait, bool use_sequence, uint32_t sequence)
203 {
204 	int ret;
205 
206 	while (unlikely(atomic_read(&bo->reserved) != 0)) {
207 		/**
208 		 * Deadlock avoidance for multi-bo reserving.
209 		 */
210 		if (use_sequence && bo->seq_valid) {
211 			/**
212 			 * We've already reserved this one.
213 			 */
214 			if (unlikely(sequence == bo->val_seq))
215 				return -EDEADLK;
216 			/**
217 			 * Already reserved by a thread that will not back
218 			 * off for us. We need to back off.
219 			 */
220 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
221 				return -EAGAIN;
222 		}
223 
224 		if (no_wait)
225 			return -EBUSY;
226 
227 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
228 
229 		if (unlikely(ret))
230 			return ret;
231 	}
232 
233 	if (use_sequence) {
234 		bool wake_up = false;
235 		/**
236 		 * Wake up waiters that may need to recheck for deadlock,
237 		 * if we decreased the sequence number.
238 		 */
239 		if (unlikely((bo->val_seq - sequence < (1 << 31))
240 			     || !bo->seq_valid))
241 			wake_up = true;
242 
243 		/*
244 		 * In the worst case with memory ordering these values can be
245 		 * seen in the wrong order. However since we call wake_up_all
246 		 * in that case, this will hopefully not pose a problem,
247 		 * and the worst case would only cause someone to accidentally
248 		 * hit -EAGAIN in ttm_bo_reserve when they see old value of
249 		 * val_seq. However this would only happen if seq_valid was
250 		 * written before val_seq was, and just means some slightly
251 		 * increased cpu usage
252 		 */
253 		bo->val_seq = sequence;
254 		bo->seq_valid = true;
255 		if (wake_up)
256 			wakeup(bo);
257 	} else {
258 		bo->seq_valid = false;
259 	}
260 
261 	return 0;
262 }
263 
264 static void ttm_bo_ref_bug(struct kref *list_kref)
265 {
266 	BUG();
267 }
268 
269 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
270 			 bool never_free)
271 {
272 	kref_sub(&bo->list_kref, count,
273 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
274 }
275 
276 int ttm_bo_reserve(struct ttm_buffer_object *bo,
277 		   bool interruptible,
278 		   bool no_wait, bool use_sequence, uint32_t sequence)
279 {
280 	struct ttm_bo_global *glob = bo->glob;
281 	int put_count = 0;
282 	int ret;
283 
284 	lockmgr(&bo->glob->lru_lock, LK_EXCLUSIVE);
285 	ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
286 				   sequence);
287 	if (likely(ret == 0)) {
288 		put_count = ttm_bo_del_from_lru(bo);
289 		lockmgr(&glob->lru_lock, LK_RELEASE);
290 		ttm_bo_list_ref_sub(bo, put_count, true);
291 	} else
292 		lockmgr(&bo->glob->lru_lock, LK_RELEASE);
293 
294 	return ret;
295 }
296 
297 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
298 				  bool interruptible, uint32_t sequence)
299 {
300 	bool wake_up = false;
301 	int ret;
302 
303 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
304 		if (bo->seq_valid && sequence == bo->val_seq) {
305 			DRM_ERROR(
306 			    "%s: bo->seq_valid && sequence == bo->val_seq",
307 			    __func__);
308 		}
309 
310 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
311 
312 		if (unlikely(ret))
313 			return ret;
314 	}
315 
316 	if ((bo->val_seq - sequence < (1 << 31)) || !bo->seq_valid)
317 		wake_up = true;
318 
319 	/**
320 	 * Wake up waiters that may need to recheck for deadlock,
321 	 * if we decreased the sequence number.
322 	 */
323 	bo->val_seq = sequence;
324 	bo->seq_valid = true;
325 	if (wake_up)
326 		wakeup(bo);
327 
328 	return 0;
329 }
330 
331 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
332 			    bool interruptible, uint32_t sequence)
333 {
334 	struct ttm_bo_global *glob = bo->glob;
335 	int put_count, ret;
336 
337 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
338 	ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
339 	if (likely(!ret)) {
340 		put_count = ttm_bo_del_from_lru(bo);
341 		lockmgr(&glob->lru_lock, LK_RELEASE);
342 		ttm_bo_list_ref_sub(bo, put_count, true);
343 	} else
344 		lockmgr(&glob->lru_lock, LK_RELEASE);
345 	return ret;
346 }
347 
348 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
349 {
350 	ttm_bo_add_to_lru(bo);
351 	atomic_set(&bo->reserved, 0);
352 	wakeup(bo);
353 }
354 
355 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
356 {
357 	struct ttm_bo_global *glob = bo->glob;
358 
359 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
360 	ttm_bo_unreserve_locked(bo);
361 	lockmgr(&glob->lru_lock, LK_RELEASE);
362 }
363 
364 /*
365  * Call bo->mutex locked.
366  */
367 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
368 {
369 	struct ttm_bo_device *bdev = bo->bdev;
370 	struct ttm_bo_global *glob = bo->glob;
371 	int ret = 0;
372 	uint32_t page_flags = 0;
373 
374 	TTM_ASSERT_LOCKED(&bo->mutex);
375 	bo->ttm = NULL;
376 
377 	if (bdev->need_dma32)
378 		page_flags |= TTM_PAGE_FLAG_DMA32;
379 
380 	switch (bo->type) {
381 	case ttm_bo_type_device:
382 		if (zero_alloc)
383 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
384 	case ttm_bo_type_kernel:
385 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
386 						      page_flags, glob->dummy_read_page);
387 		if (unlikely(bo->ttm == NULL))
388 			ret = -ENOMEM;
389 		break;
390 	case ttm_bo_type_sg:
391 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
392 						      page_flags | TTM_PAGE_FLAG_SG,
393 						      glob->dummy_read_page);
394 		if (unlikely(bo->ttm == NULL)) {
395 			ret = -ENOMEM;
396 			break;
397 		}
398 		bo->ttm->sg = bo->sg;
399 		break;
400 	default:
401 		kprintf("[TTM] Illegal buffer object type\n");
402 		ret = -EINVAL;
403 		break;
404 	}
405 
406 	return ret;
407 }
408 
409 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
410 				  struct ttm_mem_reg *mem,
411 				  bool evict, bool interruptible,
412 				  bool no_wait_gpu)
413 {
414 	struct ttm_bo_device *bdev = bo->bdev;
415 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
416 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
417 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
418 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
419 	int ret = 0;
420 
421 	if (old_is_pci || new_is_pci ||
422 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
423 		ret = ttm_mem_io_lock(old_man, true);
424 		if (unlikely(ret != 0))
425 			goto out_err;
426 		ttm_bo_unmap_virtual_locked(bo);
427 		ttm_mem_io_unlock(old_man);
428 	}
429 
430 	/*
431 	 * Create and bind a ttm if required.
