xref: /dragonfly/sys/dev/netif/age/if_age.c (revision 82730a9c)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/age/if_age.c,v 1.6 2008/11/07 07:02:28 yongari Exp $
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54 
55 #include <dev/netif/mii_layer/miivar.h>
56 #include <dev/netif/mii_layer/jmphyreg.h>
57 
58 #include <bus/pci/pcireg.h>
59 #include <bus/pci/pcivar.h>
60 #include "pcidevs.h"
61 
62 #include <dev/netif/age/if_agereg.h>
63 #include <dev/netif/age/if_agevar.h>
64 
65 /* "device miibus" required.  See GENERIC if you get errors here. */
66 #include "miibus_if.h"
67 
68 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
69 
70 struct age_dmamap_ctx {
71 	int			nsegs;
72 	bus_dma_segment_t	*segs;
73 };
74 
75 static int	age_probe(device_t);
76 static int	age_attach(device_t);
77 static int	age_detach(device_t);
78 static int	age_shutdown(device_t);
79 static int	age_suspend(device_t);
80 static int	age_resume(device_t);
81 
82 static int	age_miibus_readreg(device_t, int, int);
83 static int	age_miibus_writereg(device_t, int, int, int);
84 static void	age_miibus_statchg(device_t);
85 
86 static void	age_init(void *);
87 static int	age_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
88 static void	age_start(struct ifnet *, struct ifaltq_subque *);
89 static void	age_watchdog(struct ifnet *);
90 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
91 static int	age_mediachange(struct ifnet *);
92 
93 static void	age_intr(void *);
94 static void	age_txintr(struct age_softc *, int);
95 static void	age_rxintr(struct age_softc *, int);
96 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97 
98 static int	age_dma_alloc(struct age_softc *);
99 static void	age_dma_free(struct age_softc *);
100 static void	age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
101 static void	age_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
102 		    bus_size_t, int);
103 static int	age_check_boundary(struct age_softc *);
104 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
105 static int	age_encap(struct age_softc *, struct mbuf **);
106 static void	age_init_tx_ring(struct age_softc *);
107 static int	age_init_rx_ring(struct age_softc *);
108 static void	age_init_rr_ring(struct age_softc *);
109 static void	age_init_cmb_block(struct age_softc *);
110 static void	age_init_smb_block(struct age_softc *);
111 
112 static void	age_tick(void *);
113 static void	age_stop(struct age_softc *);
114 static void	age_reset(struct age_softc *);
115 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
116 		    uint32_t *);
117 static void	age_get_macaddr(struct age_softc *);
118 static void	age_phy_reset(struct age_softc *);
119 static void	age_mac_config(struct age_softc *);
120 static void	age_stats_update(struct age_softc *);
121 static void	age_stop_txmac(struct age_softc *);
122 static void	age_stop_rxmac(struct age_softc *);
123 static void	age_rxvlan(struct age_softc *);
124 static void	age_rxfilter(struct age_softc *);
125 #ifdef wol_notyet
126 static void age_setwol(struct age_softc *);
127 #endif
128 
129 static void	age_sysctl_node(struct age_softc *);
130 static int	sysctl_age_stats(SYSCTL_HANDLER_ARGS);
131 static int	sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
132 
133 /*
134  * Devices supported by this driver.
135  */
136 static struct age_dev {
137 	uint16_t	age_vendorid;
138 	uint16_t	age_deviceid;
139 	const char	*age_name;
140 } age_devs[] = {
141 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
142 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
143 };
144 
145 static device_method_t age_methods[] = {
146 	/* Device interface. */
147 	DEVMETHOD(device_probe,		age_probe),
148 	DEVMETHOD(device_attach,	age_attach),
149 	DEVMETHOD(device_detach,	age_detach),
150 	DEVMETHOD(device_shutdown,	age_shutdown),
151 	DEVMETHOD(device_suspend,	age_suspend),
152 	DEVMETHOD(device_resume,	age_resume),
153 
154 	/* Bus interface. */
155 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
156 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
157 
158 	/* MII interface. */
159 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
160 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
161 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
162 
163 	{ NULL, NULL }
164 };
165 
166 static driver_t age_driver = {
167 	"age",
168 	age_methods,
169 	sizeof(struct age_softc)
170 };
171 
172 static devclass_t age_devclass;
173 
174 DECLARE_DUMMY_MODULE(if_age);
175 MODULE_DEPEND(if_age, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_age, pci, age_driver, age_devclass, NULL, NULL);
177 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, NULL, NULL);
178 
179 /*
180  *	Read a PHY register on the MII of the L1.
181  */
182 static int
183 age_miibus_readreg(device_t dev, int phy, int reg)
184 {
185 	struct age_softc *sc;
186 	uint32_t v;
187 	int i;
188 
189 	sc = device_get_softc(dev);
190 	if (phy != sc->age_phyaddr)
191 		return (0);
192 
193 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
194 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
196 		DELAY(1);
197 		v = CSR_READ_4(sc, AGE_MDIO);
198 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 			break;
200 	}
201 
202 	if (i == 0) {
203 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
204 		return (0);
205 	}
206 
207 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
208 }
209 
210 /*
211  *	Write a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_writereg(device_t dev, int phy, int reg, int val)
215 {
216 	struct age_softc *sc;
217 	uint32_t v;
218 	int i;
219 
220 	sc = device_get_softc(dev);
221 	if (phy != sc->age_phyaddr)
222 		return (0);
223 
224 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
225 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
226 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
227 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
228 		DELAY(1);
229 		v = CSR_READ_4(sc, AGE_MDIO);
230 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
231 			break;
232 	}
233 
234 	if (i == 0)
235 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
236 
237 	return (0);
238 }
239 
240 /*
241  *	Callback from MII layer when media changes.
242  */
243 static void
244 age_miibus_statchg(device_t dev)
245 {
246 	struct age_softc *sc = device_get_softc(dev);
247 	struct ifnet *ifp = &sc->arpcom.ac_if;
248 	struct mii_data *mii;
249 
250 	ASSERT_SERIALIZED(ifp->if_serializer);
251 
252 	if ((ifp->if_flags & IFF_RUNNING) == 0)
253 		return;
254 
255 	mii = device_get_softc(sc->age_miibus);
256 
257 	sc->age_flags &= ~AGE_FLAG_LINK;
258 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
259 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
260 		case IFM_10_T:
261 		case IFM_100_TX:
262 		case IFM_1000_T:
263 			sc->age_flags |= AGE_FLAG_LINK;
264 			break;
265 		default:
266 			break;
267 		}
268 	}
269 
270 	/* Stop Rx/Tx MACs. */
271 	age_stop_rxmac(sc);
272 	age_stop_txmac(sc);
273 
274 	/* Program MACs with resolved speed/duplex/flow-control. */
275 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
276 		uint32_t reg;
277 
278 		age_mac_config(sc);
279 
280 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
281 		/* Restart DMA engine and Tx/Rx MAC. */
282 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
283 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
284 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
285 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
286 	}
287 }
288 
289 /*
290  *	Get the current interface media status.
291  */
292 static void
293 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
294 {
295 	struct age_softc *sc = ifp->if_softc;
296 	struct mii_data *mii = device_get_softc(sc->age_miibus);
297 
298 	ASSERT_SERIALIZED(ifp->if_serializer);
299 
300 	mii_pollstat(mii);
301 	ifmr->ifm_status = mii->mii_media_status;
302 	ifmr->ifm_active = mii->mii_media_active;
303 }
304 
305 /*
306  *	Set hardware to newly-selected media.
