xref: /dragonfly/sys/dev/drm/ttm/ttm_tt.c (revision 5ca0a96d)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <drm/drm_cache.h>
42 #include <drm/ttm/ttm_module.h>
43 #include <drm/ttm/ttm_bo_driver.h>
44 #include <drm/ttm/ttm_placement.h>
45 #include <drm/ttm/ttm_page_alloc.h>
46 #ifdef CONFIG_X86
47 #include <asm/set_memory.h>
48 #endif
49 
50 /**
51  * Allocates storage for pointers to the pages that back the ttm.
52  */
53 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
54 {
55 	ttm->pages = kvmalloc_array(ttm->num_pages, sizeof(void*),
56 			GFP_KERNEL | __GFP_ZERO);
57 }
58 
59 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
60 {
61 	ttm->ttm.pages = kvmalloc_array(ttm->ttm.num_pages,
62 					  sizeof(*ttm->ttm.pages) +
63 					  sizeof(*ttm->dma_address),
64 					  GFP_KERNEL | __GFP_ZERO);
65 	ttm->dma_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages);
66 }
67 
68 #ifdef CONFIG_X86
69 static inline int ttm_tt_set_page_caching(struct page *p,
70 					  enum ttm_caching_state c_old,
71 					  enum ttm_caching_state c_new)
72 {
73 	int ret = 0;
74 
75 #if 0
76 	if (PageHighMem(p))
77 		return 0;
78 #endif
79 
80 	if (c_old != tt_cached) {
81 		/* p isn't in the default caching state, set it to
82 		 * writeback first to free its current memtype. */
83 
84 		ret = set_pages_wb(p, 1);
85 		if (ret)
86 			return ret;
87 	}
88 
89 	if (c_new == tt_wc)
90 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_WRITE_COMBINING);
91 	else if (c_new == tt_uncached)
92 		ret = set_pages_uc(p, 1);
93 
94 	return ret;
95 }
96 #else /* CONFIG_X86 */
97 static inline int ttm_tt_set_page_caching(struct page *p,
98 					  enum ttm_caching_state c_old,
99 					  enum ttm_caching_state c_new)
100 {
101 	return 0;
102 }
103 #endif /* CONFIG_X86 */
104 
105 /*
106  * Change caching policy for the linear kernel map
107  * for range of pages in a ttm.
108  */
109 
110 static int ttm_tt_set_caching(struct ttm_tt *ttm,
111 			      enum ttm_caching_state c_state)
112 {
113 	int i, j;
114 	struct page *cur_page;
115 	int ret;
116 
117 	if (ttm->caching_state == c_state)
118 		return 0;
119 
120 	if (ttm->state == tt_unpopulated) {
121 		/* Change caching but don't populate */
122 		ttm->caching_state = c_state;
123 		return 0;
124 	}
125 
126 	if (ttm->caching_state == tt_cached)
127 		drm_clflush_pages(ttm->pages, ttm->num_pages);
128 
129 	for (i = 0; i < ttm->num_pages; ++i) {
130 		cur_page = ttm->pages[i];
131 		if (likely(cur_page != NULL)) {
132 			ret = ttm_tt_set_page_caching(cur_page,
133 						      ttm->caching_state,
134 						      c_state);
135 			if (unlikely(ret != 0))
136 				goto out_err;
137 		}
138 	}
139 
140 	ttm->caching_state = c_state;
141 
142 	return 0;
143 
144 out_err:
145 	for (j = 0; j < i; ++j) {
146 		cur_page = ttm->pages[j];
147 		if (likely(cur_page != NULL)) {
148 			(void)ttm_tt_set_page_caching(cur_page, c_state,
149 						      ttm->caching_state);
150 		}
151 	}
152 
153 	return ret;
154 }
155 
156 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
157 {
158 	enum ttm_caching_state state;
159 
160 	if (placement & TTM_PL_FLAG_WC)
161 		state = tt_wc;
162 	else if (placement & TTM_PL_FLAG_UNCACHED)
163 		state = tt_uncached;
164 	else
165 		state = tt_cached;
166 