432 	 */
433 
434 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
435 		if (bo->ttm == NULL) {
436 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
437 			ret = ttm_bo_add_ttm(bo, zero);
438 			if (ret)
439 				goto out_err;
440 		}
441 
442 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
443 		if (ret)
444 			goto out_err;
445 
446 		if (mem->mem_type != TTM_PL_SYSTEM) {
447 			ret = ttm_tt_bind(bo->ttm, mem);
448 			if (ret)
449 				goto out_err;
450 		}
451 
452 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
453 			if (bdev->driver->move_notify)
454 				bdev->driver->move_notify(bo, mem);
455 			bo->mem = *mem;
456 			mem->mm_node = NULL;
457 			goto moved;
458 		}
459 	}
460 
461 	if (bdev->driver->move_notify)
462 		bdev->driver->move_notify(bo, mem);
463 
464 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
465 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
466 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
467 	else if (bdev->driver->move)
468 		ret = bdev->driver->move(bo, evict, interruptible,
469 					 no_wait_gpu, mem);
470 	else
471 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
472 
473 	if (ret) {
474 		if (bdev->driver->move_notify) {
475 			struct ttm_mem_reg tmp_mem = *mem;
476 			*mem = bo->mem;
477 			bo->mem = tmp_mem;
478 			bdev->driver->move_notify(bo, mem);
479 			bo->mem = *mem;
480 			*mem = tmp_mem;
481 		}
482 
483 		goto out_err;
484 	}
485 
486 moved:
487 	if (bo->evicted) {
488 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
489 		if (ret)
490 			kprintf("[TTM] Can not flush read caches\n");
491 		bo->evicted = false;
492 	}
493 
494 	if (bo->mem.mm_node) {
495 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
496 		    bdev->man[bo->mem.mem_type].gpu_offset;
497 		bo->cur_placement = bo->mem.placement;
498 	} else
499 		bo->offset = 0;
500 
501 	return 0;
502 
503 out_err:
504 	new_man = &bdev->man[bo->mem.mem_type];
505 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
506 		ttm_tt_unbind(bo->ttm);
507 		ttm_tt_destroy(bo->ttm);
508 		bo->ttm = NULL;
509 	}
510 
511 	return ret;
512 }
513 
514 /**
515  * Call bo::reserved.
516  * Will release GPU memory type usage on destruction.
517  * This is the place to put in driver specific hooks to release
518  * driver private resources.
519  * Will release the bo::reserved lock.
520  */
521 
522 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
523 {
524 	if (bo->bdev->driver->move_notify)
525 		bo->bdev->driver->move_notify(bo, NULL);
526 
527 	if (bo->ttm) {
528 		ttm_tt_unbind(bo->ttm);
529 		ttm_tt_destroy(bo->ttm);
530 		bo->ttm = NULL;
531 	}
532 	ttm_bo_mem_put(bo, &bo->mem);
533 
534 	atomic_set(&bo->reserved, 0);
535 	wakeup(&bo);
536 
537 	/*
538 	 * Since the final reference to this bo may not be dropped by
539 	 * the current task we have to put a memory barrier here to make
540 	 * sure the changes done in this function are always visible.
541 	 *
542 	 * This function only needs protection against the final kref_put.
543 	 */
544 	cpu_mfence();
545 }
546 
547 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
548 {
549 	struct ttm_bo_device *bdev = bo->bdev;
550 	struct ttm_bo_global *glob = bo->glob;
551 	struct ttm_bo_driver *driver = bdev->driver;
552 	void *sync_obj = NULL;
553 	int put_count;
554 	int ret;
555 
556 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
557 	ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
558 
559 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
560 	(void) ttm_bo_wait(bo, false, false, true);
561 	if (!ret && !bo->sync_obj) {
562 		lockmgr(&bdev->fence_lock, LK_RELEASE);
563 		put_count = ttm_bo_del_from_lru(bo);
564 
565 		lockmgr(&glob->lru_lock, LK_RELEASE);
566 		ttm_bo_cleanup_memtype_use(bo);
567 
568 		ttm_bo_list_ref_sub(bo, put_count, true);
569 
570 		return;
571 	}
572 	if (bo->sync_obj)
573 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
574 	lockmgr(&bdev->fence_lock, LK_RELEASE);
575 
576 	if (!ret) {
577 		atomic_set(&bo->reserved, 0);
578 		wakeup(bo);
579 	}
580 
581 	kref_get(&bo->list_kref);
582 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
583 	lockmgr(&glob->lru_lock, LK_RELEASE);
584 
585 	if (sync_obj) {
586 		driver->sync_obj_flush(sync_obj);
587 		driver->sync_obj_unref(&sync_obj);
588 	}
589 	taskqueue_enqueue_timeout(taskqueue_thread[mycpuid], &bdev->wq,
590 	    ((hz / 100) < 1) ? 1 : hz / 100);
591 }
592 
593 /**
594  * function ttm_bo_cleanup_refs_and_unlock
595  * If bo idle, remove from delayed- and lru lists, and unref.
596  * If not idle, do nothing.
597  *
598  * Must be called with lru_lock and reservation held, this function
599  * will drop both before returning.
600  *
601  * @interruptible         Any sleeps should occur interruptibly.
602  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
603  */
604 
605 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
606 					  bool interruptible,
607 					  bool no_wait_gpu)
608 {
609 	struct ttm_bo_device *bdev = bo->bdev;
610 	struct ttm_bo_driver *driver = bdev->driver;
611 	struct ttm_bo_global *glob = bo->glob;
612 	int put_count;
613 	int ret;
614 
615 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
616 	ret = ttm_bo_wait(bo, false, false, true);
617 
618 	if (ret && !no_wait_gpu) {
619 		void *sync_obj;
620 
621 		/*
622 		 * Take a reference to the fence and unreserve,
623 		 * at this point the buffer should be dead, so
624 		 * no new sync objects can be attached.
625 		 */
626 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
627 		lockmgr(&bdev->fence_lock, LK_RELEASE);
628 
629 		atomic_set(&bo->reserved, 0);
630 		wakeup(bo);
631 		lockmgr(&glob->lru_lock, LK_RELEASE);
632 
633 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
634 		driver->sync_obj_unref(&sync_obj);
635 		if (ret)
636 			return ret;
637 
638 		/*
639 		 * remove sync_obj with ttm_bo_wait, the wait should be
640 		 * finished, and no new wait object should have been added.
