xref: /dragonfly/sys/dev/netif/ae/if_ae.c (revision fa419eae)
1 /*-
2  * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
26  *
27  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
28  *
29  * $FreeBSD: src/sys/dev/ae/if_ae.c,v 1.1.2.3.2.1 2009/04/15 03:14:26 kensmith Exp $
30  */
31 
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54 
55 #include <bus/pci/pcireg.h>
56 #include <bus/pci/pcivar.h>
57 #include <bus/pci/pcidevs.h>
58 
59 #include <dev/netif/mii_layer/miivar.h>
60 
61 #include <dev/netif/ae/if_aereg.h>
62 #include <dev/netif/ae/if_aevar.h>
63 
64 /* "device miibus" required.  See GENERIC if you get errors here. */
65 #include "miibus_if.h"
66 
67 /*
68  * Devices supported by this driver.
69  */
70 static const struct ae_dev {
71 	uint16_t	ae_vendorid;
72 	uint16_t	ae_deviceid;
73 	const char	*ae_name;
74 } ae_devs[] = {
75         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
76             "Attansic Technology Corp, L2 Fast Ethernet" },
77 	/* Required last entry */
78 	{ 0, 0, NULL }
79 };
80 
81 
82 static int	ae_probe(device_t);
83 static int	ae_attach(device_t);
84 static int	ae_detach(device_t);
85 static int	ae_shutdown(device_t);
86 static int	ae_suspend(device_t);
87 static int	ae_resume(device_t);
88 static int	ae_miibus_readreg(device_t, int, int);
89 static int	ae_miibus_writereg(device_t, int, int, int);
90 static void	ae_miibus_statchg(device_t);
91 
92 static int	ae_mediachange(struct ifnet *);
93 static void	ae_mediastatus(struct ifnet *, struct ifmediareq *);
94 static void	ae_init(void *);
95 static void	ae_start(struct ifnet *);
96 static int	ae_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
97 static void	ae_watchdog(struct ifnet *);
98 static void	ae_stop(struct ae_softc *);
99 static void	ae_tick(void *);
100 
101 static void	ae_intr(void *);
102 static void	ae_tx_intr(struct ae_softc *);
103 static void	ae_rx_intr(struct ae_softc *);
104 static int	ae_rxeof(struct ae_softc *, struct ae_rxd *);
105 
106 static int	ae_encap(struct ae_softc *, struct mbuf **);
107 static void	ae_sysctl_node(struct ae_softc *);
108 static void	ae_phy_reset(struct ae_softc *);
109 static int	ae_reset(struct ae_softc *);
110 static void	ae_pcie_init(struct ae_softc *);
111 static void	ae_get_eaddr(struct ae_softc *);
112 static void	ae_dma_free(struct ae_softc *);
113 static int	ae_dma_alloc(struct ae_softc *);
114 static void	ae_mac_config(struct ae_softc *);
115 static void	ae_stop_rxmac(struct ae_softc *);
116 static void	ae_stop_txmac(struct ae_softc *);
117 static void	ae_rxfilter(struct ae_softc *);
118 static void	ae_rxvlan(struct ae_softc *);
119 static void	ae_update_stats_rx(uint16_t, struct ae_stats *);
120 static void	ae_update_stats_tx(uint16_t, struct ae_stats *);
121 static void	ae_powersave_disable(struct ae_softc *);
122 static void	ae_powersave_enable(struct ae_softc *);
123 
124 static device_method_t ae_methods[] = {
125 	/* Device interface. */
126 	DEVMETHOD(device_probe,		ae_probe),
127 	DEVMETHOD(device_attach,	ae_attach),
128 	DEVMETHOD(device_detach,	ae_detach),
129 	DEVMETHOD(device_shutdown,	ae_shutdown),
130 	DEVMETHOD(device_suspend,	ae_suspend),
131 	DEVMETHOD(device_resume,	ae_resume),
132 
133 	/* Bus interface. */
134 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
135 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
136 
137 	/* MII interface. */
138 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
139 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
140 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
141 	{ NULL, NULL }
142 };
143 
144 static driver_t ae_driver = {
145 	"ae",
146 	ae_methods,
147 	sizeof(struct ae_softc)
148 };
149 
150 static devclass_t ae_devclass;
151 DECLARE_DUMMY_MODULE(if_ae);
152 MODULE_DEPEND(if_ae, miibus, 1, 1, 1);
153 DRIVER_MODULE(if_ae, pci, ae_driver, ae_devclass, 0, 0);
154 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
155 
156 /* Register access macros. */
157 #define AE_WRITE_4(_sc, reg, val)	\
158 	bus_space_write_4((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg), (val))
159 #define AE_WRITE_2(_sc, reg, val)	\
160 	bus_space_write_2((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg), (val))
161 #define AE_WRITE_1(_sc, reg, val)	\
162 	bus_space_write_1((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg), (val))
163 #define AE_READ_4(_sc, reg)		\
164 	bus_space_read_4((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg))
165 #define AE_READ_2(_sc, reg)		\
166 	bus_space_read_2((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg))
167 #define AE_READ_1(_sc, reg)		\
168 	bus_space_read_1((_sc)->ae_mem_bt, (_sc)->ae_mem_bh, (reg))
169 
170 #define AE_PHY_READ(sc, reg)		\
171 	ae_miibus_readreg(sc->ae_dev, 0, reg)
172 #define AE_PHY_WRITE(sc, reg, val)	\
173 	ae_miibus_writereg(sc->ae_dev, 0, reg, val)
174 #define AE_CHECK_EADDR_VALID(eaddr)	\
175 	((eaddr[0] == 0 && eaddr[1] == 0) || \
176 	 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
177 #define AE_RXD_VLAN(vtag) \
178 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
179 #define AE_TXD_VLAN(vtag) \
180 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
181 
182 /*
183  * ae statistics.
184  */
185 #define STATS_ENTRY(node, desc, field) \
186 	{ node, desc, offsetof(struct ae_stats, field) }
187 struct {
188 	const char	*node;
189 	const char	*desc;
190 	intptr_t	offset;
191 } ae_stats_tx[] = {
192 	STATS_ENTRY("bcast", "broadcast frames", tx_bcast),
193 	STATS_ENTRY("mcast", "multicast frames", tx_mcast),
194 	STATS_ENTRY("pause", "PAUSE frames", tx_pause),
195 	STATS_ENTRY("control", "control frames", tx_ctrl),
196 	STATS_ENTRY("defers", "deferrals occuried", tx_defer),
197 	STATS_ENTRY("exc_defers", "excessive deferrals occuried", tx_excdefer),
198 	STATS_ENTRY("singlecols", "single collisions occuried", tx_singlecol),
199 	STATS_ENTRY("multicols", "multiple collisions occuried", tx_multicol),
200 	STATS_ENTRY("latecols", "late collisions occuried", tx_latecol),
201 	STATS_ENTRY("aborts", "transmit aborts due collisions", tx_abortcol),
202 	STATS_ENTRY("underruns", "Tx FIFO underruns", tx_underrun)
203 }, ae_stats_rx[] = {
204 	STATS_ENTRY("bcast", "broadcast frames", rx_bcast),
205 	STATS_ENTRY("mcast", "multicast frames", rx_mcast),
206 	STATS_ENTRY("pause", "PAUSE frames", rx_pause),
207 	STATS_ENTRY("control", "control frames", rx_ctrl),
208 	STATS_ENTRY("crc_errors", "frames with CRC errors", rx_crcerr),
209 	STATS_ENTRY("code_errors", "frames with invalid opcode", rx_codeerr),
210 	STATS_ENTRY("runt", "runt frames", rx_runt),
211 	STATS_ENTRY("frag", "fragmented frames", rx_frag),
212 	STATS_ENTRY("align_errors", "frames with alignment errors", rx_align),
213 	STATS_ENTRY("truncated", "frames truncated due to Rx FIFO inderrun",
214 	    rx_trunc)
215 };
216 #define AE_STATS_RX_LEN (sizeof(ae_stats_rx) / sizeof(*ae_stats_rx))
217 #define AE_STATS_TX_LEN (sizeof(ae_stats_tx) / sizeof(*ae_stats_tx))
218 
219 static void
220 ae_stop(struct ae_softc *sc)
221 {
222 	struct ifnet *ifp = &sc->arpcom.ac_if;
223 	int i;
224 
225 	ASSERT_SERIALIZED(ifp->if_serializer);
226 
227 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
228 	ifp->if_timer = 0;
229 
230 	sc->ae_flags &= ~AE_FLAG_LINK;
231 	callout_stop(&sc->ae_tick_ch);
232 
233 	/*
234 	 * Clear and disable interrupts.
