xref: /dragonfly/sys/dev/drm/ttm/ttm_page_alloc_dma.c (revision 655933d6)
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3 
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25 
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35 
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38 
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #include <drm/ttm/ttm_set_memory.h>
54 
55 #define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION		4
57 #define FREE_ALL_PAGES			(~0U)
58 #define VADDR_FLAG_HUGE_POOL		1UL
59 #define VADDR_FLAG_UPDATED_COUNT	2UL
60 
61 enum pool_type {
62 	IS_UNDEFINED	= 0,
63 	IS_WC		= 1 << 1,
64 	IS_UC		= 1 << 2,
65 	IS_CACHED	= 1 << 3,
66 	IS_DMA32	= 1 << 4,
67 	IS_HUGE		= 1 << 5
68 };
69 
70 /*
71  * The pool structure. There are up to nine pools:
72  *  - generic (not restricted to DMA32):
73  *      - write combined, uncached, cached.
74  *  - dma32 (up to 2^32 - so up 4GB):
75  *      - write combined, uncached, cached.
76  *  - huge (not restricted to DMA32):
77  *      - write combined, uncached, cached.
78  * for each 'struct device'. The 'cached' is for pages that are actively used.
79  * The other ones can be shrunk by the shrinker API if neccessary.
80  * @pools: The 'struct device->dma_pools' link.
81  * @type: Type of the pool
82  * @lock: Protects the free_list from concurrnet access. Must be
83  * used with irqsave/irqrestore variants because pool allocator maybe called
84  * from delayed work.
85  * @free_list: Pool of pages that are free to be used. No order requirements.
86  * @dev: The device that is associated with these pools.
87  * @size: Size used during DMA allocation.
88  * @npages_free: Count of available pages for re-use.
89  * @npages_in_use: Count of pages that are in use.
90  * @nfrees: Stats when pool is shrinking.
91  * @nrefills: Stats when the pool is grown.
92  * @gfp_flags: Flags to pass for alloc_page.
93  * @name: Name of the pool.
94  * @dev_name: Name derieved from dev - similar to how dev_info works.
95  *   Used during shutdown as the dev_info during release is unavailable.
96  */
97 struct dma_pool {
98 	struct list_head pools; /* The 'struct device->dma_pools link */
99 	enum pool_type type;
100 	spinlock_t lock;
101 	struct list_head free_list;
102 	struct device *dev;
103 	unsigned size;
104 	unsigned npages_free;
105 	unsigned npages_in_use;
106 	unsigned long nfrees; /* Stats when shrunk. */
107 	unsigned long nrefills; /* Stats when grown. */
108 	gfp_t gfp_flags;
109 	char name[13]; /* "cached dma32" */
110 	char dev_name[64]; /* Constructed from dev */
111 };
112 
113 /*
114  * The accounting page keeping track of the allocated page along with
115  * the DMA address.
116  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
117  * @vaddr: The virtual address of the page and a flag if the page belongs to a
118  * huge pool
119  * @dma: The bus address of the page. If the page is not allocated
120  *   via the DMA API, it will be -1.
121  */
122 struct dma_page {
123 	struct list_head page_list;
124 	unsigned long vaddr;
125 	struct page *p;
126 	dma_addr_t dma;
127 };
128 
129 /*
130  * Limits for the pool. They are handled without locks because only place where
131  * they may change is in sysfs store. They won't have immediate effect anyway
132  * so forcing serialization to access them is pointless.
133  */
134 
135 struct ttm_pool_opts {
136 	unsigned	alloc_size;
137 	unsigned	max_size;
138 	unsigned	small;
139 };
140 
141 /*
142  * Contains the list of all of the 'struct device' and their corresponding
143  * DMA pools. Guarded by _mutex->lock.
144  * @pools: The link to 'struct ttm_pool_manager->pools'
145  * @dev: The 'struct device' associated with the 'pool'
146  * @pool: The 'struct dma_pool' associated with the 'dev'
147  */
148 struct device_pools {
149 	struct list_head pools;
150 	struct device *dev;
151 	struct dma_pool *pool;
152 };
153 
154 /*
155  * struct ttm_pool_manager - Holds memory pools for fast allocation
156  *
157  * @lock: Lock used when adding/removing from pools
158  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
159  * @options: Limits for the pool.
160  * @npools: Total amount of pools in existence.
