xref: /dragonfly/sys/dev/drm/ttm/ttm_tt.c (revision a9783bc6)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <drm/drm_mem_util.h>
42 #include <drm/ttm/ttm_module.h>
43 #include <drm/ttm/ttm_bo_driver.h>
44 #include <drm/ttm/ttm_placement.h>
45 #include <drm/ttm/ttm_page_alloc.h>
46 
47 /**
48  * Allocates storage for pointers to the pages that back the ttm.
49  */
50 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
51 {
52 	ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*));
53 }
54 
55 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
56 {
57 	ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages,
58 					  sizeof(*ttm->ttm.pages) +
59 					  sizeof(*ttm->dma_address) +
60 					  sizeof(*ttm->cpu_address));
61 	ttm->cpu_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages);
62 	ttm->dma_address = (void *) (ttm->cpu_address + ttm->ttm.num_pages);
63 }
64 
65 #ifdef CONFIG_X86
66 static inline int ttm_tt_set_page_caching(struct page *p,
67 					  enum ttm_caching_state c_old,
68 					  enum ttm_caching_state c_new)
69 {
70 	int ret = 0;
71 
72 #if 0
73 	if (PageHighMem(p))
74 		return 0;
75 #endif
76 
77 	if (c_old != tt_cached) {
78 		/* p isn't in the default caching state, set it to
79 		 * writeback first to free its current memtype. */
80 
81 		ret = set_pages_wb(p, 1);
82 		if (ret)
83 			return ret;
84 	}
85 
86 	if (c_new == tt_wc)
87 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_WRITE_COMBINING);
88 	else if (c_new == tt_uncached)
89 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_UNCACHEABLE);
90 
91 	return (0);
92 }
93 #else /* CONFIG_X86 */
94 static inline int ttm_tt_set_page_caching(struct page *p,
95 					  enum ttm_caching_state c_old,
96 					  enum ttm_caching_state c_new)
97 {
98 	return 0;
99 }
100 #endif /* CONFIG_X86 */
101 
102 /*
103  * Change caching policy for the linear kernel map
104  * for range of pages in a ttm.
105  */
106 
107 static int ttm_tt_set_caching(struct ttm_tt *ttm,
108 			      enum ttm_caching_state c_state)
109 {
110 	int i, j;
111 	struct page *cur_page;
112 	int ret;
113 
114 	if (ttm->caching_state == c_state)
115 		return 0;
116 
117 	if (ttm->state == tt_unpopulated) {
118 		/* Change caching but don't populate */
119 		ttm->caching_state = c_state;
120 		return 0;
121 	}
122 
123 	if (ttm->caching_state == tt_cached)
124 		drm_clflush_pages(ttm->pages, ttm->num_pages);
125 
126 	for (i = 0; i < ttm->num_pages; ++i) {
127 		cur_page = ttm->pages[i];
128 		if (likely(cur_page != NULL)) {
129 			ret = ttm_tt_set_page_caching(cur_page,
130 						      ttm->caching_state,
131 						      c_state);
132 			if (unlikely(ret != 0))
133 				goto out_err;
134 		}
135 	}
136 
137 	ttm->caching_state = c_state;
138 
139 	return 0;
140 
141 out_err:
142 	for (j = 0; j < i; ++j) {
143 		cur_page = ttm->pages[j];
144 		if (likely(cur_page != NULL)) {
145 			(void)ttm_tt_set_page_caching(cur_page, c_state,
146 						      ttm->caching_state);
147 		}
148 	}
149 
150 	return ret;
151 }
152 
153 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
154 {
155 	enum ttm_caching_state state;
156 
157 	if (placement & TTM_PL_FLAG_WC)
158 		state = tt_wc;
159 	else if (placement & TTM_PL_FLAG_UNCACHED)
160 		state = tt_uncached;