307  */
308 static int
309 age_mediachange(struct ifnet *ifp)
310 {
311 	struct age_softc *sc = ifp->if_softc;
312 	struct mii_data *mii = device_get_softc(sc->age_miibus);
313 	int error;
314 
315 	ASSERT_SERIALIZED(ifp->if_serializer);
316 
317 	if (mii->mii_instance != 0) {
318 		struct mii_softc *miisc;
319 
320 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321 			mii_phy_reset(miisc);
322 	}
323 	error = mii_mediachg(mii);
324 
325 	return (error);
326 }
327 
328 static int
329 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
330     uint32_t *word)
331 {
332 	int i;
333 
334 	pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
335 	for (i = AGE_TIMEOUT; i > 0; i--) {
336 		DELAY(10);
337 		if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
338 		    0x8000) == 0x8000)
339 			break;
340 	}
341 	if (i == 0) {
342 		device_printf(sc->age_dev, "VPD read timeout!\n");
343 		*word = 0;
344 		return (ETIMEDOUT);
345 	}
346 
347 	*word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
348 	return (0);
349 }
350 
351 static int
352 age_probe(device_t dev)
353 {
354 	struct age_dev *sp;
355 	int i;
356 	uint16_t vendor, devid;
357 
358 	vendor = pci_get_vendor(dev);
359 	devid = pci_get_device(dev);
360 	sp = age_devs;
361 	for (i = 0; i < NELEM(age_devs); i++, sp++) {
362 		if (vendor == sp->age_vendorid &&
363 		    devid == sp->age_deviceid) {
364 			device_set_desc(dev, sp->age_name);
365 			return (0);
366 		}
367 	}
368 	return (ENXIO);
369 }
370 
371 static void
372 age_get_macaddr(struct age_softc *sc)
373 {
374 	uint32_t ea[2], off, reg, word;
375 	int vpd_error, match, vpdc;
376 
377 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
378 	if ((reg & SPI_VPD_ENB) != 0) {
379 		/* Get VPD stored in TWSI EEPROM. */
380 		reg &= ~SPI_VPD_ENB;
381 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
382 	}
383 
384 	ea[0] = ea[1] = 0;
385 	vpdc = pci_get_vpdcap_ptr(sc->age_dev);
386 	if (vpdc) {
387 		vpd_error = 0;
388 
389 		/*
390 		 * PCI VPD capability exists, but it seems that it's
391 		 * not in the standard form as stated in PCI VPD
392 		 * specification such that driver could not use
393 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
394 		 * Search VPD data starting at address 0x0100. The data
395 		 * should be used as initializers to set AGE_PAR0,
396 		 * AGE_PAR1 register including other PCI configuration
397 		 * registers.
398 		 */
399 		word = 0;
400 		match = 0;
401 		reg = 0;
402 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
403 		    off += sizeof(uint32_t)) {
404 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
405 			if (vpd_error != 0)
406 				break;
407 			if (match != 0) {
408 				switch (reg) {
409 				case AGE_PAR0:
410 					ea[0] = word;
411 					break;
412 				case AGE_PAR1:
413 					ea[1] = word;
414 					break;
415 				default:
416 					break;
417 				}
418 				match = 0;
419 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
420 				match = 1;
421 				reg = word >> 16;
422 			} else
423 				break;
424 		}
425 		if (off >= AGE_VPD_REG_CONF_END)
426 			vpd_error = ENOENT;
427 		if (vpd_error == 0) {
428 			/*
429 			 * Don't blindly trust ethernet address obtained
430 			 * from VPD. Check whether ethernet address is
431 			 * valid one. Otherwise fall-back to reading
432 			 * PAR register.
433 			 */
434 			ea[1] &= 0xFFFF;
435 			if ((ea[0] == 0 && ea[1] == 0) ||
436 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
437 				if (bootverbose)
438 					device_printf(sc->age_dev,
439 					    "invalid ethernet address "
440 					    "returned from VPD.\n");
441 				vpd_error = EINVAL;
442 			}
443 		}
444 		if (vpd_error != 0 && (bootverbose))
445 			device_printf(sc->age_dev, "VPD access failure!\n");
446 	} else {
447 		vpd_error = ENOENT;
448 		if (bootverbose)
449 			device_printf(sc->age_dev,
450 			    "PCI VPD capability not found!\n");
451 	}
452 
453 	/*
454 	 * It seems that L1 also provides a way to extract ethernet
455 	 * address via SPI flash interface. Because SPI flash memory
456 	 * device of different vendors vary in their instruction
457 	 * codes for read ID instruction, it's very hard to get
458 	 * instructions codes without detailed information for the
459 	 * flash memory device used on ethernet controller. To simplify
460 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
461 	 * address which is supposed to be set by hardware during
462 	 * power on reset.
463 	 */
464 	if (vpd_error != 0) {
465 		/*
466 		 * VPD is mapped to SPI flash memory or BIOS set it.
467 		 */
468 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
469 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
470 	}
471 
472 	ea[1] &= 0xFFFF;
473 	if ((ea[0] == 0 && ea[1]  == 0) ||
474 	    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
475 		device_printf(sc->age_dev,
476 		    "generating fake ethernet address.\n");
477 		ea[0] = karc4random();
478 		/* Set OUI to ASUSTek COMPUTER INC. */
479 		sc->age_eaddr[0] = 0x00;
480 		sc->age_eaddr[1] = 0x1B;
481 		sc->age_eaddr[2] = 0xFC;
482 		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
483 		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
484 		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
485 	} else {
486 		sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
487 		sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
488 		sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
489 		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
490 		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
491 		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
492 	}
493 }
494 
495 static void
496 age_phy_reset(struct age_softc *sc)
497 {
498 	/* Reset PHY. */
499 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
500 	DELAY(1000);
501 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
502 	DELAY(1000);
503 }
504 
505 static int
506 age_attach(device_t dev)
507 {
508 	struct age_softc *sc = device_get_softc(dev);
509 	struct ifnet *ifp = &sc->arpcom.ac_if;
510 	uint8_t pcie_ptr;
511 	int error;
512 
513 	error = 0;
514 	sc->age_dev = dev;
515 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
516 
517 	callout_init(&sc->age_tick_ch);
518 
519 #ifndef BURN_BRIDGES
520 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
521 		uint32_t irq, mem;
522 
523 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
524 		mem = pci_read_config(dev, AGE_PCIR_BAR, 4);
525 
526 		device_printf(dev, "chip is in D%d power mode "
527 		    "-- setting to D0\n", pci_get_powerstate(dev));
528 
529 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530 
531 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
532 		pci_write_config(dev, AGE_PCIR_BAR, mem, 4);
533 	}
534 #endif	/* !BURN_BRIDGE */
535 
536 	/* Enable bus mastering */
537 	pci_enable_busmaster(dev);
538 
539 	/*
540 	 * Allocate memory mapped IO
541 	 */
542 	sc->age_mem_rid = AGE_PCIR_BAR;
543 	sc->age_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
544 						 &sc->age_mem_rid, RF_ACTIVE);
545 	if (sc->age_mem_res == NULL) {
546 		device_printf(dev, "can't allocate IO memory\n");
547 		return ENXIO;
548 	}
549 	sc->age_mem_bt = rman_get_bustag(sc->age_mem_res);
550 	sc->age_mem_bh = rman_get_bushandle(sc->age_mem_res);
551 
552 	/*
553 	 * Allocate IRQ
554 	 */
555 	sc->age_irq_rid = 0;
556 	sc->age_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
557 						 &sc->age_irq_rid,
558 						 RF_SHAREABLE | RF_ACTIVE);
559 	if (sc->age_irq_res == NULL) {
560 		device_printf(dev, "can't allocate irq\n");
561 		error = ENXIO;
562 		goto fail;
563 	}
564 
565 	/* Set PHY address. */
566 	sc->age_phyaddr = AGE_PHY_ADDR;
567 
568 	/* Reset PHY. */
569 	age_phy_reset(sc);
570 
571 	/* Reset the ethernet controller. */
572 	age_reset(sc);
573 
574 	/* Get PCI and chip id/revision. */
575 	sc->age_rev = pci_get_revid(dev);
576 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
577 	    MASTER_CHIP_REV_SHIFT;
578 	if (bootverbose) {
579 		device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
580 		device_printf(dev, "Chip id/revision : 0x%04x\n",
581 		    sc->age_chip_rev);
582 	}
583 
584 	/*
585 	 * XXX
586 	 * Unintialized hardware returns an invalid chip id/revision
587 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
588 	 * unplugged cable results in putting hardware into automatic
589 	 * power down mode which in turn returns invalld chip revision.