161  * @shrinker: The structure used by [un|]register_shrinker
162  */
163 struct ttm_pool_manager {
164 	struct mutex		lock;
165 	struct list_head	pools;
166 	struct ttm_pool_opts	options;
167 	unsigned		npools;
168 	struct shrinker		mm_shrink;
169 	struct kobject		kobj;
170 };
171 
172 static struct ttm_pool_manager *_manager;
173 
174 static struct attribute ttm_page_pool_max = {
175 	.name = "pool_max_size",
176 	.mode = S_IRUGO | S_IWUSR
177 };
178 static struct attribute ttm_page_pool_small = {
179 	.name = "pool_small_allocation",
180 	.mode = S_IRUGO | S_IWUSR
181 };
182 static struct attribute ttm_page_pool_alloc_size = {
183 	.name = "pool_allocation_size",
184 	.mode = S_IRUGO | S_IWUSR
185 };
186 
187 static struct attribute *ttm_pool_attrs[] = {
188 	&ttm_page_pool_max,
189 	&ttm_page_pool_small,
190 	&ttm_page_pool_alloc_size,
191 	NULL
192 };
193 
194 static void ttm_pool_kobj_release(struct kobject *kobj)
195 {
196 	struct ttm_pool_manager *m =
197 		container_of(kobj, struct ttm_pool_manager, kobj);
198 	kfree(m);
199 }
200 
201 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
202 			      const char *buffer, size_t size)
203 {
204 	struct ttm_pool_manager *m =
205 		container_of(kobj, struct ttm_pool_manager, kobj);
206 	int chars;
207 	unsigned val;
208 
209 	chars = sscanf(buffer, "%u", &val);
210 	if (chars == 0)
211 		return size;
212 
213 	/* Convert kb to number of pages */
214 	val = val / (PAGE_SIZE >> 10);
215 
216 	if (attr == &ttm_page_pool_max) {
217 		m->options.max_size = val;
218 	} else if (attr == &ttm_page_pool_small) {
219 		m->options.small = val;
220 	} else if (attr == &ttm_page_pool_alloc_size) {
221 		if (val > NUM_PAGES_TO_ALLOC*8) {
222 			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
223 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
224 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
225 			return size;
226 		} else if (val > NUM_PAGES_TO_ALLOC) {
227 			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
228 				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229 		}
230 		m->options.alloc_size = val;
231 	}
232 
233 	return size;
234 }
235 
236 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
237 			     char *buffer)
238 {
239 	struct ttm_pool_manager *m =
240 		container_of(kobj, struct ttm_pool_manager, kobj);
241 	unsigned val = 0;
242 
243 	if (attr == &ttm_page_pool_max)
244 		val = m->options.max_size;
245 	else if (attr == &ttm_page_pool_small)
246 		val = m->options.small;
247 	else if (attr == &ttm_page_pool_alloc_size)
248 		val = m->options.alloc_size;
249 
250 	val = val * (PAGE_SIZE >> 10);
251 
252 	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
253 }
254 
255 static const struct sysfs_ops ttm_pool_sysfs_ops = {
256 	.show = &ttm_pool_show,
257 	.store = &ttm_pool_store,
258 };
259 
260 static struct kobj_type ttm_pool_kobj_type = {
261 	.release = &ttm_pool_kobj_release,
262 	.sysfs_ops = &ttm_pool_sysfs_ops,
263 	.default_attrs = ttm_pool_attrs,
264 };
265 
266 static int ttm_set_pages_caching(struct dma_pool *pool,
267 				 struct page **pages, unsigned cpages)
268 {
269 	int r = 0;
270 	/* Set page caching */
271 	if (pool->type & IS_UC) {
272 		r = ttm_set_pages_array_uc(pages, cpages);
273 		if (r)
274 			pr_err("%s: Failed to set %d pages to uc!\n",
275 			       pool->dev_name, cpages);
276 	}
277 	if (pool->type & IS_WC) {
278 		r = ttm_set_pages_array_wc(pages, cpages);
279 		if (r)
280 			pr_err("%s: Failed to set %d pages to wc!\n",
281 			       pool->dev_name, cpages);
282 	}
283 	return r;
284 }
285 
286 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
287 {
288 	dma_addr_t dma = d_page->dma;
289 	d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
290 	dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
291 
292 	kfree(d_page);
293 	d_page = NULL;
294 }
295 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
296 {
297 	struct dma_page *d_page;
298 	unsigned long attrs = 0;
299 	void *vaddr;
300 
301 	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
302 	if (!d_page)
303 		return NULL;
304 
305 	if (pool->type & IS_HUGE)
306 		attrs = DMA_ATTR_NO_WARN;
307 
308 	vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
