xref: /dragonfly/sys/dev/netif/ae/if_ae.c (revision c37c9ab3)
1 /*-
2  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
26  *
27  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
28  *
29  * $FreeBSD: src/sys/dev/ae/if_ae.c,v 1.1.2.3.2.1 2009/04/15 03:14:26 kensmith Exp $
30  */
31 
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54 
55 #include <bus/pci/pcireg.h>
56 #include <bus/pci/pcivar.h>
57 #include "pcidevs.h"
58 
59 #include <dev/netif/mii_layer/miivar.h>
60 
61 #include <dev/netif/ae/if_aereg.h>
62 #include <dev/netif/ae/if_aevar.h>
63 
64 /* "device miibus" required.  See GENERIC if you get errors here. */
65 #include "miibus_if.h"
66 
67 /*
68  * Devices supported by this driver.
69  */
70 static const struct ae_dev {
71 	uint16_t	ae_vendorid;
72 	uint16_t	ae_deviceid;
73 	const char	*ae_name;
74 } ae_devs[] = {
75         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
76             "Attansic Technology Corp, L2 Fast Ethernet" },
77 	/* Required last entry */
78 	{ 0, 0, NULL }
79 };
80 
81 
82 static int	ae_probe(device_t);
83 static int	ae_attach(device_t);
84 static int	ae_detach(device_t);
85 static int	ae_shutdown(device_t);
86 static int	ae_suspend(device_t);
87 static int	ae_resume(device_t);
88 static int	ae_miibus_readreg(device_t, int, int);
89 static int	ae_miibus_writereg(device_t, int, int, int);
90 static void	ae_miibus_statchg(device_t);
91 
92 static int	ae_mediachange(struct ifnet *);
93 static void	ae_mediastatus(struct ifnet *, struct ifmediareq *);
94 static void	ae_init(void *);
95 static void	ae_start(struct ifnet *, struct ifaltq_subque *);
96 static int	ae_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
97 static void	ae_watchdog(struct ifnet *);
98 static void	ae_stop(struct ae_softc *);
99 static void	ae_tick(void *);
100 
101 static void	ae_intr(void *);
102 static void	ae_tx_intr(struct ae_softc *);
103 static void	ae_rx_intr(struct ae_softc *);
104 static int	ae_rxeof(struct ae_softc *, struct ae_rxd *);
105 
106 static int	ae_encap(struct ae_softc *, struct mbuf **);
107 static void	ae_sysctl_node(struct ae_softc *);
108 static void	ae_phy_reset(struct ae_softc *);
109 static int	ae_reset(struct ae_softc *);
110 static void	ae_pcie_init(struct ae_softc *);
111 static void	ae_get_eaddr(struct ae_softc *);
112 static void	ae_dma_free(struct ae_softc *);
113 static int	ae_dma_alloc(struct ae_softc *);
114 static void	ae_mac_config(struct ae_softc *);
115 static void	ae_stop_rxmac(struct ae_softc *);
116 static void	ae_stop_txmac(struct ae_softc *);
117 static void	ae_rxfilter(struct ae_softc *);
118 static void	ae_rxvlan(struct ae_softc *);
119 static void	ae_update_stats_rx(uint16_t, struct ae_stats *);
120 static void	ae_update_stats_tx(uint16_t, struct ae_stats *);
121 static void	ae_powersave_disable(struct ae_softc *);
122 static void	ae_powersave_enable(struct ae_softc *);
123 
124 static device_method_t ae_methods[] = {
125 	/* Device interface. */
126 	DEVMETHOD(device_probe,		ae_probe),
127 	DEVMETHOD(device_attach,	ae_attach),
128 	DEVMETHOD(device_detach,	ae_detach),
129 	DEVMETHOD(device_shutdown,	ae_shutdown),
130 	DEVMETHOD(device_suspend,	ae_suspend),
131 	DEVMETHOD(device_resume,	ae_resume),
132 
133 	/* Bus interface. */
134 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
135 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
136 
137 	/* MII interface. */
138 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
139 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
140 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
141 	{ NULL, NULL }
142 };
143 
144 static driver_t ae_driver = {
145 	"ae",
146 	ae_methods,
147 	sizeof(struct ae_softc)
148 };
149 
150 static devclass_t ae_devclass;
151 DECLARE_DUMMY_MODULE(if_ae);
152 MODULE_DEPEND(if_ae, miibus, 1, 1, 1);
153 DRIVER_MODULE(if_ae, pci, ae_driver, ae_devclass, NULL, NULL);
154 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, NULL, NULL);
155 
156 /* Register access macros. */
157 #define AE_WRITE_4(_sc, reg, val)	\
158 	bus_space_write_4((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg), (val))
159 #define AE_WRITE_2(_sc, reg, val)	\
160 	bus_space_write_2((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg), (val))
161 #define AE_WRITE_1(_sc, reg, val)	\
162 	bus_space_write_1((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg), (val))
163 #define AE_READ_4(_sc, reg)		\
164 	bus_space_read_4((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg))
165 #define AE_READ_2(_sc, reg)		\
166 	bus_space_read_2((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg))
167 #define AE_READ_1(_sc, reg)		\
168 	bus_space_read_1((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg))
169 
170 #define AE_PHY_READ(sc, reg)		\
171 	ae_miibus_readreg(sc->ae_dev, 0, reg)
172 #define AE_PHY_WRITE(sc, reg, val)	\
173 	ae_miibus_writereg(sc->ae_dev, 0, reg, val)
174 #define AE_CHECK_EADDR_VALID(eaddr)	\
175 	((eaddr[0] == 0 && eaddr[1] == 0) || \
176 	 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
177 #define AE_RXD_VLAN(vtag) \
178 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
179 #define AE_TXD_VLAN(vtag) \
180 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
181 
182 /*
183  * ae statistics.
184  */
185 #define STATS_ENTRY(node, desc, field) \
186 	{ node, desc, offsetof(struct ae_stats, field) }
187 struct {
188 	const char	*node;
189 	const char	*desc;
190 	intptr_t	offset;
191 } ae_stats_tx[] = {
192 	STATS_ENTRY("bcast", "broadcast frames", tx_bcast),
193 	STATS_ENTRY("mcast", "multicast frames", tx_mcast),
194 	STATS_ENTRY("pause", "PAUSE frames", tx_pause),
195 	STATS_ENTRY("control", "control frames", tx_ctrl),
196 	STATS_ENTRY("defers", "deferrals occuried", tx_defer),
197 	STATS_ENTRY("exc_defers", "excessive deferrals occuried", tx_excdefer),
198 	STATS_ENTRY("singlecols", "single collisions occuried", tx_singlecol),
199 	STATS_ENTRY("multicols", "multiple collisions occuried", tx_multicol),
200 	STATS_ENTRY("latecols", "late collisions occuried", tx_latecol),
201 	STATS_ENTRY("aborts", "transmit aborts due collisions", tx_abortcol),
202 	STATS_ENTRY("underruns", "Tx FIFO underruns", tx_underrun)
203 }, ae_stats_rx[] = {
204 	STATS_ENTRY("bcast", "broadcast frames", rx_bcast),
205 	STATS_ENTRY("mcast", "multicast frames", rx_mcast),
206 	STATS_ENTRY("pause", "PAUSE frames", rx_pause),
207 	STATS_ENTRY("control", "control frames", rx_ctrl),
208 	STATS_ENTRY("crc_errors", "frames with CRC errors", rx_crcerr),
209 	STATS_ENTRY("code_errors", "frames with invalid opcode", rx_codeerr),
210 	STATS_ENTRY("runt", "runt frames", rx_runt),
211 	STATS_ENTRY("frag", "fragmented frames", rx_frag),
212 	STATS_ENTRY("align_errors", "frames with alignment errors", rx_align),
213 	STATS_ENTRY("truncated", "frames truncated due to Rx FIFO inderrun",
214 	    rx_trunc)
215 };
216 #define AE_STATS_RX_LEN NELEM(ae_stats_rx)
217 #define AE_STATS_TX_LEN NELEM(ae_stats_tx)
218 
219 static void
220 ae_stop(struct ae_softc *sc)
221 {
222 	struct ifnet *ifp = &sc->arpcom.ac_if;
223 	int i;
224 
225 	ASSERT_SERIALIZED(ifp->if_serializer);
226 
227 	ifp->if_flags &= ~IFF_RUNNING;
228 	ifq_clr_oactive(&ifp->if_snd);
229 	ifp->if_timer = 0;
230 
231 	sc->ae_flags &= ~AE_FLAG_LINK;
232 	callout_stop(&sc->ae_tick_ch);
233 
234 	/*
235 	 * Clear and disable interrupts.
