xref: /dragonfly/sys/dev/drm/ttm/ttm_bo_util.c (revision 655933d6)
1 /**************************************************************************
2  *
3  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include <drm/ttm/ttm_bo_driver.h>
32 #include <drm/ttm/ttm_placement.h>
33 #include <drm/drm_vma_manager.h>
34 #include <linux/io.h>
35 #include <linux/highmem.h>
36 #include <linux/wait.h>
37 #include <linux/slab.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/reservation.h>
41 
42 struct ttm_transfer_obj {
43 	struct ttm_buffer_object base;
44 	struct ttm_buffer_object *bo;
45 };
46 
47 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
48 {
49 	ttm_bo_mem_put(bo, &bo->mem);
50 }
51 
52 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
53 		   struct ttm_operation_ctx *ctx,
54 		    struct ttm_mem_reg *new_mem)
55 {
56 	struct ttm_tt *ttm = bo->ttm;
57 	struct ttm_mem_reg *old_mem = &bo->mem;
58 	int ret;
59 
60 	if (old_mem->mem_type != TTM_PL_SYSTEM) {
61 		ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
62 
63 		if (unlikely(ret != 0)) {
64 			if (ret != -ERESTARTSYS)
65 				pr_err("Failed to expire sync object before unbinding TTM\n");
66 			return ret;
67 		}
68 
69 		ttm_tt_unbind(ttm);
70 		ttm_bo_free_old_node(bo);
71 		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
72 				TTM_PL_MASK_MEM);
73 		old_mem->mem_type = TTM_PL_SYSTEM;
74 	}
75 
76 	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
77 	if (unlikely(ret != 0))
78 		return ret;
79 
80 	if (new_mem->mem_type != TTM_PL_SYSTEM) {
81 		ret = ttm_tt_bind(ttm, new_mem, ctx);
82 		if (unlikely(ret != 0))
83 			return ret;
84 	}
85 
86 	*old_mem = *new_mem;
87 	new_mem->mm_node = NULL;
88 
89 	return 0;
90 }
91 EXPORT_SYMBOL(ttm_bo_move_ttm);
92 
93 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
94 {
95 	if (likely(man->io_reserve_fastpath))
96 		return 0;
97 
98 	if (interruptible)
99 		return mutex_lock_interruptible(&man->io_reserve_mutex);
100 
101 	mutex_lock(&man->io_reserve_mutex);
102 	return 0;
103 }
104 EXPORT_SYMBOL(ttm_mem_io_lock);
105 
106 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
107 {
108 	if (likely(man->io_reserve_fastpath))
109 		return;
110 
111 	mutex_unlock(&man->io_reserve_mutex);
112 }
113 EXPORT_SYMBOL(ttm_mem_io_unlock);
114 
115 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
116 {
117 	struct ttm_buffer_object *bo;
118 
119 	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
120 		return -EAGAIN;
121 
122 	bo = list_first_entry(&man->io_reserve_lru,
123 			      struct ttm_buffer_object,
124 			      io_reserve_lru);
125 	list_del_init(&bo->io_reserve_lru);
126 	ttm_bo_unmap_virtual_locked(bo);
127 
128 	return 0;
129 }
130 
131 
132 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
133 		       struct ttm_mem_reg *mem)
134 {
135 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
136 	int ret = 0;
137 
138 	if (!bdev->driver->io_mem_reserve)
139 		return 0;
140 	if (likely(man->io_reserve_fastpath))
141 		return bdev->driver->io_mem_reserve(bdev, mem);
142 
143 	if (bdev->driver->io_mem_reserve &&
144 	    mem->bus.io_reserved_count++ == 0) {
145 retry:
146 		ret = bdev->driver->io_mem_reserve(bdev, mem);
147 		if (ret == -EAGAIN) {
148 			ret = ttm_mem_io_evict(man);
149 			if (ret == 0)
150 				goto retry;
151 		}
152 	}
153 	return ret;
154 }
155 EXPORT_SYMBOL(ttm_mem_io_reserve);
156 
157 void ttm_mem_io_free(struct ttm_bo_device *bdev,
158 		     struct ttm_mem_reg *mem)
159 {
160 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
161 
162 	if (likely(man->io_reserve_fastpath))
163 		return;
164 
165 	if (bdev->driver->io_mem_reserve &&