590 	 */
591 	if (sc->age_chip_rev == 0xFFFF) {
592 		device_printf(dev,"invalid chip revision : 0x%04x -- "
593 		    "not initialized?\n", sc->age_chip_rev);
594 		error = ENXIO;
595 		goto fail;
596 	}
597 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
598 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
599 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
600 
601 	/* Get DMA parameters from PCIe device control register. */
602 	pcie_ptr = pci_get_pciecap_ptr(dev);
603 	if (pcie_ptr) {
604 		uint16_t devctl;
605 
606 		sc->age_flags |= AGE_FLAG_PCIE;
607 		devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
608 		/* Max read request size. */
609 		sc->age_dma_rd_burst = ((devctl >> 12) & 0x07) <<
610 		    DMA_CFG_RD_BURST_SHIFT;
611 		/* Max payload size. */
612 		sc->age_dma_wr_burst = ((devctl >> 5) & 0x07) <<
613 		    DMA_CFG_WR_BURST_SHIFT;
614 		if (bootverbose) {
615 			device_printf(dev, "Read request size : %d bytes.\n",
616 			    128 << ((devctl >> 12) & 0x07));
617 			device_printf(dev, "TLP payload size : %d bytes.\n",
618 			    128 << ((devctl >> 5) & 0x07));
619 		}
620 	} else {
621 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
622 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
623 	}
624 
625 	/* Create device sysctl node. */
626 	age_sysctl_node(sc);
627 
628 	if ((error = age_dma_alloc(sc) != 0))
629 		goto fail;
630 
631 	/* Load station address. */
632 	age_get_macaddr(sc);
633 
634 	ifp->if_softc = sc;
635 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636 	ifp->if_ioctl = age_ioctl;
637 	ifp->if_start = age_start;
638 	ifp->if_init = age_init;
639 	ifp->if_watchdog = age_watchdog;
640 	ifq_set_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
641 	ifq_set_ready(&ifp->if_snd);
642 
643 	ifp->if_capabilities = IFCAP_HWCSUM |
644 			       IFCAP_VLAN_MTU |
645 			       IFCAP_VLAN_HWTAGGING;
646 	ifp->if_hwassist = AGE_CSUM_FEATURES;
647 	ifp->if_capenable = ifp->if_capabilities;
648 
649 	/* Set up MII bus. */
650 	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
651 	    age_mediastatus)) != 0) {
652 		device_printf(dev, "no PHY found!\n");
653 		goto fail;
654 	}
655 
656 	ether_ifattach(ifp, sc->age_eaddr, NULL);
657 
658 	/* Tell the upper layer(s) we support long frames. */
659 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
660 
661 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->age_irq_res));
662 
663 	error = bus_setup_intr(dev, sc->age_irq_res, INTR_MPSAFE, age_intr, sc,
664 			       &sc->age_irq_handle, ifp->if_serializer);
665 	if (error) {
666 		device_printf(dev, "could not set up interrupt handler.\n");
667 		ether_ifdetach(ifp);
668 		goto fail;
669 	}
670 
671 	return 0;
672 fail:
673 	age_detach(dev);
674 	return (error);
675 }
676 
677 static int
678 age_detach(device_t dev)
679 {
680 	struct age_softc *sc = device_get_softc(dev);
681 
682 	if (device_is_attached(dev)) {
683 		struct ifnet *ifp = &sc->arpcom.ac_if;
684 
685 		lwkt_serialize_enter(ifp->if_serializer);
686 		sc->age_flags |= AGE_FLAG_DETACH;
687 		age_stop(sc);
688 		bus_teardown_intr(dev, sc->age_irq_res, sc->age_irq_handle);
689 		lwkt_serialize_exit(ifp->if_serializer);
690 
691 		ether_ifdetach(ifp);
692 	}
693 
694 	if (sc->age_sysctl_tree != NULL)
695 		sysctl_ctx_free(&sc->age_sysctl_ctx);
696 
697 	if (sc->age_miibus != NULL)
698 		device_delete_child(dev, sc->age_miibus);
699 	bus_generic_detach(dev);
700 
701 	if (sc->age_irq_res != NULL) {
702 		bus_release_resource(dev, SYS_RES_IRQ, sc->age_irq_rid,
703 				     sc->age_irq_res);
704 	}
705 	if (sc->age_mem_res != NULL) {
706 		bus_release_resource(dev, SYS_RES_MEMORY, sc->age_mem_rid,
707 				     sc->age_mem_res);
708 	}
709 
710 	age_dma_free(sc);
711 
712 	return (0);
713 }
714 
715 static void
716 age_sysctl_node(struct age_softc *sc)
717 {
718 	int error;
719 
720 	sysctl_ctx_init(&sc->age_sysctl_ctx);
721 	sc->age_sysctl_tree = SYSCTL_ADD_NODE(&sc->age_sysctl_ctx,
722 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
723 				device_get_nameunit(sc->age_dev),
724 				CTLFLAG_RD, 0, "");
725 	if (sc->age_sysctl_tree == NULL) {
726 		device_printf(sc->age_dev, "can't add sysctl node\n");
727 		return;
728 	}
729 
730 	SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
731 	    SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
732 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
733 	    "I", "Statistics");
734 
735 	SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
736 	    SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
737 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
738 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
739 
740 	/* Pull in device tunables. */
741 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
742 	error = resource_int_value(device_get_name(sc->age_dev),
743 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
744 	if (error == 0) {
745 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
746 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
747 			device_printf(sc->age_dev,
748 			    "int_mod value out of range; using default: %d\n",
749 			    AGE_IM_TIMER_DEFAULT);
750 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
751 		}
752 	}
753 }
754 
755 struct age_dmamap_arg {
756 	bus_addr_t	age_busaddr;
757 };
758 
759 static void
760 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
761 {
762 	struct age_dmamap_arg *ctx;
763 
764 	if (error != 0)
765 		return;
766 
767 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
768 
769 	ctx = (struct age_dmamap_arg *)arg;
770 	ctx->age_busaddr = segs[0].ds_addr;
771 }
772 
773 /*
774  * Attansic L1 controller have single register to specify high
775  * address part of DMA blocks. So all descriptor structures and
776  * DMA memory blocks should have the same high address of given
777  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
778  */
779 static int
780 age_check_boundary(struct age_softc *sc)
781 {
782 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
783 	bus_addr_t cmb_block_end, smb_block_end;
784 
785 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
786 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
787 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
788 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
789 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
790 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
791 
792 	if ((AGE_ADDR_HI(tx_ring_end) !=
793 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
794 	    (AGE_ADDR_HI(rx_ring_end) !=
795 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
796 	    (AGE_ADDR_HI(rr_ring_end) !=
797 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
798 	    (AGE_ADDR_HI(cmb_block_end) !=
799 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
800 	    (AGE_ADDR_HI(smb_block_end) !=
801 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
802 		return (EFBIG);
803 
804 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
805 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
806 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
807 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
808 		return (EFBIG);
809 
810 	return (0);
811 }
812 
813 static int
814 age_dma_alloc(struct age_softc *sc)
815 {
816 	struct age_txdesc *txd;
817 	struct age_rxdesc *rxd;
818 	bus_addr_t lowaddr;
819 	struct age_dmamap_arg ctx;
820 	int error, i;
821 
822 	lowaddr = BUS_SPACE_MAXADDR;
823 again:
824 	/* Create parent ring/DMA block tag. */
825 	error = bus_dma_tag_create(
826 	    NULL,			/* parent */
827 	    1, 0,			/* alignment, boundary */
828 	    lowaddr,			/* lowaddr */
829 	    BUS_SPACE_MAXADDR,		/* highaddr */
830 	    NULL, NULL,			/* filter, filterarg */
831 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
832 	    0,				/* nsegments */
833 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
834 	    0,				/* flags */
835 	    &sc->age_cdata.age_parent_tag);
836 	if (error != 0) {
837 		device_printf(sc->age_dev,