235 	 */
236 	AE_WRITE_4(sc, AE_IMR_REG, 0);
237 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
238 
239 	/*
240 	 * Stop Rx/Tx MACs.
241 	 */
242 	ae_stop_txmac(sc);
243 	ae_stop_rxmac(sc);
244 
245 	/*
246 	 * Stop DMA engines.
247 	 */
248 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
249 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
250 
251 	/*
252 	 * Wait for everything to enter idle state.
253 	 */
254 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
255 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
256 			break;
257 		DELAY(100);
258 	}
259 	if (i == AE_IDLE_TIMEOUT)
260 		if_printf(ifp, "could not enter idle state in stop.\n");
261 }
262 
263 static void
264 ae_stop_rxmac(struct ae_softc *sc)
265 {
266 	uint32_t val;
267 	int i;
268 
269 	/*
270 	 * Stop Rx MAC engine.
271 	 */
272 	val = AE_READ_4(sc, AE_MAC_REG);
273 	if ((val & AE_MAC_RX_EN) != 0) {
274 		val &= ~AE_MAC_RX_EN;
275 		AE_WRITE_4(sc, AE_MAC_REG, val);
276 	}
277 
278 	/*
279 	 * Stop Rx DMA engine.
280 	 */
281 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
282 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
283 
284 	/*
285 	 * Wait for IDLE state.
286 	 */
287 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
288 		val = AE_READ_4(sc, AE_IDLE_REG);
289 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
290 			break;
291 		DELAY(100);
292 	}
293 	if (i == AE_IDLE_TIMEOUT) {
294 		if_printf(&sc->arpcom.ac_if,
295 			  "timed out while stopping Rx MAC.\n");
296 	}
297 }
298 
299 static void
300 ae_stop_txmac(struct ae_softc *sc)
301 {
302 	uint32_t val;
303 	int i;
304 
305 	/*
306 	 * Stop Tx MAC engine.
307 	 */
308 	val = AE_READ_4(sc, AE_MAC_REG);
309 	if ((val & AE_MAC_TX_EN) != 0) {
310 		val &= ~AE_MAC_TX_EN;
311 		AE_WRITE_4(sc, AE_MAC_REG, val);
312 	}
313 
314 	/*
315 	 * Stop Tx DMA engine.
316 	 */
317 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
318 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
319 
320 	/*
321 	 * Wait for IDLE state.
322 	 */
323 	for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
324 		val = AE_READ_4(sc, AE_IDLE_REG);
325 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
326 			break;
327 		DELAY(100);
328 	}
329 	if (i == AE_IDLE_TIMEOUT) {
330 		if_printf(&sc->arpcom.ac_if,
331 			  "timed out while stopping Tx MAC.\n");
332 	}
333 }
334 
335 /*
336  * Callback from MII layer when media changes.
337  */
338 static void
339 ae_miibus_statchg(device_t dev)
340 {
341 	struct ae_softc *sc = device_get_softc(dev);
342 	struct ifnet *ifp = &sc->arpcom.ac_if;
343 	struct mii_data *mii;
344 	uint32_t val;
345 
346 	ASSERT_SERIALIZED(ifp->if_serializer);
347 
348 	if ((ifp->if_flags & IFF_RUNNING) == 0)
349 		return;
350 
351 	mii = device_get_softc(sc->ae_miibus);
352 	sc->ae_flags &= ~AE_FLAG_LINK;
353 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
354 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
355 		case IFM_10_T:
356 		case IFM_100_TX:
357 			sc->ae_flags |= AE_FLAG_LINK;
358 			break;
359 		default:
360 			break;
361 		}
362 	}
363 
364 	/* Stop Rx/Tx MACs. */
365 	ae_stop_rxmac(sc);
366 	ae_stop_txmac(sc);
367 
368 	/* Program MACs with resolved speed/duplex/flow-control. */
369 	if ((sc->ae_flags & AE_FLAG_LINK) != 0) {
370 		ae_mac_config(sc);
371 
372 		/*
373 		 * Restart DMA engines.
374 		 */
375 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
376 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
377 
378 		/*
379 		 * Enable Rx and Tx MACs.
380 		 */
381 		val = AE_READ_4(sc, AE_MAC_REG);
382 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
383 		AE_WRITE_4(sc, AE_MAC_REG, val);
384 	}
385 }
386 
387 static void
388 ae_sysctl_node(struct ae_softc *sc)
389 {
390 	struct sysctl_ctx_list *ctx;
391 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
392 	struct ae_stats *ae_stats;
393 	unsigned int i;
394 
395 	ae_stats = &sc->stats;
396 	sysctl_ctx_init(&sc->ae_sysctl_ctx);
397 	sc->ae_sysctl_tree = SYSCTL_ADD_NODE(&sc->ae_sysctl_ctx,
398 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
399 				device_get_nameunit(sc->ae_dev),
400 				CTLFLAG_RD, 0, "");
401 	if (sc->ae_sysctl_tree == NULL) {
402 		device_printf(sc->ae_dev, "can't add sysctl node\n");
403 		return;
404 	}
405 	ctx = &sc->ae_sysctl_ctx;
406 	root = sc->ae_sysctl_tree;
407 
408 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
409 	    CTLFLAG_RD, NULL, "ae statistics");
410 	if (stats == NULL) {
411 		device_printf(sc->ae_dev, "can't add stats sysctl node\n");
412 		return;
413 	}
414 
415 	/*
416 	 * Receiver statistcics.
417 	 */
418 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
419 	    CTLFLAG_RD, NULL, "Rx MAC statistics");
420 	if (stats_rx != NULL) {
421 		for (i = 0; i < AE_STATS_RX_LEN; i++) {
422 			SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_rx),
423 			    OID_AUTO, ae_stats_rx[i].node, CTLFLAG_RD,
424 			    (char *)ae_stats + ae_stats_rx[i].offset, 0,
425 			    ae_stats_rx[i].desc);
426 		}
427 	}
428 
429 	/*
430 	 * Transmitter statistcics.
431 	 */
432 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
433 	    CTLFLAG_RD, NULL, "Tx MAC statistics");
434 	if (stats_tx != NULL) {
435 		for (i = 0; i < AE_STATS_TX_LEN; i++) {
436 			SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(stats_tx),
437 			    OID_AUTO, ae_stats_tx[i].node, CTLFLAG_RD,
438 			    (char *)ae_stats + ae_stats_tx[i].offset, 0,
439 			    ae_stats_tx[i].desc);
440 		}
441 	}
442 }
443 
444 static int
445 ae_miibus_readreg(device_t dev, int phy, int reg)
446 {
447 	struct ae_softc *sc = device_get_softc(dev);
448 	uint32_t val;
449 	int i;
450 
451 	/*
452 	 * Locking is done in upper layers.
453 	 */
454 	if (phy != sc->ae_phyaddr)
455 		return (0);
456 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
457 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
458 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
459 	AE_WRITE_4(sc, AE_MDIO_REG, val);
460 
461 	/*
462 	 * Wait for operation to complete.