166 	    --mem->bus.io_reserved_count == 0 &&
167 	    bdev->driver->io_mem_free)
168 		bdev->driver->io_mem_free(bdev, mem);
169 
170 }
171 EXPORT_SYMBOL(ttm_mem_io_free);
172 
173 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_mem_reg *mem = &bo->mem;
176 	int ret;
177 
178 	if (!mem->bus.io_reserved_vm) {
179 		struct ttm_mem_type_manager *man =
180 			&bo->bdev->man[mem->mem_type];
181 
182 		ret = ttm_mem_io_reserve(bo->bdev, mem);
183 		if (unlikely(ret != 0))
184 			return ret;
185 		mem->bus.io_reserved_vm = true;
186 		if (man->use_io_reserve_lru)
187 			list_add_tail(&bo->io_reserve_lru,
188 				      &man->io_reserve_lru);
189 	}
190 	return 0;
191 }
192 
193 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
194 {
195 	struct ttm_mem_reg *mem = &bo->mem;
196 
197 	if (mem->bus.io_reserved_vm) {
198 		mem->bus.io_reserved_vm = false;
199 		list_del_init(&bo->io_reserve_lru);
200 		ttm_mem_io_free(bo->bdev, mem);
201 	}
202 }
203 
204 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
205 			void **virtual)
206 {
207 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
208 	int ret;
209 	void *addr;
210 
211 	*virtual = NULL;
212 	(void) ttm_mem_io_lock(man, false);
213 	ret = ttm_mem_io_reserve(bdev, mem);
214 	ttm_mem_io_unlock(man);
215 	if (ret || !mem->bus.is_iomem)
216 		return ret;
217 
218 	if (mem->bus.addr) {
219 		addr = mem->bus.addr;
220 	} else {
221 		if (mem->placement & TTM_PL_FLAG_WC)
222 			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
223 		else
224 			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
225 		if (!addr) {
226 			(void) ttm_mem_io_lock(man, false);
227 			ttm_mem_io_free(bdev, mem);
228 			ttm_mem_io_unlock(man);
229 			return -ENOMEM;
230 		}
231 	}
232 	*virtual = addr;
233 	return 0;
234 }
235 
236 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
237 			 void *virtual)
238 {
239 	struct ttm_mem_type_manager *man;
240 
241 	man = &bdev->man[mem->mem_type];
242 
243 	if (virtual && mem->bus.addr == NULL)
244 		iounmap(virtual);
245 	(void) ttm_mem_io_lock(man, false);
246 	ttm_mem_io_free(bdev, mem);
247 	ttm_mem_io_unlock(man);
248 }
249 
250 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
251 {
252 	uint32_t *dstP =
253 	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
254 	uint32_t *srcP =
255 	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
256 
257 	int i;
258 	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
259 		iowrite32(ioread32(srcP++), dstP++);
260 	return 0;
261 }
262 
263 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
264 				unsigned long page,
265 				pgprot_t prot)
266 {
267 	struct page *d = ttm->pages[page];
268 	void *dst;
269 
270 	if (!d)
271 		return -ENOMEM;
272 
273 	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
274 
275 #ifdef CONFIG_X86
276 	dst = kmap_atomic_prot(d, prot);
277 #else
278 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
279 		dst = vmap(&d, 1, 0, prot);
280 	else
281 		dst = kmap(d);
282 #endif
283 	if (!dst)
284 		return -ENOMEM;
285 
286 	memcpy_fromio(dst, src, PAGE_SIZE);
287 
288 #ifdef CONFIG_X86
289 	kunmap_atomic(dst);
290 #else
291 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
292 		vunmap(dst);
293 	else
294 		kunmap(d);
295 #endif
296 
297 	return 0;
298 }
299 
300 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
301 				unsigned long page,
302 				pgprot_t prot)
303 {
304 	struct page *s = ttm->pages[page];
305 	void *src;
306 
307 	if (!s)
308 		return -ENOMEM;
309 
310 	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
311 #ifdef CONFIG_X86
312 	src = kmap_atomic_prot(s, prot);
