xref: /dragonfly/sys/dev/drm/ttm/ttm_tt.c (revision c9c5aa9e)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <drm/drm_cache.h>
42 #include <drm/drm_mem_util.h>
43 #include <drm/ttm/ttm_module.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_page_alloc.h>
47 #ifdef CONFIG_X86
48 #include <asm/set_memory.h>
49 #endif
50 
51 /**
52  * Allocates storage for pointers to the pages that back the ttm.
53  */
54 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
55 {
56 	ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*));
57 }
58 
59 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
60 {
61 	ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages,
62 					  sizeof(*ttm->ttm.pages) +
63 					  sizeof(*ttm->dma_address));
64 	ttm->dma_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages);
65 }
66 
67 #ifdef CONFIG_X86
68 static inline int ttm_tt_set_page_caching(struct page *p,
69 					  enum ttm_caching_state c_old,
70 					  enum ttm_caching_state c_new)
71 {
72 	int ret = 0;
73 
74 #if 0
75 	if (PageHighMem(p))
76 		return 0;
77 #endif
78 
79 	if (c_old != tt_cached) {
80 		/* p isn't in the default caching state, set it to
81 		 * writeback first to free its current memtype. */
82 
83 		ret = set_pages_wb(p, 1);
84 		if (ret)
85 			return ret;
86 	}
87 
88 	if (c_new == tt_wc)
89 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_WRITE_COMBINING);
90 	else if (c_new == tt_uncached)
91 		ret = set_pages_uc(p, 1);
92 
93 	return ret;
94 }
95 #else /* CONFIG_X86 */
96 static inline int ttm_tt_set_page_caching(struct page *p,
97 					  enum ttm_caching_state c_old,
98 					  enum ttm_caching_state c_new)
99 {
100 	return 0;
101 }
102 #endif /* CONFIG_X86 */
103 
104 /*
105  * Change caching policy for the linear kernel map
106  * for range of pages in a ttm.
107  */
108 
109 static int ttm_tt_set_caching(struct ttm_tt *ttm,
110 			      enum ttm_caching_state c_state)
111 {
112 	int i, j;
113 	struct page *cur_page;
114 	int ret;
115 
116 	if (ttm->caching_state == c_state)
117 		return 0;
118 
119 	if (ttm->state == tt_unpopulated) {
120 		/* Change caching but don't populate */
121 		ttm->caching_state = c_state;
122 		return 0;
123 	}
124 
125 	if (ttm->caching_state == tt_cached)
126 		drm_clflush_pages(ttm->pages, ttm->num_pages);
127 
128 	for (i = 0; i < ttm->num_pages; ++i) {
129 		cur_page = ttm->pages[i];
130 		if (likely(cur_page != NULL)) {
131 			ret = ttm_tt_set_page_caching(cur_page,
132 						      ttm->caching_state,
133 						      c_state);
134 			if (unlikely(ret != 0))
135 				goto out_err;
136 		}
137 	}
138 
139 	ttm->caching_state = c_state;
140 
141 	return 0;
142 
143 out_err:
144 	for (j = 0; j < i; ++j) {
145 		cur_page = ttm->pages[j];
146 		if (likely(cur_page != NULL)) {
147 			(void)ttm_tt_set_page_caching(cur_page, c_state,
148 						      ttm->caching_state);
149 		}
150 	}
151 
152 	return ret;
153 }
154 
155 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
156 {
157 	enum ttm_caching_state state;
158 
159 	if (placement & TTM_PL_FLAG_WC)
160 		state = tt_wc;
161 	else if (placement & TTM_PL_FLAG_UNCACHED)
162 		state = tt_uncached;
163 	else
164 		state = tt_cached;
165 
166 	return ttm_tt_set_caching(ttm, state);
167 }