838 		    "could not create parent DMA tag.\n");
839 		goto fail;
840 	}
841 
842 	/* Create tag for Tx ring. */
843 	error = bus_dma_tag_create(
844 	    sc->age_cdata.age_parent_tag, /* parent */
845 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
846 	    BUS_SPACE_MAXADDR,		/* lowaddr */
847 	    BUS_SPACE_MAXADDR,		/* highaddr */
848 	    NULL, NULL,			/* filter, filterarg */
849 	    AGE_TX_RING_SZ,		/* maxsize */
850 	    1,				/* nsegments */
851 	    AGE_TX_RING_SZ,		/* maxsegsize */
852 	    0,				/* flags */
853 	    &sc->age_cdata.age_tx_ring_tag);
854 	if (error != 0) {
855 		device_printf(sc->age_dev,
856 		    "could not create Tx ring DMA tag.\n");
857 		goto fail;
858 	}
859 
860 	/* Create tag for Rx ring. */
861 	error = bus_dma_tag_create(
862 	    sc->age_cdata.age_parent_tag, /* parent */
863 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
864 	    BUS_SPACE_MAXADDR,		/* lowaddr */
865 	    BUS_SPACE_MAXADDR,		/* highaddr */
866 	    NULL, NULL,			/* filter, filterarg */
867 	    AGE_RX_RING_SZ,		/* maxsize */
868 	    1,				/* nsegments */
869 	    AGE_RX_RING_SZ,		/* maxsegsize */
870 	    0,				/* flags */
871 	    &sc->age_cdata.age_rx_ring_tag);
872 	if (error != 0) {
873 		device_printf(sc->age_dev,
874 		    "could not create Rx ring DMA tag.\n");
875 		goto fail;
876 	}
877 
878 	/* Create tag for Rx return ring. */
879 	error = bus_dma_tag_create(
880 	    sc->age_cdata.age_parent_tag, /* parent */
881 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
882 	    BUS_SPACE_MAXADDR,		/* lowaddr */
883 	    BUS_SPACE_MAXADDR,		/* highaddr */
884 	    NULL, NULL,			/* filter, filterarg */
885 	    AGE_RR_RING_SZ,		/* maxsize */
886 	    1,				/* nsegments */
887 	    AGE_RR_RING_SZ,		/* maxsegsize */
888 	    0,				/* flags */
889 	    &sc->age_cdata.age_rr_ring_tag);
890 	if (error != 0) {
891 		device_printf(sc->age_dev,
892 		    "could not create Rx return ring DMA tag.\n");
893 		goto fail;
894 	}
895 
896 	/* Create tag for coalesing message block. */
897 	error = bus_dma_tag_create(
898 	    sc->age_cdata.age_parent_tag, /* parent */
899 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
900 	    BUS_SPACE_MAXADDR,		/* lowaddr */
901 	    BUS_SPACE_MAXADDR,		/* highaddr */
902 	    NULL, NULL,			/* filter, filterarg */
903 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
904 	    1,				/* nsegments */
905 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
906 	    0,				/* flags */
907 	    &sc->age_cdata.age_cmb_block_tag);
908 	if (error != 0) {
909 		device_printf(sc->age_dev,
910 		    "could not create CMB DMA tag.\n");
911 		goto fail;
912 	}
913 
914 	/* Create tag for statistics message block. */
915 	error = bus_dma_tag_create(
916 	    sc->age_cdata.age_parent_tag, /* parent */
917 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
918 	    BUS_SPACE_MAXADDR,		/* lowaddr */
919 	    BUS_SPACE_MAXADDR,		/* highaddr */
920 	    NULL, NULL,			/* filter, filterarg */
921 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
922 	    1,				/* nsegments */
923 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
924 	    0,				/* flags */
925 	    &sc->age_cdata.age_smb_block_tag);
926 	if (error != 0) {
927 		device_printf(sc->age_dev,
928 		    "could not create SMB DMA tag.\n");
929 		goto fail;
930 	}
931 
932 	/* Allocate DMA'able memory and load the DMA map. */
933 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
934 	    (void **)&sc->age_rdata.age_tx_ring,
935 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
936 	    &sc->age_cdata.age_tx_ring_map);
937 	if (error != 0) {
938 		device_printf(sc->age_dev,
939 		    "could not allocate DMA'able memory for Tx ring.\n");
940 		goto fail;
941 	}
942 	ctx.age_busaddr = 0;
943 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
944 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
945 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
946 	if (error != 0 || ctx.age_busaddr == 0) {
947 		device_printf(sc->age_dev,
948 		    "could not load DMA'able memory for Tx ring.\n");
949 		goto fail;
950 	}
951 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
952 	/* Rx ring */
953 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
954 	    (void **)&sc->age_rdata.age_rx_ring,
955 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
956 	    &sc->age_cdata.age_rx_ring_map);
957 	if (error != 0) {
958 		device_printf(sc->age_dev,
959 		    "could not allocate DMA'able memory for Rx ring.\n");
960 		goto fail;
961 	}
962 	ctx.age_busaddr = 0;
963 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
964 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
965 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
966 	if (error != 0 || ctx.age_busaddr == 0) {
967 		device_printf(sc->age_dev,
968 		    "could not load DMA'able memory for Rx ring.\n");
969 		goto fail;
970 	}
971 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
972 	/* Rx return ring */
973 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
974 	    (void **)&sc->age_rdata.age_rr_ring,
975 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
976 	    &sc->age_cdata.age_rr_ring_map);
977 	if (error != 0) {
978 		device_printf(sc->age_dev,
979 		    "could not allocate DMA'able memory for Rx return ring.\n");
980 		goto fail;
981 	}
982 	ctx.age_busaddr = 0;
983 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
984 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
985 	    AGE_RR_RING_SZ, age_dmamap_cb, &ctx, 0);
986 	if (error != 0 || ctx.age_busaddr == 0) {
987 		device_printf(sc->age_dev,
988 		    "could not load DMA'able memory for Rx return ring.\n");
989 		goto fail;
990 	}
991 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
992 	/* CMB block */
993 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
994 	    (void **)&sc->age_rdata.age_cmb_block,
995 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
996 	    &sc->age_cdata.age_cmb_block_map);
997 	if (error != 0) {
998 		device_printf(sc->age_dev,
999 		    "could not allocate DMA'able memory for CMB block.\n");
1000 		goto fail;
1001 	}
1002 	ctx.age_busaddr = 0;
1003 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1004 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1005 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1006 	if (error != 0 || ctx.age_busaddr == 0) {
1007 		device_printf(sc->age_dev,
1008 		    "could not load DMA'able memory for CMB block.\n");
1009 		goto fail;
1010 	}
1011 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1012 	/* SMB block */
1013 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1014 	    (void **)&sc->age_rdata.age_smb_block,
1015 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
1016 	    &sc->age_cdata.age_smb_block_map);
1017 	if (error != 0) {
1018 		device_printf(sc->age_dev,
1019 		    "could not allocate DMA'able memory for SMB block.\n");
1020 		goto fail;
1021 	}
1022 	ctx.age_busaddr = 0;
1023 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1024 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1025 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1026 	if (error != 0 || ctx.age_busaddr == 0) {
1027 		device_printf(sc->age_dev,
1028 		    "could not load DMA'able memory for SMB block.\n");
1029 		goto fail;
1030 	}
1031 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1032 
1033 	/*
1034 	 * All ring buffer and DMA blocks should have the same
1035 	 * high address part of 64bit DMA address space.
1036 	 */
1037 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1038 	    (error = age_check_boundary(sc)) != 0) {
1039 		device_printf(sc->age_dev, "4GB boundary crossed, "
1040 		    "switching to 32bit DMA addressing mode.\n");
1041 		age_dma_free(sc);
1042 		/* Limit DMA address space to 32bit and try again. */
1043 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1044 		goto again;
1045 	}
1046 
1047 	/*
1048 	 * Create Tx/Rx buffer parent tag.
1049 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1050 	 * so it needs separate parent DMA tag.