463 	 */
464 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
465 		DELAY(2);
466 		val = AE_READ_4(sc, AE_MDIO_REG);
467 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
468 			break;
469 	}
470 	if (i == AE_MDIO_TIMEOUT) {
471 		device_printf(sc->ae_dev, "phy read timeout: %d.\n", reg);
472 		return (0);
473 	}
474 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
475 }
476 
477 static int
478 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
479 {
480 	struct ae_softc *sc = device_get_softc(dev);
481 	uint32_t aereg;
482 	int i;
483 
484 	/*
485 	 * Locking is done in upper layers.
486 	 */
487 	if (phy != sc->ae_phyaddr)
488 		return (0);
489 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
490 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
491 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
492 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
493 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
494 
495 	/*
496 	 * Wait for operation to complete.
497 	 */
498 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
499 		DELAY(2);
500 		aereg = AE_READ_4(sc, AE_MDIO_REG);
501 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
502 			break;
503 	}
504 	if (i == AE_MDIO_TIMEOUT)
505 		device_printf(sc->ae_dev, "phy write timeout: %d.\n", reg);
506 	return (0);
507 }
508 
509 static int
510 ae_probe(device_t dev)
511 {
512 	uint16_t vendor, devid;
513 	const struct ae_dev *sp;
514 
515 	vendor = pci_get_vendor(dev);
516 	devid = pci_get_device(dev);
517 	for (sp = ae_devs; sp->ae_name != NULL; sp++) {
518 		if (vendor == sp->ae_vendorid &&
519 		    devid == sp->ae_deviceid) {
520 			device_set_desc(dev, sp->ae_name);
521 			return (0);
522 		}
523 	}
524 	return (ENXIO);
525 }
526 
527 static int
528 ae_dma_alloc(struct ae_softc *sc)
529 {
530 	bus_addr_t busaddr;
531 	int error;
532 
533 	/*
534 	 * Create parent DMA tag.
535 	 */
536 	error = bus_dma_tag_create(NULL, 1, 0,
537 				   BUS_SPACE_MAXADDR_32BIT,
538 				   BUS_SPACE_MAXADDR,
539 				   NULL, NULL,
540 				   BUS_SPACE_MAXSIZE_32BIT,
541 				   0,
542 				   BUS_SPACE_MAXSIZE_32BIT,
543 				   0, &sc->dma_parent_tag);
544 	if (error) {
545 		device_printf(sc->ae_dev, "could not creare parent DMA tag.\n");
546 		return (error);
547 	}
548 
549 	/*
550 	 * Create DMA stuffs for TxD.
551 	 */
552 	sc->txd_base = bus_dmamem_coherent_any(sc->dma_parent_tag, 4,
553 			AE_TXD_BUFSIZE_DEFAULT, BUS_DMA_WAITOK | BUS_DMA_ZERO,
554 			&sc->dma_txd_tag, &sc->dma_txd_map,
555 			&sc->dma_txd_busaddr);
556 	if (sc->txd_base == NULL) {
557 		device_printf(sc->ae_dev, "could not creare TxD DMA stuffs.\n");
558 		return ENOMEM;
559 	}
560 
561 	/*
562 	 * Create DMA stuffs for TxS.
563 	 */
564 	sc->txs_base = bus_dmamem_coherent_any(sc->dma_parent_tag, 4,
565 			AE_TXS_COUNT_DEFAULT * 4, BUS_DMA_WAITOK | BUS_DMA_ZERO,
566 			&sc->dma_txs_tag, &sc->dma_txs_map,
567 			&sc->dma_txs_busaddr);
568 	if (sc->txs_base == NULL) {
569 		device_printf(sc->ae_dev, "could not creare TxS DMA stuffs.\n");
570 		return ENOMEM;
571 	}
572 
573 	/*
574 	 * Create DMA stuffs for RxD.
575 	 */
576 	sc->rxd_base_dma = bus_dmamem_coherent_any(sc->dma_parent_tag, 128,
577 				AE_RXD_COUNT_DEFAULT * 1536 + 120,
578 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
579 				&sc->dma_rxd_tag, &sc->dma_rxd_map,
580 				&busaddr);
581 	if (sc->rxd_base_dma == NULL) {
582 		device_printf(sc->ae_dev, "could not creare RxD DMA stuffs.\n");
583 		return ENOMEM;
584 	}
585 	sc->dma_rxd_busaddr = busaddr + 120;
586 	sc->rxd_base = (struct ae_rxd *)(sc->rxd_base_dma + 120);
587 
588 	return (0);
589 }
590 
591 static void
592 ae_mac_config(struct ae_softc *sc)
593 {
594 	struct mii_data *mii;
595 	uint32_t val;
596 
597 	mii = device_get_softc(sc->ae_miibus);
598 	val = AE_READ_4(sc, AE_MAC_REG);
599 	val &= ~AE_MAC_FULL_DUPLEX;
600 	/* XXX disable AE_MAC_TX_FLOW_EN? */
601 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
602 		val |= AE_MAC_FULL_DUPLEX;
603 	AE_WRITE_4(sc, AE_MAC_REG, val);
604 }
605 
606 static int
607 ae_rxeof(struct ae_softc *sc, struct ae_rxd *rxd)
608 {
609 	struct ifnet *ifp = &sc->arpcom.ac_if;
610 	struct mbuf *m;
611 	unsigned int size;
612 	uint16_t flags;
613 
614 	flags = le16toh(rxd->flags);
615 #ifdef AE_DEBUG
616 	if_printf(ifp, "Rx interrupt occuried.\n");
617 #endif
618 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
619 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN -
620 		    sizeof(struct ether_vlan_header))) {
621 		if_printf(ifp, "Runt frame received.");
622 		return (EIO);
623 	}
624 
625 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
626 	if (m == NULL)
627 		return (ENOBUFS);
628 
629 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
630 	    (flags & AE_RXD_HAS_VLAN)) {
631 		m->m_pkthdr.ether_vlantag = AE_RXD_VLAN(le16toh(rxd->vlan));
632 		m->m_flags |= M_VLANTAG;
633 	}
634 	ifp->if_input(ifp, m);
635 
636 	return (0);
637 }
638 
639 static void
640 ae_rx_intr(struct ae_softc *sc)
641 {
642 	struct ifnet *ifp = &sc->arpcom.ac_if;
643 	struct ae_rxd *rxd;
644 	uint16_t flags;
645 	int error;
646 
647 	/*
648 	 * Syncronize DMA buffers.
649 	 */
650 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
651 			BUS_DMASYNC_POSTREAD);
652 	for (;;) {
653 		rxd = (struct ae_rxd *)(sc->rxd_base + sc->rxd_cur);
654 
655 		flags = le16toh(rxd->flags);
656 		if ((flags & AE_RXD_UPDATE) == 0)
657 			break;
658 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
659 
660 		/* Update stats. */
661 		ae_update_stats_rx(flags, &sc->stats);
662 
663 		/*
664 		 * Update position index.
665 		 */
666 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
667 		if ((flags & AE_RXD_SUCCESS) == 0) {
668 			ifp->if_ierrors++;
669 			continue;
670 		}
671 
672 		error = ae_rxeof(sc, rxd);
673 		if (error)
674 			ifp->if_ierrors++;
675 		else
676 			ifp->if_ipackets++;
677 	}
678 
679 	/* Update Rx index. */
680 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
681 }
682 
683 static void
684 ae_tx_intr(struct ae_softc *sc)
685 {
686 	struct ifnet *ifp = &sc->arpcom.ac_if;
687 	struct ae_txd *txd;
688 	struct ae_txs *txs;
689 	uint16_t flags;
690 
691 	/*
692 	 * Syncronize DMA buffers.
693 	 */
694 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_POSTREAD);
695 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, BUS_DMASYNC_POSTREAD);
696 
697 	for (;;) {
698 		txs = sc->txs_base + sc->txs_ack;
699 
700 		flags = le16toh(txs->flags);
701 		if ((flags & AE_TXS_UPDATE) == 0)
702 			break;
703 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
704 
705 		/* Update stats. */
706 		ae_update_stats_tx(flags, &sc->stats);
707 
708 		/*
709 		 * Update TxS position.