313 #else
314 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
315 		src = vmap(&s, 1, 0, prot);
316 	else
317 		src = kmap(s);
318 #endif
319 	if (!src)
320 		return -ENOMEM;
321 
322 	memcpy_toio(dst, src, PAGE_SIZE);
323 
324 #ifdef CONFIG_X86
325 	kunmap_atomic(src);
326 #else
327 	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
328 		vunmap(src);
329 	else
330 		kunmap(s);
331 #endif
332 
333 	return 0;
334 }
335 
336 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
337 		       struct ttm_operation_ctx *ctx,
338 		       struct ttm_mem_reg *new_mem)
339 {
340 	struct ttm_bo_device *bdev = bo->bdev;
341 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
342 	struct ttm_tt *ttm = bo->ttm;
343 	struct ttm_mem_reg *old_mem = &bo->mem;
344 	struct ttm_mem_reg old_copy = *old_mem;
345 	void *old_iomap;
346 	void *new_iomap;
347 	int ret;
348 	unsigned long i;
349 	unsigned long page;
350 	unsigned long add = 0;
351 	int dir;
352 
353 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
354 	if (ret)
355 		return ret;
356 
357 	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
358 	if (ret)
359 		return ret;
360 	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
361 	if (ret)
362 		goto out;
363 
364 	/*
365 	 * Single TTM move. NOP.
366 	 */
367 	if (old_iomap == NULL && new_iomap == NULL)
368 		goto out2;
369 
370 	/*
371 	 * Don't move nonexistent data. Clear destination instead.
372 	 */
373 	if (old_iomap == NULL &&
374 	    (ttm == NULL || (ttm->state == tt_unpopulated &&
375 			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
376 		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
377 		goto out2;
378 	}
379 
380 	/*
381 	 * TTM might be null for moves within the same region.
382 	 */
383 	if (ttm) {
384 		ret = ttm_tt_populate(ttm, ctx);
385 		if (ret)
386 			goto out1;
387 	}
388 
389 	add = 0;
390 	dir = 1;
391 
392 	if ((old_mem->mem_type == new_mem->mem_type) &&
393 	    (new_mem->start < old_mem->start + old_mem->size)) {
394 		dir = -1;
395 		add = new_mem->num_pages - 1;
396 	}
397 
398 	for (i = 0; i < new_mem->num_pages; ++i) {
399 		page = i * dir + add;
400 		if (old_iomap == NULL) {
401 			pgprot_t prot = ttm_io_prot(old_mem->placement,
402 						    PAGE_KERNEL);
403 			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
404 						   prot);
405 		} else if (new_iomap == NULL) {
406 			pgprot_t prot = ttm_io_prot(new_mem->placement,
407 						    PAGE_KERNEL);
408 			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
409 						   prot);
410 		} else {
411 			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
412 		}
413 		if (ret)
414 			goto out1;
415 	}
416 	mb();
417 out2:
418 	old_copy = *old_mem;
419 	*old_mem = *new_mem;
420 	new_mem->mm_node = NULL;
421 
422 	if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
423 		ttm_tt_destroy(ttm);
424 		bo->ttm = NULL;
425 	}
426 
427 out1:
428 	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
429 out:
430 	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
431 
432 	/*
433 	 * On error, keep the mm node!
434 	 */
435 	if (!ret)
436 		ttm_bo_mem_put(bo, &old_copy);
437 	return ret;
438 }
439 EXPORT_SYMBOL(ttm_bo_move_memcpy);
440 
441 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
442 {
443 	struct ttm_transfer_obj *fbo;
444 
445 	fbo = container_of(bo, struct ttm_transfer_obj, base);
446 	ttm_bo_put(fbo->bo);
447 	kfree(fbo);
448 }
449 
450 /**
451  * ttm_buffer_object_transfer
452  *
453  * @bo: A pointer to a struct ttm_buffer_object.
454  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
455  * holding the data of @bo with the old placement.
