xref: /dragonfly/sys/dev/drm/ttm/ttm_tt.c (revision f2187f0a)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <drm/drm_mem_util.h>
42 #include <drm/ttm/ttm_module.h>
43 #include <drm/ttm/ttm_bo_driver.h>
44 #include <drm/ttm/ttm_placement.h>
45 #include <drm/ttm/ttm_page_alloc.h>
46 
47 /**
48  * Allocates storage for pointers to the pages that back the ttm.
49  */
50 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
51 {
52 	ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(void*));
53 }
54 
55 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
56 {
57 	ttm->ttm.pages = drm_calloc_large(ttm->ttm.num_pages,
58 					  sizeof(*ttm->ttm.pages) +
59 					  sizeof(*ttm->dma_address) +
60 					  sizeof(*ttm->cpu_address));
61 	ttm->cpu_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages);
62 	ttm->dma_address = (void *) (ttm->cpu_address + ttm->ttm.num_pages);
63 }
64 
65 #ifdef CONFIG_X86
66 static inline int ttm_tt_set_page_caching(struct page *p,
67 					  enum ttm_caching_state c_old,
68 					  enum ttm_caching_state c_new)
69 {
70 	int ret = 0;
71 
72 #if 0
73 	if (PageHighMem(p))
74 		return 0;
75 #endif
76 
77 	if (c_old != tt_cached) {
78 		/* p isn't in the default caching state, set it to
79 		 * writeback first to free its current memtype. */
80 
81 		ret = set_pages_wb(p, 1);
82 		if (ret)
83 			return ret;
84 	}
85 
86 	if (c_new == tt_wc)
87 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_WRITE_COMBINING);
88 	else if (c_new == tt_uncached)
89 		pmap_page_set_memattr((struct vm_page *)p, VM_MEMATTR_UNCACHEABLE);
90 
91 	return (0);
92 }
93 #else /* CONFIG_X86 */
94 static inline int ttm_tt_set_page_caching(struct page *p,
95 					  enum ttm_caching_state c_old,
96 					  enum ttm_caching_state c_new)
97 {
98 	return 0;
99 }
100 #endif /* CONFIG_X86 */
101 
102 /*
103  * Change caching policy for the linear kernel map
104  * for range of pages in a ttm.
105  */
106 
107 static int ttm_tt_set_caching(struct ttm_tt *ttm,
108 			      enum ttm_caching_state c_state)
109 {
110 	int i, j;
111 	struct page *cur_page;
112 	int ret;
113 
114 	if (ttm->caching_state == c_state)
115 		return 0;
116 
117 	if (ttm->state == tt_unpopulated) {
118 		/* Change caching but don't populate */
119 		ttm->caching_state = c_state;
120 		return 0;
121 	}
122 
123 	if (ttm->caching_state == tt_cached)
124 		drm_clflush_pages(ttm->pages, ttm->num_pages);
125 
126 	for (i = 0; i < ttm->num_pages; ++i) {
127 		cur_page = ttm->pages[i];
128 		if (likely(cur_page != NULL)) {
129 			ret = ttm_tt_set_page_caching(cur_page,
130 						      ttm->caching_state,
131 						      c_state);
132 			if (unlikely(ret != 0))
133 				goto out_err;
134 		}
135 	}
136 
137 	ttm->caching_state = c_state;
138 
139 	return 0;
140 
141 out_err:
142 	for (j = 0; j < i; ++j) {
143 		cur_page = ttm->pages[j];
144 		if (likely(cur_page != NULL)) {
145 			(void)ttm_tt_set_page_caching(cur_page, c_state,
146 						      ttm->caching_state);
147 		}
148 	}
149 
150 	return ret;
151 }
152 
153 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
154 {
155 	enum ttm_caching_state state;
156 
157 	if (placement & TTM_PL_FLAG_WC)
158 		state = tt_wc;
159 	else if (placement & TTM_PL_FLAG_UNCACHED)
160 		state = tt_uncached;
161 	else