710 		 */
711 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
712 		sc->ae_flags |= AE_FLAG_TXAVAIL;
713 		txd = (struct ae_txd *)(sc->txd_base + sc->txd_ack);
714 		if (txs->len != txd->len) {
715 			device_printf(sc->ae_dev, "Size mismatch: "
716 				"TxS:%d TxD:%d\n",
717 				le16toh(txs->len), le16toh(txd->len));
718 		}
719 
720 		/*
721 		 * Move txd ack and align on 4-byte boundary.
722 		 */
723 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 4 + 3) & ~3) %
724 		    AE_TXD_BUFSIZE_DEFAULT;
725 		if ((flags & AE_TXS_SUCCESS) != 0)
726 			ifp->if_opackets++;
727 		else
728 			ifp->if_oerrors++;
729 		sc->tx_inproc--;
730 	}
731 
732 	if (sc->tx_inproc < 0) {
733 		/* XXX assert? */
734 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
735 		sc->tx_inproc = 0;
736 	}
737 	if (sc->tx_inproc == 0)
738 		ifp->if_timer = 0;	/* Unarm watchdog. */
739 	if (sc->ae_flags & AE_FLAG_TXAVAIL) {
740 		ifp->if_flags &= ~IFF_OACTIVE;
741 		if (!ifq_is_empty(&ifp->if_snd))
742 #ifdef foo
743 			ae_intr(sc);
744 #else
745 			if_devstart(ifp);
746 #endif
747 	}
748 
749 	/*
750 	 * Syncronize DMA buffers.
751 	 */
752 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREWRITE);
753 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, BUS_DMASYNC_PREWRITE);
754 }
755 
756 static void
757 ae_intr(void *xsc)
758 {
759 	struct ae_softc *sc = xsc;
760 	struct ifnet *ifp = &sc->arpcom.ac_if;
761 	uint32_t val;
762 
763 	ASSERT_SERIALIZED(ifp->if_serializer);
764 
765 	val = AE_READ_4(sc, AE_ISR_REG);
766 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
767 		return;
768 
769 #ifdef foo
770 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
771 #endif
772 
773 	/* Read interrupt status. */
774 	val = AE_READ_4(sc, AE_ISR_REG);
775 
776 	/* Clear interrupts and disable them. */
777 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
778 
779 	if (ifp->if_flags & IFF_RUNNING) {
780 		if (val & (AE_ISR_DMAR_TIMEOUT |
781 			   AE_ISR_DMAW_TIMEOUT |
782 			   AE_ISR_PHY_LINKDOWN)) {
783 			ae_init(sc);
784 		}
785 		if (val & AE_ISR_TX_EVENT)
786 			ae_tx_intr(sc);
787 		if (val & AE_ISR_RX_EVENT)
788 			ae_rx_intr(sc);
789 	}
790 
791 	/* Re-enable interrupts. */
792 	AE_WRITE_4(sc, AE_ISR_REG, 0);
793 }
794 
795 static void
796 ae_init(void *xsc)
797 {
798 	struct ae_softc *sc = xsc;
799 	struct ifnet *ifp = &sc->arpcom.ac_if;
800 	struct mii_data *mii;
801 	uint8_t eaddr[ETHER_ADDR_LEN];
802 	uint32_t val;
803 	bus_addr_t addr;
804 
805 	ASSERT_SERIALIZED(ifp->if_serializer);
806 
807 	mii = device_get_softc(sc->ae_miibus);
808 	ae_stop(sc);
809 	ae_reset(sc);
810 	ae_pcie_init(sc);
811 	ae_powersave_disable(sc);
812 
813 	/*
814 	 * Clear and disable interrupts.
815 	 */
816 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
817 
818 	/*
819 	 * Set the MAC address.
820 	 */
821 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
822 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
823 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
824 	val = eaddr[0] << 8 | eaddr[1];
825 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
826 
827 	/*
828 	 * Set ring buffers base addresses.
829 	 */
830 	addr = sc->dma_rxd_busaddr;
831 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
832 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
833 	addr = sc->dma_txd_busaddr;
834 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
835 	addr = sc->dma_txs_busaddr;
836 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
837 
838 	/*
839 	 * Configure ring buffers sizes.
840 	 */
841 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
842 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
843 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
844 
845 	/*
846 	 * Configure interframe gap parameters.
847 	 */
848 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
849 	    AE_IFG_TXIPG_MASK) |
850 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
851 	    AE_IFG_RXIPG_MASK) |
852 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
853 	    AE_IFG_IPGR1_MASK) |
854 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
855 	    AE_IFG_IPGR2_MASK);
856 	AE_WRITE_4(sc, AE_IFG_REG, val);
857 
858 	/*
859 	 * Configure half-duplex operation.
860 	 */
861 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
862 	    AE_HDPX_LCOL_MASK) |
863 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
864 	    AE_HDPX_RETRY_MASK) |
865 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
866 	    AE_HDPX_ABEBT_MASK) |
867 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
868 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
869 	AE_WRITE_4(sc, AE_HDPX_REG, val);
870 
871 	/*
872 	 * Configure interrupt moderate timer.
873 	 */
874 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
875 	val = AE_READ_4(sc, AE_MASTER_REG);
876 	val |= AE_MASTER_IMT_EN;
877 	AE_WRITE_4(sc, AE_MASTER_REG, val);
878 
879 	/*
880 	 * Configure interrupt clearing timer.
881 	 */
882 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
883 
884 	/*
885 	 * Configure MTU.
886 	 */
887 	val = ifp->if_mtu + ETHER_HDR_LEN + sizeof(struct ether_vlan_header) +
888 	    ETHER_CRC_LEN;
889 	AE_WRITE_2(sc, AE_MTU_REG, val);
890 
891 	/*
892 	 * Configure cut-through threshold.
893 	 */
894 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
895 
896 	/*
897 	 * Configure flow control.
898 	 */
899 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
900 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
901 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
902 	    (AE_RXD_COUNT_DEFAULT / 12));
903 
904 	/*
905 	 * Init mailboxes.
906 	 */
907 	sc->txd_cur = sc->rxd_cur = 0;
908 	sc->txs_ack = sc->txd_ack = 0;
909 	sc->rxd_cur = 0;
910 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
911 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
912 	sc->tx_inproc = 0;
913 	sc->ae_flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */
914 
915 	/*
916 	 * Enable DMA.
917 	 */
918 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
919 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
920 
921 	/*
922 	 * Check if everything is OK.
923 	 */
924 	val = AE_READ_4(sc, AE_ISR_REG);
925 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
926 		device_printf(sc->ae_dev, "Initialization failed.\n");
927 		return;
928 	}
929 
930 	/*
931 	 * Clear interrupt status.
932 	 */
933 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
934 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
935 
936 	/*
937 	 * Enable interrupts.
938 	 */
939 	val = AE_READ_4(sc, AE_MASTER_REG);
940 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
941 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
942 
943 	/*
944 	 * Disable WOL.
945 	 */
946 	AE_WRITE_4(sc, AE_WOL_REG, 0);
947 
948 	/*
949 	 * Configure MAC.
950 	 */
951 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
952 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
953 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
954 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
955 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
956 	    AE_MAC_PREAMBLE_MASK);
957 	AE_WRITE_4(sc, AE_MAC_REG, val);
958 
959 	/*
960 	 * Configure Rx MAC.
961 	 */
962 	ae_rxfilter(sc);
963 	ae_rxvlan(sc);
964 
965 	/*
966 	 * Enable Tx/Rx.