167 	return ttm_tt_set_caching(ttm, state);
168 }
169 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
170 
171 void ttm_tt_destroy(struct ttm_tt *ttm)
172 {
173 	if (ttm == NULL)
174 		return;
175 
176 	ttm_tt_unbind(ttm);
177 
178 	if (ttm->state == tt_unbound)
179 		ttm_tt_unpopulate(ttm);
180 
181 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
182 	    ttm->swap_storage)
183 		vm_object_deallocate(ttm->swap_storage);
184 
185 	ttm->swap_storage = NULL;
186 	ttm->func->destroy(ttm);
187 }
188 
189 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
190 		unsigned long size, uint32_t page_flags,
191 		struct page *dummy_read_page)
192 {
193 	ttm->bdev = bdev;
194 	ttm->glob = bdev->glob;
195 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
196 	ttm->caching_state = tt_cached;
197 	ttm->page_flags = page_flags;
198 	ttm->dummy_read_page = dummy_read_page;
199 	ttm->state = tt_unpopulated;
200 	ttm->swap_storage = NULL;
201 
202 	ttm_tt_alloc_page_directory(ttm);
203 	if (!ttm->pages) {
204 		ttm_tt_destroy(ttm);
205 		pr_err("Failed allocating page table\n");
206 		return -ENOMEM;
207 	}
208 	return 0;
209 }
210 EXPORT_SYMBOL(ttm_tt_init);
211 
212 void ttm_tt_fini(struct ttm_tt *ttm)
213 {
214 	kvfree(ttm->pages);
215 	ttm->pages = NULL;
216 }
217 EXPORT_SYMBOL(ttm_tt_fini);
218 
219 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
220 		unsigned long size, uint32_t page_flags,
221 		struct page *dummy_read_page)
222 {
223 	struct ttm_tt *ttm = &ttm_dma->ttm;
224 
225 	ttm->bdev = bdev;
226 	ttm->glob = bdev->glob;
227 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
228 	ttm->caching_state = tt_cached;
229 	ttm->page_flags = page_flags;
230 	ttm->dummy_read_page = dummy_read_page;
231 	ttm->state = tt_unpopulated;
232 	ttm->swap_storage = NULL;
233 
234 	INIT_LIST_HEAD(&ttm_dma->pages_list);
235 	ttm_dma_tt_alloc_page_directory(ttm_dma);
236 	if (!ttm->pages) {
237 		ttm_tt_destroy(ttm);
238 		pr_err("Failed allocating page table\n");
239 		return -ENOMEM;
240 	}
241 	return 0;
242 }
243 EXPORT_SYMBOL(ttm_dma_tt_init);
244 
245 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
246 {
247 	struct ttm_tt *ttm = &ttm_dma->ttm;
248 
249 	kvfree(ttm->pages);
250 	ttm->pages = NULL;
251 	ttm_dma->dma_address = NULL;
252 }
253 EXPORT_SYMBOL(ttm_dma_tt_fini);
254 
255 void ttm_tt_unbind(struct ttm_tt *ttm)
256 {
257 	int ret;
258 
259 	if (ttm->state == tt_bound) {
260 		ret = ttm->func->unbind(ttm);
261 		BUG_ON(ret);
262 		ttm->state = tt_unbound;
263 	}
264 }
265 
266 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
267 {
268 	int ret = 0;
269 
270 	if (!ttm)
271 		return -EINVAL;
272 
273 	if (ttm->state == tt_bound)
274 		return 0;
275 
276 	ret = ttm->bdev->driver->ttm_tt_populate(ttm);
277 	if (ret)
278 		return ret;
279 
280 	ret = ttm->func->bind(ttm, bo_mem);
281 	if (unlikely(ret != 0))
282 		return ret;
283 
284 	ttm->state = tt_bound;
285 
286 	return 0;
287 }
288 EXPORT_SYMBOL(ttm_tt_bind);
289 
290 int ttm_tt_swapin(struct ttm_tt *ttm)
291 {
292 	vm_object_t swap_storage;
293 	struct page *from_page;
294 	struct page *to_page;
295 	int i;
296 	int ret = -ENOMEM;
297 
298 	swap_storage = ttm->swap_storage;
299 	BUG_ON(swap_storage == NULL);
300 
301 	VM_OBJECT_LOCK(swap_storage);
