xref: /dragonfly/sys/dev/drm/ttm/ttm_bo_util.c (revision 5ca0a96d)
1 /**************************************************************************
2  *
3  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include <drm/ttm/ttm_bo_driver.h>
32 #include <drm/ttm/ttm_placement.h>
33 #include <drm/drm_vma_manager.h>
34 #include <linux/io.h>
35 #include <linux/highmem.h>
36 #include <linux/wait.h>
37 #include <linux/slab.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/reservation.h>
41 
42 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
43 {
44 	ttm_bo_mem_put(bo, &bo->mem);
45 }
46 
47 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
48 		    bool interruptible, bool no_wait_gpu,
49 		    struct ttm_mem_reg *new_mem)
50 {
51 	struct ttm_tt *ttm = bo->ttm;
52 	struct ttm_mem_reg *old_mem = &bo->mem;
53 	int ret;
54 
55 	if (old_mem->mem_type != TTM_PL_SYSTEM) {
56 		ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
57 
58 		if (unlikely(ret != 0)) {
59 			if (ret != -ERESTARTSYS)
60 				pr_err("Failed to expire sync object before unbinding TTM\n");
61 			return ret;
62 		}
63 
64 		ttm_tt_unbind(ttm);
65 		ttm_bo_free_old_node(bo);
66 		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
67 				TTM_PL_MASK_MEM);
68 		old_mem->mem_type = TTM_PL_SYSTEM;
69 	}
70 
71 	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
72 	if (unlikely(ret != 0))
73 		return ret;
74 
75 	if (new_mem->mem_type != TTM_PL_SYSTEM) {
76 		ret = ttm_tt_bind(ttm, new_mem);
77 		if (unlikely(ret != 0))
78 			return ret;
79 	}
80 
81 	*old_mem = *new_mem;
82 	new_mem->mm_node = NULL;
83 
84 	return 0;
85 }
86 EXPORT_SYMBOL(ttm_bo_move_ttm);
87 
88 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
89 {
90 	if (likely(man->io_reserve_fastpath))
91 		return 0;
92 
93 	if (interruptible)
94 		return mutex_lock_interruptible(&man->io_reserve_mutex);
95 
96 	mutex_lock(&man->io_reserve_mutex);
97 	return 0;
98 }
99 EXPORT_SYMBOL(ttm_mem_io_lock);
100 
101 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
102 {
103 	if (likely(man->io_reserve_fastpath))
104 		return;
105 
106 	mutex_unlock(&man->io_reserve_mutex);
107 }
108 EXPORT_SYMBOL(ttm_mem_io_unlock);
109 
110 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
111 {
112 	struct ttm_buffer_object *bo;
113 
114 	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
115 		return -EAGAIN;
116 
117 	bo = list_first_entry(&man->io_reserve_lru,
118 			      struct ttm_buffer_object,
119 			      io_reserve_lru);
120 	list_del_init(&bo->io_reserve_lru);
121 	ttm_bo_unmap_virtual_locked(bo);
122 
123 	return 0;
124 }
125 
126 
127 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
128 		       struct ttm_mem_reg *mem)
129 {
130 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
131 	int ret = 0;
132 
133 	if (!bdev->driver->io_mem_reserve)
134 		return 0;
135 	if (likely(man->io_reserve_fastpath))
136 		return bdev->driver->io_mem_reserve(bdev, mem);
137 
138 	if (bdev->driver->io_mem_reserve &&
139 	    mem->bus.io_reserved_count++ == 0) {
140 retry:
141 		ret = bdev->driver->io_mem_reserve(bdev, mem);
142 		if (ret == -EAGAIN) {
143 			ret = ttm_mem_io_evict(man);
144 			if (ret == 0)
145 				goto retry;
146 		}
147 	}
148 	return ret;
149 }
150 EXPORT_SYMBOL(ttm_mem_io_reserve);
151 
152 void ttm_mem_io_free(struct ttm_bo_device *bdev,
153 		     struct ttm_mem_reg *mem)
154 {
155 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