309 				pool->gfp_flags, attrs);
310 	if (vaddr) {
311 		if (is_vmalloc_addr(vaddr))
312 			d_page->p = vmalloc_to_page(vaddr);
313 		else
314 			d_page->p = virt_to_page(vaddr);
315 		d_page->vaddr = (unsigned long)vaddr;
316 		if (pool->type & IS_HUGE)
317 			d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
318 	} else {
319 		kfree(d_page);
320 		d_page = NULL;
321 	}
322 	return d_page;
323 }
324 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
325 {
326 	enum pool_type type = IS_UNDEFINED;
327 
328 	if (flags & TTM_PAGE_FLAG_DMA32)
329 		type |= IS_DMA32;
330 	if (cstate == tt_cached)
331 		type |= IS_CACHED;
332 	else if (cstate == tt_uncached)
333 		type |= IS_UC;
334 	else
335 		type |= IS_WC;
336 
337 	return type;
338 }
339 
340 static void ttm_pool_update_free_locked(struct dma_pool *pool,
341 					unsigned freed_pages)
342 {
343 	pool->npages_free -= freed_pages;
344 	pool->nfrees += freed_pages;
345 
346 }
347 
348 /* set memory back to wb and free the pages. */
349 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
350 {
351 	struct page *page = d_page->p;
352 	unsigned num_pages;
353 
354 	/* Don't set WB on WB page pool. */
355 	if (!(pool->type & IS_CACHED)) {
356 		num_pages = pool->size / PAGE_SIZE;
357 		if (ttm_set_pages_wb(page, num_pages))
358 			pr_err("%s: Failed to set %d pages to wb!\n",
359 			       pool->dev_name, num_pages);
360 	}
361 
362 	list_del(&d_page->page_list);
363 	__ttm_dma_free_page(pool, d_page);
364 }
365 
366 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
367 			      struct page *pages[], unsigned npages)
368 {
369 	struct dma_page *d_page, *tmp;
370 
371 	if (pool->type & IS_HUGE) {
372 		list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
373 			ttm_dma_page_put(pool, d_page);
374 
375 		return;
376 	}
377 
378 	/* Don't set WB on WB page pool. */
379 	if (npages && !(pool->type & IS_CACHED) &&
380 	    ttm_set_pages_array_wb(pages, npages))
381 		pr_err("%s: Failed to set %d pages to wb!\n",
382 		       pool->dev_name, npages);
383 
384 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
385 		list_del(&d_page->page_list);
386 		__ttm_dma_free_page(pool, d_page);
387 	}
388 }
389 
390 /*
391  * Free pages from pool.
392  *
393  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
394  * number of pages in one go.
395  *
396  * @pool: to free the pages from
397  * @nr_free: If set to true will free all pages in pool
398  * @use_static: Safe to use static buffer
399  **/
400 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
401 				       bool use_static)
402 {
403 	static struct page *static_buf[NUM_PAGES_TO_ALLOC];
404 	unsigned long irq_flags;
405 	struct dma_page *dma_p, *tmp;
406 	struct page **pages_to_free;
407 	struct list_head d_pages;
408 	unsigned freed_pages = 0,
409 		 npages_to_free = nr_free;
410 
411 	if (NUM_PAGES_TO_ALLOC < nr_free)
412 		npages_to_free = NUM_PAGES_TO_ALLOC;
413 #if 0
414 	if (nr_free > 1) {
415 		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
416 			 pool->dev_name, pool->name, current->pid,
417 			 npages_to_free, nr_free);
418 	}
419 #endif
420 	if (use_static)
421 		pages_to_free = static_buf;
422 	else
423 		pages_to_free = kmalloc_array(npages_to_free,
424 					      sizeof(struct page *),
425 					      GFP_KERNEL);
426 
427 	if (!pages_to_free) {
428 		pr_debug("%s: Failed to allocate memory for pool free operation\n",
429 		       pool->dev_name);
430 		return 0;
431 	}
432 	INIT_LIST_HEAD(&d_pages);
433 restart:
434 	spin_lock_irqsave(&pool->lock, irq_flags);
435 
436 	/* We picking the oldest ones off the list */
437 	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
438 					 page_list) {
439 		if (freed_pages >= npages_to_free)
440 			break;
441 
442 		/* Move the dma_page from one list to another. */
443 		list_move(&dma_p->page_list, &d_pages);
444 
445 		pages_to_free[freed_pages++] = dma_p->p;
446 		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
447 		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
448 
449 			ttm_pool_update_free_locked(pool, freed_pages);
450 			/**
451 			 * Because changing page caching is costly
452 			 * we unlock the pool to prevent stalling.
