xref: /dragonfly/sys/dev/drm/ttm/ttm_tt.c (revision 3ff63cda)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <drm/drm_mem_util.h>
42 #include <drm/ttm/ttm_module.h>
43 #include <drm/ttm/ttm_bo_driver.h>
44 #include <drm/ttm/ttm_placement.h>
45 #include <drm/ttm/ttm_page_alloc.h>
46 
47 /**
48  * Allocates storage for pointers to the pages that back the ttm.
49  */
50 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
51 {
52 	ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*));
53 }
54 
55 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
56 {
57 	ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages, sizeof(void*));
58 	ttm->dma_address = drm_calloc_large(ttm->ttm.num_pages,
59 					    sizeof(*ttm->dma_address));
60 }
61 
62 #ifdef CONFIG_X86
63 static inline int ttm_tt_set_page_caching(struct page *p,
64 					  enum ttm_caching_state c_old,
65 					  enum ttm_caching_state c_new)
66 {
67 	int ret = 0;
68 
69 #if 0
70 	if (PageHighMem(p))
71 		return 0;
72 #endif
73 
74 	if (c_old != tt_cached) {
75 		/* p isn't in the default caching state, set it to
76 		 * writeback first to free its current memtype. */
77 
78 		ret = set_pages_wb(p, 1);
79 		if (ret)
80 			return ret;
81 	}
82 
83 	if (c_new == tt_wc)
84 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_WRITE_COMBINING);
85 	else if (c_new == tt_uncached)
86 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_UNCACHEABLE);
87 
88 	return (0);
89 }
90 #else /* CONFIG_X86 */
91 static inline int ttm_tt_set_page_caching(struct page *p,
92 					  enum ttm_caching_state c_old,
93 					  enum ttm_caching_state c_new)
94 {
95 	return 0;
96 }
97 #endif /* CONFIG_X86 */
98 
99 /*
100  * Change caching policy for the linear kernel map
101  * for range of pages in a ttm.
102  */
103 
104 static int ttm_tt_set_caching(struct ttm_tt *ttm,
105 			      enum ttm_caching_state c_state)
106 {
107 	int i, j;
108 	struct page *cur_page;
109 	int ret;
110 
111 	if (ttm->caching_state == c_state)
112 		return 0;
113 
114 	if (ttm->state == tt_unpopulated) {
115 		/* Change caching but don't populate */
116 		ttm->caching_state = c_state;
117 		return 0;
118 	}
119 
120 	if (ttm->caching_state == tt_cached)
121 		drm_clflush_pages(ttm->pages, ttm->num_pages);
122 
123 	for (i = 0; i < ttm->num_pages; ++i) {
124 		cur_page = ttm->pages[i];
125 		if (likely(cur_page != NULL)) {
126 			ret = ttm_tt_set_page_caching(cur_page,
127 						      ttm->caching_state,
128 						      c_state);
129 			if (unlikely(ret != 0))
130 				goto out_err;
131 		}
132 	}
133 
134 	ttm->caching_state = c_state;
135 
136 	return 0;
137 
138 out_err:
139 	for (j = 0; j < i; ++j) {
140 		cur_page = ttm->pages[j];
141 		if (likely(cur_page != NULL)) {
142 			(void)ttm_tt_set_page_caching(cur_page, c_state,
143 						      ttm->caching_state);
144 		}
145 	}
146 
147 	return ret;
148 }
149 
150 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
151 {
152 	enum ttm_caching_state state;
153 
154 	if (placement & TTM_PL_FLAG_WC)
155 		state = tt_wc;
156 	else if (placement & TTM_PL_FLAG_UNCACHED)
157 		state = tt_uncached;
158 	else
159 		state = tt_cached;
160 
161 	return ttm_tt_set_caching(ttm, state);
162 }
163 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