1051 	 */
1052 	error = bus_dma_tag_create(
1053 	    NULL,			/* parent */
1054 	    1, 0,			/* alignment, boundary */
1055 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1056 	    BUS_SPACE_MAXADDR,		/* highaddr */
1057 	    NULL, NULL,			/* filter, filterarg */
1058 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1059 	    0,				/* nsegments */
1060 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1061 	    0,				/* flags */
1062 	    &sc->age_cdata.age_buffer_tag);
1063 	if (error != 0) {
1064 		device_printf(sc->age_dev,
1065 		    "could not create parent buffer DMA tag.\n");
1066 		goto fail;
1067 	}
1068 
1069 	/* Create tag for Tx buffers. */
1070 	error = bus_dma_tag_create(
1071 	    sc->age_cdata.age_buffer_tag, /* parent */
1072 	    1, 0,			/* alignment, boundary */
1073 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1074 	    BUS_SPACE_MAXADDR,		/* highaddr */
1075 	    NULL, NULL,			/* filter, filterarg */
1076 	    AGE_TSO_MAXSIZE,		/* maxsize */
1077 	    AGE_MAXTXSEGS,		/* nsegments */
1078 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1079 	    0,				/* flags */
1080 	    &sc->age_cdata.age_tx_tag);
1081 	if (error != 0) {
1082 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1083 		goto fail;
1084 	}
1085 
1086 	/* Create tag for Rx buffers. */
1087 	error = bus_dma_tag_create(
1088 	    sc->age_cdata.age_buffer_tag, /* parent */
1089 	    1, 0,			/* alignment, boundary */
1090 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1091 	    BUS_SPACE_MAXADDR,		/* highaddr */
1092 	    NULL, NULL,			/* filter, filterarg */
1093 	    MCLBYTES,			/* maxsize */
1094 	    1,				/* nsegments */
1095 	    MCLBYTES,			/* maxsegsize */
1096 	    0,				/* flags */
1097 	    &sc->age_cdata.age_rx_tag);
1098 	if (error != 0) {
1099 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1100 		goto fail;
1101 	}
1102 
1103 	/* Create DMA maps for Tx buffers. */
1104 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1105 		txd = &sc->age_cdata.age_txdesc[i];
1106 		txd->tx_m = NULL;
1107 		txd->tx_dmamap = NULL;
1108 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1109 		    &txd->tx_dmamap);
1110 		if (error != 0) {
1111 			device_printf(sc->age_dev,
1112 			    "could not create Tx dmamap.\n");
1113 			goto fail;
1114 		}
1115 	}
1116 	/* Create DMA maps for Rx buffers. */
1117 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1118 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1119 		device_printf(sc->age_dev,
1120 		    "could not create spare Rx dmamap.\n");
1121 		goto fail;
1122 	}
1123 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1124 		rxd = &sc->age_cdata.age_rxdesc[i];
1125 		rxd->rx_m = NULL;
1126 		rxd->rx_dmamap = NULL;
1127 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1128 		    &rxd->rx_dmamap);
1129 		if (error != 0) {
1130 			device_printf(sc->age_dev,
1131 			    "could not create Rx dmamap.\n");
1132 			goto fail;
1133 		}
1134 	}
1135 fail:
1136 	return (error);
1137 }
1138 
1139 static void
1140 age_dma_free(struct age_softc *sc)
1141 {
1142 	struct age_txdesc *txd;
1143 	struct age_rxdesc *rxd;
1144 	int i;
1145 
1146 	/* Tx buffers */
1147 	if (sc->age_cdata.age_tx_tag != NULL) {
1148 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1149 			txd = &sc->age_cdata.age_txdesc[i];
1150 			if (txd->tx_dmamap != NULL) {
1151 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1152 				    txd->tx_dmamap);
1153 				txd->tx_dmamap = NULL;
1154 			}
1155 		}
1156 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1157 		sc->age_cdata.age_tx_tag = NULL;
1158 	}
1159 	/* Rx buffers */
1160 	if (sc->age_cdata.age_rx_tag != NULL) {
1161 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1162 			rxd = &sc->age_cdata.age_rxdesc[i];
1163 			if (rxd->rx_dmamap != NULL) {
1164 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1165 				    rxd->rx_dmamap);
1166 				rxd->rx_dmamap = NULL;
1167 			}
1168 		}
1169 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1170 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1171 			    sc->age_cdata.age_rx_sparemap);
1172 			sc->age_cdata.age_rx_sparemap = NULL;
1173 		}
1174 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1175 		sc->age_cdata.age_rx_tag = NULL;
1176 	}
1177 	/* Tx ring. */
1178 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1179 		if (sc->age_cdata.age_tx_ring_map != NULL)
1180 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1181 			    sc->age_cdata.age_tx_ring_map);
1182 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1183 		    sc->age_rdata.age_tx_ring != NULL)
1184 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1185 			    sc->age_rdata.age_tx_ring,
1186 			    sc->age_cdata.age_tx_ring_map);
1187 		sc->age_rdata.age_tx_ring = NULL;
1188 		sc->age_cdata.age_tx_ring_map = NULL;
1189 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1190 		sc->age_cdata.age_tx_ring_tag = NULL;
1191 	}
1192 	/* Rx ring. */
1193 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1194 		if (sc->age_cdata.age_rx_ring_map != NULL)
1195 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1196 			    sc->age_cdata.age_rx_ring_map);
1197 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1198 		    sc->age_rdata.age_rx_ring != NULL)
1199 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1200 			    sc->age_rdata.age_rx_ring,
1201 			    sc->age_cdata.age_rx_ring_map);
1202 		sc->age_rdata.age_rx_ring = NULL;
1203 		sc->age_cdata.age_rx_ring_map = NULL;
1204 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1205 		sc->age_cdata.age_rx_ring_tag = NULL;
1206 	}
1207 	/* Rx return ring. */
1208 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1209 		if (sc->age_cdata.age_rr_ring_map != NULL)
1210 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1211 			    sc->age_cdata.age_rr_ring_map);
1212 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1213 		    sc->age_rdata.age_rr_ring != NULL)
1214 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1215 			    sc->age_rdata.age_rr_ring,
1216 			    sc->age_cdata.age_rr_ring_map);
1217 		sc->age_rdata.age_rr_ring = NULL;
1218 		sc->age_cdata.age_rr_ring_map = NULL;
1219 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1220 		sc->age_cdata.age_rr_ring_tag = NULL;
1221 	}
1222 	/* CMB block */
1223 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1224 		if (sc->age_cdata.age_cmb_block_map != NULL)
1225 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1226 			    sc->age_cdata.age_cmb_block_map);
1227 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1228 		    sc->age_rdata.age_cmb_block != NULL)
1229 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1230 			    sc->age_rdata.age_cmb_block,
1231 			    sc->age_cdata.age_cmb_block_map);
1232 		sc->age_rdata.age_cmb_block = NULL;
1233 		sc->age_cdata.age_cmb_block_map = NULL;
1234 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1235 		sc->age_cdata.age_cmb_block_tag = NULL;
1236 	}
1237 	/* SMB block */
1238 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1239 		if (sc->age_cdata.age_smb_block_map != NULL)
1240 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1241 			    sc->age_cdata.age_smb_block_map);
1242 		if (sc->age_cdata.age_smb_block_map != NULL &&
1243 		    sc->age_rdata.age_smb_block != NULL)
1244 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1245 			    sc->age_rdata.age_smb_block,
1246 			    sc->age_cdata.age_smb_block_map);
1247 		sc->age_rdata.age_smb_block = NULL;
1248 		sc->age_cdata.age_smb_block_map = NULL;
1249 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1250 		sc->age_cdata.age_smb_block_tag = NULL;
1251 	}
1252 
1253 	if (sc->age_cdata.age_buffer_tag != NULL) {
1254 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1255 		sc->age_cdata.age_buffer_tag = NULL;
1256 	}
1257 	if (sc->age_cdata.age_parent_tag != NULL) {
1258 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1259 		sc->age_cdata.age_parent_tag = NULL;
1260 	}
1261 }
1262 
1263 /*
1264  *	Make sure the interface is stopped at reboot time.
1265  */
1266 static int
1267 age_shutdown(device_t dev)
1268 {
1269 	return age_suspend(dev);
1270 }
1271 
1272 #ifdef wol_notyet
1273 
1274 static void
1275 age_setwol(struct age_softc *sc)
1276 {
1277 	struct ifnet *ifp;
1278 	struct mii_data *mii;
1279 	uint32_t reg, pmcs;
1280 	uint16_t pmstat;
1281 	int aneg, i, pmc;
1282 
1283 	AGE_LOCK_ASSERT(sc);
1284 
1285 	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1286 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1287 		/*
1288 		 * No PME capability, PHY power down.
1289 		 * XXX
1290 		 * Due to an unknown reason powering down PHY resulted
1291 		 * in unexpected results such as inaccessbility of
1292 		 * hardware of freshly rebooted system. Disable
1293 		 * powering down PHY until I got more information for
1294 		 * Attansic/Atheros PHY hardwares.
1295 		 */
1296 #ifdef notyet
1297 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1298 		    MII_BMCR, BMCR_PDOWN);
1299 #endif
1300 		return;
1301 	}
1302 
1303 	ifp = sc->age_ifp;
1304 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1305 		/*
1306 		 * Note, this driver resets the link speed to 10/100Mbps with
1307 		 * auto-negotiation but we don't know whether that operation
1308 		 * would succeed or not as it have no control after powering
1309 		 * off. If the renegotiation fail WOL may not work. Running
1310 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1311 		 * specified in PCI specification and that would result in
1312 		 * complete shutdowning power to ethernet controller.