156 
157 	if (likely(man->io_reserve_fastpath))
158 		return;
159 
160 	if (bdev->driver->io_mem_reserve &&
161 	    --mem->bus.io_reserved_count == 0 &&
162 	    bdev->driver->io_mem_free)
163 		bdev->driver->io_mem_free(bdev, mem);
164 
165 }
166 EXPORT_SYMBOL(ttm_mem_io_free);
167 
168 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
169 {
170 	struct ttm_mem_reg *mem = &bo->mem;
171 	int ret;
172 
173 	if (!mem->bus.io_reserved_vm) {
174 		struct ttm_mem_type_manager *man =
175 			&bo->bdev->man[mem->mem_type];
176 
177 		ret = ttm_mem_io_reserve(bo->bdev, mem);
178 		if (unlikely(ret != 0))
179 			return ret;
180 		mem->bus.io_reserved_vm = true;
181 		if (man->use_io_reserve_lru)
182 			list_add_tail(&bo->io_reserve_lru,
183 				      &man->io_reserve_lru);
184 	}
185 	return 0;
186 }
187 
188 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
189 {
190 	struct ttm_mem_reg *mem = &bo->mem;
191 
192 	if (mem->bus.io_reserved_vm) {
193 		mem->bus.io_reserved_vm = false;
194 		list_del_init(&bo->io_reserve_lru);
195 		ttm_mem_io_free(bo->bdev, mem);
196 	}
197 }
198 
199 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
200 			void **virtual)
201 {
202 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
203 	int ret;
204 	void *addr;
205 
206 	*virtual = NULL;
207 	(void) ttm_mem_io_lock(man, false);
208 	ret = ttm_mem_io_reserve(bdev, mem);
209 	ttm_mem_io_unlock(man);
210 	if (ret || !mem->bus.is_iomem)
211 		return ret;
212 
213 	if (mem->bus.addr) {
214 		addr = mem->bus.addr;
215 	} else {
216 		if (mem->placement & TTM_PL_FLAG_WC)
217 			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
218 		else
219 			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
220 		if (!addr) {
221 			(void) ttm_mem_io_lock(man, false);
222 			ttm_mem_io_free(bdev, mem);
223 			ttm_mem_io_unlock(man);
224 			return -ENOMEM;
225 		}
226 	}
227 	*virtual = addr;
228 	return 0;
229 }
230 
231 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
232 			 void *virtual)
233 {
234 	struct ttm_mem_type_manager *man;
235 
236 	man = &bdev->man[mem->mem_type];
237 
238 	if (virtual && mem->bus.addr == NULL)
239 		iounmap(virtual);
240 	(void) ttm_mem_io_lock(man, false);
241 	ttm_mem_io_free(bdev, mem);
242 	ttm_mem_io_unlock(man);
243 }
244 
245 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
246 {
247 	uint32_t *dstP =
248 	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
249 	uint32_t *srcP =
250 	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
251 
252 	int i;
253 	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
254 		iowrite32(ioread32(srcP++), dstP++);
255 	return 0;
256 }
257 
258 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
259 				unsigned long page,
260 				pgprot_t prot)
261 {
262 	struct page *d = ttm->pages[page];
263 	void *dst;
264 
265 	if (!d)
266 		return -ENOMEM;
267 
268 	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
269 
270 #ifdef CONFIG_X86
271 	dst = kmap_atomic_prot(d, prot);
272 #else
273 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
274 		dst = vmap(&d, 1, 0, prot);
275 	else
276 		dst = kmap(d);
277 #endif
278 	if (!dst)
279 		return -ENOMEM;
280 
281 	memcpy_fromio(dst, src, PAGE_SIZE);
282 
283 #ifdef CONFIG_X86
284 	kunmap_atomic(dst);
285 #else
286 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
287 		vunmap(dst);
288 	else
289 		kunmap(d);
290 #endif
291 
292 	return 0;
293 }
294 