236 	 */
237 	AE_WRITE_4(sc, AE_IMR_REG, 0);
238 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
239 
240 	/*
241 	 * Stop Rx/Tx MACs.
242 	 */
243 	ae_stop_txmac(sc);
244 	ae_stop_rxmac(sc);
245 
246 	/*
247 	 * Stop DMA engines.
248 	 */
249 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
250 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
251 
252 	/*
253 	 * Wait for everything to enter idle state.
254 	 */
255 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
256 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
257 			break;
258 		DELAY(100);
259 	}
260 	if (i == AE_IDLE_TIMEOUT)
261 		if_printf(ifp, "could not enter idle state in stop.\n");
262 }
263 
264 static void
265 ae_stop_rxmac(struct ae_softc *sc)
266 {
267 	uint32_t val;
268 	int i;
269 
270 	/*
271 	 * Stop Rx MAC engine.
272 	 */
273 	val = AE_READ_4(sc, AE_MAC_REG);
274 	if ((val & AE_MAC_RX_EN) != 0) {
275 		val &= ~AE_MAC_RX_EN;
276 		AE_WRITE_4(sc, AE_MAC_REG, val);
277 	}
278 
279 	/*
280 	 * Stop Rx DMA engine.
281 	 */
282 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
283 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
284 
285 	/*
286 	 * Wait for IDLE state.
287 	 */
288 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
289 		val = AE_READ_4(sc, AE_IDLE_REG);
290 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
291 			break;
292 		DELAY(100);
293 	}
294 	if (i == AE_IDLE_TIMEOUT) {
295 		if_printf(&sc->arpcom.ac_if,
296 			  "timed out while stopping Rx MAC.\n");
297 	}
298 }
299 
300 static void
301 ae_stop_txmac(struct ae_softc *sc)
302 {
303 	uint32_t val;
304 	int i;
305 
306 	/*
307 	 * Stop Tx MAC engine.
308 	 */
309 	val = AE_READ_4(sc, AE_MAC_REG);
310 	if ((val & AE_MAC_TX_EN) != 0) {
311 		val &= ~AE_MAC_TX_EN;
312 		AE_WRITE_4(sc, AE_MAC_REG, val);
313 	}
314 
315 	/*
316 	 * Stop Tx DMA engine.
317 	 */
318 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
319 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
320 
321 	/*
322 	 * Wait for IDLE state.
323 	 */
324 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
325 		val = AE_READ_4(sc, AE_IDLE_REG);
326 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
327 			break;
328 		DELAY(100);
329 	}
330 	if (i == AE_IDLE_TIMEOUT) {
331 		if_printf(&sc->arpcom.ac_if,
332 			  "timed out while stopping Tx MAC.\n");
333 	}
334 }
335 
336 /*
337  * Callback from MII layer when media changes.
338  */
339 static void
340 ae_miibus_statchg(device_t dev)
341 {
342 	struct ae_softc *sc = device_get_softc(dev);
343 	struct ifnet *ifp = &sc->arpcom.ac_if;
344 	struct mii_data *mii;
345 	uint32_t val;
346 
347 	ASSERT_SERIALIZED(ifp->if_serializer);
348 
349 	if ((ifp->if_flags & IFF_RUNNING) == 0)
350 		return;
351 
352 	mii = device_get_softc(sc->ae_miibus);
353 	sc->ae_flags &= ~AE_FLAG_LINK;
354 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
355 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
356 		case IFM_10_T:
357 		case IFM_100_TX:
358 			sc->ae_flags |= AE_FLAG_LINK;
359 			break;
360 		default:
361 			break;
362 		}
363 	}
364 
365 	/* Stop Rx/Tx MACs. */
366 	ae_stop_rxmac(sc);
367 	ae_stop_txmac(sc);
368 
369 	/* Program MACs with resolved speed/duplex/flow-control. */
370 	if ((sc->ae_flags & AE_FLAG_LINK) != 0) {
371 		ae_mac_config(sc);
372 
373 		/*
374 		 * Restart DMA engines.
375 		 */
376 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
377 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
378 
379 		/*
380 		 * Enable Rx and Tx MACs.
381 		 */
382 		val = AE_READ_4(sc, AE_MAC_REG);
383 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
384 		AE_WRITE_4(sc, AE_MAC_REG, val);
385 	}
386 }
387 
388 static void
389 ae_sysctl_node(struct ae_softc *sc)
390 {
391 	struct sysctl_ctx_list *ctx;
392 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
393 	struct ae_stats *ae_stats;
394 	unsigned int i;
395 
396 	ae_stats = &sc->stats;
397 
398 	ctx = device_get_sysctl_ctx(sc->ae_dev);
399 	root = device_get_sysctl_tree(sc->ae_dev);
400 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
401 	    CTLFLAG_RD, NULL, "ae statistics");
402 	if (stats == NULL) {
403 		device_printf(sc->ae_dev, "can't add stats sysctl node\n");
404 		return;
405 	}
406 
407 	/*
408 	 * Receiver statistcics.
409 	 */
410 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
411 	    CTLFLAG_RD, NULL, "Rx MAC statistics");
412 	if (stats_rx != NULL) {
413 		for (i = 0; i < AE_STATS_RX_LEN; i++) {
414 			SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_rx),
415 			    OID_AUTO, ae_stats_rx[i].node, CTLFLAG_RD,
416 			    (char *)ae_stats + ae_stats_rx[i].offset, 0,
417 			    ae_stats_rx[i].desc);
418 		}
419 	}
420 
421 	/*
422 	 * Transmitter statistcics.
423 	 */
424 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
425 	    CTLFLAG_RD, NULL, "Tx MAC statistics");
426 	if (stats_tx != NULL) {
427 		for (i = 0; i < AE_STATS_TX_LEN; i++) {
428 			SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_tx),
429 			    OID_AUTO, ae_stats_tx[i].node, CTLFLAG_RD,
430 			    (char *)ae_stats + ae_stats_tx[i].offset, 0,
431 			    ae_stats_tx[i].desc);
432 		}
433 	}
434 }
435 
436 static int
437 ae_miibus_readreg(device_t dev, int phy, int reg)
438 {
439 	struct ae_softc *sc = device_get_softc(dev);
440 	uint32_t val;
441 	int i;
442 
443 	/*
444 	 * Locking is done in upper layers.
445 	 */
446 	if (phy != sc->ae_phyaddr)
447 		return (0);
448 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
449 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
450 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
451 	AE_WRITE_4(sc, AE_MDIO_REG, val);
452 
453 	/*
454 	 * Wait for operation to complete.
455 	 */
456 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
457 		DELAY(2);
458 		val = AE_READ_4(sc, AE_MDIO_REG);
459 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
460 			break;
461 	}
462 	if (i == AE_MDIO_TIMEOUT) {
463 		device_printf(sc->ae_dev, "phy read timeout: %d.\n", reg);
464 		return (0);
465 	}
466 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
467 }
468 
469 static int
470 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
471 {
472 	struct ae_softc *sc = device_get_softc(dev);
473 	uint32_t aereg;
474 	int i;
475 
476 	/*
477 	 * Locking is done in upper layers.