161 	else
162 		state = tt_cached;
163 
164 	return ttm_tt_set_caching(ttm, state);
165 }
166 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
167 
168 void ttm_tt_destroy(struct ttm_tt *ttm)
169 {
170 	if (ttm == NULL)
171 		return;
172 
173 	ttm_tt_unbind(ttm);
174 
175 	if (ttm->state == tt_unbound)
176 		ttm_tt_unpopulate(ttm);
177 
178 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
179 	    ttm->swap_storage)
180 		vm_object_deallocate(ttm->swap_storage);
181 
182 	ttm->swap_storage = NULL;
183 	ttm->func->destroy(ttm);
184 }
185 
186 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
187 		unsigned long size, uint32_t page_flags,
188 		struct page *dummy_read_page)
189 {
190 	ttm->bdev = bdev;
191 	ttm->glob = bdev->glob;
192 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
193 	ttm->caching_state = tt_cached;
194 	ttm->page_flags = page_flags;
195 	ttm->dummy_read_page = dummy_read_page;
196 	ttm->state = tt_unpopulated;
197 	ttm->swap_storage = NULL;
198 
199 	ttm_tt_alloc_page_directory(ttm);
200 	if (!ttm->pages) {
201 		ttm_tt_destroy(ttm);
202 		pr_err("Failed allocating page table\n");
203 		return -ENOMEM;
204 	}
205 	return 0;
206 }
207 EXPORT_SYMBOL(ttm_tt_init);
208 
209 void ttm_tt_fini(struct ttm_tt *ttm)
210 {
211 	drm_free_large(ttm->pages);
212 	ttm->pages = NULL;
213 }
214 EXPORT_SYMBOL(ttm_tt_fini);
215 
216 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
217 		unsigned long size, uint32_t page_flags,
218 		struct page *dummy_read_page)
219 {
220 	struct ttm_tt *ttm = &ttm_dma->ttm;
221 
222 	ttm->bdev = bdev;
223 	ttm->glob = bdev->glob;
224 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
225 	ttm->caching_state = tt_cached;
226 	ttm->page_flags = page_flags;
227 	ttm->dummy_read_page = dummy_read_page;
228 	ttm->state = tt_unpopulated;
229 	ttm->swap_storage = NULL;
230 
231 	INIT_LIST_HEAD(&ttm_dma->pages_list);
232 	ttm_dma_tt_alloc_page_directory(ttm_dma);
233 	if (!ttm->pages) {
234 		ttm_tt_destroy(ttm);
235 		pr_err("Failed allocating page table\n");
236 		return -ENOMEM;
237 	}
238 	return 0;
239 }
240 EXPORT_SYMBOL(ttm_dma_tt_init);
241 
242 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
243 {
244 	struct ttm_tt *ttm = &ttm_dma->ttm;
245 
246 	drm_free_large(ttm->pages);
247 	ttm->pages = NULL;
248 	ttm_dma->cpu_address = NULL;
249 	ttm_dma->dma_address = NULL;
250 }
251 EXPORT_SYMBOL(ttm_dma_tt_fini);
252 
253 void ttm_tt_unbind(struct ttm_tt *ttm)
254 {
255 	int ret;
256 
257 	if (ttm->state == tt_bound) {
258 		ret = ttm->func->unbind(ttm);
259 		BUG_ON(ret);
260 		ttm->state = tt_unbound;
261 	}
262 }
263 
264 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
265 {
266 	int ret = 0;
267 
268 	if (!ttm)
269 		return -EINVAL;
270 
271 	if (ttm->state == tt_bound)
272 		return 0;
273 
274 	ret = ttm->bdev->driver->ttm_tt_populate(ttm);
275 	if (ret)
276 		return ret;
277 
278 	ret = ttm->func->bind(ttm, bo_mem);
279 	if (unlikely(ret != 0))
280 		return ret;
281 
282 	ttm->state = tt_bound;
283 
284 	return 0;
285 }
286 EXPORT_SYMBOL(ttm_tt_bind);
287 
288 int ttm_tt_swapin(struct ttm_tt *ttm)
289 {
290 	vm_object_t obj;
291 	struct page *from_page;
292 	struct page *to_page;
293 	int i;
294 	int ret = -ENOMEM;