164 
165 void ttm_tt_destroy(struct ttm_tt *ttm)
166 {
167 	if (unlikely(ttm == NULL))
168 		return;
169 
170 	if (ttm->state == tt_bound) {
171 		ttm_tt_unbind(ttm);
172 	}
173 
174 	if (ttm->state == tt_unbound)
175 		ttm_tt_unpopulate(ttm);
176 
177 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
178 	    ttm->swap_storage)
179 		vm_object_deallocate(ttm->swap_storage);
180 
181 	ttm->swap_storage = NULL;
182 	ttm->func->destroy(ttm);
183 }
184 
185 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
186 		unsigned long size, uint32_t page_flags,
187 		struct page *dummy_read_page)
188 {
189 	ttm->bdev = bdev;
190 	ttm->glob = bdev->glob;
191 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
192 	ttm->caching_state = tt_cached;
193 	ttm->page_flags = page_flags;
194 	ttm->dummy_read_page = dummy_read_page;
195 	ttm->state = tt_unpopulated;
196 	ttm->swap_storage = NULL;
197 
198 	ttm_tt_alloc_page_directory(ttm);
199 	if (!ttm->pages) {
200 		ttm_tt_destroy(ttm);
201 		pr_err("Failed allocating page table\n");
202 		return -ENOMEM;
203 	}
204 	return 0;
205 }
206 EXPORT_SYMBOL(ttm_tt_init);
207 
208 void ttm_tt_fini(struct ttm_tt *ttm)
209 {
210 	drm_free_large(ttm->pages);
211 	ttm->pages = NULL;
212 }
213 EXPORT_SYMBOL(ttm_tt_fini);
214 
215 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
216 		unsigned long size, uint32_t page_flags,
217 		struct page *dummy_read_page)
218 {
219 	struct ttm_tt *ttm = &ttm_dma->ttm;
220 
221 	ttm->bdev = bdev;
222 	ttm->glob = bdev->glob;
223 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
224 	ttm->caching_state = tt_cached;
225 	ttm->page_flags = page_flags;
226 	ttm->dummy_read_page = dummy_read_page;
227 	ttm->state = tt_unpopulated;
228 	ttm->swap_storage = NULL;
229 
230 	INIT_LIST_HEAD(&ttm_dma->pages_list);
231 	ttm_dma_tt_alloc_page_directory(ttm_dma);
232 	if (!ttm->pages || !ttm_dma->dma_address) {
233 		ttm_tt_destroy(ttm);
234 		pr_err("Failed allocating page table\n");
235 		return -ENOMEM;
236 	}
237 	return 0;
238 }
239 EXPORT_SYMBOL(ttm_dma_tt_init);
240 
241 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
242 {
243 	struct ttm_tt *ttm = &ttm_dma->ttm;
244 
245 	drm_free_large(ttm->pages);
246 	ttm->pages = NULL;
247 	drm_free_large(ttm_dma->dma_address);
248 	ttm_dma->dma_address = NULL;
249 }
250 EXPORT_SYMBOL(ttm_dma_tt_fini);
251 
252 void ttm_tt_unbind(struct ttm_tt *ttm)
253 {
254 	int ret;
255 
256 	if (ttm->state == tt_bound) {
257 		ret = ttm->func->unbind(ttm);
258 		BUG_ON(ret);
259 		ttm->state = tt_unbound;
260 	}
261 }
262 
263 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
264 {
265 	int ret = 0;
266 
267 	if (!ttm)
268 		return -EINVAL;
269 
270 	if (ttm->state == tt_bound)
271 		return 0;
272 
273 	ret = ttm->bdev->driver->ttm_tt_populate(ttm);
274 	if (ret)
275 		return ret;
276 
277 	ret = ttm->func->bind(ttm, bo_mem);
278 	if (unlikely(ret != 0))
279 		return ret;
280 
281 	ttm->state = tt_bound;
282 
283 	return 0;
284 }
285 EXPORT_SYMBOL(ttm_tt_bind);
286 
287 int ttm_tt_swapin(struct ttm_tt *ttm)
288 {
289 	vm_object_t obj;
290 	struct page *from_page;
291 	struct page *to_page;
292 	int i;
293 	int ret = -ENOMEM;
294 