478 	 */
479 	if (phy != sc->ae_phyaddr)
480 		return (0);
481 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
482 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
483 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
484 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
485 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
486 
487 	/*
488 	 * Wait for operation to complete.
489 	 */
490 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
491 		DELAY(2);
492 		aereg = AE_READ_4(sc, AE_MDIO_REG);
493 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
494 			break;
495 	}
496 	if (i == AE_MDIO_TIMEOUT)
497 		device_printf(sc->ae_dev, "phy write timeout: %d.\n", reg);
498 	return (0);
499 }
500 
501 static int
502 ae_probe(device_t dev)
503 {
504 	uint16_t vendor, devid;
505 	const struct ae_dev *sp;
506 
507 	vendor = pci_get_vendor(dev);
508 	devid = pci_get_device(dev);
509 	for (sp = ae_devs; sp->ae_name != NULL; sp++) {
510 		if (vendor == sp->ae_vendorid &&
511 		    devid == sp->ae_deviceid) {
512 			device_set_desc(dev, sp->ae_name);
513 			return (0);
514 		}
515 	}
516 	return (ENXIO);
517 }
518 
519 static int
520 ae_dma_alloc(struct ae_softc *sc)
521 {
522 	bus_addr_t busaddr;
523 	int error;
524 
525 	/*
526 	 * Create parent DMA tag.
527 	 */
528 	error = bus_dma_tag_create(NULL, 1, 0,
529 				   BUS_SPACE_MAXADDR_32BIT,
530 				   BUS_SPACE_MAXADDR,
531 				   NULL, NULL,
532 				   BUS_SPACE_MAXSIZE_32BIT,
533 				   0,
534 				   BUS_SPACE_MAXSIZE_32BIT,
535 				   0, &sc->dma_parent_tag);
536 	if (error) {
537 		device_printf(sc->ae_dev, "could not creare parent DMA tag.\n");
538 		return (error);
539 	}
540 
541 	/*
542 	 * Create DMA stuffs for TxD.
543 	 */
544 	sc->txd_base = bus_dmamem_coherent_any(sc->dma_parent_tag, 4,
545 			AE_TXD_BUFSIZE_DEFAULT, BUS_DMA_WAITOK | BUS_DMA_ZERO,
546 			&sc->dma_txd_tag, &sc->dma_txd_map,
547 			&sc->dma_txd_busaddr);
548 	if (sc->txd_base == NULL) {
549 		device_printf(sc->ae_dev, "could not creare TxD DMA stuffs.\n");
550 		return ENOMEM;
551 	}
552 
553 	/*
554 	 * Create DMA stuffs for TxS.
555 	 */
556 	sc->txs_base = bus_dmamem_coherent_any(sc->dma_parent_tag, 4,
557 			AE_TXS_COUNT_DEFAULT * 4, BUS_DMA_WAITOK | BUS_DMA_ZERO,
558 			&sc->dma_txs_tag, &sc->dma_txs_map,
559 			&sc->dma_txs_busaddr);
560 	if (sc->txs_base == NULL) {
561 		device_printf(sc->ae_dev, "could not creare TxS DMA stuffs.\n");
562 		return ENOMEM;
563 	}
564 
565 	/*
566 	 * Create DMA stuffs for RxD.
567 	 */
568 	sc->rxd_base_dma = bus_dmamem_coherent_any(sc->dma_parent_tag, 128,
569 				AE_RXD_COUNT_DEFAULT * 1536 + 120,
570 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
571 				&sc->dma_rxd_tag, &sc->dma_rxd_map,
572 				&busaddr);
573 	if (sc->rxd_base_dma == NULL) {
574 		device_printf(sc->ae_dev, "could not creare RxD DMA stuffs.\n");
575 		return ENOMEM;
576 	}
577 	sc->dma_rxd_busaddr = busaddr + 120;
578 	sc->rxd_base = (struct ae_rxd *)(sc->rxd_base_dma + 120);
579 
580 	return (0);
581 }
582 
583 static void
584 ae_mac_config(struct ae_softc *sc)
585 {
586 	struct mii_data *mii;
587 	uint32_t val;
588 
589 	mii = device_get_softc(sc->ae_miibus);
590 	val = AE_READ_4(sc, AE_MAC_REG);
591 	val &= ~AE_MAC_FULL_DUPLEX;
592 	/* XXX disable AE_MAC_TX_FLOW_EN? */
593 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
594 		val |= AE_MAC_FULL_DUPLEX;
595 	AE_WRITE_4(sc, AE_MAC_REG, val);
596 }
597 
598 static int
599 ae_rxeof(struct ae_softc *sc, struct ae_rxd *rxd)
600 {
601 	struct ifnet *ifp = &sc->arpcom.ac_if;
602 	struct mbuf *m;
603 	unsigned int size;
604 	uint16_t flags;
605 
606 	flags = le16toh(rxd->flags);
607 #ifdef AE_DEBUG
608 	if_printf(ifp, "Rx interrupt occuried.\n");
609 #endif
610 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
611 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN -
612 		    sizeof(struct ether_vlan_header))) {
613 		if_printf(ifp, "Runt frame received.");
614 		return (EIO);
615 	}
616 
617 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp);
618 	if (m == NULL)
619 		return (ENOBUFS);
620 
621 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
622 	    (flags & AE_RXD_HAS_VLAN)) {
623 		m->m_pkthdr.ether_vlantag = AE_RXD_VLAN(le16toh(rxd->vlan));
624 		m->m_flags |= M_VLANTAG;
625 	}
626 	ifp->if_input(ifp, m, NULL, -1);
627 
628 	return (0);
629 }
630 
631 static void
632 ae_rx_intr(struct ae_softc *sc)
633 {
634 	struct ifnet *ifp = &sc->arpcom.ac_if;
635 	struct ae_rxd *rxd;
636 	uint16_t flags;
637 	int error;
638 
639 	/*
640 	 * Syncronize DMA buffers.
641 	 */
642 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
643 			BUS_DMASYNC_POSTREAD);
644 	for (;;) {
645 		rxd = (struct ae_rxd *)(sc->rxd_base + sc->rxd_cur);
646 
647 		flags = le16toh(rxd->flags);
648 		if ((flags & AE_RXD_UPDATE) == 0)
649 			break;
650 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
651 
652 		/* Update stats. */
653 		ae_update_stats_rx(flags, &sc->stats);
654 
655 		/*
656 		 * Update position index.
657 		 */
658 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
659 		if ((flags & AE_RXD_SUCCESS) == 0) {
660 			IFNET_STAT_INC(ifp, ierrors, 1);
661 			continue;
662 		}
663 
664 		error = ae_rxeof(sc, rxd);
665 		if (error)
666 			IFNET_STAT_INC(ifp, ierrors, 1);
667 		else
668 			IFNET_STAT_INC(ifp, ipackets, 1);
669 	}
670 
671 	/* Update Rx index. */
672 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
673 }
674 
675 static void
676 ae_tx_intr(struct ae_softc *sc)
677 {
678 	struct ifnet *ifp = &sc->arpcom.ac_if;
679 	struct ae_txd *txd;
680 	struct ae_txs *txs;
681 	uint16_t flags;
682 
683 	/*
684 	 * Syncronize DMA buffers.
685 	 */
686 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_POSTREAD);
687 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, BUS_DMASYNC_POSTREAD);
688 
689 	for (;;) {
690 		txs = sc->txs_base + sc->txs_ack;
691 
692 		flags = le16toh(txs->flags);
693 		if ((flags & AE_TXS_UPDATE) == 0)
694 			break;
695 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
696 
697 		/* Update stats. */
698 		ae_update_stats_tx(flags, &sc->stats);
699 
700 		/*
701 		 * Update TxS position.