453 			 */
454 			spin_unlock_irqrestore(&pool->lock, irq_flags);
455 
456 			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
457 					  freed_pages);
458 
459 			INIT_LIST_HEAD(&d_pages);
460 
461 			if (likely(nr_free != FREE_ALL_PAGES))
462 				nr_free -= freed_pages;
463 
464 			if (NUM_PAGES_TO_ALLOC >= nr_free)
465 				npages_to_free = nr_free;
466 			else
467 				npages_to_free = NUM_PAGES_TO_ALLOC;
468 
469 			freed_pages = 0;
470 
471 			/* free all so restart the processing */
472 			if (nr_free)
473 				goto restart;
474 
475 			/* Not allowed to fall through or break because
476 			 * following context is inside spinlock while we are
477 			 * outside here.
478 			 */
479 			goto out;
480 
481 		}
482 	}
483 
484 	/* remove range of pages from the pool */
485 	if (freed_pages) {
486 		ttm_pool_update_free_locked(pool, freed_pages);
487 		nr_free -= freed_pages;
488 	}
489 
490 	spin_unlock_irqrestore(&pool->lock, irq_flags);
491 
492 	if (freed_pages)
493 		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
494 out:
495 	if (pages_to_free != static_buf)
496 		kfree(pages_to_free);
497 	return nr_free;
498 }
499 
500 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
501 {
502 	struct device_pools *p;
503 	struct dma_pool *pool;
504 
505 	if (!dev)
506 		return;
507 
508 	mutex_lock(&_manager->lock);
509 	list_for_each_entry_reverse(p, &_manager->pools, pools) {
510 		if (p->dev != dev)
511 			continue;
512 		pool = p->pool;
513 		if (pool->type != type)
514 			continue;
515 
516 		list_del(&p->pools);
517 		kfree(p);
518 		_manager->npools--;
519 		break;
520 	}
521 	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
522 		if (pool->type != type)
523 			continue;
524 		/* Takes a spinlock.. */
525 		/* OK to use static buffer since global mutex is held. */
526 		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
527 		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
528 		/* This code path is called after _all_ references to the
529 		 * struct device has been dropped - so nobody should be
530 		 * touching it. In case somebody is trying to _add_ we are
531 		 * guarded by the mutex. */
532 		list_del(&pool->pools);
533 		kfree(pool);
534 		break;
535 	}
536 	mutex_unlock(&_manager->lock);
537 }
538 
539 /*
540  * On free-ing of the 'struct device' this deconstructor is run.
541  * Albeit the pool might have already been freed earlier.
542  */
543 static void ttm_dma_pool_release(struct device *dev, void *res)
544 {
545 	struct dma_pool *pool = *(struct dma_pool **)res;
546 
547 	if (pool)
548 		ttm_dma_free_pool(dev, pool->type);
549 }
550 
551 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
552 {
553 	return *(struct dma_pool **)res == match_data;
554 }
555 
556 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
557 					  enum pool_type type)
558 {
559 	const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
560 	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
561 	struct device_pools *sec_pool = NULL;
562 	struct dma_pool *pool = NULL, **ptr;
563 	unsigned i;
564 	int ret = -ENODEV;
565 	char *p;
566 
567 	if (!dev)
568 		return NULL;
569 
570 	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
571 	if (!ptr)
572 		return NULL;
573 
574 	ret = -ENOMEM;
575 
576 	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
577 			    dev_to_node(dev));
578 	if (!pool)
579 		goto err_mem;
580 
581 	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
582 				dev_to_node(dev));
583 	if (!sec_pool)
584 		goto err_mem;
585 
586 	INIT_LIST_HEAD(&sec_pool->pools);
587 	sec_pool->dev = dev;
588 	sec_pool->pool =  pool;
589 
590 	INIT_LIST_HEAD(&pool->free_list);
591 	INIT_LIST_HEAD(&pool->pools);
592 	spin_lock_init(&pool->lock);
593 	pool->dev = dev;
594 	pool->npages_free = pool->npages_in_use = 0;
595 	pool->nfrees = 0;
596 	pool->gfp_flags = flags;
597 	if (type & IS_HUGE)
598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
599 		pool->size = HPAGE_PMD_SIZE;
600 #else
601 		BUG();
602 #endif
603 	else
604 		pool->size = PAGE_SIZE;
605 	pool->type = type;
606 	pool->nrefills = 0;
607 	p = pool->name;
608 	for (i = 0; i < ARRAY_SIZE(t); i++) {
609 		if (type & t[i]) {
610 			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
611 				      "%s", n[i]);
612 		}
613 	}
614 	*p = 0;
615 	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
616 	 * - the kobj->name has already been deallocated.*/
617 	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
618 		 dev_driver_string(dev), dev_name(dev));
619 	mutex_lock(&_manager->lock);
620 	/* You can get the dma_pool from either the global: */
621 	list_add(&sec_pool->pools, &_manager->pools);
622 	_manager->npools++;
623 	/* or from 'struct device': */
624 	list_add(&pool->pools, &dev->dma_pools);
625 	mutex_unlock(&_manager->lock);
626 
627 	*ptr = pool;
628 	devres_add(dev, ptr);
629 
630 	return pool;
631 err_mem:
632 	devres_free(ptr);
633 	kfree(sec_pool);
634 	kfree(pool);
635 	return ERR_PTR(ret);
636 }
637 
638 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
639 					  enum pool_type type)
640 {
641 	struct dma_pool *pool, *tmp;
642 
643 	if (type == IS_UNDEFINED)
644 		return NULL;
645 
646 	/* NB: We iterate on the 'struct dev' which has no spinlock, but
647 	 * it does have a kref which we have taken. The kref is taken during
648 	 * graphic driver loading - in the drm_pci_init it calls either
649 	 * pci_dev_get or pci_register_driver which both end up taking a kref
650 	 * on 'struct device'.