162 		state = tt_cached;
163 
164 	return ttm_tt_set_caching(ttm, state);
165 }
166 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
167 
168 void ttm_tt_destroy(struct ttm_tt *ttm)
169 {
170 	if (unlikely(ttm == NULL))
171 		return;
172 
173 	if (ttm->state == tt_bound) {
174 		ttm_tt_unbind(ttm);
175 	}
176 
177 	if (ttm->state == tt_unbound)
178 		ttm_tt_unpopulate(ttm);
179 
180 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
181 	    ttm->swap_storage)
182 		vm_object_deallocate(ttm->swap_storage);
183 
184 	ttm->swap_storage = NULL;
185 	ttm->func->destroy(ttm);
186 }
187 
188 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
189 		unsigned long size, uint32_t page_flags,
190 		struct page *dummy_read_page)
191 {
192 	ttm->bdev = bdev;
193 	ttm->glob = bdev->glob;
194 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
195 	ttm->caching_state = tt_cached;
196 	ttm->page_flags = page_flags;
197 	ttm->dummy_read_page = dummy_read_page;
198 	ttm->state = tt_unpopulated;
199 	ttm->swap_storage = NULL;
200 
201 	ttm_tt_alloc_page_directory(ttm);
202 	if (!ttm->pages) {
203 		ttm_tt_destroy(ttm);
204 		pr_err("Failed allocating page table\n");
205 		return -ENOMEM;
206 	}
207 	return 0;
208 }
209 EXPORT_SYMBOL(ttm_tt_init);
210 
211 void ttm_tt_fini(struct ttm_tt *ttm)
212 {
213 	drm_free_large(ttm->pages);
214 	ttm->pages = NULL;
215 }
216 EXPORT_SYMBOL(ttm_tt_fini);
217 
218 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
219 		unsigned long size, uint32_t page_flags,
220 		struct page *dummy_read_page)
221 {
222 	struct ttm_tt *ttm = &ttm_dma->ttm;
223 
224 	ttm->bdev = bdev;
225 	ttm->glob = bdev->glob;
226 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
227 	ttm->caching_state = tt_cached;
228 	ttm->page_flags = page_flags;
229 	ttm->dummy_read_page = dummy_read_page;
230 	ttm->state = tt_unpopulated;
231 	ttm->swap_storage = NULL;
232 
233 	INIT_LIST_HEAD(&ttm_dma->pages_list);
234 	ttm_dma_tt_alloc_page_directory(ttm_dma);
235 	if (!ttm->pages) {
236 		ttm_tt_destroy(ttm);
237 		pr_err("Failed allocating page table\n");
238 		return -ENOMEM;
239 	}
240 	return 0;
241 }
242 EXPORT_SYMBOL(ttm_dma_tt_init);
243 
244 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
245 {
246 	struct ttm_tt *ttm = &ttm_dma->ttm;
247 
248 	drm_free_large(ttm->pages);
249 	ttm->pages = NULL;
250 	ttm_dma->cpu_address = NULL;
251 	ttm_dma->dma_address = NULL;
252 }
253 EXPORT_SYMBOL(ttm_dma_tt_fini);
254 
255 void ttm_tt_unbind(struct ttm_tt *ttm)
256 {
257 	int ret;
258 
259 	if (ttm->state == tt_bound) {
260 		ret = ttm->func->unbind(ttm);
261 		BUG_ON(ret);
262 		ttm->state = tt_unbound;
263 	}
264 }
265 
266 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
267 {
268 	int ret = 0;
269 
270 	if (!ttm)
271 		return -EINVAL;
272 
273 	if (ttm->state == tt_bound)
274 		return 0;
275 
276 	ret = ttm->bdev->driver->ttm_tt_populate(ttm);
277 	if (ret)
278 		return ret;
279 
280 	ret = ttm->func->bind(ttm, bo_mem);
281 	if (unlikely(ret != 0))
282 		return ret;
283 
284 	ttm->state = tt_bound;
285 
286 	return 0;
287 }
288 EXPORT_SYMBOL(ttm_tt_bind);
289 
290 int ttm_tt_swapin(struct ttm_tt *ttm)
291 {
292 	vm_object_t obj;
293 	struct page *from_page;
294 	struct page *to_page;
295 	int i;