702 		 */
703 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
704 		sc->ae_flags |= AE_FLAG_TXAVAIL;
705 		txd = (struct ae_txd *)(sc->txd_base + sc->txd_ack);
706 		if (txs->len != txd->len) {
707 			device_printf(sc->ae_dev, "Size mismatch: "
708 				"TxS:%d TxD:%d\n",
709 				le16toh(txs->len), le16toh(txd->len));
710 		}
711 
712 		/*
713 		 * Move txd ack and align on 4-byte boundary.
714 		 */
715 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 4 + 3) & ~3) %
716 		    AE_TXD_BUFSIZE_DEFAULT;
717 		if ((flags & AE_TXS_SUCCESS) != 0)
718 			IFNET_STAT_INC(ifp, opackets, 1);
719 		else
720 			IFNET_STAT_INC(ifp, oerrors, 1);
721 		sc->tx_inproc--;
722 	}
723 
724 	if (sc->tx_inproc < 0) {
725 		/* XXX assert? */
726 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
727 		sc->tx_inproc = 0;
728 	}
729 	if (sc->tx_inproc == 0)
730 		ifp->if_timer = 0;	/* Unarm watchdog. */
731 	if (sc->ae_flags & AE_FLAG_TXAVAIL) {
732 		ifq_clr_oactive(&ifp->if_snd);
733 		if (!ifq_is_empty(&ifp->if_snd))
734 #ifdef foo
735 			ae_intr(sc);
736 #else
737 			if_devstart(ifp);
738 #endif
739 	}
740 
741 	/*
742 	 * Syncronize DMA buffers.
743 	 */
744 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREWRITE);
745 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, BUS_DMASYNC_PREWRITE);
746 }
747 
748 static void
749 ae_intr(void *xsc)
750 {
751 	struct ae_softc *sc = xsc;
752 	struct ifnet *ifp = &sc->arpcom.ac_if;
753 	uint32_t val;
754 
755 	ASSERT_SERIALIZED(ifp->if_serializer);
756 
757 	val = AE_READ_4(sc, AE_ISR_REG);
758 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
759 		return;
760 
761 #ifdef foo
762 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
763 #endif
764 
765 	/* Read interrupt status. */
766 	val = AE_READ_4(sc, AE_ISR_REG);
767 
768 	/* Clear interrupts and disable them. */
769 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
770 
771 	if (ifp->if_flags & IFF_RUNNING) {
772 		if (val & (AE_ISR_DMAR_TIMEOUT |
773 			   AE_ISR_DMAW_TIMEOUT |
774 			   AE_ISR_PHY_LINKDOWN)) {
775 			ae_init(sc);
776 		}
777 		if (val & AE_ISR_TX_EVENT)
778 			ae_tx_intr(sc);
779 		if (val & AE_ISR_RX_EVENT)
780 			ae_rx_intr(sc);
781 	}
782 
783 	/* Re-enable interrupts. */
784 	AE_WRITE_4(sc, AE_ISR_REG, 0);
785 }
786 
787 static void
788 ae_init(void *xsc)
789 {
790 	struct ae_softc *sc = xsc;
791 	struct ifnet *ifp = &sc->arpcom.ac_if;
792 	struct mii_data *mii;
793 	uint8_t eaddr[ETHER_ADDR_LEN];
794 	uint32_t val;
795 	bus_addr_t addr;
796 
797 	ASSERT_SERIALIZED(ifp->if_serializer);
798 
799 	mii = device_get_softc(sc->ae_miibus);
800 	ae_stop(sc);
801 	ae_reset(sc);
802 	ae_pcie_init(sc);
803 	ae_powersave_disable(sc);
804 
805 	/*
806 	 * Clear and disable interrupts.
807 	 */
808 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
809 
810 	/*
811 	 * Set the MAC address.
812 	 */
813 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
814 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
815 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
816 	val = eaddr[0] << 8 | eaddr[1];
817 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
818 
819 	/*
820 	 * Set ring buffers base addresses.
821 	 */
822 	addr = sc->dma_rxd_busaddr;
823 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
824 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
825 	addr = sc->dma_txd_busaddr;
826 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
827 	addr = sc->dma_txs_busaddr;
828 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
829 
830 	/*
831 	 * Configure ring buffers sizes.
832 	 */
833 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
834 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
835 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
836 
837 	/*
838 	 * Configure interframe gap parameters.
839 	 */
840 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
841 	    AE_IFG_TXIPG_MASK) |
842 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
843 	    AE_IFG_RXIPG_MASK) |
844 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
845 	    AE_IFG_IPGR1_MASK) |
846 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
847 	    AE_IFG_IPGR2_MASK);
848 	AE_WRITE_4(sc, AE_IFG_REG, val);
849 
850 	/*
851 	 * Configure half-duplex operation.
852 	 */
853 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
854 	    AE_HDPX_LCOL_MASK) |
855 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
856 	    AE_HDPX_RETRY_MASK) |
857 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
858 	    AE_HDPX_ABEBT_MASK) |
859 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
860 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
861 	AE_WRITE_4(sc, AE_HDPX_REG, val);
862 
863 	/*
864 	 * Configure interrupt moderate timer.
865 	 */
866 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
867 	val = AE_READ_4(sc, AE_MASTER_REG);
868 	val |= AE_MASTER_IMT_EN;
869 	AE_WRITE_4(sc, AE_MASTER_REG, val);
870 
871 	/*
872 	 * Configure interrupt clearing timer.
873 	 */
874 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
875 
876 	/*
877 	 * Configure MTU.
878 	 */
879 	val = ifp->if_mtu + ETHER_HDR_LEN + sizeof(struct ether_vlan_header) +
880 	    ETHER_CRC_LEN;
881 	AE_WRITE_2(sc, AE_MTU_REG, val);
882 
883 	/*
884 	 * Configure cut-through threshold.
885 	 */
886 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
887 
888 	/*
889 	 * Configure flow control.
890 	 */
891 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
892 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
893 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
894 	    (AE_RXD_COUNT_DEFAULT / 12));
895 
896 	/*
897 	 * Init mailboxes.
898 	 */
899 	sc->txd_cur = sc->rxd_cur = 0;
900 	sc->txs_ack = sc->txd_ack = 0;
901 	sc->rxd_cur = 0;
902 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
903 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
904 	sc->tx_inproc = 0;
905 	sc->ae_flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */
906 
907 	/*
908 	 * Enable DMA.
909 	 */
910 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
911 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
912 
913 	/*
914 	 * Check if everything is OK.
915 	 */
916 	val = AE_READ_4(sc, AE_ISR_REG);
917 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
918 		device_printf(sc->ae_dev, "Initialization failed.\n");
919 		return;
920 	}
921 
922 	/*
923 	 * Clear interrupt status.
924 	 */
925 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
926 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
927 
928 	/*
929 	 * Enable interrupts.
930 	 */
931 	val = AE_READ_4(sc, AE_MASTER_REG);
932 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
933 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
934 
935 	/*
936 	 * Disable WOL.
937 	 */
938 	AE_WRITE_4(sc, AE_WOL_REG, 0);
939 
940 	/*
941 	 * Configure MAC.
942 	 */
943 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
944 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
945 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
946 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
947 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
948 	    AE_MAC_PREAMBLE_MASK);
949 	AE_WRITE_4(sc, AE_MAC_REG, val);
950 
951 	/*
952 	 * Configure Rx MAC.
953 	 */
954 	ae_rxfilter(sc);
955 	ae_rxvlan(sc);
956 
957 	/*
958 	 * Enable Tx/Rx.