295 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
296 				unsigned long page,
297 				pgprot_t prot)
298 {
299 	struct page *s = ttm->pages[page];
300 	void *src;
301 
302 	if (!s)
303 		return -ENOMEM;
304 
305 	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
306 #ifdef CONFIG_X86
307 	src = kmap_atomic_prot(s, prot);
308 #else
309 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
310 		src = vmap(&s, 1, 0, prot);
311 	else
312 		src = kmap(s);
313 #endif
314 	if (!src)
315 		return -ENOMEM;
316 
317 	memcpy_toio(dst, src, PAGE_SIZE);
318 
319 #ifdef CONFIG_X86
320 	kunmap_atomic(src);
321 #else
322 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
323 		vunmap(src);
324 	else
325 		kunmap(s);
326 #endif
327 
328 	return 0;
329 }
330 
331 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
332 		       bool interruptible, bool no_wait_gpu,
333 		       struct ttm_mem_reg *new_mem)
334 {
335 	struct ttm_bo_device *bdev = bo->bdev;
336 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
337 	struct ttm_tt *ttm = bo->ttm;
338 	struct ttm_mem_reg *old_mem = &bo->mem;
339 	struct ttm_mem_reg old_copy = *old_mem;
340 	void *old_iomap;
341 	void *new_iomap;
342 	int ret;
343 	unsigned long i;
344 	unsigned long page;
345 	unsigned long add = 0;
346 	int dir;
347 
348 	ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
349 	if (ret)
350 		return ret;
351 
352 	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
353 	if (ret)
354 		return ret;
355 	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
356 	if (ret)
357 		goto out;
358 
359 	/*
360 	 * Single TTM move. NOP.
361 	 */
362 	if (old_iomap == NULL && new_iomap == NULL)
363 		goto out2;
364 
365 	/*
366 	 * Don't move nonexistent data. Clear destination instead.
367 	 */
368 	if (old_iomap == NULL &&
369 	    (ttm == NULL || (ttm->state == tt_unpopulated &&
370 			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
371 		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
372 		goto out2;
373 	}
374 
375 	/*
376 	 * TTM might be null for moves within the same region.
377 	 */
378 	if (ttm && ttm->state == tt_unpopulated) {
379 		ret = ttm->bdev->driver->ttm_tt_populate(ttm);
380 		if (ret)
381 			goto out1;
382 	}
383 
384 	add = 0;
385 	dir = 1;
386 
387 	if ((old_mem->mem_type == new_mem->mem_type) &&
388 	    (new_mem->start < old_mem->start + old_mem->size)) {
389 		dir = -1;
390 		add = new_mem->num_pages - 1;
391 	}
392 
393 	for (i = 0; i < new_mem->num_pages; ++i) {
394 		page = i * dir + add;
395 		if (old_iomap == NULL) {
396 			pgprot_t prot = ttm_io_prot(old_mem->placement,
397 						    PAGE_KERNEL);
398 			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
399 						   prot);
400 		} else if (new_iomap == NULL) {
401 			pgprot_t prot = ttm_io_prot(new_mem->placement,
402 						    PAGE_KERNEL);
403 			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
404 						   prot);
405 		} else
406 			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
407 		if (ret)
408 			goto out1;
409 	}
410 	mb();
411 out2:
412 	old_copy = *old_mem;
413 	*old_mem = *new_mem;
414 	new_mem->mm_node = NULL;
415 
416 	if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
417 		ttm_tt_destroy(ttm);
418 		bo->ttm = NULL;
419 	}
420 
421 out1:
422 	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
423 out:
424 	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
425 
426 	/*
427 	 * On error, keep the mm node!