651 	 *
652 	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
653 	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
654 	 * thing is at that point of time there are no pages associated with the
655 	 * driver so this function will not be called.
656 	 */
657 	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
658 		if (pool->type == type)
659 			return pool;
660 	return NULL;
661 }
662 
663 /*
664  * Free pages the pages that failed to change the caching state. If there
665  * are pages that have changed their caching state already put them to the
666  * pool.
667  */
668 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
669 						 struct list_head *d_pages,
670 						 struct page **failed_pages,
671 						 unsigned cpages)
672 {
673 	struct dma_page *d_page, *tmp;
674 	struct page *p;
675 	unsigned i = 0;
676 
677 	p = failed_pages[0];
678 	if (!p)
679 		return;
680 	/* Find the failed page. */
681 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
682 		if (d_page->p != p)
683 			continue;
684 		/* .. and then progress over the full list. */
685 		list_del(&d_page->page_list);
686 		__ttm_dma_free_page(pool, d_page);
687 		if (++i < cpages)
688 			p = failed_pages[i];
689 		else
690 			break;
691 	}
692 
693 }
694 
695 /*
696  * Allocate 'count' pages, and put 'need' number of them on the
697  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
698  * The full list of pages should also be on 'd_pages'.
699  * We return zero for success, and negative numbers as errors.
700  */
701 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
702 					struct list_head *d_pages,
703 					unsigned count)
704 {
705 	struct page **caching_array;
706 	struct dma_page *dma_p;
707 	struct page *p;
708 	int r = 0;
709 	unsigned i, j, npages, cpages;
710 	unsigned max_cpages = min(count,
711 			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
712 
713 	/* allocate array for page caching change */
714 	caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
715 				      GFP_KERNEL);
716 
717 	if (!caching_array) {
718 		pr_debug("%s: Unable to allocate table for new pages\n",
719 		       pool->dev_name);
720 		return -ENOMEM;
721 	}
722 
723 	if (count > 1)
724 		pr_debug("%s: (%s:%d) Getting %d pages\n",
725 			 pool->dev_name, pool->name, current->pid, count);
726 
727 	for (i = 0, cpages = 0; i < count; ++i) {
728 		dma_p = __ttm_dma_alloc_page(pool);
729 		if (!dma_p) {
730 			pr_debug("%s: Unable to get page %u\n",
731 				 pool->dev_name, i);
732 
733 			/* store already allocated pages in the pool after
734 			 * setting the caching state */
735 			if (cpages) {
736 				r = ttm_set_pages_caching(pool, caching_array,
737 							  cpages);
738 				if (r)
739 					ttm_dma_handle_caching_state_failure(
740 						pool, d_pages, caching_array,
741 						cpages);
742 			}
743 			r = -ENOMEM;
744 			goto out;
745 		}
746 		p = dma_p->p;
747 		list_add(&dma_p->page_list, d_pages);
748 
749 #ifdef CONFIG_HIGHMEM
750 		/* gfp flags of highmem page should never be dma32 so we
751 		 * we should be fine in such case
752 		 */
753 		if (PageHighMem(p))
754 			continue;
755 #endif
756 
757 		npages = pool->size / PAGE_SIZE;
758 		for (j = 0; j < npages; ++j) {
759 			caching_array[cpages++] = p + j;
760 			if (cpages == max_cpages) {
761 				/* Note: Cannot hold the spinlock */
762 				r = ttm_set_pages_caching(pool, caching_array,
763 							  cpages);
764 				if (r) {
765 					ttm_dma_handle_caching_state_failure(
766 					     pool, d_pages, caching_array,
767 					     cpages);
768 					goto out;
769 				}
770 				cpages = 0;
771 			}
772 		}
773 	}
774 
775 	if (cpages) {
776 		r = ttm_set_pages_caching(pool, caching_array, cpages);
777 		if (r)
778 			ttm_dma_handle_caching_state_failure(pool, d_pages,
779 					caching_array, cpages);
780 	}
781 out:
782 	kfree(caching_array);
783 	return r;
784 }
785 
786 /*
787  * @return count of pages still required to fulfill the request.