456  *
457  * This is a utility function that may be called after an accelerated move
458  * has been scheduled. A new buffer object is created as a placeholder for
459  * the old data while it's being copied. When that buffer object is idle,
460  * it can be destroyed, releasing the space of the old placement.
461  * Returns:
462  * !0: Failure.
463  */
464 
465 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
466 				      struct ttm_buffer_object **new_obj)
467 {
468 	struct ttm_transfer_obj *fbo;
469 	int ret;
470 
471 	fbo = kmalloc(sizeof(*fbo), M_DRM, GFP_KERNEL);
472 	if (!fbo)
473 		return -ENOMEM;
474 
475 	fbo->base = *bo;
476 	fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
477 
478 	ttm_bo_get(bo);
479 	fbo->bo = bo;
480 
481 	/**
482 	 * Fix up members that we shouldn't copy directly:
483 	 * TODO: Explicit member copy would probably be better here.
484 	 */
485 
486 	atomic_inc(&bo->bdev->glob->bo_count);
487 	INIT_LIST_HEAD(&fbo->base.ddestroy);
488 	INIT_LIST_HEAD(&fbo->base.lru);
489 	INIT_LIST_HEAD(&fbo->base.swap);
490 	INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
491 	lockinit(&fbo->base.wu_mutex, "dtfbwm", 0, LK_CANRECURSE);
492 	fbo->base.moving = NULL;
493 	drm_vma_node_reset(&fbo->base.vma_node);
494 	atomic_set(&fbo->base.cpu_writers, 0);
495 
496 	kref_init(&fbo->base.list_kref);
497 	kref_init(&fbo->base.kref);
498 	fbo->base.destroy = &ttm_transfered_destroy;
499 	fbo->base.acc_size = 0;
500 	fbo->base.resv = &fbo->base.ttm_resv;
501 	reservation_object_init(fbo->base.resv);
502 	ret = ww_mutex_trylock(&fbo->base.resv->lock);
503 	WARN_ON(!ret);
504 
505 	*new_obj = &fbo->base;
506 	return 0;
507 }
508 
509 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
510 {
511 	/* Cached mappings need no adjustment */
512 	if (caching_flags & TTM_PL_FLAG_CACHED)
513 		return tmp;
514 
515 #if defined(__i386__) || defined(__x86_64__)
516 	if (caching_flags & TTM_PL_FLAG_WC)
517 		tmp = pgprot_writecombine(tmp);
518 	else
519 		tmp = pgprot_noncached(tmp);
520 #endif
521 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
522     defined(__powerpc__)
523 	if (caching_flags & TTM_PL_FLAG_WC)
524 		tmp = pgprot_writecombine(tmp);
525 	else
526 		tmp = pgprot_noncached(tmp);
527 #endif
528 #if defined(__sparc__) || defined(__mips__)
529 	tmp = pgprot_noncached(tmp);
530 #endif
531 	return tmp;
532 }
533 EXPORT_SYMBOL(ttm_io_prot);
534 
535 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
536 			  unsigned long offset,
537 			  unsigned long size,
538 			  struct ttm_bo_kmap_obj *map)
539 {
540 	struct ttm_mem_reg *mem = &bo->mem;
541 
542 	if (bo->mem.bus.addr) {
543 		map->bo_kmap_type = ttm_bo_map_premapped;
544 		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
545 	} else {
546 		map->bo_kmap_type = ttm_bo_map_iomap;
547 		if (mem->placement & TTM_PL_FLAG_WC)
548 			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
549 						  size);
550 		else
551 			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
552 						       size);
553 	}
554 	return (!map->virtual) ? -ENOMEM : 0;
555 }
556 
557 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
558 			   unsigned long start_page,
559 			   unsigned long num_pages,
560 			   struct ttm_bo_kmap_obj *map)
561 {
562 	struct ttm_mem_reg *mem = &bo->mem;
563 	struct ttm_operation_ctx ctx = {
564 		.interruptible = false,
565 		.no_wait_gpu = false
566 	};
567 	struct ttm_tt *ttm = bo->ttm;
568 	pgprot_t prot;
569 	int ret;
570 
571 	BUG_ON(!ttm);
572 
573 	ret = ttm_tt_populate(ttm, &ctx);
574 	if (ret)
575 		return ret;
576 
577 	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
578 		/*
579 		 * We're mapping a single page, and the desired
580 		 * page protection is consistent with the bo.