641 		 */
642 		lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
643 		ret = ttm_bo_wait(bo, false, false, true);
644 		lockmgr(&bdev->fence_lock, LK_RELEASE);
645 		if (ret)
646 			return ret;
647 
648 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
649 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
650 
651 		/*
652 		 * We raced, and lost, someone else holds the reservation now,
653 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
654 		 *
655 		 * Even if it's not the case, because we finished waiting any
656 		 * delayed destruction would succeed, so just return success
657 		 * here.
658 		 */
659 		if (ret) {
660 			lockmgr(&glob->lru_lock, LK_RELEASE);
661 			return 0;
662 		}
663 	} else
664 		lockmgr(&bdev->fence_lock, LK_RELEASE);
665 
666 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
667 		atomic_set(&bo->reserved, 0);
668 		wakeup(bo);
669 		lockmgr(&glob->lru_lock, LK_RELEASE);
670 		return ret;
671 	}
672 
673 	put_count = ttm_bo_del_from_lru(bo);
674 	list_del_init(&bo->ddestroy);
675 	++put_count;
676 
677 	lockmgr(&glob->lru_lock, LK_RELEASE);
678 	ttm_bo_cleanup_memtype_use(bo);
679 
680 	ttm_bo_list_ref_sub(bo, put_count, true);
681 
682 	return 0;
683 }
684 
685 /**
686  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
687  * encountered buffers.
688  */
689 
690 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
691 {
692 	struct ttm_bo_global *glob = bdev->glob;
693 	struct ttm_buffer_object *entry = NULL;
694 	int ret = 0;
695 
696 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
697 	if (list_empty(&bdev->ddestroy))
698 		goto out_unlock;
699 
700 	entry = list_first_entry(&bdev->ddestroy,
701 		struct ttm_buffer_object, ddestroy);
702 	kref_get(&entry->list_kref);
703 
704 	for (;;) {
705 		struct ttm_buffer_object *nentry = NULL;
706 
707 		if (entry->ddestroy.next != &bdev->ddestroy) {
708 			nentry = list_first_entry(&entry->ddestroy,
709 				struct ttm_buffer_object, ddestroy);
710 			kref_get(&nentry->list_kref);
711 		}
712 
713 		ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
714 		if (remove_all && ret) {
715 			ret = ttm_bo_reserve_nolru(entry, false, false,
716 						   false, 0);
717 		}
718 
719 		if (!ret)
720 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
721 							     !remove_all);
722 		else
723 			lockmgr(&glob->lru_lock, LK_RELEASE);
724 
725 		kref_put(&entry->list_kref, ttm_bo_release_list);
726 		entry = nentry;
727 
728 		if (ret || !entry)
729 			goto out;
730 
731 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
732 		if (list_empty(&entry->ddestroy))
733 			break;
734 	}
735 
736 out_unlock:
737 	lockmgr(&glob->lru_lock, LK_RELEASE);
738 out:
739 	if (entry)
740 		kref_put(&entry->list_kref, ttm_bo_release_list);
741 	return ret;
742 }
743 
744 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
745 {
746 	struct ttm_bo_device *bdev = arg;
747 
748 	if (ttm_bo_delayed_delete(bdev, false)) {
749 		taskqueue_enqueue_timeout(taskqueue_thread[mycpuid], &bdev->wq,
750 		    ((hz / 100) < 1) ? 1 : hz / 100);
751 	}
752 }
753 
754 static void ttm_bo_release(struct kref *kref)
755 {
756 	struct ttm_buffer_object *bo =
757 	    container_of(kref, struct ttm_buffer_object, kref);
758 	struct ttm_bo_device *bdev = bo->bdev;
759 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
760 
761 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
762 	if (likely(bo->vm_node != NULL)) {
763 		RB_REMOVE(ttm_bo_device_buffer_objects,
764 		    &bdev->addr_space_rb, bo);
765 		drm_mm_put_block(bo->vm_node);
766 		bo->vm_node = NULL;
767 	}
768 	lockmgr(&bdev->vm_lock, LK_RELEASE);
769 	ttm_mem_io_lock(man, false);
770 	ttm_mem_io_free_vm(bo);
771 	ttm_mem_io_unlock(man);
772 	ttm_bo_cleanup_refs_or_queue(bo);
773 	kref_put(&bo->list_kref, ttm_bo_release_list);
774 }
775 
776 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
777 {
778 	struct ttm_buffer_object *bo = *p_bo;
779 
780 	*p_bo = NULL;
781 	kref_put(&bo->kref, ttm_bo_release);
782 }
783 
784 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
785 {
786 	int pending;
787 
788 	taskqueue_cancel_timeout(taskqueue_thread[mycpuid], &bdev->wq, &pending);
789 	if (pending)
790 		taskqueue_drain_timeout(taskqueue_thread[mycpuid], &bdev->wq);
791 	return (pending);
792 }
793 
794 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
795 {
796 	if (resched) {
797 		taskqueue_enqueue_timeout(taskqueue_thread[mycpuid], &bdev->wq,
798 		    ((hz / 100) < 1) ? 1 : hz / 100);
799 	}
800 }
801 
802 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
803 			bool no_wait_gpu)
804 {
805 	struct ttm_bo_device *bdev = bo->bdev;
806 	struct ttm_mem_reg evict_mem;
807 	struct ttm_placement placement;
808 	int ret = 0;
809 
810 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
811 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
812 	lockmgr(&bdev->fence_lock, LK_RELEASE);
813 
814 	if (unlikely(ret != 0)) {
815 		if (ret != -ERESTART) {
816 			kprintf("[TTM] Failed to expire sync object before buffer eviction\n");
817 		}
818 		goto out;
819 	}
820 
821 	KKASSERT(ttm_bo_is_reserved(bo));
822 
823 	evict_mem = bo->mem;
824 	evict_mem.mm_node = NULL;
825 	evict_mem.bus.io_reserved_vm = false;
826 	evict_mem.bus.io_reserved_count = 0;
827 
828 	placement.fpfn = 0;
829 	placement.lpfn = 0;
830 	placement.num_placement = 0;
831 	placement.num_busy_placement = 0;
832 	bdev->driver->evict_flags(bo, &placement);
833 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
834 				no_wait_gpu);
835 	if (ret) {
836 		if (ret != -ERESTART) {
837 			kprintf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
838 			       bo);
839 			ttm_bo_mem_space_debug(bo, &placement);
840 		}
841 		goto out;
842 	}
843 
844 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
845 				     no_wait_gpu);
846 	if (ret) {
847 		if (ret != -ERESTART)
848 			kprintf("[TTM] Buffer eviction failed\n");
849 		ttm_bo_mem_put(bo, &evict_mem);
850 		goto out;
851 	}
852 	bo->evicted = true;
853 out:
854 	return ret;
855 }
856 
857 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
858 				uint32_t mem_type,
859 				bool interruptible,
860 				bool no_wait_gpu)
861 {
862 	struct ttm_bo_global *glob = bdev->glob;
863 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
864 	struct ttm_buffer_object *bo;
865 	int ret = -EBUSY, put_count;
866 
867 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
868 	list_for_each_entry(bo, &man->lru, lru) {
869 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
870 		if (!ret)
871 			break;
872 	}
873 
874 	if (ret) {
875 		lockmgr(&glob->lru_lock, LK_RELEASE);
876 		return ret;
877 	}
878 
879 	kref_get(&bo->list_kref);
880 
881 	if (!list_empty(&bo->ddestroy)) {
882 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
883 						     no_wait_gpu);
884 		kref_put(&bo->list_kref, ttm_bo_release_list);
885 		return ret;
886 	}
887 
888 	put_count = ttm_bo_del_from_lru(bo);
889 	lockmgr(&glob->lru_lock, LK_RELEASE);
890 
891 	KKASSERT(ret == 0);
892 
893 	ttm_bo_list_ref_sub(bo, put_count, true);
894 
895 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
896 	ttm_bo_unreserve(bo);
897 
898 	kref_put(&bo->list_kref, ttm_bo_release_list);
899 	return ret;
900 }
901 
902 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
903 {
904 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
905 
906 	if (mem->mm_node)
907 		(*man->func->put_node)(man, mem);
908 }
909 
910 /**
911  * Repeatedly evict memory from the LRU for @mem_type until we create enough
912  * space, or we've evicted everything and there isn't enough space.