967 	 */
968 	val = AE_READ_4(sc, AE_MAC_REG);
969 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
970 
971 	sc->ae_flags &= ~AE_FLAG_LINK;
972 	mii_mediachg(mii);	/* Switch to the current media. */
973 
974 	callout_reset(&sc->ae_tick_ch, hz, ae_tick, sc);
975 	ifp->if_flags |= IFF_RUNNING;
976 	ifp->if_flags &= ~IFF_OACTIVE;
977 }
978 
979 static void
980 ae_watchdog(struct ifnet *ifp)
981 {
982 	struct ae_softc *sc = ifp->if_softc;
983 
984 	ASSERT_SERIALIZED(ifp->if_serializer);
985 
986 	if ((sc->ae_flags & AE_FLAG_LINK) == 0)
987 		if_printf(ifp, "watchdog timeout (missed link).\n");
988 	else
989 		if_printf(ifp, "watchdog timeout - resetting.\n");
990 	ifp->if_oerrors++;
991 
992 	ae_init(sc);
993 	if (!ifq_is_empty(&ifp->if_snd))
994 		if_devstart(ifp);
995 }
996 
997 static void
998 ae_tick(void *xsc)
999 {
1000 	struct ae_softc *sc = xsc;
1001 	struct ifnet *ifp = &sc->arpcom.ac_if;
1002 	struct mii_data *mii = device_get_softc(sc->ae_miibus);
1003 
1004 	lwkt_serialize_enter(ifp->if_serializer);
1005 	mii_tick(mii);
1006 	callout_reset(&sc->ae_tick_ch, hz, ae_tick, sc);
1007 	lwkt_serialize_exit(ifp->if_serializer);
1008 }
1009 
1010 static void
1011 ae_rxvlan(struct ae_softc *sc)
1012 {
1013 	struct ifnet *ifp = &sc->arpcom.ac_if;
1014 	uint32_t val;
1015 
1016 	val = AE_READ_4(sc, AE_MAC_REG);
1017 	val &= ~AE_MAC_RMVLAN_EN;
1018 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1019 		val |= AE_MAC_RMVLAN_EN;
1020 	AE_WRITE_4(sc, AE_MAC_REG, val);
1021 }
1022 
1023 static void
1024 ae_rxfilter(struct ae_softc *sc)
1025 {
1026 	struct ifnet *ifp = &sc->arpcom.ac_if;
1027 	struct ifmultiaddr *ifma;
1028 	uint32_t crc;
1029 	uint32_t mchash[2];
1030 	uint32_t rxcfg;
1031 
1032 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
1033 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
1034 	rxcfg |= AE_MAC_BCAST_EN;
1035 	if (ifp->if_flags & IFF_PROMISC)
1036 		rxcfg |= AE_MAC_PROMISC_EN;
1037 	if (ifp->if_flags & IFF_ALLMULTI)
1038 		rxcfg |= AE_MAC_MCAST_EN;
1039 
1040 	/*
1041 	 * Wipe old settings.
1042 	 */
1043 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
1044 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
1045 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1046 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
1047 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
1048 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
1049 		return;
1050 	}
1051 
1052 	/*
1053 	 * Load multicast tables.
1054 	 */
1055 	bzero(mchash, sizeof(mchash));
1056 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1057 		if (ifma->ifma_addr->sa_family != AF_LINK)
1058 			continue;
1059 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1060 			ifma->ifma_addr), ETHER_ADDR_LEN);
1061 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1062 	}
1063 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
1064 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
1065 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
1066 }
1067 
1068 static unsigned int
1069 ae_tx_avail_size(struct ae_softc *sc)
1070 {
1071 	unsigned int avail;
1072 
1073 	if (sc->txd_cur >= sc->txd_ack)
1074 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1075 	else
1076 		avail = sc->txd_ack - sc->txd_cur;
1077 	return (avail - 4);     /* 4-byte header. */
1078 }
1079 
1080 static int
1081 ae_encap(struct ae_softc *sc, struct mbuf **m_head)
1082 {
1083 	struct mbuf *m0;
1084 	struct ae_txd *hdr;
1085 	unsigned int to_end;
1086 	uint16_t len;
1087 
1088 	M_ASSERTPKTHDR((*m_head));
1089 	m0 = *m_head;
1090 	len = m0->m_pkthdr.len;
1091 	if ((sc->ae_flags & AE_FLAG_TXAVAIL) == 0 ||
1092 	    ae_tx_avail_size(sc) < len) {
1093 #ifdef AE_DEBUG
1094 		if_printf(sc->ifp, "No free Tx available.\n");
1095 #endif
1096 		return ENOBUFS;
1097 	}
1098 
1099 	hdr = (struct ae_txd *)(sc->txd_base + sc->txd_cur);
1100 	bzero(hdr, sizeof(*hdr));
1101 
1102 	/* Header size. */
1103 	sc->txd_cur = (sc->txd_cur + 4) % AE_TXD_BUFSIZE_DEFAULT;
1104 
1105 	/* Space available to the end of the ring */
1106 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1107 
1108 	if (to_end >= len) {
1109 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1110 	} else {
1111 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1112 		    sc->txd_cur));
1113 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1114 	}
1115 
1116 	/*
1117 	 * Set TxD flags and parameters.
1118 	 */
1119 	if ((m0->m_flags & M_VLANTAG) != 0) {
1120 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vlantag));
1121 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1122 	} else {
1123 		hdr->len = htole16(len);
1124 	}
1125 
1126 	/*
1127 	 * Set current TxD position and round up to a 4-byte boundary.
1128 	 */
1129 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1130 	if (sc->txd_cur == sc->txd_ack)
1131 		sc->ae_flags &= ~AE_FLAG_TXAVAIL;
1132 #ifdef AE_DEBUG
1133 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1134 #endif
1135 
1136 	/*
1137 	 * Update TxS position and check if there are empty TxS available.
1138 	 */
1139 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1140 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1141 	if (sc->txs_cur == sc->txs_ack)
1142 		sc->ae_flags &= ~AE_FLAG_TXAVAIL;
1143 
1144 	/*
1145 	 * Synchronize DMA memory.