581 		 */
582 
583 		map->bo_kmap_type = ttm_bo_map_kmap;
584 		map->page = ttm->pages[start_page];
585 		map->virtual = kmap(map->page);
586 	} else {
587 		/*
588 		 * We need to use vmap to get the desired page protection
589 		 * or to make the buffer object look contiguous.
590 		 */
591 		prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
592 		map->bo_kmap_type = ttm_bo_map_vmap;
593 		map->virtual = vmap(ttm->pages + start_page, num_pages,
594 				    0, prot);
595 	}
596 	return (!map->virtual) ? -ENOMEM : 0;
597 }
598 
599 int ttm_bo_kmap(struct ttm_buffer_object *bo,
600 		unsigned long start_page, unsigned long num_pages,
601 		struct ttm_bo_kmap_obj *map)
602 {
603 	struct ttm_mem_type_manager *man =
604 		&bo->bdev->man[bo->mem.mem_type];
605 	unsigned long offset, size;
606 	int ret;
607 
608 	map->virtual = NULL;
609 	map->bo = bo;
610 	if (num_pages > bo->num_pages)
611 		return -EINVAL;
612 	if (start_page > bo->num_pages)
613 		return -EINVAL;
614 #if 0
615 	if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
616 		return -EPERM;
617 #endif
618 	(void) ttm_mem_io_lock(man, false);
619 	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
620 	ttm_mem_io_unlock(man);
621 	if (ret)
622 		return ret;
623 	if (!bo->mem.bus.is_iomem) {
624 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
625 	} else {
626 		offset = start_page << PAGE_SHIFT;
627 		size = num_pages << PAGE_SHIFT;
628 		return ttm_bo_ioremap(bo, offset, size, map);
629 	}
630 }
631 EXPORT_SYMBOL(ttm_bo_kmap);
632 
633 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
634 {
635 	struct ttm_buffer_object *bo = map->bo;
636 	struct ttm_mem_type_manager *man =
637 		&bo->bdev->man[bo->mem.mem_type];
638 
639 	if (!map->virtual)
640 		return;
641 	switch (map->bo_kmap_type) {
642 	case ttm_bo_map_iomap:
643 		iounmap(map->virtual);
644 		break;
645 	case ttm_bo_map_vmap:
646 		vunmap(map->virtual);
647 		break;
648 	case ttm_bo_map_kmap:
649 		kunmap(map->page);
650 		break;
651 	case ttm_bo_map_premapped:
652 		break;
653 	default:
654 		BUG();
655 	}
656 	(void) ttm_mem_io_lock(man, false);
657 	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
658 	ttm_mem_io_unlock(man);
659 	map->virtual = NULL;
660 	map->page = NULL;
661 }
662 EXPORT_SYMBOL(ttm_bo_kunmap);
663 
664 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
665 			      struct dma_fence *fence,
666 			      bool evict,
667 			      struct ttm_mem_reg *new_mem)
668 {
669 	struct ttm_bo_device *bdev = bo->bdev;
670 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
671 	struct ttm_mem_reg *old_mem = &bo->mem;
672 	int ret;
673 	struct ttm_buffer_object *ghost_obj;
674 
675 	reservation_object_add_excl_fence(bo->resv, fence);
676 	if (evict) {
677 		ret = ttm_bo_wait(bo, false, false);
678 		if (ret)
679 			return ret;
680 
681 		if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
682 			ttm_tt_destroy(bo->ttm);
683 			bo->ttm = NULL;
684 		}
685 		ttm_bo_free_old_node(bo);
686 	} else {
687 		/**
688 		 * This should help pipeline ordinary buffer moves.
689 		 *
690 		 * Hang old buffer memory on a new buffer object,
691 		 * and leave it to be released when the GPU
692 		 * operation has completed.