1313 		 *
1314 		 * TODO
1315 		 *  Save current negotiated media speed/duplex/flow-control
1316 		 *  to softc and restore the same link again after resuming.
1317 		 *  PHY handling such as power down/resetting to 100Mbps
1318 		 *  may be better handled in suspend method in phy driver.
1319 		 */
1320 		mii = device_get_softc(sc->age_miibus);
1321 		mii_pollstat(mii);
1322 		aneg = 0;
1323 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1324 			switch IFM_SUBTYPE(mii->mii_media_active) {
1325 			case IFM_10_T:
1326 			case IFM_100_TX:
1327 				goto got_link;
1328 			case IFM_1000_T:
1329 				aneg++;
1330 			default:
1331 				break;
1332 			}
1333 		}
1334 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1335 		    MII_100T2CR, 0);
1336 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1337 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1338 		    ANAR_10 | ANAR_CSMA);
1339 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1340 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1341 		DELAY(1000);
1342 		if (aneg != 0) {
1343 			/* Poll link state until age(4) get a 10/100 link. */
1344 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1345 				mii_pollstat(mii);
1346 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1347 					switch (IFM_SUBTYPE(
1348 					    mii->mii_media_active)) {
1349 					case IFM_10_T:
1350 					case IFM_100_TX:
1351 						age_mac_config(sc);
1352 						goto got_link;
1353 					default:
1354 						break;
1355 					}
1356 				}
1357 				AGE_UNLOCK(sc);
1358 				pause("agelnk", hz);
1359 				AGE_LOCK(sc);
1360 			}
1361 			if (i == MII_ANEGTICKS_GIGE)
1362 				device_printf(sc->age_dev,
1363 				    "establishing link failed, "
1364 				    "WOL may not work!");
1365 		}
1366 		/*
1367 		 * No link, force MAC to have 100Mbps, full-duplex link.
1368 		 * This is the last resort and may/may not work.
1369 		 */
1370 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1371 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1372 		age_mac_config(sc);
1373 	}
1374 
1375 got_link:
1376 	pmcs = 0;
1377 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1378 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1379 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1380 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1381 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1382 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1383 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1384 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1385 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1386 		reg |= MAC_CFG_RX_ENB;
1387 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1388 	}
1389 
1390 	/* Request PME. */
1391 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1392 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1393 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1394 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1395 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1396 #ifdef notyet
1397 	/* See above for powering down PHY issues. */
1398 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1399 		/* No WOL, PHY power down. */
1400 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1401 		    MII_BMCR, BMCR_PDOWN);
1402 	}
1403 #endif
1404 }
1405 
1406 #endif	/* wol_notyet */
1407 
1408 static int
1409 age_suspend(device_t dev)
1410 {
1411 	struct age_softc *sc = device_get_softc(dev);
1412 	struct ifnet *ifp = &sc->arpcom.ac_if;
1413 
1414 	lwkt_serialize_enter(ifp->if_serializer);
1415 	age_stop(sc);
1416 #ifdef wol_notyet
1417 	age_setwol(sc);
1418 #endif
1419 	lwkt_serialize_exit(ifp->if_serializer);
1420 
1421 	return (0);
1422 }
1423 
1424 static int
1425 age_resume(device_t dev)
1426 {
1427 	struct age_softc *sc = device_get_softc(dev);
1428 	struct ifnet *ifp = &sc->arpcom.ac_if;
1429 	uint16_t cmd;
1430 
1431 	lwkt_serialize_enter(ifp->if_serializer);
1432 
1433 	/*
1434 	 * Clear INTx emulation disable for hardwares that
1435 	 * is set in resume event. From Linux.
1436 	 */
1437 	cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1438 	if ((cmd & 0x0400) != 0) {
1439 		cmd &= ~0x0400;
1440 		pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1441 	}
1442 	if ((ifp->if_flags & IFF_UP) != 0)
1443 		age_init(sc);
1444 
1445 	lwkt_serialize_exit(ifp->if_serializer);
1446 
1447 	return (0);
1448 }
1449 
1450 static int
1451 age_encap(struct age_softc *sc, struct mbuf **m_head)
1452 {
1453 	struct age_txdesc *txd, *txd_last;
1454 	struct tx_desc *desc;
1455 	struct mbuf *m;
1456 	struct age_dmamap_ctx ctx;
1457 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1458 	bus_dmamap_t map;
1459 	uint32_t cflags, poff, vtag;
1460 	int error, i, nsegs, prod;
1461 
1462 	M_ASSERTPKTHDR((*m_head));
1463 
1464 	m = *m_head;
1465 	cflags = vtag = 0;
1466 	poff = 0;
1467 
1468 	prod = sc->age_cdata.age_tx_prod;
1469 	txd = &sc->age_cdata.age_txdesc[prod];
1470 	txd_last = txd;
1471 	map = txd->tx_dmamap;
1472 
1473 	ctx.nsegs = AGE_MAXTXSEGS;
1474 	ctx.segs = txsegs;
1475 	error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1476 				     *m_head, age_dmamap_buf_cb, &ctx,
1477 				     BUS_DMA_NOWAIT);
1478 	if (!error && ctx.nsegs == 0) {
1479 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1480 		error = EFBIG;
1481 	}
1482 	if (error == EFBIG) {
1483 		m = m_defrag(*m_head, MB_DONTWAIT);
1484 		if (m == NULL) {
1485 			m_freem(*m_head);
1486 			*m_head = NULL;
1487 			return (ENOBUFS);
1488 		}
1489 		*m_head = m;
1490 
1491 		ctx.nsegs = AGE_MAXTXSEGS;
1492 		ctx.segs = txsegs;
1493 		error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1494 					     *m_head, age_dmamap_buf_cb, &ctx,
1495 					     BUS_DMA_NOWAIT);
1496 		if (error || ctx.nsegs == 0) {
1497 			if (!error) {
1498 				bus_dmamap_unload(sc->age_cdata.age_tx_tag,
1499 						  map);
1500 				error = EFBIG;
1501 			}
1502 			m_freem(*m_head);
1503 			*m_head = NULL;
1504 			return (error);
1505 		}
1506 	} else if (error != 0) {
1507 		return (error);
1508 	}
1509 	nsegs = ctx.nsegs;
1510 
1511 	if (nsegs == 0) {
1512 		m_freem(*m_head);
1513 		*m_head = NULL;
1514 		return (EIO);
1515 	}
1516 
1517 	/* Check descriptor overrun. */
1518 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1519 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1520 		return (ENOBUFS);
1521 	}
1522 
1523 	m = *m_head;
1524 	/* Configure Tx IP/TCP/UDP checksum offload. */
1525 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1526 		cflags |= AGE_TD_CSUM;
1527 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1528 			cflags |= AGE_TD_TCPCSUM;
1529 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1530 			cflags |= AGE_TD_UDPCSUM;
1531 		/* Set checksum start offset. */
1532 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1533 		/* Set checksum insertion position of TCP/UDP. */
1534 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1535 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1536 	}
1537 
1538 	/* Configure VLAN hardware tag insertion. */
1539 	if ((m->m_flags & M_VLANTAG) != 0) {
1540 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
1541 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1542 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1543 	}
1544 
1545 	desc = NULL;
1546 	for (i = 0; i < nsegs; i++) {
1547 		desc = &sc->age_rdata.age_tx_ring[prod];
1548 		desc->addr = htole64(txsegs[i].ds_addr);
1549 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1550 		desc->flags = htole32(cflags);
1551 		sc->age_cdata.age_tx_cnt++;
1552 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1553 	}
1554 	/* Update producer index. */
1555 	sc->age_cdata.age_tx_prod = prod;
1556 
1557 	/* Set EOP on the last descriptor. */
1558 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1559 	desc = &sc->age_rdata.age_tx_ring[prod];
1560 	desc->flags |= htole32(AGE_TD_EOP);
1561 
1562 	/* Swap dmamap of the first and the last. */
1563 	txd = &sc->age_cdata.age_txdesc[prod];
1564 	map = txd_last->tx_dmamap;
1565 	txd_last->tx_dmamap = txd->tx_dmamap;
1566 	txd->tx_dmamap = map;
1567 	txd->tx_m = m;
1568 
1569 	/* Sync descriptors. */
1570 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1571 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1572 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1573 
1574 	return (0);
1575 }
1576 
1577 static void
1578 age_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1579 {
1580 	struct age_softc *sc = ifp->if_softc;
1581 	struct mbuf *m_head;
1582 	int enq;
1583 
1584 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1585 	ASSERT_SERIALIZED(ifp->if_serializer);
1586 
1587 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1588 		ifq_purge(&ifp->if_snd);
1589 		return;
1590 	}
1591 
1592 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1593 		return;
1594 
1595 	enq = 0;
1596 	while (!ifq_is_empty(&ifp->if_snd)) {
1597 		m_head = ifq_dequeue(&ifp->if_snd);
1598 		if (m_head == NULL)
1599 			break;
1600 
1601 		/*
1602 		 * Pack the data into the transmit ring. If we
1603 		 * don't have room, set the OACTIVE flag and wait
1604 		 * for the NIC to drain the ring.