913  */
914 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
915 					uint32_t mem_type,
916 					struct ttm_placement *placement,
917 					struct ttm_mem_reg *mem,
918 					bool interruptible,
919 					bool no_wait_gpu)
920 {
921 	struct ttm_bo_device *bdev = bo->bdev;
922 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
923 	int ret;
924 
925 	do {
926 		ret = (*man->func->get_node)(man, bo, placement, mem);
927 		if (unlikely(ret != 0))
928 			return ret;
929 		if (mem->mm_node)
930 			break;
931 		ret = ttm_mem_evict_first(bdev, mem_type,
932 					  interruptible, no_wait_gpu);
933 		if (unlikely(ret != 0))
934 			return ret;
935 	} while (1);
936 	if (mem->mm_node == NULL)
937 		return -ENOMEM;
938 	mem->mem_type = mem_type;
939 	return 0;
940 }
941 
942 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
943 				      uint32_t cur_placement,
944 				      uint32_t proposed_placement)
945 {
946 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
947 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
948 
949 	/**
950 	 * Keep current caching if possible.
951 	 */
952 
953 	if ((cur_placement & caching) != 0)
954 		result |= (cur_placement & caching);
955 	else if ((man->default_caching & caching) != 0)
956 		result |= man->default_caching;
957 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
958 		result |= TTM_PL_FLAG_CACHED;
959 	else if ((TTM_PL_FLAG_WC & caching) != 0)
960 		result |= TTM_PL_FLAG_WC;
961 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
962 		result |= TTM_PL_FLAG_UNCACHED;
963 
964 	return result;
965 }
966 
967 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
968 				 uint32_t mem_type,
969 				 uint32_t proposed_placement,
970 				 uint32_t *masked_placement)
971 {
972 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
973 
974 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
975 		return false;
976 
977 	if ((proposed_placement & man->available_caching) == 0)
978 		return false;
979 
980 	cur_flags |= (proposed_placement & man->available_caching);
981 
982 	*masked_placement = cur_flags;
983 	return true;
984 }
985 
986 /**
987  * Creates space for memory region @mem according to its type.
988  *
989  * This function first searches for free space in compatible memory types in
990  * the priority order defined by the driver.  If free space isn't found, then
991  * ttm_bo_mem_force_space is attempted in priority order to evict and find
992  * space.
993  */
994 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
995 			struct ttm_placement *placement,
996 			struct ttm_mem_reg *mem,
997 			bool interruptible,
998 			bool no_wait_gpu)
999 {
1000 	struct ttm_bo_device *bdev = bo->bdev;
1001 	struct ttm_mem_type_manager *man;
1002 	uint32_t mem_type = TTM_PL_SYSTEM;
1003 	uint32_t cur_flags = 0;
1004 	bool type_found = false;
1005 	bool type_ok = false;
1006 	bool has_erestartsys = false;
1007 	int i, ret;
1008 
1009 	mem->mm_node = NULL;
1010 	for (i = 0; i < placement->num_placement; ++i) {
1011 		ret = ttm_mem_type_from_flags(placement->placement[i],
1012 						&mem_type);
1013 		if (ret)
1014 			return ret;
1015 		man = &bdev->man[mem_type];
1016 
1017 		type_ok = ttm_bo_mt_compatible(man,
1018 						mem_type,
1019 						placement->placement[i],
1020 						&cur_flags);
1021 
1022 		if (!type_ok)
1023 			continue;
1024 
1025 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1026 						  cur_flags);
1027 		/*
1028 		 * Use the access and other non-mapping-related flag bits from
1029 		 * the memory placement flags to the current flags
1030 		 */
1031 		ttm_flag_masked(&cur_flags, placement->placement[i],
1032 				~TTM_PL_MASK_MEMTYPE);
1033 
1034 		if (mem_type == TTM_PL_SYSTEM)
1035 			break;
1036 
1037 		if (man->has_type && man->use_type) {
1038 			type_found = true;
1039 			ret = (*man->func->get_node)(man, bo, placement, mem);
1040 			if (unlikely(ret))
1041 				return ret;
1042 		}
1043 		if (mem->mm_node)
1044 			break;
1045 	}
1046 
1047 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1048 		mem->mem_type = mem_type;
1049 		mem->placement = cur_flags;
1050 		return 0;
1051 	}
1052 
1053 	if (!type_found)
1054 		return -EINVAL;
1055 
1056 	for (i = 0; i < placement->num_busy_placement; ++i) {
1057 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1058 						&mem_type);
1059 		if (ret)
1060 			return ret;
1061 		man = &bdev->man[mem_type];
1062 		if (!man->has_type)
1063 			continue;
1064 		if (!ttm_bo_mt_compatible(man,
1065 						mem_type,
1066 						placement->busy_placement[i],
1067 						&cur_flags))
1068 			continue;
1069 
1070 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1071 						  cur_flags);
1072 		/*
1073 		 * Use the access and other non-mapping-related flag bits from
1074 		 * the memory placement flags to the current flags
1075 		 */
1076 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1077 				~TTM_PL_MASK_MEMTYPE);
1078 
1079 
1080 		if (mem_type == TTM_PL_SYSTEM) {
1081 			mem->mem_type = mem_type;
1082 			mem->placement = cur_flags;
1083 			mem->mm_node = NULL;
1084 			return 0;
1085 		}
1086 
1087 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1088 						interruptible, no_wait_gpu);
1089 		if (ret == 0 && mem->mm_node) {
1090 			mem->placement = cur_flags;
1091 			return 0;
1092 		}
1093 		if (ret == -ERESTART)
1094 			has_erestartsys = true;
1095 	}
1096 	ret = (has_erestartsys) ? -ERESTART : -ENOMEM;
1097 	return ret;
1098 }
1099 
1100 static
1101 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1102 			struct ttm_placement *placement,
1103 			bool interruptible,
1104 			bool no_wait_gpu)
1105 {
1106 	int ret = 0;
1107 	struct ttm_mem_reg mem;
1108 	struct ttm_bo_device *bdev = bo->bdev;
1109 
1110 	KKASSERT(ttm_bo_is_reserved(bo));
1111 
1112 	/*
1113 	 * FIXME: It's possible to pipeline buffer moves.