959 	 */
960 	val = AE_READ_4(sc, AE_MAC_REG);
961 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
962 
963 	sc->ae_flags &= ~AE_FLAG_LINK;
964 	mii_mediachg(mii);	/* Switch to the current media. */
965 
966 	callout_reset(&sc->ae_tick_ch, hz, ae_tick, sc);
967 	ifp->if_flags |= IFF_RUNNING;
968 	ifq_clr_oactive(&ifp->if_snd);
969 }
970 
971 static void
972 ae_watchdog(struct ifnet *ifp)
973 {
974 	struct ae_softc *sc = ifp->if_softc;
975 
976 	ASSERT_SERIALIZED(ifp->if_serializer);
977 
978 	if ((sc->ae_flags & AE_FLAG_LINK) == 0)
979 		if_printf(ifp, "watchdog timeout (missed link).\n");
980 	else
981 		if_printf(ifp, "watchdog timeout - resetting.\n");
982 	IFNET_STAT_INC(ifp, oerrors, 1);
983 
984 	ae_init(sc);
985 	if (!ifq_is_empty(&ifp->if_snd))
986 		if_devstart(ifp);
987 }
988 
989 static void
990 ae_tick(void *xsc)
991 {
992 	struct ae_softc *sc = xsc;
993 	struct ifnet *ifp = &sc->arpcom.ac_if;
994 	struct mii_data *mii = device_get_softc(sc->ae_miibus);
995 
996 	lwkt_serialize_enter(ifp->if_serializer);
997 	mii_tick(mii);
998 	callout_reset(&sc->ae_tick_ch, hz, ae_tick, sc);
999 	lwkt_serialize_exit(ifp->if_serializer);
1000 }
1001 
1002 static void
1003 ae_rxvlan(struct ae_softc *sc)
1004 {
1005 	struct ifnet *ifp = &sc->arpcom.ac_if;
1006 	uint32_t val;
1007 
1008 	val = AE_READ_4(sc, AE_MAC_REG);
1009 	val &= ~AE_MAC_RMVLAN_EN;
1010 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1011 		val |= AE_MAC_RMVLAN_EN;
1012 	AE_WRITE_4(sc, AE_MAC_REG, val);
1013 }
1014 
1015 static void
1016 ae_rxfilter(struct ae_softc *sc)
1017 {
1018 	struct ifnet *ifp = &sc->arpcom.ac_if;
1019 	struct ifmultiaddr *ifma;
1020 	uint32_t crc;
1021 	uint32_t mchash[2];
1022 	uint32_t rxcfg;
1023 
1024 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
1025 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
1026 	rxcfg |= AE_MAC_BCAST_EN;
1027 	if (ifp->if_flags & IFF_PROMISC)
1028 		rxcfg |= AE_MAC_PROMISC_EN;
1029 	if (ifp->if_flags & IFF_ALLMULTI)
1030 		rxcfg |= AE_MAC_MCAST_EN;
1031 
1032 	/*
1033 	 * Wipe old settings.
1034 	 */
1035 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
1036 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
1037 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1038 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
1039 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
1040 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
1041 		return;
1042 	}
1043 
1044 	/*
1045 	 * Load multicast tables.
1046 	 */
1047 	bzero(mchash, sizeof(mchash));
1048 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1049 		if (ifma->ifma_addr->sa_family != AF_LINK)
1050 			continue;
1051 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1052 			ifma->ifma_addr), ETHER_ADDR_LEN);
1053 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1054 	}
1055 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
1056 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
1057 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
1058 }
1059 
1060 static unsigned int
1061 ae_tx_avail_size(struct ae_softc *sc)
1062 {
1063 	unsigned int avail;
1064 
1065 	if (sc->txd_cur >= sc->txd_ack)
1066 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1067 	else
1068 		avail = sc->txd_ack - sc->txd_cur;
1069 	return (avail - 4);     /* 4-byte header. */
1070 }
1071 
1072 static int
1073 ae_encap(struct ae_softc *sc, struct mbuf **m_head)
1074 {
1075 	struct mbuf *m0;
1076 	struct ae_txd *hdr;
1077 	unsigned int to_end;
1078 	uint16_t len;
1079 
1080 	M_ASSERTPKTHDR((*m_head));
1081 	m0 = *m_head;
1082 	len = m0->m_pkthdr.len;
1083 	if ((sc->ae_flags & AE_FLAG_TXAVAIL) == 0 ||
1084 	    ae_tx_avail_size(sc) < len) {
1085 #ifdef AE_DEBUG
1086 		if_printf(sc->ifp, "No free Tx available.\n");
1087 #endif
1088 		return ENOBUFS;
1089 	}
1090 
1091 	hdr = (struct ae_txd *)(sc->txd_base + sc->txd_cur);
1092 	bzero(hdr, sizeof(*hdr));
1093 
1094 	/* Header size. */
1095 	sc->txd_cur = (sc->txd_cur + 4) % AE_TXD_BUFSIZE_DEFAULT;
1096 
1097 	/* Space available to the end of the ring */
1098 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1099 
1100 	if (to_end >= len) {
1101 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1102 	} else {
1103 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1104 		    sc->txd_cur));
1105 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1106 	}
1107 
1108 	/*
1109 	 * Set TxD flags and parameters.
1110 	 */
1111 	if ((m0->m_flags & M_VLANTAG) != 0) {
1112 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vlantag));
1113 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1114 	} else {
1115 		hdr->len = htole16(len);
1116 	}
1117 
1118 	/*
1119 	 * Set current TxD position and round up to a 4-byte boundary.
1120 	 */
1121 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1122 	if (sc->txd_cur == sc->txd_ack)
1123 		sc->ae_flags &= ~AE_FLAG_TXAVAIL;
1124 #ifdef AE_DEBUG
1125 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1126 #endif
1127 
1128 	/*
1129 	 * Update TxS position and check if there are empty TxS available.
1130 	 */
1131 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1132 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1133 	if (sc->txs_cur == sc->txs_ack)
1134 		sc->ae_flags &= ~AE_FLAG_TXAVAIL;
1135 
1136 	/*
1137 	 * Synchronize DMA memory.