428 	 */
429 	if (!ret)
430 		ttm_bo_mem_put(bo, &old_copy);
431 	return ret;
432 }
433 EXPORT_SYMBOL(ttm_bo_move_memcpy);
434 
435 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
436 {
437 	kfree(bo);
438 }
439 
440 /**
441  * ttm_buffer_object_transfer
442  *
443  * @bo: A pointer to a struct ttm_buffer_object.
444  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
445  * holding the data of @bo with the old placement.
446  *
447  * This is a utility function that may be called after an accelerated move
448  * has been scheduled. A new buffer object is created as a placeholder for
449  * the old data while it's being copied. When that buffer object is idle,
450  * it can be destroyed, releasing the space of the old placement.
451  * Returns:
452  * !0: Failure.
453  */
454 
455 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
456 				      struct ttm_buffer_object **new_obj)
457 {
458 	struct ttm_buffer_object *fbo;
459 	int ret;
460 
461 	fbo = kmalloc(sizeof(*fbo), M_DRM, GFP_KERNEL);
462 	if (!fbo)
463 		return -ENOMEM;
464 
465 	*fbo = *bo;
466 
467 	/**
468 	 * Fix up members that we shouldn't copy directly:
469 	 * TODO: Explicit member copy would probably be better here.
470 	 */
471 
472 	atomic_inc(&bo->glob->bo_count);
473 	INIT_LIST_HEAD(&fbo->ddestroy);
474 	INIT_LIST_HEAD(&fbo->lru);
475 	INIT_LIST_HEAD(&fbo->swap);
476 	INIT_LIST_HEAD(&fbo->io_reserve_lru);
477 	lockinit(&fbo->wu_mutex, "dtfbwm", 0, LK_CANRECURSE);
478 	fbo->moving = NULL;
479 	drm_vma_node_reset(&fbo->vma_node);
480 	atomic_set(&fbo->cpu_writers, 0);
481 
482 	kref_init(&fbo->list_kref);
483 	kref_init(&fbo->kref);
484 	fbo->destroy = &ttm_transfered_destroy;
485 	fbo->acc_size = 0;
486 	fbo->resv = &fbo->ttm_resv;
487 	reservation_object_init(fbo->resv);
488 	ret = ww_mutex_trylock(&fbo->resv->lock);
489 	WARN_ON(!ret);
490 
491 	*new_obj = fbo;
492 	return 0;
493 }
494 
495 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
496 {
497 	/* Cached mappings need no adjustment */
498 	if (caching_flags & TTM_PL_FLAG_CACHED)
499 		return tmp;
500 
501 #if defined(__i386__) || defined(__x86_64__)
502 	if (caching_flags & TTM_PL_FLAG_WC)
503 		tmp = pgprot_writecombine(tmp);
504 	else
505 		tmp = pgprot_noncached(tmp);
506 #endif
507 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
508     defined(__powerpc__)
509 	if (caching_flags & TTM_PL_FLAG_WC)
510 		tmp = pgprot_writecombine(tmp);
511 	else
512 		tmp = pgprot_noncached(tmp);
513 #endif
514 #if defined(__sparc__) || defined(__mips__)
515 	tmp = pgprot_noncached(tmp);
516 #endif
517 	return tmp;
518 }
519 EXPORT_SYMBOL(ttm_io_prot);
520 
521 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
522 			  unsigned long offset,
523 			  unsigned long size,
524 			  struct ttm_bo_kmap_obj *map)
525 {
526 	struct ttm_mem_reg *mem = &bo->mem;
527 
528 	if (bo->mem.bus.addr) {
529 		map->bo_kmap_type = ttm_bo_map_premapped;
530 		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
531 	} else {
532 		map->bo_kmap_type = ttm_bo_map_iomap;
533 		if (mem->placement & TTM_PL_FLAG_WC)
534 			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
535 						  size);
536 		else
537 			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
538 						       size);
539 	}
540 	return (!map->virtual) ? -ENOMEM : 0;
541 }
542 
543 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
544 			   unsigned long start_page,
545 			   unsigned long num_pages,
546 			   struct ttm_bo_kmap_obj *map)
547 {
548 	struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
549 	struct ttm_tt *ttm = bo->ttm;
550 	int ret;
551 
552 	BUG_ON(!ttm);
553 
554 	if (ttm->state == tt_unpopulated) {
555 		ret = ttm->bdev->driver->ttm_tt_populate(ttm);
556 		if (ret)
557 			return ret;
558 	}
559 
560 	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
561 		/*
562 		 * We're mapping a single page, and the desired
563 		 * page protection is consistent with the bo.