1605 		 */
1606 		if (age_encap(sc, &m_head)) {
1607 			if (m_head == NULL)
1608 				break;
1609 			ifq_prepend(&ifp->if_snd, m_head);
1610 			ifq_set_oactive(&ifp->if_snd);
1611 			break;
1612 		}
1613 		enq = 1;
1614 
1615 		/*
1616 		 * If there's a BPF listener, bounce a copy of this frame
1617 		 * to him.
1618 		 */
1619 		ETHER_BPF_MTAP(ifp, m_head);
1620 	}
1621 
1622 	if (enq) {
1623 		/* Update mbox. */
1624 		AGE_COMMIT_MBOX(sc);
1625 		/* Set a timeout in case the chip goes out to lunch. */
1626 		ifp->if_timer = AGE_TX_TIMEOUT;
1627 	}
1628 }
1629 
1630 static void
1631 age_watchdog(struct ifnet *ifp)
1632 {
1633 	struct age_softc *sc = ifp->if_softc;
1634 
1635 	ASSERT_SERIALIZED(ifp->if_serializer);
1636 
1637 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1638 		if_printf(ifp, "watchdog timeout (missed link)\n");
1639 		IFNET_STAT_INC(ifp, oerrors, 1);
1640 		age_init(sc);
1641 		return;
1642 	}
1643 
1644 	if (sc->age_cdata.age_tx_cnt == 0) {
1645 		if_printf(ifp,
1646 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1647 		if (!ifq_is_empty(&ifp->if_snd))
1648 			if_devstart(ifp);
1649 		return;
1650 	}
1651 
1652 	if_printf(ifp, "watchdog timeout\n");
1653 	IFNET_STAT_INC(ifp, oerrors, 1);
1654 	age_init(sc);
1655 	if (!ifq_is_empty(&ifp->if_snd))
1656 		if_devstart(ifp);
1657 }
1658 
1659 static int
1660 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1661 {
1662 	struct age_softc *sc = ifp->if_softc;
1663 	struct ifreq *ifr;
1664 	struct mii_data *mii;
1665 	uint32_t reg;
1666 	int error, mask;
1667 
1668 	ASSERT_SERIALIZED(ifp->if_serializer);
1669 
1670 	ifr = (struct ifreq *)data;
1671 	error = 0;
1672 	switch (cmd) {
1673 	case SIOCSIFMTU:
1674 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) {
1675 			error = EINVAL;
1676 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
1677 			ifp->if_mtu = ifr->ifr_mtu;
1678 			if ((ifp->if_flags & IFF_RUNNING) != 0)
1679 				age_init(sc);
1680 		}
1681 		break;
1682 
1683 	case SIOCSIFFLAGS:
1684 		if ((ifp->if_flags & IFF_UP) != 0) {
1685 			if ((ifp->if_flags & IFF_RUNNING) != 0) {
1686 				if (((ifp->if_flags ^ sc->age_if_flags)
1687 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1688 					age_rxfilter(sc);
1689 			} else {
1690 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1691 					age_init(sc);
1692 			}
1693 		} else {
1694 			if ((ifp->if_flags & IFF_RUNNING) != 0)
1695 				age_stop(sc);
1696 		}
1697 		sc->age_if_flags = ifp->if_flags;
1698 		break;
1699 
1700 	case SIOCADDMULTI:
1701 	case SIOCDELMULTI:
1702 		if ((ifp->if_flags & IFF_RUNNING) != 0)
1703 			age_rxfilter(sc);
1704 		break;
1705 
1706 	case SIOCSIFMEDIA:
1707 	case SIOCGIFMEDIA:
1708 		mii = device_get_softc(sc->age_miibus);
1709 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1710 		break;
1711 
1712 	case SIOCSIFCAP:
1713 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1714 
1715 		if ((mask & IFCAP_TXCSUM) != 0 &&
1716 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1717 			ifp->if_capenable ^= IFCAP_TXCSUM;
1718 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1719 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1720 			else
1721 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1722 		}
1723 
1724 		if ((mask & IFCAP_RXCSUM) != 0 &&
1725 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1726 			ifp->if_capenable ^= IFCAP_RXCSUM;
1727 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1728 			reg &= ~MAC_CFG_RXCSUM_ENB;
1729 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1730 				reg |= MAC_CFG_RXCSUM_ENB;
1731 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1732 		}
1733 
1734 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1735 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1736 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1737 			age_rxvlan(sc);
1738 		}
1739 		break;
1740 
1741 	default:
1742 		error = ether_ioctl(ifp, cmd, data);
1743 		break;
1744 	}
1745 	return (error);
1746 }
1747 
1748 static void
1749 age_mac_config(struct age_softc *sc)
1750 {
1751 	struct mii_data *mii = device_get_softc(sc->age_miibus);
1752 	uint32_t reg;
1753 
1754 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1755 	reg &= ~MAC_CFG_FULL_DUPLEX;
1756 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1757 	reg &= ~MAC_CFG_SPEED_MASK;
1758 
1759 	/* Reprogram MAC with resolved speed/duplex. */
1760 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1761 	case IFM_10_T:
1762 	case IFM_100_TX:
1763 		reg |= MAC_CFG_SPEED_10_100;
1764 		break;
1765 	case IFM_1000_T:
1766 		reg |= MAC_CFG_SPEED_1000;
1767 		break;
1768 	}
1769 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1770 		reg |= MAC_CFG_FULL_DUPLEX;
1771 #ifdef notyet
1772 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1773 			reg |= MAC_CFG_TX_FC;
1774 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1775 			reg |= MAC_CFG_RX_FC;
1776 #endif
1777 	}
1778 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1779 }
1780 
1781 static void
1782 age_stats_update(struct age_softc *sc)
1783 {
1784 	struct ifnet *ifp = &sc->arpcom.ac_if;
1785 	struct age_stats *stat;
1786 	struct smb *smb;
1787 
1788 	stat = &sc->age_stat;
1789 
1790 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1791 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_POSTREAD);
1792 
1793 	smb = sc->age_rdata.age_smb_block;
1794 	if (smb->updated == 0)
1795 		return;
1796 
1797 	/* Rx stats. */
1798 	stat->rx_frames += smb->rx_frames;
1799 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1800 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1801 	stat->rx_pause_frames += smb->rx_pause_frames;
1802 	stat->rx_control_frames += smb->rx_control_frames;
1803 	stat->rx_crcerrs += smb->rx_crcerrs;
1804 	stat->rx_lenerrs += smb->rx_lenerrs;
1805 	stat->rx_bytes += smb->rx_bytes;
1806 	stat->rx_runts += smb->rx_runts;
1807 	stat->rx_fragments += smb->rx_fragments;
1808 	stat->rx_pkts_64 += smb->rx_pkts_64;
1809 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1810 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1811 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1812 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1813 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1814 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1815 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1816 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1817 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1818 	stat->rx_alignerrs += smb->rx_alignerrs;
1819 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1820 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1821 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1822 
1823 	/* Tx stats. */
1824 	stat->tx_frames += smb->tx_frames;
1825 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1826 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1827 	stat->tx_pause_frames += smb->tx_pause_frames;
1828 	stat->tx_excess_defer += smb->tx_excess_defer;
1829 	stat->tx_control_frames += smb->tx_control_frames;
1830 	stat->tx_deferred += smb->tx_deferred;
1831 	stat->tx_bytes += smb->tx_bytes;
1832 	stat->tx_pkts_64 += smb->tx_pkts_64;
1833 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1834 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1835 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1836 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1837 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1838 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1839 	stat->tx_single_colls += smb->tx_single_colls;
