xref: /dragonfly/sys/dev/drm/ttm/ttm_tt.c (revision 6a3cbbc2)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <drm/drm_mem_util.h>
42 #include <drm/ttm/ttm_module.h>
43 #include <drm/ttm/ttm_bo_driver.h>
44 #include <drm/ttm/ttm_placement.h>
45 #include <drm/ttm/ttm_page_alloc.h>
46 
47 /**
48  * Allocates storage for pointers to the pages that back the ttm.
49  */
50 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
51 {
52 	ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*));
53 }
54 
55 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
56 {
57 	ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages,
58 					  sizeof(*ttm->ttm.pages) +
59 					  sizeof(*ttm->dma_address));
60 	ttm->dma_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages);
61 }
62 
63 #ifdef CONFIG_X86
64 static inline int ttm_tt_set_page_caching(struct page *p,
65 					  enum ttm_caching_state c_old,
66 					  enum ttm_caching_state c_new)
67 {
68 	int ret = 0;
69 
70 #if 0
71 	if (PageHighMem(p))
72 		return 0;
73 #endif
74 
75 	if (c_old != tt_cached) {
76 		/* p isn't in the default caching state, set it to
77 		 * writeback first to free its current memtype. */
78 
79 		ret = set_pages_wb(p, 1);
80 		if (ret)
81 			return ret;
82 	}
83 
84 	if (c_new == tt_wc)
85 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_WRITE_COMBINING);
86 	else if (c_new == tt_uncached)
87 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_UNCACHEABLE);
88 
89 	return (0);
90 }
91 #else /* CONFIG_X86 */
92 static inline int ttm_tt_set_page_caching(struct page *p,
93 					  enum ttm_caching_state c_old,
94 					  enum ttm_caching_state c_new)
95 {
96 	return 0;
97 }
98 #endif /* CONFIG_X86 */
99 
100 /*
101  * Change caching policy for the linear kernel map
102  * for range of pages in a ttm.
103  */
104 
105 static int ttm_tt_set_caching(struct ttm_tt *ttm,
106 			      enum ttm_caching_state c_state)
107 {
108 	int i, j;
109 	struct page *cur_page;
110 	int ret;
111 
112 	if (ttm->caching_state == c_state)
113 		return 0;
114 
115 	if (ttm->state == tt_unpopulated) {
116 		/* Change caching but don't populate */
117 		ttm->caching_state = c_state;
118 		return 0;
119 	}
120 
121 	if (ttm->caching_state == tt_cached)
122 		drm_clflush_pages(ttm->pages, ttm->num_pages);
123 
124 	for (i = 0; i < ttm->num_pages; ++i) {
125 		cur_page = ttm->pages[i];
126 		if (likely(cur_page != NULL)) {
127 			ret = ttm_tt_set_page_caching(cur_page,
128 						      ttm->caching_state,
129 						      c_state);
130 			if (unlikely(ret != 0))
131 				goto out_err;
132 		}
133 	}
134 
135 	ttm->caching_state = c_state;
136 
137 	return 0;
138 
139 out_err:
140 	for (j = 0; j < i; ++j) {
141 		cur_page = ttm->pages[j];
142 		if (likely(cur_page != NULL)) {
143 			(void)ttm_tt_set_page_caching(cur_page, c_state,
144 						      ttm->caching_state);
145 		}
146 	}
147 
148 	return ret;
149 }
150 
151 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
152 {
153 	enum ttm_caching_state state;
154 
155 	if (placement & TTM_PL_FLAG_WC)
156 		state = tt_wc;
157 	else if (placement & TTM_PL_FLAG_UNCACHED)
158 		state = tt_uncached;
159 	else
160 		state = tt_cached;
161 