1146 	 */
1147 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREWRITE);
1148 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, BUS_DMASYNC_PREWRITE);
1149 
1150 	return (0);
1151 }
1152 
1153 static void
1154 ae_start(struct ifnet *ifp)
1155 {
1156 	struct ae_softc *sc = ifp->if_softc;
1157 	int error, trans;
1158 
1159 	ASSERT_SERIALIZED(ifp->if_serializer);
1160 
1161 #ifdef AE_DEBUG
1162 	if_printf(ifp, "Start called.\n");
1163 #endif
1164 	if ((sc->ae_flags & AE_FLAG_LINK) == 0) {
1165 		ifq_purge(&ifp->if_snd);
1166 		return;
1167 	}
1168 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1169 		return;
1170 
1171 	trans = 0;
1172 	while (!ifq_is_empty(&ifp->if_snd)) {
1173 		struct mbuf *m0;
1174 
1175 		m0 = ifq_dequeue(&ifp->if_snd, NULL);
1176 		if (m0 == NULL)
1177 			break;  /* Nothing to do. */
1178 
1179 		error = ae_encap(sc, &m0);
1180 		if (error != 0) {
1181 			if (m0 != NULL) {
1182 				ifq_prepend(&ifp->if_snd, m0);
1183 				ifp->if_flags |= IFF_OACTIVE;
1184 #ifdef AE_DEBUG
1185 				if_printf(ifp, "Setting OACTIVE.\n");
1186 #endif
1187 			}
1188 			break;
1189 		}
1190 		trans = 1;
1191 		sc->tx_inproc++;
1192 
1193 		/* Bounce a copy of the frame to BPF. */
1194 		ETHER_BPF_MTAP(ifp, m0);
1195 		m_freem(m0);
1196 	}
1197 	if (trans) {	/* Something was dequeued. */
1198 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1199 		ifp->if_timer = AE_TX_TIMEOUT; /* Load watchdog. */
1200 #ifdef AE_DEBUG
1201 		if_printf(ifp, "%d packets dequeued.\n", count);
1202 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1203 #endif
1204 	}
1205 }
1206 
1207 static int
1208 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1209 {
1210         struct ae_softc *sc = ifp->if_softc;
1211         struct ifreq *ifr;
1212         struct mii_data *mii;
1213         int error = 0, mask;
1214 
1215 	ASSERT_SERIALIZED(ifp->if_serializer);
1216 
1217 	ifr = (struct ifreq *)data;
1218 	switch (cmd) {
1219 	case SIOCSIFFLAGS:
1220 		if (ifp->if_flags & IFF_UP) {
1221 			if (ifp->if_flags & IFF_RUNNING) {
1222 				if (((ifp->if_flags ^ sc->ae_if_flags)
1223 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1224 					ae_rxfilter(sc);
1225 			} else {
1226 				ae_init(sc);
1227 			}
1228 		} else {
1229 			if (ifp->if_flags & IFF_RUNNING)
1230 				ae_stop(sc);
1231 		}
1232 		sc->ae_if_flags = ifp->if_flags;
1233 		break;
1234 
1235 	case SIOCADDMULTI:
1236 	case SIOCDELMULTI:
1237 		if (ifp->if_flags & IFF_RUNNING)
1238 			ae_rxfilter(sc);
1239 		break;
1240 
1241 	case SIOCSIFMEDIA:
1242 	case SIOCGIFMEDIA:
1243 		mii = device_get_softc(sc->ae_miibus);
1244 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1245 		break;
1246 
1247 	case SIOCSIFCAP:
1248 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1249 		if (mask & IFCAP_VLAN_HWTAGGING) {
1250 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1251 			ae_rxvlan(sc);
1252 		}
1253 		break;
1254 
1255 	default:
1256 		error = ether_ioctl(ifp, cmd, data);
1257 		break;
1258 	}
1259 	return (error);
1260 }
1261 
1262 static int
1263 ae_attach(device_t dev)
1264 {
1265 	struct ae_softc *sc = device_get_softc(dev);
1266 	struct ifnet *ifp = &sc->arpcom.ac_if;
1267 	int error = 0;
1268 
1269 	sc->ae_dev = dev;
1270 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1271 	callout_init(&sc->ae_tick_ch);
1272 
1273 	/* Enable bus mastering */
1274 	pci_enable_busmaster(dev);
1275 
1276 	/*
1277 	 * Allocate memory mapped IO
1278 	 */
1279 	sc->ae_mem_rid = PCIR_BAR(0);
1280 	sc->ae_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1281 						&sc->ae_mem_rid, RF_ACTIVE);
1282 	if (sc->ae_mem_res == NULL) {
1283 		device_printf(dev, "can't allocate IO memory\n");
1284 		return ENXIO;
1285 	}
1286 	sc->ae_mem_bt = rman_get_bustag(sc->ae_mem_res);
1287 	sc->ae_mem_bh = rman_get_bushandle(sc->ae_mem_res);
1288 
1289 	/*
1290 	 * Allocate IRQ
1291 	 */
1292 	sc->ae_irq_rid = 0;
1293 	sc->ae_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1294 						&sc->ae_irq_rid,
1295 						RF_SHAREABLE | RF_ACTIVE);
1296 	if (sc->ae_irq_res == NULL) {
1297 		device_printf(dev, "can't allocate irq\n");
1298 		error = ENXIO;
1299 		goto fail;
1300 	}
1301 
1302 	/* Set PHY address. */
1303 	sc->ae_phyaddr = AE_PHYADDR_DEFAULT;
1304 
1305 	/* Create sysctl tree */
1306 	ae_sysctl_node(sc);
1307 
1308 	/* Reset PHY. */
1309 	ae_phy_reset(sc);
1310 
1311 	/*
1312 	 * Reset the ethernet controller.
1313 	 */
1314 	ae_reset(sc);
1315 	ae_pcie_init(sc);
1316 
1317 	/*
1318 	 * Get PCI and chip id/revision.
1319 	 */
1320 	sc->ae_rev = pci_get_revid(dev);
1321 	sc->ae_chip_rev =
1322 	(AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
1323 	AE_MASTER_REVNUM_MASK;
1324 	if (bootverbose) {
1325 		device_printf(dev, "PCI device revision : 0x%04x\n", sc->ae_rev);
1326 		device_printf(dev, "Chip id/revision : 0x%04x\n",
1327 		    sc->ae_chip_rev);
1328 	}
1329 
1330 	/*
1331 	 * XXX
1332 	 * Unintialized hardware returns an invalid chip id/revision
1333 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
1334 	 * unplugged cable results in putting hardware into automatic
1335 	 * power down mode which in turn returns invalld chip revision.
1336 	 */
1337 	if (sc->ae_chip_rev == 0xFFFF) {
1338 		device_printf(dev,"invalid chip revision : 0x%04x -- "
1339 		    "not initialized?\n", sc->ae_chip_rev);
1340 		error = ENXIO;
1341 		goto fail;
1342 	}
1343 #if 0
1344 	/* Get DMA parameters from PCIe device control register. */
1345 	pcie_ptr = pci_get_pciecap_ptr(dev);
1346 	if (pcie_ptr) {
1347 		uint16_t devctl;
1348 		sc->ae_flags |= AE_FLAG_PCIE;
1349 		devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
1350 		/* Max read request size. */
1351 		sc->ae_dma_rd_burst = ((devctl >> 12) & 0x07) <<
1352 		    DMA_CFG_RD_BURST_SHIFT;
1353 		/* Max payload size. */
1354 		sc->ae_dma_wr_burst = ((devctl >> 5) & 0x07) <<
1355 		    DMA_CFG_WR_BURST_SHIFT;
1356 		if (bootverbose) {
1357 			device_printf(dev, "Read request size : %d bytes.\n",
1358 			    128 << ((devctl >> 12) & 0x07));
1359 			device_printf(dev, "TLP payload size : %d bytes.\n",
1360 			    128 << ((devctl >> 5) & 0x07));
1361 		}
1362 	} else {
1363 		sc->ae_dma_rd_burst = DMA_CFG_RD_BURST_128;
1364 		sc->ae_dma_wr_burst = DMA_CFG_WR_BURST_128;
1365 	}
1366 #endif
1367 
1368 	/* Create DMA stuffs */
1369 	error = ae_dma_alloc(sc);
1370 	if (error)
1371 		goto fail;
1372 
1373 	/* Load station address. */
1374 	ae_get_eaddr(sc);
1375 
1376 	ifp->if_softc = sc;
1377 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1378 	ifp->if_ioctl = ae_ioctl;
1379 	ifp->if_start = ae_start;
1380 	ifp->if_init = ae_init;
1381 	ifp->if_watchdog = ae_watchdog;
1382 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN - 1);
1383 	ifq_set_ready(&ifp->if_snd);
1384 	ifp->if_capabilities = IFCAP_VLAN_MTU |
1385 			       IFCAP_VLAN_HWTAGGING;
1386 	ifp->if_hwassist = 0;
1387 	ifp->if_capenable = ifp->if_capabilities;
1388 
1389 	/* Set up MII bus. */
1390 	error = mii_phy_probe(dev, &sc->ae_miibus,
1391 			      ae_mediachange, ae_mediastatus);