788  */
789 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
790 					 unsigned long *irq_flags)
791 {
792 	unsigned count = _manager->options.small;
793 	int r = pool->npages_free;
794 
795 	if (count > pool->npages_free) {
796 		struct list_head d_pages;
797 
798 		INIT_LIST_HEAD(&d_pages);
799 
800 		spin_unlock_irqrestore(&pool->lock, *irq_flags);
801 
802 		/* Returns how many more are neccessary to fulfill the
803 		 * request. */
804 		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
805 
806 		spin_lock_irqsave(&pool->lock, *irq_flags);
807 		if (!r) {
808 			/* Add the fresh to the end.. */
809 			list_splice(&d_pages, &pool->free_list);
810 			++pool->nrefills;
811 			pool->npages_free += count;
812 			r = count;
813 		} else {
814 			struct dma_page *d_page;
815 			unsigned cpages = 0;
816 
817 			pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
818 				 pool->dev_name, pool->name, r);
819 
820 			list_for_each_entry(d_page, &d_pages, page_list) {
821 				cpages++;
822 			}
823 			list_splice_tail(&d_pages, &pool->free_list);
824 			pool->npages_free += cpages;
825 			r = cpages;
826 		}
827 	}
828 	return r;
829 }
830 
831 /*
832  * The populate list is actually a stack (not that is matters as TTM
833  * allocates one page at a time.
834  * return dma_page pointer if success, otherwise NULL.
835  */
836 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
837 				  struct ttm_dma_tt *ttm_dma,
838 				  unsigned index)
839 {
840 	struct dma_page *d_page = NULL;
841 	struct ttm_tt *ttm = &ttm_dma->ttm;
842 	unsigned long irq_flags;
843 	int count;
844 
845 	spin_lock_irqsave(&pool->lock, irq_flags);
846 	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
847 	if (count) {
848 		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
849 		ttm->pages[index] = d_page->p;
850 		ttm_dma->dma_address[index] = d_page->dma;
851 		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
852 		pool->npages_in_use += 1;
853 		pool->npages_free -= 1;
854 	}
855 	spin_unlock_irqrestore(&pool->lock, irq_flags);
856 	return d_page;
857 }
858 
859 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
860 {
861 	struct ttm_tt *ttm = &ttm_dma->ttm;
862 	gfp_t gfp_flags;
863 
864 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
865 		gfp_flags = GFP_USER | GFP_DMA32;
866 	else
867 		gfp_flags = GFP_HIGHUSER;
868 	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
869 		gfp_flags |= __GFP_ZERO;
870 
871 	if (huge) {
872 		gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
873 			__GFP_KSWAPD_RECLAIM;
874 		gfp_flags &= ~__GFP_MOVABLE;
875 		gfp_flags &= ~__GFP_COMP;
876 	}
877 
878 	if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
879 		gfp_flags |= __GFP_RETRY_MAYFAIL;
880 
881 	return gfp_flags;
882 }
883 
884 /*
885  * On success pages list will hold count number of correctly
886  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
887  */
888 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
889 			struct ttm_operation_ctx *ctx)
890 {
891 	struct ttm_tt *ttm = &ttm_dma->ttm;
892 	struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
893 	unsigned long num_pages = ttm->num_pages;
894 	struct dma_pool *pool;
895 	struct dma_page *d_page;
896 	enum pool_type type;
897 	unsigned i;
898 	int ret;
899 
900 	if (ttm->state != tt_unpopulated)
901 		return 0;
902 
903 	if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
904 		return -ENOMEM;
905 
906 	INIT_LIST_HEAD(&ttm_dma->pages_list);
907 	i = 0;
908 
909 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
910 
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
912 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
913 		goto skip_huge;
914 
915 	pool = ttm_dma_find_pool(dev, type | IS_HUGE);
916 	if (!pool) {
917 		gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
918 
919 		pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
920 		if (IS_ERR_OR_NULL(pool))
921 			goto skip_huge;
922 	}
923 
924 	while (num_pages >= HPAGE_PMD_NR) {
925 		unsigned j;
926 
927 		d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
928 		if (!d_page)
929 			break;
930 
931 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
932 						pool->size, ctx);
933 		if (unlikely(ret != 0)) {
934 			ttm_dma_unpopulate(ttm_dma, dev);
935 			return -ENOMEM;
936 		}
937 
938 		d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
939 		for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