1138 	 */
1139 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREWRITE);
1140 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, BUS_DMASYNC_PREWRITE);
1141 
1142 	return (0);
1143 }
1144 
1145 static void
1146 ae_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1147 {
1148 	struct ae_softc *sc = ifp->if_softc;
1149 	int error, trans;
1150 
1151 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1152 	ASSERT_SERIALIZED(ifp->if_serializer);
1153 
1154 #ifdef AE_DEBUG
1155 	if_printf(ifp, "Start called.\n");
1156 #endif
1157 	if ((sc->ae_flags & AE_FLAG_LINK) == 0) {
1158 		ifq_purge(&ifp->if_snd);
1159 		return;
1160 	}
1161 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1162 		return;
1163 
1164 	trans = 0;
1165 	while (!ifq_is_empty(&ifp->if_snd)) {
1166 		struct mbuf *m0;
1167 
1168 		m0 = ifq_dequeue(&ifp->if_snd);
1169 		if (m0 == NULL)
1170 			break;  /* Nothing to do. */
1171 
1172 		error = ae_encap(sc, &m0);
1173 		if (error != 0) {
1174 			if (m0 != NULL) {
1175 				ifq_prepend(&ifp->if_snd, m0);
1176 				ifq_set_oactive(&ifp->if_snd);
1177 #ifdef AE_DEBUG
1178 				if_printf(ifp, "Setting OACTIVE.\n");
1179 #endif
1180 			}
1181 			break;
1182 		}
1183 		trans = 1;
1184 		sc->tx_inproc++;
1185 
1186 		/* Bounce a copy of the frame to BPF. */
1187 		ETHER_BPF_MTAP(ifp, m0);
1188 		m_freem(m0);
1189 	}
1190 	if (trans) {	/* Something was dequeued. */
1191 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1192 		ifp->if_timer = AE_TX_TIMEOUT; /* Load watchdog. */
1193 #ifdef AE_DEBUG
1194 		if_printf(ifp, "%d packets dequeued.\n", count);
1195 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1196 #endif
1197 	}
1198 }
1199 
1200 static int
1201 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1202 {
1203         struct ae_softc *sc = ifp->if_softc;
1204         struct ifreq *ifr;
1205         struct mii_data *mii;
1206         int error = 0, mask;
1207 
1208 	ASSERT_SERIALIZED(ifp->if_serializer);
1209 
1210 	ifr = (struct ifreq *)data;
1211 	switch (cmd) {
1212 	case SIOCSIFFLAGS:
1213 		if (ifp->if_flags & IFF_UP) {
1214 			if (ifp->if_flags & IFF_RUNNING) {
1215 				if (((ifp->if_flags ^ sc->ae_if_flags)
1216 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1217 					ae_rxfilter(sc);
1218 			} else {
1219 				ae_init(sc);
1220 			}
1221 		} else {
1222 			if (ifp->if_flags & IFF_RUNNING)
1223 				ae_stop(sc);
1224 		}
1225 		sc->ae_if_flags = ifp->if_flags;
1226 		break;
1227 
1228 	case SIOCADDMULTI:
1229 	case SIOCDELMULTI:
1230 		if (ifp->if_flags & IFF_RUNNING)
1231 			ae_rxfilter(sc);
1232 		break;
1233 
1234 	case SIOCSIFMEDIA:
1235 	case SIOCGIFMEDIA:
1236 		mii = device_get_softc(sc->ae_miibus);
1237 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1238 		break;
1239 
1240 	case SIOCSIFCAP:
1241 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1242 		if (mask & IFCAP_VLAN_HWTAGGING) {
1243 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1244 			ae_rxvlan(sc);
1245 		}
1246 		break;
1247 
1248 	default:
1249 		error = ether_ioctl(ifp, cmd, data);
1250 		break;
1251 	}
1252 	return (error);
1253 }
1254 
1255 static int
1256 ae_attach(device_t dev)
1257 {
1258 	struct ae_softc *sc = device_get_softc(dev);
1259 	struct ifnet *ifp = &sc->arpcom.ac_if;
1260 	int error = 0;
1261 
1262 	sc->ae_dev = dev;
1263 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1264 	callout_init(&sc->ae_tick_ch);
1265 
1266 	/* Enable bus mastering */
1267 	pci_enable_busmaster(dev);
1268 
1269 	/*
1270 	 * Allocate memory mapped IO
1271 	 */
1272 	sc->ae_mem_rid = PCIR_BAR(0);
1273 	sc->ae_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1274 						&sc->ae_mem_rid, RF_ACTIVE);
1275 	if (sc->ae_mem_res == NULL) {
1276 		device_printf(dev, "can't allocate IO memory\n");
1277 		return ENXIO;
1278 	}
1279 	sc->ae_mem_bt = rman_get_bustag(sc->ae_mem_res);
1280 	sc->ae_mem_bh = rman_get_bushandle(sc->ae_mem_res);
1281 
1282 	/*
1283 	 * Allocate IRQ
1284 	 */
1285 	sc->ae_irq_rid = 0;
1286 	sc->ae_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1287 						&sc->ae_irq_rid,
1288 						RF_SHAREABLE | RF_ACTIVE);
1289 	if (sc->ae_irq_res == NULL) {
1290 		device_printf(dev, "can't allocate irq\n");
1291 		error = ENXIO;
1292 		goto fail;
1293 	}
1294 
1295 	/* Set PHY address. */
1296 	sc->ae_phyaddr = AE_PHYADDR_DEFAULT;
1297 
1298 	/* Create sysctl tree */
1299 	ae_sysctl_node(sc);
1300 
1301 	/* Reset PHY. */
1302 	ae_phy_reset(sc);
1303 
1304 	/*
1305 	 * Reset the ethernet controller.
1306 	 */
1307 	ae_reset(sc);
1308 	ae_pcie_init(sc);
1309 
1310 	/*
1311 	 * Get PCI and chip id/revision.
1312 	 */
1313 	sc->ae_rev = pci_get_revid(dev);
1314 	sc->ae_chip_rev =
1315 	(AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
1316 	AE_MASTER_REVNUM_MASK;
1317 	if (bootverbose) {
1318 		device_printf(dev, "PCI device revision : 0x%04x\n", sc->ae_rev);
1319 		device_printf(dev, "Chip id/revision : 0x%04x\n",
1320 		    sc->ae_chip_rev);
1321 	}
1322 
1323 	/*
1324 	 * XXX
1325 	 * Unintialized hardware returns an invalid chip id/revision
1326 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
1327 	 * unplugged cable results in putting hardware into automatic
1328 	 * power down mode which in turn returns invalld chip revision.
1329 	 */
1330 	if (sc->ae_chip_rev == 0xFFFF) {
1331 		device_printf(dev,"invalid chip revision : 0x%04x -- "
1332 		    "not initialized?\n", sc->ae_chip_rev);
1333 		error = ENXIO;
1334 		goto fail;
1335 	}
1336 #if 0
1337 	/* Get DMA parameters from PCIe device control register. */
1338 	pcie_ptr = pci_get_pciecap_ptr(dev);
1339 	if (pcie_ptr) {
1340 		uint16_t devctl;
1341 		sc->ae_flags |= AE_FLAG_PCIE;
1342 		devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
1343 		/* Max read request size. */
1344 		sc->ae_dma_rd_burst = ((devctl >> 12) & 0x07) <<
1345 		    DMA_CFG_RD_BURST_SHIFT;
1346 		/* Max payload size. */
1347 		sc->ae_dma_wr_burst = ((devctl >> 5) & 0x07) <<
1348 		    DMA_CFG_WR_BURST_SHIFT;
1349 		if (bootverbose) {
1350 			device_printf(dev, "Read request size : %d bytes.\n",
1351 			    128 << ((devctl >> 12) & 0x07));
1352 			device_printf(dev, "TLP payload size : %d bytes.\n",
1353 			    128 << ((devctl >> 5) & 0x07));
1354 		}
1355 	} else {
1356 		sc->ae_dma_rd_burst = DMA_CFG_RD_BURST_128;
1357 		sc->ae_dma_wr_burst = DMA_CFG_WR_BURST_128;
1358 	}
1359 #endif
1360 
1361 	/* Create DMA stuffs */
1362 	error = ae_dma_alloc(sc);
1363 	if (error)
1364 		goto fail;
1365 
1366 	/* Load station address. */
1367 	ae_get_eaddr(sc);
1368 
1369 	ifp->if_softc = sc;
1370 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1371 	ifp->if_ioctl = ae_ioctl;
1372 	ifp->if_start = ae_start;
1373 	ifp->if_init = ae_init;
1374 	ifp->if_watchdog = ae_watchdog;
1375 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN - 1);
1376 	ifq_set_ready(&ifp->if_snd);
1377 	ifp->if_capabilities = IFCAP_VLAN_MTU |
1378 			       IFCAP_VLAN_HWTAGGING;
1379 	ifp->if_hwassist = 0;
1380 	ifp->if_capenable = ifp->if_capabilities;
1381 
1382 	/* Set up MII bus. */