162 	return ttm_tt_set_caching(ttm, state);
163 }
164 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
165 
166 void ttm_tt_destroy(struct ttm_tt *ttm)
167 {
168 	if (ttm == NULL)
169 		return;
170 
171 	ttm_tt_unbind(ttm);
172 
173 	if (ttm->state == tt_unbound)
174 		ttm_tt_unpopulate(ttm);
175 
176 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
177 	    ttm->swap_storage)
178 		vm_object_deallocate(ttm->swap_storage);
179 
180 	ttm->swap_storage = NULL;
181 	ttm->func->destroy(ttm);
182 }
183 
184 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
185 		unsigned long size, uint32_t page_flags,
186 		struct page *dummy_read_page)
187 {
188 	ttm->bdev = bdev;
189 	ttm->glob = bdev->glob;
190 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
191 	ttm->caching_state = tt_cached;
192 	ttm->page_flags = page_flags;
193 	ttm->dummy_read_page = dummy_read_page;
194 	ttm->state = tt_unpopulated;
195 	ttm->swap_storage = NULL;
196 
197 	ttm_tt_alloc_page_directory(ttm);
198 	if (!ttm->pages) {
199 		ttm_tt_destroy(ttm);
200 		pr_err("Failed allocating page table\n");
201 		return -ENOMEM;
202 	}
203 	return 0;
204 }
205 EXPORT_SYMBOL(ttm_tt_init);
206 
207 void ttm_tt_fini(struct ttm_tt *ttm)
208 {
209 	drm_free_large(ttm->pages);
210 	ttm->pages = NULL;
211 }
212 EXPORT_SYMBOL(ttm_tt_fini);
213 
214 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
215 		unsigned long size, uint32_t page_flags,
216 		struct page *dummy_read_page)
217 {
218 	struct ttm_tt *ttm = &ttm_dma->ttm;
219 
220 	ttm->bdev = bdev;
221 	ttm->glob = bdev->glob;
222 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
223 	ttm->caching_state = tt_cached;
224 	ttm->page_flags = page_flags;
225 	ttm->dummy_read_page = dummy_read_page;
226 	ttm->state = tt_unpopulated;
227 	ttm->swap_storage = NULL;
228 
229 	INIT_LIST_HEAD(&ttm_dma->pages_list);
230 	ttm_dma_tt_alloc_page_directory(ttm_dma);
231 	if (!ttm->pages) {
232 		ttm_tt_destroy(ttm);
233 		pr_err("Failed allocating page table\n");
234 		return -ENOMEM;
235 	}
236 	return 0;
237 }
238 EXPORT_SYMBOL(ttm_dma_tt_init);
239 
240 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
241 {
242 	struct ttm_tt *ttm = &ttm_dma->ttm;
243 
244 	drm_free_large(ttm->pages);
245 	ttm->pages = NULL;
246 	ttm_dma->dma_address = NULL;
247 }
248 EXPORT_SYMBOL(ttm_dma_tt_fini);
249 
250 void ttm_tt_unbind(struct ttm_tt *ttm)
251 {
252 	int ret;
253 
254 	if (ttm->state == tt_bound) {
255 		ret = ttm->func->unbind(ttm);
256 		BUG_ON(ret);
257 		ttm->state = tt_unbound;
258 	}
259 }
260 
261 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
262 {
263 	int ret = 0;
264 
265 	if (!ttm)
266 		return -EINVAL;
267 
268 	if (ttm->state == tt_bound)
269 		return 0;
270 
271 	ret = ttm->bdev->driver->ttm_tt_populate(ttm);
272 	if (ret)
273 		return ret;
274 
275 	ret = ttm->func->bind(ttm, bo_mem);
276 	if (unlikely(ret != 0))
277 		return ret;
278 
279 	ttm->state = tt_bound;
280 
281 	return 0;
282 }
283 EXPORT_SYMBOL(ttm_tt_bind);
284 
285 int ttm_tt_swapin(struct ttm_tt *ttm)
286 {
287 	vm_object_t obj;
288 	struct page *from_page;
289 	struct page *to_page;
290 	int i;
291 	int ret = -ENOMEM;
292 
293 	obj = ttm->swap_storage;
294 