564 		 */
565 
566 		map->bo_kmap_type = ttm_bo_map_kmap;
567 		map->page = ttm->pages[start_page];
568 		map->virtual = kmap(map->page);
569 	} else {
570 		/*
571 		 * We need to use vmap to get the desired page protection
572 		 * or to make the buffer object look contiguous.
573 		 */
574 		prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
575 		map->bo_kmap_type = ttm_bo_map_vmap;
576 		map->virtual = vmap(ttm->pages + start_page, num_pages,
577 				    0, prot);
578 	}
579 	return (!map->virtual) ? -ENOMEM : 0;
580 }
581 
582 int ttm_bo_kmap(struct ttm_buffer_object *bo,
583 		unsigned long start_page, unsigned long num_pages,
584 		struct ttm_bo_kmap_obj *map)
585 {
586 	struct ttm_mem_type_manager *man =
587 		&bo->bdev->man[bo->mem.mem_type];
588 	unsigned long offset, size;
589 	int ret;
590 
591 	map->virtual = NULL;
592 	map->bo = bo;
593 	if (num_pages > bo->num_pages)
594 		return -EINVAL;
595 	if (start_page > bo->num_pages)
596 		return -EINVAL;
597 #if 0
598 	if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
599 		return -EPERM;
600 #endif
601 	(void) ttm_mem_io_lock(man, false);
602 	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
603 	ttm_mem_io_unlock(man);
604 	if (ret)
605 		return ret;
606 	if (!bo->mem.bus.is_iomem) {
607 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
608 	} else {
609 		offset = start_page << PAGE_SHIFT;
610 		size = num_pages << PAGE_SHIFT;
611 		return ttm_bo_ioremap(bo, offset, size, map);
612 	}
613 }
614 EXPORT_SYMBOL(ttm_bo_kmap);
615 
616 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
617 {
618 	struct ttm_buffer_object *bo = map->bo;
619 	struct ttm_mem_type_manager *man =
620 		&bo->bdev->man[bo->mem.mem_type];
621 
622 	if (!map->virtual)
623 		return;
624 	switch (map->bo_kmap_type) {
625 	case ttm_bo_map_iomap:
626 		iounmap(map->virtual);
627 		break;
628 	case ttm_bo_map_vmap:
629 		vunmap(map->virtual);
630 		break;
631 	case ttm_bo_map_kmap:
632 		kunmap(map->page);
633 		break;
634 	case ttm_bo_map_premapped:
635 		break;
636 	default:
637 		BUG();
638 	}
639 	(void) ttm_mem_io_lock(man, false);
640 	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
641 	ttm_mem_io_unlock(man);
642 	map->virtual = NULL;
643 	map->page = NULL;
644 }
645 EXPORT_SYMBOL(ttm_bo_kunmap);
646 
647 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
648 			      struct dma_fence *fence,
649 			      bool evict,
650 			      struct ttm_mem_reg *new_mem)
651 {
652 	struct ttm_bo_device *bdev = bo->bdev;
653 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
654 	struct ttm_mem_reg *old_mem = &bo->mem;
655 	int ret;
656 	struct ttm_buffer_object *ghost_obj;
657 
658 	reservation_object_add_excl_fence(bo->resv, fence);
659 	if (evict) {
660 		ret = ttm_bo_wait(bo, false, false);
661 		if (ret)
662 			return ret;
663 
664 		if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
665 			ttm_tt_destroy(bo->ttm);
666 			bo->ttm = NULL;
667 		}
668 		ttm_bo_free_old_node(bo);
669 	} else {
670 		/**
671 		 * This should help pipeline ordinary buffer moves.