940 			ttm->pages[j] = ttm->pages[j - 1] + 1;
941 			ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
942 				PAGE_SIZE;
943 		}
944 
945 		i += HPAGE_PMD_NR;
946 		num_pages -= HPAGE_PMD_NR;
947 	}
948 
949 skip_huge:
950 #endif
951 
952 	pool = ttm_dma_find_pool(dev, type);
953 	if (!pool) {
954 		gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
955 
956 		pool = ttm_dma_pool_init(dev, gfp_flags, type);
957 		if (IS_ERR_OR_NULL(pool))
958 			return -ENOMEM;
959 	}
960 
961 	while (num_pages) {
962 		d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
963 		if (!d_page) {
964 			ttm_dma_unpopulate(ttm_dma, dev);
965 			return -ENOMEM;
966 		}
967 
968 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
969 						pool->size, ctx);
970 		if (unlikely(ret != 0)) {
971 			ttm_dma_unpopulate(ttm_dma, dev);
972 			return -ENOMEM;
973 		}
974 
975 		d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
976 		++i;
977 		--num_pages;
978 	}
979 
980 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
981 		ret = ttm_tt_swapin(ttm);
982 		if (unlikely(ret != 0)) {
983 			ttm_dma_unpopulate(ttm_dma, dev);
984 			return ret;
985 		}
986 	}
987 
988 	ttm->state = tt_unbound;
989 	return 0;
990 }
991 EXPORT_SYMBOL_GPL(ttm_dma_populate);
992 
993 /* Put all pages in pages list to correct pool to wait for reuse */
994 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
995 {
996 	struct ttm_tt *ttm = &ttm_dma->ttm;
997 	struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
998 	struct dma_pool *pool;
999 	struct dma_page *d_page, *next;
1000 	enum pool_type type;
1001 	bool is_cached = false;
1002 	unsigned count, i, npages = 0;
1003 	unsigned long irq_flags;
1004 
1005 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1006 
1007 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1008 	pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1009 	if (pool) {
1010 		count = 0;
1011 		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1012 					 page_list) {
1013 			if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1014 				continue;
1015 
1016 			count++;
1017 			if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1018 				ttm_mem_global_free_page(mem_glob, d_page->p,
1019 							 pool->size);
1020 				d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1021 			}
1022 			ttm_dma_page_put(pool, d_page);
1023 		}
1024 
1025 		spin_lock_irqsave(&pool->lock, irq_flags);
1026 		pool->npages_in_use -= count;
1027 		pool->nfrees += count;
1028 		spin_unlock_irqrestore(&pool->lock, irq_flags);
1029 	}
1030 #endif
1031 
1032 	pool = ttm_dma_find_pool(dev, type);
1033 	if (!pool)
1034 		return;
1035 
1036 	is_cached = (ttm_dma_find_pool(pool->dev,
1037 		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1038 
1039 	/* make sure pages array match list and count number of pages */
1040 	count = 0;
1041 	list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1042 				 page_list) {
1043 		ttm->pages[count] = d_page->p;
1044 		count++;
1045 
1046 		if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1047 			ttm_mem_global_free_page(mem_glob, d_page->p,
1048 						 pool->size);
1049 			d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1050 		}
1051 
1052 		if (is_cached)
1053 			ttm_dma_page_put(pool, d_page);
1054 	}
1055 
1056 	spin_lock_irqsave(&pool->lock, irq_flags);
1057 	pool->npages_in_use -= count;
1058 	if (is_cached) {
1059 		pool->nfrees += count;
1060 	} else {
1061 		pool->npages_free += count;
1062 		list_splice(&ttm_dma->pages_list, &pool->free_list);
1063 		/*
1064 		 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1065 		 * to free in order to minimize calls to set_memory_wb().
1066 		 */
1067 		if (pool->npages_free >= (_manager->options.max_size +
1068 					  NUM_PAGES_TO_ALLOC))
1069 			npages = pool->npages_free - _manager->options.max_size;
1070 	}
1071 	spin_unlock_irqrestore(&pool->lock, irq_flags);
1072 
1073 	INIT_LIST_HEAD(&ttm_dma->pages_list);
1074 	for (i = 0; i < ttm->num_pages; i++) {
1075 		ttm->pages[i] = NULL;
1076 		ttm_dma->dma_address[i] = 0;
1077 	}
1078 
1079 	/* shrink pool if necessary (only on !is_cached pools)*/
1080 	if (npages)
1081 		ttm_dma_page_pool_free(pool, npages, false);
1082 	ttm->state = tt_unpopulated;
1083 }
1084 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1085 
1086 /**
1087  * Callback for mm to request pool to reduce number of page held.