1114 	 * Have the driver move function wait for idle when necessary,
1115 	 * instead of doing it here.
1116 	 */
1117 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1118 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1119 	lockmgr(&bdev->fence_lock, LK_RELEASE);
1120 	if (ret)
1121 		return ret;
1122 	mem.num_pages = bo->num_pages;
1123 	mem.size = mem.num_pages << PAGE_SHIFT;
1124 	mem.page_alignment = bo->mem.page_alignment;
1125 	mem.bus.io_reserved_vm = false;
1126 	mem.bus.io_reserved_count = 0;
1127 	/*
1128 	 * Determine where to move the buffer.
1129 	 */
1130 	ret = ttm_bo_mem_space(bo, placement, &mem,
1131 			       interruptible, no_wait_gpu);
1132 	if (ret)
1133 		goto out_unlock;
1134 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1135 				     interruptible, no_wait_gpu);
1136 out_unlock:
1137 	if (ret && mem.mm_node)
1138 		ttm_bo_mem_put(bo, &mem);
1139 	return ret;
1140 }
1141 
1142 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1143 			     struct ttm_mem_reg *mem)
1144 {
1145 	int i;
1146 
1147 	if (mem->mm_node && placement->lpfn != 0 &&
1148 	    (mem->start < placement->fpfn ||
1149 	     mem->start + mem->num_pages > placement->lpfn))
1150 		return -1;
1151 
1152 	for (i = 0; i < placement->num_placement; i++) {
1153 		if ((placement->placement[i] & mem->placement &
1154 			TTM_PL_MASK_CACHING) &&
1155 			(placement->placement[i] & mem->placement &
1156 			TTM_PL_MASK_MEM))
1157 			return i;
1158 	}
1159 	return -1;
1160 }
1161 
1162 int ttm_bo_validate(struct ttm_buffer_object *bo,
1163 			struct ttm_placement *placement,
1164 			bool interruptible,
1165 			bool no_wait_gpu)
1166 {
1167 	int ret;
1168 
1169 	KKASSERT(ttm_bo_is_reserved(bo));
1170 	/* Check that range is valid */
1171 	if (placement->lpfn || placement->fpfn)
1172 		if (placement->fpfn > placement->lpfn ||
1173 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1174 			return -EINVAL;
1175 	/*
1176 	 * Check whether we need to move buffer.
1177 	 */
1178 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1179 	if (ret < 0) {
1180 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1181 					 no_wait_gpu);
1182 		if (ret)
1183 			return ret;
1184 	} else {
1185 		/*
1186 		 * Use the access and other non-mapping-related flag bits from
1187 		 * the compatible memory placement flags to the active flags
1188 		 */
1189 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1190 				~TTM_PL_MASK_MEMTYPE);
1191 	}
1192 	/*
1193 	 * We might need to add a TTM.
1194 	 */
1195 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1196 		ret = ttm_bo_add_ttm(bo, true);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 	return 0;
1201 }
1202 
1203 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1204 				struct ttm_placement *placement)
1205 {
1206 	KKASSERT(!((placement->fpfn || placement->lpfn) &&
1207 	    (bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
1208 
1209 	return 0;
1210 }
1211 
1212 int ttm_bo_init(struct ttm_bo_device *bdev,
1213 		struct ttm_buffer_object *bo,
1214 		unsigned long size,
1215 		enum ttm_bo_type type,
1216 		struct ttm_placement *placement,
1217 		uint32_t page_alignment,
1218 		bool interruptible,
1219 		struct vm_object *persistent_swap_storage,
1220 		size_t acc_size,
1221 		struct sg_table *sg,
1222 		void (*destroy) (struct ttm_buffer_object *))
1223 {
1224 	int ret = 0;
1225 	unsigned long num_pages;
1226 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1227 
1228 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1229 	if (ret) {
1230 		kprintf("[TTM] Out of kernel memory\n");
1231 		if (destroy)
1232 			(*destroy)(bo);
1233 		else
1234 			drm_free(bo, M_TTM_BO);
1235 		return -ENOMEM;
1236 	}
1237 
1238 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239 	if (num_pages == 0) {
1240 		kprintf("[TTM] Illegal buffer object size\n");
1241 		if (destroy)
1242 			(*destroy)(bo);
1243 		else
1244 			drm_free(bo, M_TTM_BO);
1245 		ttm_mem_global_free(mem_glob, acc_size);
1246 		return -EINVAL;
1247 	}
1248 	bo->destroy = destroy;
1249 
1250 	kref_init(&bo->kref);
1251 	kref_init(&bo->list_kref);
1252 	atomic_set(&bo->cpu_writers, 0);
1253 	atomic_set(&bo->reserved, 1);
1254 	INIT_LIST_HEAD(&bo->lru);
1255 	INIT_LIST_HEAD(&bo->ddestroy);
1256 	INIT_LIST_HEAD(&bo->swap);
1257 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1258 	bo->bdev = bdev;
1259 	bo->glob = bdev->glob;
1260 	bo->type = type;
1261 	bo->num_pages = num_pages;
1262 	bo->mem.size = num_pages << PAGE_SHIFT;
1263 	bo->mem.mem_type = TTM_PL_SYSTEM;
1264 	bo->mem.num_pages = bo->num_pages;
1265 	bo->mem.mm_node = NULL;
1266 	bo->mem.page_alignment = page_alignment;
1267 	bo->mem.bus.io_reserved_vm = false;
1268 	bo->mem.bus.io_reserved_count = 0;
1269 	bo->priv_flags = 0;
1270 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1271 	bo->seq_valid = false;
1272 	bo->persistent_swap_storage = persistent_swap_storage;
1273 	bo->acc_size = acc_size;
1274 	bo->sg = sg;
1275 	atomic_inc(&bo->glob->bo_count);
1276 
1277 	ret = ttm_bo_check_placement(bo, placement);
1278 	if (unlikely(ret != 0))
1279 		goto out_err;
1280 
1281 	/*
1282 	 * For ttm_bo_type_device buffers, allocate
1283 	 * address space from the device.