1383 	error = mii_phy_probe(dev, &sc->ae_miibus,
1384 			      ae_mediachange, ae_mediastatus);
1385 	if (error) {
1386 		device_printf(dev, "no PHY found!\n");
1387 		goto fail;
1388 	}
1389 	ether_ifattach(ifp, sc->ae_eaddr, NULL);
1390 
1391 	/* Tell the upper layer(s) we support long frames. */
1392 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1393 
1394 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->ae_irq_res));
1395 
1396 	error = bus_setup_intr(dev, sc->ae_irq_res, INTR_MPSAFE, ae_intr, sc,
1397 			       &sc->ae_irq_handle, ifp->if_serializer);
1398 	if (error) {
1399 		device_printf(dev, "could not set up interrupt handler.\n");
1400 		ether_ifdetach(ifp);
1401 		goto fail;
1402 	}
1403 	return 0;
1404 fail:
1405 	ae_detach(dev);
1406 	return (error);
1407 }
1408 
1409 static int
1410 ae_detach(device_t dev)
1411 {
1412 	struct ae_softc *sc = device_get_softc(dev);
1413 
1414 	if (device_is_attached(dev)) {
1415 		struct ifnet *ifp = &sc->arpcom.ac_if;
1416 
1417 		lwkt_serialize_enter(ifp->if_serializer);
1418 		sc->ae_flags |= AE_FLAG_DETACH;
1419 		ae_stop(sc);
1420 		bus_teardown_intr(dev, sc->ae_irq_res, sc->ae_irq_handle);
1421 		lwkt_serialize_exit(ifp->if_serializer);
1422 
1423 		ether_ifdetach(ifp);
1424 	}
1425 
1426 	if (sc->ae_miibus != NULL)
1427 		device_delete_child(dev, sc->ae_miibus);
1428 	bus_generic_detach(dev);
1429 
1430 	if (sc->ae_irq_res != NULL) {
1431 		bus_release_resource(dev, SYS_RES_IRQ, sc->ae_irq_rid,
1432 				     sc->ae_irq_res);
1433 	}
1434 	if (sc->ae_mem_res != NULL) {
1435 		bus_release_resource(dev, SYS_RES_MEMORY, sc->ae_mem_rid,
1436 				     sc->ae_mem_res);
1437 	}
1438 	ae_dma_free(sc);
1439 
1440 	return (0);
1441 }
1442 
1443 static void
1444 ae_dma_free(struct ae_softc *sc)
1445 {
1446 	if (sc->dma_txd_tag != NULL) {
1447 		bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1448 		bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1449 		    sc->dma_txd_map);
1450 		bus_dma_tag_destroy(sc->dma_txd_tag);
1451 	}
1452 	if (sc->dma_txs_tag != NULL) {
1453 		bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1454 		bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1455 		    sc->dma_txs_map);
1456 		bus_dma_tag_destroy(sc->dma_txs_tag);
1457 	}
1458 	if (sc->dma_rxd_tag != NULL) {
1459 		bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1460 		bus_dmamem_free(sc->dma_rxd_tag,
1461 		    sc->rxd_base_dma, sc->dma_rxd_map);
1462 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1463 	}
1464 	if (sc->dma_parent_tag != NULL)
1465 		bus_dma_tag_destroy(sc->dma_parent_tag);
1466 }
1467 
1468 static void
1469 ae_pcie_init(struct ae_softc *sc)
1470 {
1471 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG,
1472 		   AE_PCIE_LTSSM_TESTMODE_DEFAULT);
1473 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG,
1474 		   AE_PCIE_DLL_TX_CTRL_DEFAULT);
1475 }
1476 
1477 static void
1478 ae_phy_reset(struct ae_softc *sc)
1479 {
1480 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
1481 	DELAY(1000);    /* XXX: pause(9) ? */
1482 }
1483 
1484 static int
1485 ae_reset(struct ae_softc *sc)
1486 {
1487 	int i;
1488 
1489 	/*
1490 	 * Issue a soft reset.
1491 	 */
1492 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
1493 	bus_space_barrier(sc->ae_mem_bt, sc->ae_mem_bh, AE_MASTER_REG, 4,
1494 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
1495 
1496 	/*
1497 	 * Wait for reset to complete.
1498 	 */
1499 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
1500 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
1501 			break;
1502 		DELAY(10);
1503 	}
1504 	if (i == AE_RESET_TIMEOUT) {
1505 		device_printf(sc->ae_dev, "reset timeout.\n");
1506 		return (ENXIO);
1507 	}
1508 
1509 	/*
1510 	 * Wait for everything to enter idle state.
1511 	 */
1512 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1513 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
1514 			break;
1515 		DELAY(100);
1516 	}
1517 	if (i == AE_IDLE_TIMEOUT) {
1518 		device_printf(sc->ae_dev, "could not enter idle state.\n");
1519 		return (ENXIO);
1520 	}
1521 	return (0);
1522 }
1523 
1524 static int
1525 ae_check_eeprom_present(struct ae_softc *sc, int *vpdc)
1526 {
1527 	int error;
1528 	uint32_t val;
1529 
1530 	/*
1531 	 * Not sure why, but Linux does this.
1532 	 */
1533 	val = AE_READ_4(sc, AE_SPICTL_REG);
1534 	if ((val & AE_SPICTL_VPD_EN) != 0) {
1535 		val &= ~AE_SPICTL_VPD_EN;
1536 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
1537 	}
1538 	error = pci_find_extcap(sc->ae_dev, PCIY_VPD, vpdc);
1539 	return (error);
1540 }
1541 
1542 static int
1543 ae_vpd_read_word(struct ae_softc *sc, int reg, uint32_t *word)
1544 {
1545 	uint32_t val;
1546 	int i;
1547 
1548 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
1549 
1550 	/*
1551 	 * VPD registers start at offset 0x100. Read them.
1552 	 */
1553 	val = 0x100 + reg * 4;
1554 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
1555 	    AE_VPD_CAP_ADDR_MASK);
1556 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
1557 		DELAY(2000);
1558 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
1559 		if ((val & AE_VPD_CAP_DONE) != 0)
1560 			break;
1561 	}
1562 	if (i == AE_VPD_TIMEOUT) {
1563 		device_printf(sc->ae_dev, "timeout reading VPD register %d.\n",
1564 		    reg);
1565 		return (ETIMEDOUT);
1566 	}
1567 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
1568 	return (0);
1569 }
1570 
1571 static int
1572 ae_get_vpd_eaddr(struct ae_softc *sc, uint32_t *eaddr)
1573 {
1574 	uint32_t word, reg, val;
1575 	int error;
1576 	int found;
1577 	int vpdc;
1578 	int i;
1579 
1580 	/*
1581 	 * Check for EEPROM.
1582 	 */
1583 	error = ae_check_eeprom_present(sc, &vpdc);
1584 	if (error != 0)
1585 		return (error);
1586 
1587 	/*
1588 	 * Read the VPD configuration space.
1589 	 * Each register is prefixed with signature,
1590 	 * so we can check if it is valid.
1591 	 */
1592 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
1593 		error = ae_vpd_read_word(sc, i, &word);
1594 		if (error != 0)
1595 			break;
1596 
1597 		/*
1598 		 * Check signature.
1599 		 */
1600 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1601 			break;
1602 		reg = word >> AE_VPD_REG_SHIFT;
1603 		i++;	/* Move to the next word. */
1604 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1605 			continue;
1606 
1607 		error = ae_vpd_read_word(sc, i, &val);
1608 		if (error != 0)
1609 			break;
1610 		if (reg == AE_EADDR0_REG)
1611 			eaddr[0] = val;
1612 		else
1613 			eaddr[1] = val;
1614 		found++;
1615 	}
1616 	if (found < 2)
1617 		return (ENOENT);
1618 
1619 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1620 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1621 		if (bootverbose)
1622 			device_printf(sc->ae_dev,
1623 			    "VPD ethernet address registers are invalid.\n");
1624 		return (EINVAL);
1625 	}
1626 	return (0);
1627 }
1628 
1629 static int
1630 ae_get_reg_eaddr(struct ae_softc *sc, uint32_t *eaddr)
1631 {
1632 	/*
1633 	 * BIOS is supposed to set this.