1392 	if (error) {
1393 		device_printf(dev, "no PHY found!\n");
1394 		goto fail;
1395 	}
1396 	ether_ifattach(ifp, sc->ae_eaddr, NULL);
1397 
1398 	/* Tell the upper layer(s) we support long frames. */
1399 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1400 
1401 	error = bus_setup_intr(dev, sc->ae_irq_res, INTR_MPSAFE, ae_intr, sc,
1402 			       &sc->ae_irq_handle, ifp->if_serializer);
1403 	if (error) {
1404 		device_printf(dev, "could not set up interrupt handler.\n");
1405 		ether_ifdetach(ifp);
1406 		goto fail;
1407 	}
1408 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->ae_irq_res));
1409 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1410 	return 0;
1411 fail:
1412 	ae_detach(dev);
1413 	return (error);
1414 }
1415 
1416 static int
1417 ae_detach(device_t dev)
1418 {
1419 	struct ae_softc *sc = device_get_softc(dev);
1420 
1421 	if (device_is_attached(dev)) {
1422 		struct ifnet *ifp = &sc->arpcom.ac_if;
1423 
1424 		lwkt_serialize_enter(ifp->if_serializer);
1425 		sc->ae_flags |= AE_FLAG_DETACH;
1426 		ae_stop(sc);
1427 		bus_teardown_intr(dev, sc->ae_irq_res, sc->ae_irq_handle);
1428 		lwkt_serialize_exit(ifp->if_serializer);
1429 
1430 		ether_ifdetach(ifp);
1431 	}
1432 
1433 	if (sc->ae_miibus != NULL)
1434 		device_delete_child(dev, sc->ae_miibus);
1435 	bus_generic_detach(dev);
1436 
1437 	if (sc->ae_irq_res != NULL) {
1438 		bus_release_resource(dev, SYS_RES_IRQ, sc->ae_irq_rid,
1439 				     sc->ae_irq_res);
1440 	}
1441 	if (sc->ae_mem_res != NULL) {
1442 		bus_release_resource(dev, SYS_RES_MEMORY, sc->ae_mem_rid,
1443 				     sc->ae_mem_res);
1444 	}
1445 
1446 	if (sc->ae_sysctl_tree != NULL)
1447 		sysctl_ctx_free(&sc->ae_sysctl_ctx);
1448 
1449 	ae_dma_free(sc);
1450 
1451 	return (0);
1452 }
1453 
1454 static void
1455 ae_dma_free(struct ae_softc *sc)
1456 {
1457 	if (sc->dma_txd_tag != NULL) {
1458 		bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1459 		bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1460 		    sc->dma_txd_map);
1461 		bus_dma_tag_destroy(sc->dma_txd_tag);
1462 	}
1463 	if (sc->dma_txs_tag != NULL) {
1464 		bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1465 		bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1466 		    sc->dma_txs_map);
1467 		bus_dma_tag_destroy(sc->dma_txs_tag);
1468 	}
1469 	if (sc->dma_rxd_tag != NULL) {
1470 		bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1471 		bus_dmamem_free(sc->dma_rxd_tag,
1472 		    sc->rxd_base_dma, sc->dma_rxd_map);
1473 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1474 	}
1475 	if (sc->dma_parent_tag != NULL)
1476 		bus_dma_tag_destroy(sc->dma_parent_tag);
1477 }
1478 
1479 static void
1480 ae_pcie_init(struct ae_softc *sc)
1481 {
1482 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG,
1483 		   AE_PCIE_LTSSM_TESTMODE_DEFAULT);
1484 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG,
1485 		   AE_PCIE_DLL_TX_CTRL_DEFAULT);
1486 }
1487 
1488 static void
1489 ae_phy_reset(struct ae_softc *sc)
1490 {
1491 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
1492 	DELAY(1000);    /* XXX: pause(9) ? */
1493 }
1494 
1495 static int
1496 ae_reset(struct ae_softc *sc)
1497 {
1498 	int i;
1499 
1500 	/*
1501 	 * Issue a soft reset.
1502 	 */
1503 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
1504 	bus_space_barrier(sc->ae_mem_bt, sc->ae_mem_bh, AE_MASTER_REG, 4,
1505 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
1506 
1507 	/*
1508 	 * Wait for reset to complete.
1509 	 */
1510 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
1511 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
1512 			break;
1513 		DELAY(10);
1514 	}
1515 	if (i == AE_RESET_TIMEOUT) {
1516 		device_printf(sc->ae_dev, "reset timeout.\n");
1517 		return (ENXIO);
1518 	}
1519 
1520 	/*
1521 	 * Wait for everything to enter idle state.
1522 	 */
1523 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1524 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
1525 			break;
1526 		DELAY(100);
1527 	}
1528 	if (i == AE_IDLE_TIMEOUT) {
1529 		device_printf(sc->ae_dev, "could not enter idle state.\n");
1530 		return (ENXIO);
1531 	}
1532 	return (0);
1533 }
1534 
1535 static int
1536 ae_check_eeprom_present(struct ae_softc *sc, int *vpdc)
1537 {
1538 	int error;
1539 	uint32_t val;
1540 
1541 	/*
1542 	 * Not sure why, but Linux does this.
1543 	 */
1544 	val = AE_READ_4(sc, AE_SPICTL_REG);
1545 	if ((val & AE_SPICTL_VPD_EN) != 0) {
1546 		val &= ~AE_SPICTL_VPD_EN;
1547 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
1548 	}
1549 	error = pci_find_extcap(sc->ae_dev, PCIY_VPD, vpdc);
1550 	return (error);
1551 }
1552 
1553 static int
1554 ae_vpd_read_word(struct ae_softc *sc, int reg, uint32_t *word)
1555 {
1556 	uint32_t val;
1557 	int i;
1558 
1559 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
1560 
1561 	/*
1562 	 * VPD registers start at offset 0x100. Read them.
1563 	 */
1564 	val = 0x100 + reg * 4;
1565 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
1566 	    AE_VPD_CAP_ADDR_MASK);
1567 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
1568 		DELAY(2000);
1569 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
1570 		if ((val & AE_VPD_CAP_DONE) != 0)
1571 			break;
1572 	}
1573 	if (i == AE_VPD_TIMEOUT) {
1574 		device_printf(sc->ae_dev, "timeout reading VPD register %d.\n",
1575 		    reg);
1576 		return (ETIMEDOUT);
1577 	}
1578 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
1579 	return (0);
1580 }
1581 
1582 static int
1583 ae_get_vpd_eaddr(struct ae_softc *sc, uint32_t *eaddr)
1584 {
1585 	uint32_t word, reg, val;
1586 	int error;
1587 	int found;
1588 	int vpdc;
1589 	int i;
1590 
1591 	/*
1592 	 * Check for EEPROM.
1593 	 */
1594 	error = ae_check_eeprom_present(sc, &vpdc);
1595 	if (error != 0)
1596 		return (error);
1597 
1598 	/*
1599 	 * Read the VPD configuration space.
1600 	 * Each register is prefixed with signature,
1601 	 * so we can check if it is valid.
1602 	 */
1603 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
1604 		error = ae_vpd_read_word(sc, i, &word);
1605 		if (error != 0)
1606 			break;
1607 
1608 		/*
1609 		 * Check signature.
1610 		 */
1611 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1612 			break;
1613 		reg = word >> AE_VPD_REG_SHIFT;
1614 		i++;	/* Move to the next word. */
1615 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1616 			continue;
1617 
1618 		error = ae_vpd_read_word(sc, i, &val);
1619 		if (error != 0)
1620 			break;
1621 		if (reg == AE_EADDR0_REG)
1622 			eaddr[0] = val;
1623 		else
1624 			eaddr[1] = val;
1625 		found++;
1626 	}
1627 	if (found < 2)
1628 		return (ENOENT);
1629 
1630 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1631 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1632 		if (bootverbose)
1633 			device_printf(sc->ae_dev,
1634 			    "VPD ethernet address registers are invalid.\n");
1635 		return (EINVAL);
1636 	}
1637 	return (0);
1638 }
1639 
1640 static int
1641 ae_get_reg_eaddr(struct ae_softc *sc, uint32_t *eaddr)
1642 {
1643 	/*
1644 	 * BIOS is supposed to set this.