672 		 *
673 		 * Hang old buffer memory on a new buffer object,
674 		 * and leave it to be released when the GPU
675 		 * operation has completed.
676 		 */
677 
678 		dma_fence_put(bo->moving);
679 		bo->moving = dma_fence_get(fence);
680 
681 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
682 		if (ret)
683 			return ret;
684 
685 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
686 
687 		/**
688 		 * If we're not moving to fixed memory, the TTM object
689 		 * needs to stay alive. Otherwhise hang it on the ghost
690 		 * bo to be unbound and destroyed.
691 		 */
692 
693 		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
694 			ghost_obj->ttm = NULL;
695 		else
696 			bo->ttm = NULL;
697 
698 		ttm_bo_unreserve(ghost_obj);
699 		ttm_bo_unref(&ghost_obj);
700 	}
701 
702 	*old_mem = *new_mem;
703 	new_mem->mm_node = NULL;
704 
705 	return 0;
706 }
707 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
708 
709 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
710 			 struct dma_fence *fence, bool evict,
711 			 struct ttm_mem_reg *new_mem)
712 {
713 	struct ttm_bo_device *bdev = bo->bdev;
714 	struct ttm_mem_reg *old_mem = &bo->mem;
715 
716 	struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
717 	struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
718 
719 	int ret;
720 
721 	reservation_object_add_excl_fence(bo->resv, fence);
722 
723 	if (!evict) {
724 		struct ttm_buffer_object *ghost_obj;
725 
726 		/**
727 		 * This should help pipeline ordinary buffer moves.
728 		 *
729 		 * Hang old buffer memory on a new buffer object,
730 		 * and leave it to be released when the GPU
731 		 * operation has completed.
732 		 */
733 
734 		dma_fence_put(bo->moving);
735 		bo->moving = dma_fence_get(fence);
736 
737 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
738 		if (ret)
739 			return ret;
740 
741 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
742 
743 		/**
744 		 * If we're not moving to fixed memory, the TTM object
745 		 * needs to stay alive. Otherwhise hang it on the ghost
746 		 * bo to be unbound and destroyed.
747 		 */
748 
749 		if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
750 			ghost_obj->ttm = NULL;
751 		else
752 			bo->ttm = NULL;
753 
754 		ttm_bo_unreserve(ghost_obj);
755 		ttm_bo_unref(&ghost_obj);
756 
757 	} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
758 
759 		/**
760 		 * BO doesn't have a TTM we need to bind/unbind. Just remember
761 		 * this eviction and free up the allocation
762 		 */
763 
764 		lockmgr(&from->move_lock, LK_EXCLUSIVE);
765 		if (!from->move || dma_fence_is_later(fence, from->move)) {
766 			dma_fence_put(from->move);
767 			from->move = dma_fence_get(fence);
768 		}
769 		lockmgr(&from->move_lock, LK_RELEASE);
770 
771 		ttm_bo_free_old_node(bo);
772 
773 		dma_fence_put(bo->moving);
774 		bo->moving = dma_fence_get(fence);
775 
776 	} else {
777 		/**
778 		 * Last resort, wait for the move to be completed.
779 		 *
780 		 * Should never happen in pratice.
781 		 */
782 
783 		ret = ttm_bo_wait(bo, false, false);
784 		if (ret)
785 			return ret;
786 
787 		if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
788 			ttm_tt_destroy(bo->ttm);
789 			bo->ttm = NULL;
790 		}
791 		ttm_bo_free_old_node(bo);
792 	}
793 
794 	*old_mem = *new_mem;
795 	new_mem->mm_node = NULL;
796 
797 	return 0;
798 }
799 EXPORT_SYMBOL(ttm_bo_pipeline_move);
800