693 		 */
694 
695 		dma_fence_put(bo->moving);
696 		bo->moving = dma_fence_get(fence);
697 
698 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
699 		if (ret)
700 			return ret;
701 
702 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
703 
704 		/**
705 		 * If we're not moving to fixed memory, the TTM object
706 		 * needs to stay alive. Otherwhise hang it on the ghost
707 		 * bo to be unbound and destroyed.
708 		 */
709 
710 		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
711 			ghost_obj->ttm = NULL;
712 		else
713 			bo->ttm = NULL;
714 
715 		ttm_bo_unreserve(ghost_obj);
716 		ttm_bo_put(ghost_obj);
717 	}
718 
719 	*old_mem = *new_mem;
720 	new_mem->mm_node = NULL;
721 
722 	return 0;
723 }
724 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
725 
726 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
727 			 struct dma_fence *fence, bool evict,
728 			 struct ttm_mem_reg *new_mem)
729 {
730 	struct ttm_bo_device *bdev = bo->bdev;
731 	struct ttm_mem_reg *old_mem = &bo->mem;
732 
733 	struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
734 	struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
735 
736 	int ret;
737 
738 	reservation_object_add_excl_fence(bo->resv, fence);
739 
740 	if (!evict) {
741 		struct ttm_buffer_object *ghost_obj;
742 
743 		/**
744 		 * This should help pipeline ordinary buffer moves.
745 		 *
746 		 * Hang old buffer memory on a new buffer object,
747 		 * and leave it to be released when the GPU
748 		 * operation has completed.
749 		 */
750 
751 		dma_fence_put(bo->moving);
752 		bo->moving = dma_fence_get(fence);
753 
754 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
755 		if (ret)
756 			return ret;
757 
758 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
759 
760 		/**
761 		 * If we're not moving to fixed memory, the TTM object
762 		 * needs to stay alive. Otherwhise hang it on the ghost
763 		 * bo to be unbound and destroyed.
764 		 */
765 
766 		if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
767 			ghost_obj->ttm = NULL;
768 		else
769 			bo->ttm = NULL;
770 
771 		ttm_bo_unreserve(ghost_obj);
772 		ttm_bo_put(ghost_obj);
773 
774 	} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
775 
776 		/**
777 		 * BO doesn't have a TTM we need to bind/unbind. Just remember
778 		 * this eviction and free up the allocation
779 		 */
780 
781 		lockmgr(&from->move_lock, LK_EXCLUSIVE);
782 		if (!from->move || dma_fence_is_later(fence, from->move)) {
783 			dma_fence_put(from->move);
784 			from->move = dma_fence_get(fence);
785 		}
786 		lockmgr(&from->move_lock, LK_RELEASE);
787 
788 		ttm_bo_free_old_node(bo);
789 
790 		dma_fence_put(bo->moving);
791 		bo->moving = dma_fence_get(fence);
792 
793 	} else {
794 		/**
795 		 * Last resort, wait for the move to be completed.
796 		 *
797 		 * Should never happen in pratice.
798 		 */
799 
800 		ret = ttm_bo_wait(bo, false, false);
801 		if (ret)
802 			return ret;
803 
804 		if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
805 			ttm_tt_destroy(bo->ttm);
806 			bo->ttm = NULL;
807 		}
808 		ttm_bo_free_old_node(bo);
809 	}
810 
811 	*old_mem = *new_mem;
812 	new_mem->mm_node = NULL;
813 
814 	return 0;
815 }
816 EXPORT_SYMBOL(ttm_bo_pipeline_move);
817 
818 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
819 {
820 	struct ttm_buffer_object *ghost;
821 	int ret;
822 
823 	ret = ttm_buffer_object_transfer(bo, &ghost);
824 	if (ret)
825 		return ret;
826 
827 	ret = reservation_object_copy_fences(ghost->resv, bo->resv);
828 	/* Last resort, wait for the BO to be idle when we are OOM */
829 	if (ret)
830 		ttm_bo_wait(bo, false, false);
831 
832 	memset(&bo->mem, 0, sizeof(bo->mem));
833 	bo->mem.mem_type = TTM_PL_SYSTEM;
834 	bo->ttm = NULL;
835 
836 	ttm_bo_unreserve(ghost);
837 	ttm_bo_put(ghost);
838 
839 	return 0;
840 }
841