302 	vm_object_pip_add(swap_storage, 1);
303 	for (i = 0; i < ttm->num_pages; ++i) {
304 		from_page = (struct page *)vm_page_grab(swap_storage, i, VM_ALLOC_NORMAL |
305 						 VM_ALLOC_RETRY);
306 		if (((struct vm_page *)from_page)->valid != VM_PAGE_BITS_ALL) {
307 			if (vm_pager_has_page(swap_storage, i)) {
308 				if (vm_pager_get_page(swap_storage, i,
309 				    (struct vm_page **)&from_page, 1) != VM_PAGER_OK) {
310 					vm_page_free((struct vm_page *)from_page);
311 					ret = -EIO;
312 					goto out_err;
313 				}
314 			} else {
315 				vm_page_zero_invalid((struct vm_page *)from_page, TRUE);
316 			}
317 		}
318 		to_page = ttm->pages[i];
319 		if (unlikely(to_page == NULL)) {
320 			vm_page_wakeup((struct vm_page *)from_page);
321 			goto out_err;
322 		}
323 
324 		pmap_copy_page(VM_PAGE_TO_PHYS((struct vm_page *)from_page),
325 			       VM_PAGE_TO_PHYS((struct vm_page *)to_page));
326 		vm_page_wakeup((struct vm_page *)from_page);
327 	}
328 	vm_object_pip_wakeup(swap_storage);
329 	VM_OBJECT_UNLOCK(swap_storage);
330 
331 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
332 		vm_object_deallocate(swap_storage);
333 	ttm->swap_storage = NULL;
334 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
335 
336 	return 0;
337 out_err:
338 	vm_object_pip_wakeup(swap_storage);
339 	VM_OBJECT_UNLOCK(swap_storage);
340 
341 	return ret;
342 }
343 
344 int ttm_tt_swapout(struct ttm_tt *ttm, vm_object_t persistent_swap_storage)
345 {
346 	vm_object_t obj;
347 	vm_page_t from_page, to_page;
348 	int i;
349 
350 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
351 	BUG_ON(ttm->caching_state != tt_cached);
352 
353 	if (!persistent_swap_storage) {
354 		obj = swap_pager_alloc(NULL,
355 		    IDX_TO_OFF(ttm->num_pages), VM_PROT_DEFAULT, 0);
356 		if (obj == NULL) {
357 			pr_err("Failed allocating swap storage\n");
358 			return (-ENOMEM);
359 		}
360 	} else
361 		obj = persistent_swap_storage;
362 
363 	VM_OBJECT_LOCK(obj);
364 	vm_object_pip_add(obj, 1);
365 	for (i = 0; i < ttm->num_pages; ++i) {
366 		from_page = (struct vm_page *)ttm->pages[i];
367 		if (unlikely(from_page == NULL))
368 			continue;
369 		to_page = vm_page_grab(obj, i, VM_ALLOC_NORMAL |
370 					       VM_ALLOC_RETRY);
371 		pmap_copy_page(VM_PAGE_TO_PHYS(from_page),
372 					VM_PAGE_TO_PHYS(to_page));
373 		to_page->valid = VM_PAGE_BITS_ALL;
374 		vm_page_dirty(to_page);
375 		vm_page_wakeup(to_page);
376 	}
377 	vm_object_pip_wakeup(obj);
378 	VM_OBJECT_UNLOCK(obj);
379 
380 	ttm_tt_unpopulate(ttm);
381 	ttm->swap_storage = obj;
382 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
383 	if (persistent_swap_storage)
384 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
385 
386 	return 0;
387 }
388 
389 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
390 {
391 #if 0
392 	pgoff_t i;
393 	struct page **page = ttm->pages;
394 
395 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
396 		return;
397 
398 	for (i = 0; i < ttm->num_pages; ++i) {
399 		(*page)->mapping = NULL;
400 		(*page++)->index = 0;
401 	}
402 #endif
403 }
404 
405 void ttm_tt_unpopulate(struct ttm_tt *ttm)
406 {
407 	if (ttm->state == tt_unpopulated)
408 		return;
409 
410 	ttm_tt_clear_mapping(ttm);
411 	ttm->bdev->driver->ttm_tt_unpopulate(ttm);
412 }
413