295 
296 	obj = ttm->swap_storage;
297 
298 	VM_OBJECT_LOCK(obj);
299 	vm_object_pip_add(obj, 1);
300 	for (i = 0; i < ttm->num_pages; ++i) {
301 		from_page = (struct page *)vm_page_grab(obj, i, VM_ALLOC_NORMAL |
302 						 VM_ALLOC_RETRY);
303 		if (((struct vm_page *)from_page)->valid != VM_PAGE_BITS_ALL) {
304 			if (vm_pager_has_page(obj, i)) {
305 				if (vm_pager_get_page(obj, (struct vm_page **)&from_page, 1) != VM_PAGER_OK) {
306 					vm_page_free((struct vm_page *)from_page);
307 					ret = -EIO;
308 					goto out_err;
309 				}
310 			} else {
311 				vm_page_zero_invalid((struct vm_page *)from_page, TRUE);
312 			}
313 		}
314 		to_page = ttm->pages[i];
315 		if (unlikely(to_page == NULL)) {
316 			vm_page_wakeup((struct vm_page *)from_page);
317 			goto out_err;
318 		}
319 
320 		pmap_copy_page(VM_PAGE_TO_PHYS((struct vm_page *)from_page),
321 			       VM_PAGE_TO_PHYS((struct vm_page *)to_page));
322 		vm_page_wakeup((struct vm_page *)from_page);
323 	}
324 	vm_object_pip_wakeup(obj);
325 	VM_OBJECT_UNLOCK(obj);
326 
327 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
328 		vm_object_deallocate(obj);
329 	ttm->swap_storage = NULL;
330 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
331 
332 	return 0;
333 out_err:
334 	vm_object_pip_wakeup(obj);
335 	VM_OBJECT_UNLOCK(obj);
336 	return ret;
337 }
338 
339 int ttm_tt_swapout(struct ttm_tt *ttm, vm_object_t persistent_swap_storage)
340 {
341 	vm_object_t obj;
342 	vm_page_t from_page, to_page;
343 	int i;
344 
345 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
346 	BUG_ON(ttm->caching_state != tt_cached);
347 
348 	if (!persistent_swap_storage) {
349 		obj = swap_pager_alloc(NULL,
350 		    IDX_TO_OFF(ttm->num_pages), VM_PROT_DEFAULT, 0);
351 		if (obj == NULL) {
352 			pr_err("Failed allocating swap storage\n");
353 			return (-ENOMEM);
354 		}
355 	} else
356 		obj = persistent_swap_storage;
357 
358 	VM_OBJECT_LOCK(obj);
359 	vm_object_pip_add(obj, 1);
360 	for (i = 0; i < ttm->num_pages; ++i) {
361 		from_page = (struct vm_page *)ttm->pages[i];
362 		if (unlikely(from_page == NULL))
363 			continue;
364 		to_page = vm_page_grab(obj, i, VM_ALLOC_NORMAL |
365 					       VM_ALLOC_RETRY);
366 		pmap_copy_page(VM_PAGE_TO_PHYS(from_page),
367 					VM_PAGE_TO_PHYS(to_page));
368 		to_page->valid = VM_PAGE_BITS_ALL;
369 		vm_page_dirty(to_page);
370 		vm_page_wakeup(to_page);
371 	}
372 	vm_object_pip_wakeup(obj);
373 	VM_OBJECT_UNLOCK(obj);
374 
375 	ttm_tt_unpopulate(ttm);
376 	ttm->swap_storage = obj;
377 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
378 	if (persistent_swap_storage)
379 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
380 
381 	return 0;
382 }
383 
384 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
385 {
386 #if 0
387 	pgoff_t i;
388 	struct page **page = ttm->pages;
389 
390 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
391 		return;
392 
393 	for (i = 0; i < ttm->num_pages; ++i) {
394 		(*page)->mapping = NULL;
395 		(*page++)->index = 0;
396 	}
397 #endif
398 }
399 
400 void ttm_tt_unpopulate(struct ttm_tt *ttm)
401 {
402 	if (ttm->state == tt_unpopulated)
403 		return;
404 
405 	ttm_tt_clear_mapping(ttm);
406 	ttm->bdev->driver->ttm_tt_unpopulate(ttm);
407 }
408