295 	obj = ttm->swap_storage;
296 
297 	VM_OBJECT_LOCK(obj);
298 	vm_object_pip_add(obj, 1);
299 	for (i = 0; i < ttm->num_pages; ++i) {
300 		from_page = (struct page *)vm_page_grab(obj, i, VM_ALLOC_NORMAL |
301 						 VM_ALLOC_RETRY);
302 		if (((struct vm_page *)from_page)->valid != VM_PAGE_BITS_ALL) {
303 			if (vm_pager_has_page(obj, i)) {
304 				if (vm_pager_get_page(obj, (struct vm_page **)&from_page, 1) != VM_PAGER_OK) {
305 					vm_page_free((struct vm_page *)from_page);
306 					ret = -EIO;
307 					goto out_err;
308 				}
309 			} else {
310 				vm_page_zero_invalid((struct vm_page *)from_page, TRUE);
311 			}
312 		}
313 		to_page = ttm->pages[i];
314 		if (unlikely(to_page == NULL)) {
315 			vm_page_wakeup((struct vm_page *)from_page);
316 			goto out_err;
317 		}
318 
319 		pmap_copy_page(VM_PAGE_TO_PHYS((struct vm_page *)from_page),
320 			       VM_PAGE_TO_PHYS((struct vm_page *)to_page));
321 		vm_page_wakeup((struct vm_page *)from_page);
322 	}
323 	vm_object_pip_wakeup(obj);
324 	VM_OBJECT_UNLOCK(obj);
325 
326 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
327 		vm_object_deallocate(obj);
328 	ttm->swap_storage = NULL;
329 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
330 
331 	return 0;
332 out_err:
333 	vm_object_pip_wakeup(obj);
334 	VM_OBJECT_UNLOCK(obj);
335 	return ret;
336 }
337 
338 int ttm_tt_swapout(struct ttm_tt *ttm, vm_object_t persistent_swap_storage)
339 {
340 	vm_object_t obj;
341 	vm_page_t from_page, to_page;
342 	int i;
343 
344 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
345 	BUG_ON(ttm->caching_state != tt_cached);
346 
347 	if (!persistent_swap_storage) {
348 		obj = swap_pager_alloc(NULL,
349 		    IDX_TO_OFF(ttm->num_pages), VM_PROT_DEFAULT, 0);
350 		if (obj == NULL) {
351 			pr_err("Failed allocating swap storage\n");
352 			return (-ENOMEM);
353 		}
354 	} else
355 		obj = persistent_swap_storage;
356 
357 	VM_OBJECT_LOCK(obj);
358 	vm_object_pip_add(obj, 1);
359 	for (i = 0; i < ttm->num_pages; ++i) {
360 		from_page = (struct vm_page *)ttm->pages[i];
361 		if (unlikely(from_page == NULL))
362 			continue;
363 		to_page = vm_page_grab(obj, i, VM_ALLOC_NORMAL |
364 					       VM_ALLOC_RETRY);
365 		pmap_copy_page(VM_PAGE_TO_PHYS(from_page),
366 					VM_PAGE_TO_PHYS(to_page));
367 		to_page->valid = VM_PAGE_BITS_ALL;
368 		vm_page_dirty(to_page);
369 		vm_page_wakeup(to_page);
370 	}
371 	vm_object_pip_wakeup(obj);
372 	VM_OBJECT_UNLOCK(obj);
373 
374 	ttm_tt_unpopulate(ttm);
375 	ttm->swap_storage = obj;
376 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
377 	if (persistent_swap_storage)
378 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
379 
380 	return 0;
381 }
382 
383 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
384 {
385 #if 0
386 	pgoff_t i;
387 	struct page **page = ttm->pages;
388 
389 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
390 		return;
391 
392 	for (i = 0; i < ttm->num_pages; ++i) {
393 		(*page)->mapping = NULL;
394 		(*page++)->index = 0;
395 	}
396 #endif
397 }
398 
399 void ttm_tt_unpopulate(struct ttm_tt *ttm)
400 {
401 	if (ttm->state == tt_unpopulated)
402 		return;
403 
404 	ttm_tt_clear_mapping(ttm);
405 	ttm->bdev->driver->ttm_tt_unpopulate(ttm);
406 }
407