168 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
169 
170 void ttm_tt_destroy(struct ttm_tt *ttm)
171 {
172 	if (ttm == NULL)
173 		return;
174 
175 	ttm_tt_unbind(ttm);
176 
177 	if (ttm->state == tt_unbound)
178 		ttm_tt_unpopulate(ttm);
179 
180 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
181 	    ttm->swap_storage)
182 		vm_object_deallocate(ttm->swap_storage);
183 
184 	ttm->swap_storage = NULL;
185 	ttm->func->destroy(ttm);
186 }
187 
188 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
189 		unsigned long size, uint32_t page_flags,
190 		struct page *dummy_read_page)
191 {
192 	ttm->bdev = bdev;
193 	ttm->glob = bdev->glob;
194 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
195 	ttm->caching_state = tt_cached;
196 	ttm->page_flags = page_flags;
197 	ttm->dummy_read_page = dummy_read_page;
198 	ttm->state = tt_unpopulated;
199 	ttm->swap_storage = NULL;
200 
201 	ttm_tt_alloc_page_directory(ttm);
202 	if (!ttm->pages) {
203 		ttm_tt_destroy(ttm);
204 		pr_err("Failed allocating page table\n");
205 		return -ENOMEM;
206 	}
207 	return 0;
208 }
209 EXPORT_SYMBOL(ttm_tt_init);
210 
211 void ttm_tt_fini(struct ttm_tt *ttm)
212 {
213 	drm_free_large(ttm->pages);
214 	ttm->pages = NULL;
215 }
216 EXPORT_SYMBOL(ttm_tt_fini);
217 
218 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
219 		unsigned long size, uint32_t page_flags,
220 		struct page *dummy_read_page)
221 {
222 	struct ttm_tt *ttm = &ttm_dma->ttm;
223 
224 	ttm->bdev = bdev;
225 	ttm->glob = bdev->glob;
226 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
227 	ttm->caching_state = tt_cached;
228 	ttm->page_flags = page_flags;
229 	ttm->dummy_read_page = dummy_read_page;
230 	ttm->state = tt_unpopulated;
231 	ttm->swap_storage = NULL;
232 
233 	INIT_LIST_HEAD(&ttm_dma->pages_list);
234 	ttm_dma_tt_alloc_page_directory(ttm_dma);
235 	if (!ttm->pages) {
236 		ttm_tt_destroy(ttm);
237 		pr_err("Failed allocating page table\n");
238 		return -ENOMEM;
239 	}
240 	return 0;
241 }
242 EXPORT_SYMBOL(ttm_dma_tt_init);
243 
244 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
245 {
246 	struct ttm_tt *ttm = &ttm_dma->ttm;
247 
248 	drm_free_large(ttm->pages);
249 	ttm->pages = NULL;
250 	ttm_dma->dma_address = NULL;
251 }
252 EXPORT_SYMBOL(ttm_dma_tt_fini);
253 
254 void ttm_tt_unbind(struct ttm_tt *ttm)
255 {
256 	int ret;
257 
258 	if (ttm->state == tt_bound) {
259 		ret = ttm->func->unbind(ttm);
260 		BUG_ON(ret);
261 		ttm->state = tt_unbound;
262 	}
263 }
264 
265 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
266 {
267 	int ret = 0;
268 
269 	if (!ttm)
270 		return -EINVAL;
271 
272 	if (ttm->state == tt_bound)
273 		return 0;
274 
275 	ret = ttm->bdev->driver->ttm_tt_populate(ttm);
276 	if (ret)
277 		return ret;
278 
279 	ret = ttm->func->bind(ttm, bo_mem);
280 	if (unlikely(ret != 0))
281 		return ret;
282 
283 	ttm->state = tt_bound;
284 
285 	return 0;
286 }
287 EXPORT_SYMBOL(ttm_tt_bind);
288 
289 int ttm_tt_swapin(struct ttm_tt *ttm)
290 {
291 	vm_object_t swap_storage;
292 	struct page *from_page;
293 	struct page *to_page;
294 	int i;
295 	int ret = -ENOMEM;
296 
297 	swap_storage = ttm->swap_storage;
298 	BUG_ON(swap_storage == NULL);
299 
300 	VM_OBJECT_LOCK(swap_storage);
301 	vm_object_pip_add(swap_storage, 1);