296 	int ret = -ENOMEM;
297 
298 	obj = ttm->swap_storage;
299 
300 	VM_OBJECT_LOCK(obj);
301 	vm_object_pip_add(obj, 1);
302 	for (i = 0; i < ttm->num_pages; ++i) {
303 		from_page = (struct page *)vm_page_grab(obj, i, VM_ALLOC_NORMAL |
304 						 VM_ALLOC_RETRY);
305 		if (((struct vm_page *)from_page)->valid != VM_PAGE_BITS_ALL) {
306 			if (vm_pager_has_page(obj, i)) {
307 				if (vm_pager_get_page(obj, (struct vm_page **)&from_page, 1) != VM_PAGER_OK) {
308 					vm_page_free((struct vm_page *)from_page);
309 					ret = -EIO;
310 					goto out_err;
311 				}
312 			} else {
313 				vm_page_zero_invalid((struct vm_page *)from_page, TRUE);
314 			}
315 		}
316 		to_page = ttm->pages[i];
317 		if (unlikely(to_page == NULL)) {
318 			vm_page_wakeup((struct vm_page *)from_page);
319 			goto out_err;
320 		}
321 
322 		pmap_copy_page(VM_PAGE_TO_PHYS((struct vm_page *)from_page),
323 			       VM_PAGE_TO_PHYS((struct vm_page *)to_page));
324 		vm_page_wakeup((struct vm_page *)from_page);
325 	}
326 	vm_object_pip_wakeup(obj);
327 	VM_OBJECT_UNLOCK(obj);
328 
329 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
330 		vm_object_deallocate(obj);
331 	ttm->swap_storage = NULL;
332 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
333 
334 	return 0;
335 out_err:
336 	vm_object_pip_wakeup(obj);
337 	VM_OBJECT_UNLOCK(obj);
338 	return ret;
339 }
340 
341 int ttm_tt_swapout(struct ttm_tt *ttm, vm_object_t persistent_swap_storage)
342 {
343 	vm_object_t obj;
344 	vm_page_t from_page, to_page;
345 	int i;
346 
347 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
348 	BUG_ON(ttm->caching_state != tt_cached);
349 
350 	if (!persistent_swap_storage) {
351 		obj = swap_pager_alloc(NULL,
352 		    IDX_TO_OFF(ttm->num_pages), VM_PROT_DEFAULT, 0);
353 		if (obj == NULL) {
354 			pr_err("Failed allocating swap storage\n");
355 			return (-ENOMEM);
356 		}
357 	} else
358 		obj = persistent_swap_storage;
359 
360 	VM_OBJECT_LOCK(obj);
361 	vm_object_pip_add(obj, 1);
362 	for (i = 0; i < ttm->num_pages; ++i) {
363 		from_page = (struct vm_page *)ttm->pages[i];
364 		if (unlikely(from_page == NULL))
365 			continue;
366 		to_page = vm_page_grab(obj, i, VM_ALLOC_NORMAL |
367 					       VM_ALLOC_RETRY);
368 		pmap_copy_page(VM_PAGE_TO_PHYS(from_page),
369 					VM_PAGE_TO_PHYS(to_page));
370 		to_page->valid = VM_PAGE_BITS_ALL;
371 		vm_page_dirty(to_page);
372 		vm_page_wakeup(to_page);
373 	}
374 	vm_object_pip_wakeup(obj);
375 	VM_OBJECT_UNLOCK(obj);
376 
377 	ttm_tt_unpopulate(ttm);
378 	ttm->swap_storage = obj;
379 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
380 	if (persistent_swap_storage)
381 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
382 
383 	return 0;
384 }
385 
386 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
387 {
388 #if 0
389 	pgoff_t i;
390 	struct page **page = ttm->pages;
391 
392 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
393 		return;
394 
395 	for (i = 0; i < ttm->num_pages; ++i) {
396 		(*page)->mapping = NULL;
397 		(*page++)->index = 0;
398 	}
399 #endif
400 }
401 
402 void ttm_tt_unpopulate(struct ttm_tt *ttm)
403 {
404 	if (ttm->state == tt_unpopulated)
405 		return;
406 
407 	ttm_tt_clear_mapping(ttm);
408 	ttm->bdev->driver->ttm_tt_unpopulate(ttm);
409 }
410