1284 	 */
1285 	if (bo->type == ttm_bo_type_device ||
1286 	    bo->type == ttm_bo_type_sg) {
1287 		ret = ttm_bo_setup_vm(bo);
1288 		if (ret)
1289 			goto out_err;
1290 	}
1291 
1292 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1293 	if (ret)
1294 		goto out_err;
1295 
1296 	ttm_bo_unreserve(bo);
1297 	return 0;
1298 
1299 out_err:
1300 	ttm_bo_unreserve(bo);
1301 	ttm_bo_unref(&bo);
1302 
1303 	return ret;
1304 }
1305 
1306 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1307 		       unsigned long bo_size,
1308 		       unsigned struct_size)
1309 {
1310 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1311 	size_t size = 0;
1312 
1313 	size += ttm_round_pot(struct_size);
1314 	size += PAGE_ALIGN(npages * sizeof(void *));
1315 	size += ttm_round_pot(sizeof(struct ttm_tt));
1316 	return size;
1317 }
1318 
1319 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1320 			   unsigned long bo_size,
1321 			   unsigned struct_size)
1322 {
1323 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1324 	size_t size = 0;
1325 
1326 	size += ttm_round_pot(struct_size);
1327 	size += PAGE_ALIGN(npages * sizeof(void *));
1328 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1329 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1330 	return size;
1331 }
1332 
1333 int ttm_bo_create(struct ttm_bo_device *bdev,
1334 			unsigned long size,
1335 			enum ttm_bo_type type,
1336 			struct ttm_placement *placement,
1337 			uint32_t page_alignment,
1338 			bool interruptible,
1339 			struct vm_object *persistent_swap_storage,
1340 			struct ttm_buffer_object **p_bo)
1341 {
1342 	struct ttm_buffer_object *bo;
1343 	size_t acc_size;
1344 	int ret;
1345 
1346 	bo = kmalloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
1347 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1348 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1349 			  interruptible, persistent_swap_storage, acc_size,
1350 			  NULL, NULL);
1351 	if (likely(ret == 0))
1352 		*p_bo = bo;
1353 
1354 	return ret;
1355 }
1356 
1357 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1358 					unsigned mem_type, bool allow_errors)
1359 {
1360 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1361 	struct ttm_bo_global *glob = bdev->glob;
1362 	int ret;
1363 
1364 	/*
1365 	 * Can't use standard list traversal since we're unlocking.
1366 	 */
1367 
1368 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1369 	while (!list_empty(&man->lru)) {
1370 		lockmgr(&glob->lru_lock, LK_RELEASE);
1371 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1372 		if (ret) {
1373 			if (allow_errors) {
1374 				return ret;
1375 			} else {
1376 				kprintf("[TTM] Cleanup eviction failed\n");
1377 			}
1378 		}
1379 		lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1380 	}
1381 	lockmgr(&glob->lru_lock, LK_RELEASE);
1382 	return 0;
1383 }
1384 
1385 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1386 {
1387 	struct ttm_mem_type_manager *man;
1388 	int ret = -EINVAL;
1389 
1390 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1391 		kprintf("[TTM] Illegal memory type %d\n", mem_type);
1392 		return ret;
1393 	}
1394 	man = &bdev->man[mem_type];
1395 
1396 	if (!man->has_type) {
1397 		kprintf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1398 		       mem_type);
1399 		return ret;
1400 	}
1401 
1402 	man->use_type = false;
1403 	man->has_type = false;
1404 
1405 	ret = 0;
1406 	if (mem_type > 0) {
1407 		ttm_bo_force_list_clean(bdev, mem_type, false);
1408 
1409 		ret = (*man->func->takedown)(man);
1410 	}
1411 
1412 	return ret;
1413 }
1414 
1415 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1416 {
1417 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1418 
1419 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1420 		kprintf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1421 		return -EINVAL;
1422 	}
1423 
1424 	if (!man->has_type) {
1425 		kprintf("[TTM] Memory type %u has not been initialized\n", mem_type);
1426 		return 0;
1427 	}
1428 
1429 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1430 }
1431 
1432 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1433 			unsigned long p_size)
1434 {
1435 	int ret = -EINVAL;
1436 	struct ttm_mem_type_manager *man;
1437 
1438 	KKASSERT(type < TTM_NUM_MEM_TYPES);
1439 	man = &bdev->man[type];
1440 	KKASSERT(!man->has_type);
1441 	man->io_reserve_fastpath = true;
1442 	man->use_io_reserve_lru = false;
1443 	lockinit(&man->io_reserve_mutex, "ttmman", 0, LK_CANRECURSE);
1444 	INIT_LIST_HEAD(&man->io_reserve_lru);
1445 
1446 	ret = bdev->driver->init_mem_type(bdev, type, man);
1447 	if (ret)
1448 		return ret;
1449 	man->bdev = bdev;
1450 
1451 	ret = 0;
1452 	if (type != TTM_PL_SYSTEM) {
1453 		ret = (*man->func->init)(man, p_size);
1454 		if (ret)
1455 			return ret;
1456 	}
1457 	man->has_type = true;
1458 	man->use_type = true;
1459 	man->size = p_size;
1460 
1461 	INIT_LIST_HEAD(&man->lru);
1462 
1463 	return 0;
1464 }
1465 
1466 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1467 {
1468 
1469 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1470 	vm_page_free(glob->dummy_read_page);
1471 }
1472 
1473 void ttm_bo_global_release(struct drm_global_reference *ref)
1474 {
1475 	struct ttm_bo_global *glob = ref->object;
1476 
1477 	if (refcount_release(&glob->kobj_ref))
1478 		ttm_bo_global_kobj_release(glob);
1479 }
1480 
1481 int ttm_bo_global_init(struct drm_global_reference *ref)
1482 {
1483 	struct ttm_bo_global_ref *bo_ref =
1484 		container_of(ref, struct ttm_bo_global_ref, ref);