295 	VM_OBJECT_LOCK(obj);
296 	vm_object_pip_add(obj, 1);
297 	for (i = 0; i < ttm->num_pages; ++i) {
298 		from_page = (struct page *)vm_page_grab(obj, i, VM_ALLOC_NORMAL |
299 						 VM_ALLOC_RETRY);
300 		if (((struct vm_page *)from_page)->valid != VM_PAGE_BITS_ALL) {
301 			if (vm_pager_has_page(obj, i)) {
302 				if (vm_pager_get_page(obj, (struct vm_page **)&from_page, 1) != VM_PAGER_OK) {
303 					vm_page_free((struct vm_page *)from_page);
304 					ret = -EIO;
305 					goto out_err;
306 				}
307 			} else {
308 				vm_page_zero_invalid((struct vm_page *)from_page, TRUE);
309 			}
310 		}
311 		to_page = ttm->pages[i];
312 		if (unlikely(to_page == NULL)) {
313 			vm_page_wakeup((struct vm_page *)from_page);
314 			goto out_err;
315 		}
316 
317 		pmap_copy_page(VM_PAGE_TO_PHYS((struct vm_page *)from_page),
318 			       VM_PAGE_TO_PHYS((struct vm_page *)to_page));
319 		vm_page_wakeup((struct vm_page *)from_page);
320 	}
321 	vm_object_pip_wakeup(obj);
322 	VM_OBJECT_UNLOCK(obj);
323 
324 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
325 		vm_object_deallocate(obj);
326 	ttm->swap_storage = NULL;
327 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
328 
329 	return 0;
330 out_err:
331 	vm_object_pip_wakeup(obj);
332 	VM_OBJECT_UNLOCK(obj);
333 	return ret;
334 }
335 
336 int ttm_tt_swapout(struct ttm_tt *ttm, vm_object_t persistent_swap_storage)
337 {
338 	vm_object_t obj;
339 	vm_page_t from_page, to_page;
340 	int i;
341 
342 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
343 	BUG_ON(ttm->caching_state != tt_cached);
344 
345 	if (!persistent_swap_storage) {
346 		obj = swap_pager_alloc(NULL,
347 		    IDX_TO_OFF(ttm->num_pages), VM_PROT_DEFAULT, 0);
348 		if (obj == NULL) {
349 			pr_err("Failed allocating swap storage\n");
350 			return (-ENOMEM);
351 		}
352 	} else
353 		obj = persistent_swap_storage;
354 
355 	VM_OBJECT_LOCK(obj);
356 	vm_object_pip_add(obj, 1);
357 	for (i = 0; i < ttm->num_pages; ++i) {
358 		from_page = (struct vm_page *)ttm->pages[i];
359 		if (unlikely(from_page == NULL))
360 			continue;
361 		to_page = vm_page_grab(obj, i, VM_ALLOC_NORMAL |
362 					       VM_ALLOC_RETRY);
363 		pmap_copy_page(VM_PAGE_TO_PHYS(from_page),
364 					VM_PAGE_TO_PHYS(to_page));
365 		to_page->valid = VM_PAGE_BITS_ALL;
366 		vm_page_dirty(to_page);
367 		vm_page_wakeup(to_page);
368 	}
369 	vm_object_pip_wakeup(obj);
370 	VM_OBJECT_UNLOCK(obj);
371 
372 	ttm_tt_unpopulate(ttm);
373 	ttm->swap_storage = obj;
374 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
375 	if (persistent_swap_storage)
376 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
377 
378 	return 0;
379 }
380 
381 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
382 {
383 #if 0
384 	pgoff_t i;
385 	struct page **page = ttm->pages;
386 
387 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
388 		return;
389 
390 	for (i = 0; i < ttm->num_pages; ++i) {
391 		(*page)->mapping = NULL;
392 		(*page++)->index = 0;
393 	}
394 #endif
395 }
396 
397 void ttm_tt_unpopulate(struct ttm_tt *ttm)
398 {
399 	if (ttm->state == tt_unpopulated)
400 		return;
401 
402 	ttm_tt_clear_mapping(ttm);
403 	ttm->bdev->driver->ttm_tt_unpopulate(ttm);
404 }
405