1645 	 */
1646 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1647 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1648 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1649 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1650 		if (bootverbose)
1651 			device_printf(sc->ae_dev,
1652 			    "Ethetnet address registers are invalid.\n");
1653 		return (EINVAL);
1654 	}
1655 	return (0);
1656 }
1657 
1658 static void
1659 ae_get_eaddr(struct ae_softc *sc)
1660 {
1661 	uint32_t eaddr[2] = {0, 0};
1662 	int error;
1663 
1664 	/*
1665 	 *Check for EEPROM.
1666 	 */
1667 	error = ae_get_vpd_eaddr(sc, eaddr);
1668 	if (error)
1669 		error = ae_get_reg_eaddr(sc, eaddr);
1670 	if (error) {
1671 		if (bootverbose)
1672 			device_printf(sc->ae_dev,
1673 			    "Generating random ethernet address.\n");
1674 		eaddr[0] = karc4random();
1675 		/*
1676 		 * Set OUI to ASUSTek COMPUTER INC.
1677 		 */
1678 		sc->ae_eaddr[0] = 0x02;	/* U/L bit set. */
1679 		sc->ae_eaddr[1] = 0x1f;
1680 		sc->ae_eaddr[2] = 0xc6;
1681 		sc->ae_eaddr[3] = (eaddr[0] >> 16) & 0xff;
1682 		sc->ae_eaddr[4] = (eaddr[0] >> 8) & 0xff;
1683 		sc->ae_eaddr[5] = (eaddr[0] >> 0) & 0xff;
1684 	} else {
1685 		sc->ae_eaddr[0] = (eaddr[1] >> 8) & 0xff;
1686 		sc->ae_eaddr[1] = (eaddr[1] >> 0) & 0xff;
1687 		sc->ae_eaddr[2] = (eaddr[0] >> 24) & 0xff;
1688 		sc->ae_eaddr[3] = (eaddr[0] >> 16) & 0xff;
1689 		sc->ae_eaddr[4] = (eaddr[0] >> 8) & 0xff;
1690 		sc->ae_eaddr[5] = (eaddr[0] >> 0) & 0xff;
1691 	}
1692 }
1693 
1694 static int
1695 ae_mediachange(struct ifnet *ifp)
1696 {
1697 	struct ae_softc *sc = ifp->if_softc;
1698 	struct mii_data *mii = device_get_softc(sc->ae_miibus);
1699 	int error;
1700 
1701 	ASSERT_SERIALIZED(ifp->if_serializer);
1702 	if (mii->mii_instance != 0) {
1703 		struct mii_softc *miisc;
1704 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1705 			mii_phy_reset(miisc);
1706 	}
1707 	error = mii_mediachg(mii);
1708 	return (error);
1709 }
1710 
1711 static void
1712 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1713 {
1714 	struct ae_softc *sc = ifp->if_softc;
1715 	struct mii_data *mii = device_get_softc(sc->ae_miibus);
1716 
1717 	ASSERT_SERIALIZED(ifp->if_serializer);
1718 	mii_pollstat(mii);
1719 	ifmr->ifm_status = mii->mii_media_status;
1720 	ifmr->ifm_active = mii->mii_media_active;
1721 }
1722 
1723 static void
1724 ae_update_stats_tx(uint16_t flags, struct ae_stats *stats)
1725 {
1726 	if ((flags & AE_TXS_BCAST) != 0)
1727 		stats->tx_bcast++;
1728 	if ((flags & AE_TXS_MCAST) != 0)
1729 		stats->tx_mcast++;
1730 	if ((flags & AE_TXS_PAUSE) != 0)
1731 		stats->tx_pause++;
1732 	if ((flags & AE_TXS_CTRL) != 0)
1733 		stats->tx_ctrl++;
1734 	if ((flags & AE_TXS_DEFER) != 0)
1735 		stats->tx_defer++;
1736 	if ((flags & AE_TXS_EXCDEFER) != 0)
1737 		stats->tx_excdefer++;
1738 	if ((flags & AE_TXS_SINGLECOL) != 0)
1739 		stats->tx_singlecol++;
1740 	if ((flags & AE_TXS_MULTICOL) != 0)
1741 		stats->tx_multicol++;
1742 	if ((flags & AE_TXS_LATECOL) != 0)
1743 		stats->tx_latecol++;
1744 	if ((flags & AE_TXS_ABORTCOL) != 0)
1745 		stats->tx_abortcol++;
1746 	if ((flags & AE_TXS_UNDERRUN) != 0)
1747 		stats->tx_underrun++;
1748 }
1749 
1750 static void
1751 ae_update_stats_rx(uint16_t flags, struct ae_stats *stats)
1752 {
1753 	if ((flags & AE_RXD_BCAST) != 0)
1754 		stats->rx_bcast++;
1755 	if ((flags & AE_RXD_MCAST) != 0)
1756 		stats->rx_mcast++;
1757 	if ((flags & AE_RXD_PAUSE) != 0)
1758 		stats->rx_pause++;
1759 	if ((flags & AE_RXD_CTRL) != 0)
1760 		stats->rx_ctrl++;
1761 	if ((flags & AE_RXD_CRCERR) != 0)
1762 		stats->rx_crcerr++;
1763 	if ((flags & AE_RXD_CODEERR) != 0)
1764 		stats->rx_codeerr++;
1765 	if ((flags & AE_RXD_RUNT) != 0)
1766 		stats->rx_runt++;
1767 	if ((flags & AE_RXD_FRAG) != 0)
1768 		stats->rx_frag++;
1769 	if ((flags & AE_RXD_TRUNC) != 0)
1770 		stats->rx_trunc++;
1771 	if ((flags & AE_RXD_ALIGN) != 0)
1772 		stats->rx_align++;
1773 }
1774 
1775 static int
1776 ae_resume(device_t dev)
1777 {
1778 	struct ae_softc *sc = device_get_softc(dev);
1779 	struct ifnet *ifp = &sc->arpcom.ac_if;
1780 
1781 	lwkt_serialize_enter(ifp->if_serializer);
1782 #if 0
1783 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1784 #endif
1785 	ae_phy_reset(sc);
1786 	if ((ifp->if_flags & IFF_UP) != 0)
1787 		ae_init(sc);
1788 	lwkt_serialize_exit(ifp->if_serializer);
1789 	return (0);
1790 }
1791 
1792 static int
1793 ae_suspend(device_t dev)
1794 {
1795 	struct ae_softc *sc = device_get_softc(dev);
1796 	struct ifnet *ifp = &sc->arpcom.ac_if;
1797 
1798 	lwkt_serialize_enter(ifp->if_serializer);
1799 	ae_stop(sc);
1800 #if 0
1801 	/* we don't use ae_pm_init because we don't want WOL */
1802 	ae_pm_init(sc);
1803 #endif
1804 	lwkt_serialize_exit(ifp->if_serializer);
1805 	return (0);
1806 }
1807 
1808 static int
1809 ae_shutdown(device_t dev)
1810 {
1811 	struct ae_softc *sc = device_get_softc(dev);
1812 	struct ifnet *ifp = &sc->arpcom.ac_if;
1813 
1814 	ae_suspend(dev);
1815 
1816 	lwkt_serialize_enter(ifp->if_serializer);
1817 	ae_powersave_enable(sc);
1818 	lwkt_serialize_exit(ifp->if_serializer);
1819 
1820 	return (0);
1821 }
1822 
1823 static void
1824 ae_powersave_disable(struct ae_softc *sc)
1825 {
1826 	uint32_t val;
1827 
1828 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1829 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1830 	if (val & AE_PHY_DBG_POWERSAVE) {
1831 		val &= ~AE_PHY_DBG_POWERSAVE;
1832 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1833 		DELAY(1000);
1834 	}
1835 }
1836 
1837 static void
1838 ae_powersave_enable(struct ae_softc *sc)
1839 {
1840 	uint32_t val;
1841 
1842 	/*
1843 	 * XXX magic numbers.
1844 	 */
1845 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1846 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1847 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1848 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1849 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1850 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1851 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1852 }
1853