1485 	struct ttm_bo_global *glob = ref->object;
1486 	int ret;
1487 
1488 	lockinit(&glob->device_list_mutex, "ttmdlm", 0, LK_CANRECURSE);
1489 	lockinit(&glob->lru_lock, "ttmlru", 0, LK_CANRECURSE);
1490 	glob->mem_glob = bo_ref->mem_glob;
1491 	glob->dummy_read_page = vm_page_alloc_contig(
1492 	    0, VM_MAX_ADDRESS, PAGE_SIZE, 0, 1*PAGE_SIZE, VM_MEMATTR_UNCACHEABLE);
1493 
1494 	if (unlikely(glob->dummy_read_page == NULL)) {
1495 		ret = -ENOMEM;
1496 		goto out_no_drp;
1497 	}
1498 
1499 	INIT_LIST_HEAD(&glob->swap_lru);
1500 	INIT_LIST_HEAD(&glob->device_list);
1501 
1502 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1503 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1504 	if (unlikely(ret != 0)) {
1505 		kprintf("[TTM] Could not register buffer object swapout\n");
1506 		goto out_no_shrink;
1507 	}
1508 
1509 	atomic_set(&glob->bo_count, 0);
1510 
1511 	refcount_init(&glob->kobj_ref, 1);
1512 	return (0);
1513 
1514 out_no_shrink:
1515 	vm_page_free(glob->dummy_read_page);
1516 out_no_drp:
1517 	drm_free(glob, M_DRM_GLOBAL);
1518 	return ret;
1519 }
1520 
1521 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1522 {
1523 	int ret = 0;
1524 	unsigned i = TTM_NUM_MEM_TYPES;
1525 	struct ttm_mem_type_manager *man;
1526 	struct ttm_bo_global *glob = bdev->glob;
1527 
1528 	while (i--) {
1529 		man = &bdev->man[i];
1530 		if (man->has_type) {
1531 			man->use_type = false;
1532 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1533 				ret = -EBUSY;
1534 				kprintf("[TTM] DRM memory manager type %d is not clean\n",
1535 				       i);
1536 			}
1537 			man->has_type = false;
1538 		}
1539 	}
1540 
1541 	lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1542 	list_del(&bdev->device_list);
1543 	lockmgr(&glob->device_list_mutex, LK_RELEASE);
1544 
1545 	if (taskqueue_cancel_timeout(taskqueue_thread[mycpuid], &bdev->wq, NULL))
1546 		taskqueue_drain_timeout(taskqueue_thread[mycpuid], &bdev->wq);
1547 
1548 	while (ttm_bo_delayed_delete(bdev, true))
1549 		;
1550 
1551 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1552 	if (list_empty(&bdev->ddestroy))
1553 		TTM_DEBUG("Delayed destroy list was clean\n");
1554 
1555 	if (list_empty(&bdev->man[0].lru))
1556 		TTM_DEBUG("Swap list was clean\n");
1557 	lockmgr(&glob->lru_lock, LK_RELEASE);
1558 
1559 	KKASSERT(drm_mm_clean(&bdev->addr_space_mm));
1560 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1561 	drm_mm_takedown(&bdev->addr_space_mm);
1562 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1563 
1564 	return ret;
1565 }
1566 
1567 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1568 		       struct ttm_bo_global *glob,
1569 		       struct ttm_bo_driver *driver,
1570 		       uint64_t file_page_offset,
1571 		       bool need_dma32)
1572 {
1573 	int ret = -EINVAL;
1574 
1575 	lockinit(&bdev->vm_lock, "ttmvml", 0, LK_CANRECURSE);
1576 	bdev->driver = driver;
1577 
1578 	memset(bdev->man, 0, sizeof(bdev->man));
1579 
1580 	/*
1581 	 * Initialize the system memory buffer type.
1582 	 * Other types need to be driver / IOCTL initialized.
1583 	 */
1584 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1585 	if (unlikely(ret != 0))
1586 		goto out_no_sys;
1587 
1588 	RB_INIT(&bdev->addr_space_rb);
1589 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1590 	if (unlikely(ret != 0))
1591 		goto out_no_addr_mm;
1592 
1593 	TIMEOUT_TASK_INIT(taskqueue_thread[mycpuid], &bdev->wq, 0,
1594 	    ttm_bo_delayed_workqueue, bdev);
1595 	INIT_LIST_HEAD(&bdev->ddestroy);
1596 	bdev->dev_mapping = NULL;
1597 	bdev->glob = glob;
1598 	bdev->need_dma32 = need_dma32;
1599 	bdev->val_seq = 0;
1600 	lockinit(&bdev->fence_lock, "ttmfence", 0, LK_CANRECURSE);
1601 	lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1602 	list_add_tail(&bdev->device_list, &glob->device_list);
1603 	lockmgr(&glob->device_list_mutex, LK_RELEASE);
1604 
1605 	return 0;
1606 out_no_addr_mm:
1607 	ttm_bo_clean_mm(bdev, 0);
1608 out_no_sys:
1609 	return ret;
1610 }
1611 
1612 /*
1613  * buffer object vm functions.
1614  */
1615 
1616 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1617 {
1618 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1619 
1620 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1621 		if (mem->mem_type == TTM_PL_SYSTEM)
1622 			return false;
1623 
1624 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1625 			return false;
1626 
1627 		if (mem->placement & TTM_PL_FLAG_CACHED)
1628 			return false;
1629 	}
1630 	return true;
1631 }
1632 
1633 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1634 {
1635 
1636 	ttm_bo_release_mmap(bo);
1637 	ttm_mem_io_free_vm(bo);
1638 }
1639 
1640 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1641 {
1642 	struct ttm_bo_device *bdev = bo->bdev;
1643 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1644 
1645 	ttm_mem_io_lock(man, false);
1646 	ttm_bo_unmap_virtual_locked(bo);
1647 	ttm_mem_io_unlock(man);
1648 }
1649 
1650 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1651 {
1652 	struct ttm_bo_device *bdev = bo->bdev;
1653 
1654 	/* The caller acquired bdev->vm_lock. */
1655 	RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
1656 }
1657 
1658 /**
1659  * ttm_bo_setup_vm:
1660  *
1661  * @bo: the buffer to allocate address space for
1662  *
1663  * Allocate address space in the drm device so that applications
1664  * can mmap the buffer and access the contents. This only
1665  * applies to ttm_bo_type_device objects as others are not
1666  * placed in the drm device address space.