302 	for (i = 0; i < ttm->num_pages; ++i) {
303 		from_page = (struct page *)vm_page_grab(swap_storage, i, VM_ALLOC_NORMAL |
304 						 VM_ALLOC_RETRY);
305 		if (((struct vm_page *)from_page)->valid != VM_PAGE_BITS_ALL) {
306 			if (vm_pager_has_page(swap_storage, i)) {
307 				if (vm_pager_get_page(swap_storage, i,
308 				    (struct vm_page **)&from_page, 1) != VM_PAGER_OK) {
309 					vm_page_free((struct vm_page *)from_page);
310 					ret = -EIO;
311 					goto out_err;
312 				}
313 			} else {
314 				vm_page_zero_invalid((struct vm_page *)from_page, TRUE);
315 			}
316 		}
317 		to_page = ttm->pages[i];
318 		if (unlikely(to_page == NULL)) {
319 			vm_page_wakeup((struct vm_page *)from_page);
320 			goto out_err;
321 		}
322 
323 		pmap_copy_page(VM_PAGE_TO_PHYS((struct vm_page *)from_page),
324 			       VM_PAGE_TO_PHYS((struct vm_page *)to_page));
325 		vm_page_wakeup((struct vm_page *)from_page);
326 	}
327 	vm_object_pip_wakeup(swap_storage);
328 	VM_OBJECT_UNLOCK(swap_storage);
329 
330 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
331 		vm_object_deallocate(swap_storage);
332 	ttm->swap_storage = NULL;
333 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
334 
335 	return 0;
336 out_err:
337 	vm_object_pip_wakeup(swap_storage);
338 	VM_OBJECT_UNLOCK(swap_storage);
339 
340 	return ret;
341 }
342 
343 int ttm_tt_swapout(struct ttm_tt *ttm, vm_object_t persistent_swap_storage)
344 {
345 	vm_object_t obj;
346 	vm_page_t from_page, to_page;
347 	int i;
348 
349 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
350 	BUG_ON(ttm->caching_state != tt_cached);
351 
352 	if (!persistent_swap_storage) {
353 		obj = swap_pager_alloc(NULL,
354 		    IDX_TO_OFF(ttm->num_pages), VM_PROT_DEFAULT, 0);
355 		if (obj == NULL) {
356 			pr_err("Failed allocating swap storage\n");
357 			return (-ENOMEM);
358 		}
359 	} else
360 		obj = persistent_swap_storage;
361 
362 	VM_OBJECT_LOCK(obj);
363 	vm_object_pip_add(obj, 1);
364 	for (i = 0; i < ttm->num_pages; ++i) {
365 		from_page = (struct vm_page *)ttm->pages[i];
366 		if (unlikely(from_page == NULL))
367 			continue;
368 		to_page = vm_page_grab(obj, i, VM_ALLOC_NORMAL |
369 					       VM_ALLOC_RETRY);
370 		pmap_copy_page(VM_PAGE_TO_PHYS(from_page),
371 					VM_PAGE_TO_PHYS(to_page));
372 		to_page->valid = VM_PAGE_BITS_ALL;
373 		vm_page_dirty(to_page);
374 		vm_page_wakeup(to_page);
375 	}
376 	vm_object_pip_wakeup(obj);
377 	VM_OBJECT_UNLOCK(obj);
378 
379 	ttm_tt_unpopulate(ttm);
380 	ttm->swap_storage = obj;
381 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
382 	if (persistent_swap_storage)
383 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
384 
385 	return 0;
386 }
387 
388 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
389 {
390 #if 0
391 	pgoff_t i;
392 	struct page **page = ttm->pages;
393 
394 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
395 		return;
396 
397 	for (i = 0; i < ttm->num_pages; ++i) {
398 		(*page)->mapping = NULL;
399 		(*page++)->index = 0;
400 	}
401 #endif
402 }
403 
404 void ttm_tt_unpopulate(struct ttm_tt *ttm)
405 {
406 	if (ttm->state == tt_unpopulated)
407 		return;
408 
409 	ttm_tt_clear_mapping(ttm);
410 	ttm->bdev->driver->ttm_tt_unpopulate(ttm);
411 }
412