1634 	 */
1635 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1636 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1637 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1638 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1639 		if (bootverbose)
1640 			device_printf(sc->ae_dev,
1641 			    "Ethetnet address registers are invalid.\n");
1642 		return (EINVAL);
1643 	}
1644 	return (0);
1645 }
1646 
1647 static void
1648 ae_get_eaddr(struct ae_softc *sc)
1649 {
1650 	uint32_t eaddr[2] = {0, 0};
1651 	int error;
1652 
1653 	/*
1654 	 *Check for EEPROM.
1655 	 */
1656 	error = ae_get_vpd_eaddr(sc, eaddr);
1657 	if (error)
1658 		error = ae_get_reg_eaddr(sc, eaddr);
1659 	if (error) {
1660 		if (bootverbose)
1661 			device_printf(sc->ae_dev,
1662 			    "Generating random ethernet address.\n");
1663 		eaddr[0] = karc4random();
1664 		/*
1665 		 * Set OUI to ASUSTek COMPUTER INC.
1666 		 */
1667 		sc->ae_eaddr[0] = 0x02;	/* U/L bit set. */
1668 		sc->ae_eaddr[1] = 0x1f;
1669 		sc->ae_eaddr[2] = 0xc6;
1670 		sc->ae_eaddr[3] = (eaddr[0] >> 16) & 0xff;
1671 		sc->ae_eaddr[4] = (eaddr[0] >> 8) & 0xff;
1672 		sc->ae_eaddr[5] = (eaddr[0] >> 0) & 0xff;
1673 	} else {
1674 		sc->ae_eaddr[0] = (eaddr[1] >> 8) & 0xff;
1675 		sc->ae_eaddr[1] = (eaddr[1] >> 0) & 0xff;
1676 		sc->ae_eaddr[2] = (eaddr[0] >> 24) & 0xff;
1677 		sc->ae_eaddr[3] = (eaddr[0] >> 16) & 0xff;
1678 		sc->ae_eaddr[4] = (eaddr[0] >> 8) & 0xff;
1679 		sc->ae_eaddr[5] = (eaddr[0] >> 0) & 0xff;
1680 	}
1681 }
1682 
1683 static int
1684 ae_mediachange(struct ifnet *ifp)
1685 {
1686 	struct ae_softc *sc = ifp->if_softc;
1687 	struct mii_data *mii = device_get_softc(sc->ae_miibus);
1688 	int error;
1689 
1690 	ASSERT_SERIALIZED(ifp->if_serializer);
1691 	if (mii->mii_instance != 0) {
1692 		struct mii_softc *miisc;
1693 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1694 			mii_phy_reset(miisc);
1695 	}
1696 	error = mii_mediachg(mii);
1697 	return (error);
1698 }
1699 
1700 static void
1701 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1702 {
1703 	struct ae_softc *sc = ifp->if_softc;
1704 	struct mii_data *mii = device_get_softc(sc->ae_miibus);
1705 
1706 	ASSERT_SERIALIZED(ifp->if_serializer);
1707 	mii_pollstat(mii);
1708 	ifmr->ifm_status = mii->mii_media_status;
1709 	ifmr->ifm_active = mii->mii_media_active;
1710 }
1711 
1712 static void
1713 ae_update_stats_tx(uint16_t flags, struct ae_stats *stats)
1714 {
1715 	if ((flags & AE_TXS_BCAST) != 0)
1716 		stats->tx_bcast++;
1717 	if ((flags & AE_TXS_MCAST) != 0)
1718 		stats->tx_mcast++;
1719 	if ((flags & AE_TXS_PAUSE) != 0)
1720 		stats->tx_pause++;
1721 	if ((flags & AE_TXS_CTRL) != 0)
1722 		stats->tx_ctrl++;
1723 	if ((flags & AE_TXS_DEFER) != 0)
1724 		stats->tx_defer++;
1725 	if ((flags & AE_TXS_EXCDEFER) != 0)
1726 		stats->tx_excdefer++;
1727 	if ((flags & AE_TXS_SINGLECOL) != 0)
1728 		stats->tx_singlecol++;
1729 	if ((flags & AE_TXS_MULTICOL) != 0)
1730 		stats->tx_multicol++;
1731 	if ((flags & AE_TXS_LATECOL) != 0)
1732 		stats->tx_latecol++;
1733 	if ((flags & AE_TXS_ABORTCOL) != 0)
1734 		stats->tx_abortcol++;
1735 	if ((flags & AE_TXS_UNDERRUN) != 0)
1736 		stats->tx_underrun++;
1737 }
1738 
1739 static void
1740 ae_update_stats_rx(uint16_t flags, struct ae_stats *stats)
1741 {
1742 	if ((flags & AE_RXD_BCAST) != 0)
1743 		stats->rx_bcast++;
1744 	if ((flags & AE_RXD_MCAST) != 0)
1745 		stats->rx_mcast++;
1746 	if ((flags & AE_RXD_PAUSE) != 0)
1747 		stats->rx_pause++;
1748 	if ((flags & AE_RXD_CTRL) != 0)
1749 		stats->rx_ctrl++;
1750 	if ((flags & AE_RXD_CRCERR) != 0)
1751 		stats->rx_crcerr++;
1752 	if ((flags & AE_RXD_CODEERR) != 0)
1753 		stats->rx_codeerr++;
1754 	if ((flags & AE_RXD_RUNT) != 0)
1755 		stats->rx_runt++;
1756 	if ((flags & AE_RXD_FRAG) != 0)
1757 		stats->rx_frag++;
1758 	if ((flags & AE_RXD_TRUNC) != 0)
1759 		stats->rx_trunc++;
1760 	if ((flags & AE_RXD_ALIGN) != 0)
1761 		stats->rx_align++;
1762 }
1763 
1764 static int
1765 ae_resume(device_t dev)
1766 {
1767 	struct ae_softc *sc = device_get_softc(dev);
1768 	struct ifnet *ifp = &sc->arpcom.ac_if;
1769 
1770 	lwkt_serialize_enter(ifp->if_serializer);
1771 #if 0
1772 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1773 #endif
1774 	ae_phy_reset(sc);
1775 	if ((ifp->if_flags & IFF_UP) != 0)
1776 		ae_init(sc);
1777 	lwkt_serialize_exit(ifp->if_serializer);
1778 	return (0);
1779 }
1780 
1781 static int
1782 ae_suspend(device_t dev)
1783 {
1784 	struct ae_softc *sc = device_get_softc(dev);
1785 	struct ifnet *ifp = &sc->arpcom.ac_if;
1786 
1787 	lwkt_serialize_enter(ifp->if_serializer);
1788 	ae_stop(sc);
1789 #if 0
1790 	/* we don't use ae_pm_init because we don't want WOL */
1791 	ae_pm_init(sc);
1792 #endif
1793 	lwkt_serialize_exit(ifp->if_serializer);
1794 	return (0);
1795 }
1796 
1797 static int
1798 ae_shutdown(device_t dev)
1799 {
1800 	struct ae_softc *sc = device_get_softc(dev);
1801 	struct ifnet *ifp = &sc->arpcom.ac_if;
1802 
1803 	ae_suspend(dev);
1804 
1805 	lwkt_serialize_enter(ifp->if_serializer);
1806 	ae_powersave_enable(sc);
1807 	lwkt_serialize_exit(ifp->if_serializer);
1808 
1809 	return (0);
1810 }
1811 
1812 static void
1813 ae_powersave_disable(struct ae_softc *sc)
1814 {
1815 	uint32_t val;
1816 
1817 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1818 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1819 	if (val & AE_PHY_DBG_POWERSAVE) {
1820 		val &= ~AE_PHY_DBG_POWERSAVE;
1821 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1822 		DELAY(1000);
1823 	}
1824 }
1825 
1826 static void
1827 ae_powersave_enable(struct ae_softc *sc)
1828 {
1829 	uint32_t val;
1830 
1831 	/*
1832 	 * XXX magic numbers.
1833 	 */
1834 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1835 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1836 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1837 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1838 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1839 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1840 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1841 }
1842