1088  *
1089  * XXX: (dchinner) Deadlock warning!
1090  *
1091  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1092  * shrinkers
1093  */
1094 static unsigned long
1095 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1096 {
1097 	static unsigned start_pool;
1098 	unsigned idx = 0;
1099 	unsigned pool_offset;
1100 	unsigned shrink_pages = sc->nr_to_scan;
1101 	struct device_pools *p;
1102 	unsigned long freed = 0;
1103 
1104 	if (list_empty(&_manager->pools))
1105 		return SHRINK_STOP;
1106 
1107 	if (!mutex_trylock(&_manager->lock))
1108 		return SHRINK_STOP;
1109 	if (!_manager->npools)
1110 		goto out;
1111 	pool_offset = ++start_pool % _manager->npools;
1112 	list_for_each_entry(p, &_manager->pools, pools) {
1113 		unsigned nr_free;
1114 
1115 		if (!p->dev)
1116 			continue;
1117 		if (shrink_pages == 0)
1118 			break;
1119 		/* Do it in round-robin fashion. */
1120 		if (++idx < pool_offset)
1121 			continue;
1122 		nr_free = shrink_pages;
1123 		/* OK to use static buffer since global mutex is held. */
1124 		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1125 		freed += nr_free - shrink_pages;
1126 
1127 		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1128 			 p->pool->dev_name, p->pool->name, current->pid,
1129 			 nr_free, shrink_pages);
1130 	}
1131 out:
1132 	mutex_unlock(&_manager->lock);
1133 	return freed;
1134 }
1135 
1136 static unsigned long
1137 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1138 {
1139 	struct device_pools *p;
1140 	unsigned long count = 0;
1141 
1142 	if (!mutex_trylock(&_manager->lock))
1143 		return 0;
1144 	list_for_each_entry(p, &_manager->pools, pools)
1145 		count += p->pool->npages_free;
1146 	mutex_unlock(&_manager->lock);
1147 	return count;
1148 }
1149 
1150 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1151 {
1152 	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1153 	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1154 	manager->mm_shrink.seeks = 1;
1155 	return register_shrinker(&manager->mm_shrink);
1156 }
1157 
1158 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1159 {
1160 	unregister_shrinker(&manager->mm_shrink);
1161 }
1162 
1163 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1164 {
1165 	int ret;
1166 
1167 	WARN_ON(_manager);
1168 
1169 	pr_info("Initializing DMA pool allocator\n");
1170 
1171 	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1172 	if (!_manager)
1173 		return -ENOMEM;
1174 
1175 	mutex_init(&_manager->lock);
1176 	INIT_LIST_HEAD(&_manager->pools);
1177 
1178 	_manager->options.max_size = max_pages;
1179 	_manager->options.small = SMALL_ALLOCATION;
1180 	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1181 
1182 	/* This takes care of auto-freeing the _manager */
1183 	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1184 				   &glob->kobj, "dma_pool");
1185 	if (unlikely(ret != 0))
1186 		goto error;
1187 
1188 	ret = ttm_dma_pool_mm_shrink_init(_manager);
1189 	if (unlikely(ret != 0))
1190 		goto error;
1191 	return 0;
1192 
1193 error:
1194 	kobject_put(&_manager->kobj);
1195 	_manager = NULL;
1196 	return ret;
1197 }
1198 
1199 void ttm_dma_page_alloc_fini(void)
1200 {
1201 	struct device_pools *p, *t;
1202 
1203 	pr_info("Finalizing DMA pool allocator\n");
1204 	ttm_dma_pool_mm_shrink_fini(_manager);
1205 
1206 	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1207 		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1208 			current->pid);
1209 		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1210 			ttm_dma_pool_match, p->pool));
1211 		ttm_dma_free_pool(p->dev, p->pool->type);
1212 	}
1213 	kobject_put(&_manager->kobj);
1214 	_manager = NULL;
1215 }
1216 
1217 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1218 {
1219 	struct device_pools *p;
1220 	struct dma_pool *pool = NULL;
1221 
1222 	if (!_manager) {
1223 		seq_printf(m, "No pool allocator running.\n");
1224 		return 0;
1225 	}
1226 	seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
1227 	mutex_lock(&_manager->lock);
1228 	list_for_each_entry(p, &_manager->pools, pools) {
1229 		struct device *dev = p->dev;
1230 		if (!dev)
1231 			continue;
1232 		pool = p->pool;
1233 		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1234 				pool->name, pool->nrefills,
1235 				pool->nfrees, pool->npages_in_use,
1236 				pool->npages_free,
1237 				pool->dev_name);
1238 	}
1239 	mutex_unlock(&_manager->lock);
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1243 
1244 #endif
1245