1667  */
1668 
1669 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1670 {
1671 	struct ttm_bo_device *bdev = bo->bdev;
1672 	int ret;
1673 
1674 retry_pre_get:
1675 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1676 	if (unlikely(ret != 0))
1677 		return ret;
1678 
1679 	lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1680 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1681 					 bo->mem.num_pages, 0, 0);
1682 
1683 	if (unlikely(bo->vm_node == NULL)) {
1684 		ret = -ENOMEM;
1685 		goto out_unlock;
1686 	}
1687 
1688 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1689 					      bo->mem.num_pages, 0);
1690 
1691 	if (unlikely(bo->vm_node == NULL)) {
1692 		lockmgr(&bdev->vm_lock, LK_RELEASE);
1693 		goto retry_pre_get;
1694 	}
1695 
1696 	ttm_bo_vm_insert_rb(bo);
1697 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1698 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1699 
1700 	return 0;
1701 out_unlock:
1702 	lockmgr(&bdev->vm_lock, LK_RELEASE);
1703 	return ret;
1704 }
1705 
1706 int ttm_bo_wait(struct ttm_buffer_object *bo,
1707 		bool lazy, bool interruptible, bool no_wait)
1708 {
1709 	struct ttm_bo_driver *driver = bo->bdev->driver;
1710 	struct ttm_bo_device *bdev = bo->bdev;
1711 	void *sync_obj;
1712 	int ret = 0;
1713 
1714 	if (likely(bo->sync_obj == NULL))
1715 		return 0;
1716 
1717 	while (bo->sync_obj) {
1718 
1719 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1720 			void *tmp_obj = bo->sync_obj;
1721 			bo->sync_obj = NULL;
1722 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1723 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1724 			driver->sync_obj_unref(&tmp_obj);
1725 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1726 			continue;
1727 		}
1728 
1729 		if (no_wait)
1730 			return -EBUSY;
1731 
1732 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1733 		lockmgr(&bdev->fence_lock, LK_RELEASE);
1734 		ret = driver->sync_obj_wait(sync_obj,
1735 					    lazy, interruptible);
1736 		if (unlikely(ret != 0)) {
1737 			driver->sync_obj_unref(&sync_obj);
1738 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1739 			return ret;
1740 		}
1741 		lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1742 		if (likely(bo->sync_obj == sync_obj)) {
1743 			void *tmp_obj = bo->sync_obj;
1744 			bo->sync_obj = NULL;
1745 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1746 				  &bo->priv_flags);
1747 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1748 			driver->sync_obj_unref(&sync_obj);
1749 			driver->sync_obj_unref(&tmp_obj);
1750 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1751 		} else {
1752 			lockmgr(&bdev->fence_lock, LK_RELEASE);
1753 			driver->sync_obj_unref(&sync_obj);
1754 			lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1755 		}
1756 	}
1757 	return 0;
1758 }
1759 
1760 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1761 {
1762 	struct ttm_bo_device *bdev = bo->bdev;
1763 	int ret = 0;
1764 
1765 	/*
1766 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1767 	 */
1768 
1769 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1770 	if (unlikely(ret != 0))
1771 		return ret;
1772 	lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1773 	ret = ttm_bo_wait(bo, false, true, no_wait);
1774 	lockmgr(&bdev->fence_lock, LK_RELEASE);
1775 	if (likely(ret == 0))
1776 		atomic_inc(&bo->cpu_writers);
1777 	ttm_bo_unreserve(bo);
1778 	return ret;
1779 }
1780 
1781 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1782 {
1783 	atomic_dec(&bo->cpu_writers);
1784 }
1785 
1786 /**
1787  * A buffer object shrink method that tries to swap out the first
1788  * buffer object on the bo_global::swap_lru list.
1789  */
1790 
1791 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1792 {
1793 	struct ttm_bo_global *glob =
1794 	    container_of(shrink, struct ttm_bo_global, shrink);
1795 	struct ttm_buffer_object *bo;
1796 	int ret = -EBUSY;
1797 	int put_count;
1798 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1799 
1800 	lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1801 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1802 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1803 		if (!ret)
1804 			break;
1805 	}
1806 
1807 	if (ret) {
1808 		lockmgr(&glob->lru_lock, LK_RELEASE);
1809 		return ret;
1810 	}
1811 
1812 	kref_get(&bo->list_kref);
1813 
1814 	if (!list_empty(&bo->ddestroy)) {
1815 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1816 		kref_put(&bo->list_kref, ttm_bo_release_list);
1817 		return ret;
1818 	}
1819 
1820 	put_count = ttm_bo_del_from_lru(bo);
1821 	lockmgr(&glob->lru_lock, LK_RELEASE);
1822 
1823 	ttm_bo_list_ref_sub(bo, put_count, true);
1824 
1825 	/**
1826 	 * Wait for GPU, then move to system cached.
1827 	 */
1828 
1829 	lockmgr(&bo->bdev->fence_lock, LK_EXCLUSIVE);
1830 	ret = ttm_bo_wait(bo, false, false, false);
1831 	lockmgr(&bo->bdev->fence_lock, LK_RELEASE);
1832 
1833 	if (unlikely(ret != 0))
1834 		goto out;
1835 
1836 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1837 		struct ttm_mem_reg evict_mem;
1838 
1839 		evict_mem = bo->mem;
1840 		evict_mem.mm_node = NULL;
1841 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1842 		evict_mem.mem_type = TTM_PL_SYSTEM;
1843 
1844 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1845 					     false, false);
1846 		if (unlikely(ret != 0))
1847 			goto out;
1848 	}
1849 
1850 	ttm_bo_unmap_virtual(bo);
1851 
1852 	/**
1853 	 * Swap out. Buffer will be swapped in again as soon as
1854 	 * anyone tries to access a ttm page.
1855 	 */
1856 
1857 	if (bo->bdev->driver->swap_notify)
1858 		bo->bdev->driver->swap_notify(bo);
1859 
1860 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1861 out:
1862 
1863 	/**
1864 	 *
1865 	 * Unreserve without putting on LRU to avoid swapping out an
1866 	 * already swapped buffer.
1867 	 */
1868 
1869 	atomic_set(&bo->reserved, 0);
1870 	wakeup(bo);
1871 	kref_put(&bo->list_kref, ttm_bo_release_list);
1872 	return ret;
1873 }
1874 
1875 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1876 {
1877 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1878 		;
1879 }
1880