1840 	stat->tx_multi_colls += smb->tx_multi_colls;
1841 	stat->tx_late_colls += smb->tx_late_colls;
1842 	stat->tx_excess_colls += smb->tx_excess_colls;
1843 	stat->tx_underrun += smb->tx_underrun;
1844 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1845 	stat->tx_lenerrs += smb->tx_lenerrs;
1846 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1847 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1848 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1849 
1850 	/* Update counters in ifnet. */
1851 	IFNET_STAT_INC(ifp, opackets, smb->tx_frames);
1852 
1853 	IFNET_STAT_INC(ifp, collisions, smb->tx_single_colls +
1854 	    smb->tx_multi_colls + smb->tx_late_colls +
1855 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
1856 
1857 	IFNET_STAT_INC(ifp, oerrors, smb->tx_excess_colls +
1858 	    smb->tx_late_colls + smb->tx_underrun +
1859 	    smb->tx_pkts_truncated);
1860 
1861 	IFNET_STAT_INC(ifp, ipackets, smb->rx_frames);
1862 
1863 	IFNET_STAT_INC(ifp, ierrors, smb->rx_crcerrs + smb->rx_lenerrs +
1864 	    smb->rx_runts + smb->rx_pkts_truncated +
1865 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1866 	    smb->rx_alignerrs);
1867 
1868 	/* Update done, clear. */
1869 	smb->updated = 0;
1870 
1871 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1872 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
1873 }
1874 
1875 static void
1876 age_intr(void *xsc)
1877 {
1878 	struct age_softc *sc = xsc;
1879 	struct ifnet *ifp = &sc->arpcom.ac_if;
1880 	struct cmb *cmb;
1881 	uint32_t status;
1882 
1883 	ASSERT_SERIALIZED(ifp->if_serializer);
1884 
1885 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
1886 	if (status == 0 || (status & AGE_INTRS) == 0)
1887 		return;
1888 
1889 	/* Disable and acknowledge interrupts. */
1890 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1891 
1892 	cmb = sc->age_rdata.age_cmb_block;
1893 
1894 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1895 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1896 	status = le32toh(cmb->intr_status);
1897 	if ((status & AGE_INTRS) == 0)
1898 		goto done;
1899 again:
1900 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
1901 	    TPD_CONS_SHIFT;
1902 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
1903 	    RRD_PROD_SHIFT;
1904 
1905 	/* Let hardware know CMB was served. */
1906 	cmb->intr_status = 0;
1907 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1908 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
1909 
1910 #if 0
1911 	kprintf("INTR: 0x%08x\n", status);
1912 	status &= ~INTR_DIS_DMA;
1913 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1914 #endif
1915 
1916 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
1917 		if ((status & INTR_CMB_RX) != 0)
1918 			age_rxintr(sc, sc->age_rr_prod);
1919 
1920 		if ((status & INTR_CMB_TX) != 0)
1921 			age_txintr(sc, sc->age_tpd_cons);
1922 
1923 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
1924 			if ((status & INTR_DMA_RD_TO_RST) != 0)
1925 				device_printf(sc->age_dev,
1926 				    "DMA read error! -- resetting\n");
1927 			if ((status & INTR_DMA_WR_TO_RST) != 0)
1928 				device_printf(sc->age_dev,
1929 				    "DMA write error! -- resetting\n");
1930 			age_init(sc);
1931 			/* XXX return? */
1932 		}
1933 
1934 		if (!ifq_is_empty(&ifp->if_snd))
1935 			if_devstart(ifp);
1936 
1937 		if ((status & INTR_SMB) != 0)
1938 			age_stats_update(sc);
1939 	}
1940 
1941 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
1942 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1943 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1944 	status = le32toh(cmb->intr_status);
1945 	if ((status & AGE_INTRS) != 0)
1946 		goto again;
1947 done:
1948 	/* Re-enable interrupts. */
1949 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1950 }
1951 
1952 static void
1953 age_txintr(struct age_softc *sc, int tpd_cons)
1954 {
1955 	struct ifnet *ifp = &sc->arpcom.ac_if;
1956 	struct age_txdesc *txd;
1957 	int cons, prog;
1958 
1959 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1960 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_POSTREAD);
1961 
1962 	/*
1963 	 * Go through our Tx list and free mbufs for those
1964 	 * frames which have been transmitted.
1965 	 */
1966 	cons = sc->age_cdata.age_tx_cons;
1967 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1968 		if (sc->age_cdata.age_tx_cnt <= 0)
1969 			break;
1970 		prog++;
1971 		ifq_clr_oactive(&ifp->if_snd);
1972 		sc->age_cdata.age_tx_cnt--;
1973 		txd = &sc->age_cdata.age_txdesc[cons];
1974 		/*
1975 		 * Clear Tx descriptors, it's not required but would
1976 		 * help debugging in case of Tx issues.
1977 		 */
1978 		txd->tx_desc->addr = 0;
1979 		txd->tx_desc->len = 0;
1980 		txd->tx_desc->flags = 0;
1981 
1982 		if (txd->tx_m == NULL)
1983 			continue;
1984 		/* Reclaim transmitted mbufs. */
1985 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
1986 		m_freem(txd->tx_m);
1987 		txd->tx_m = NULL;
1988 	}
1989 
1990 	if (prog > 0) {
1991 		sc->age_cdata.age_tx_cons = cons;
1992 
1993 		/*
1994 		 * Unarm watchdog timer only when there are no pending
1995 		 * Tx descriptors in queue.
1996 		 */
1997 		if (sc->age_cdata.age_tx_cnt == 0)
1998 			ifp->if_timer = 0;
1999 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2000 		    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2001 	}
2002 }
2003 
2004 /* Receive a frame. */
2005 static void
2006 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2007 {
2008 	struct ifnet *ifp = &sc->arpcom.ac_if;
2009 	struct age_rxdesc *rxd;
2010 	struct rx_desc *desc;
2011 	struct mbuf *mp, *m;
2012 	uint32_t status, index, vtag;
2013 	int count, nsegs, pktlen;
2014 	int rx_cons;
2015 
2016 	status = le32toh(rxrd->flags);
2017 	index = le32toh(rxrd->index);
2018 	rx_cons = AGE_RX_CONS(index);
2019 	nsegs = AGE_RX_NSEGS(index);
2020 
2021 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2022 	if ((status & AGE_RRD_ERROR) != 0 &&
2023 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2024 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2025 		/*
2026 		 * We want to pass the following frames to upper
2027 		 * layer regardless of error status of Rx return
2028 		 * ring.
2029 		 *
2030 		 *  o IP/TCP/UDP checksum is bad.
2031 		 *  o frame length and protocol specific length
2032 		 *     does not match.
2033 		 */
2034 		sc->age_cdata.age_rx_cons += nsegs;
2035 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2036 		return;
2037 	}
2038 
2039 	pktlen = 0;
2040 	for (count = 0; count < nsegs; count++,
2041 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2042 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2043 		mp = rxd->rx_m;
2044 		desc = rxd->rx_desc;
2045 		/* Add a new receive buffer to the ring. */
2046 		if (age_newbuf(sc, rxd, 0) != 0) {
2047 			IFNET_STAT_INC(ifp, iqdrops, 1);
2048 			/* Reuse Rx buffers. */
2049 			if (sc->age_cdata.age_rxhead != NULL) {
2050 				m_freem(sc->age_cdata.age_rxhead);
2051 				AGE_RXCHAIN_RESET(sc);
2052 			}
2053 			break;
2054 		}
2055 
2056 		/* The length of the first mbuf is computed last. */
2057 		if (count != 0) {
2058 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2059 			pktlen += mp->m_len;
2060 		}
2061 
2062 		/* Chain received mbufs. */
2063 		if (sc->age_cdata.age_rxhead == NULL) {
2064 			sc->age_cdata.age_rxhead = mp;
2065 			sc->age_cdata.age_rxtail = mp;
2066 		} else {
2067 			mp->m_flags &= ~M_PKTHDR;
2068 			sc->age_cdata.age_rxprev_tail =
2069 			    sc->age_cdata.age_rxtail;
2070 			sc->age_cdata.age_rxtail->m_next = mp;
2071 			sc->age_cdata.age_rxtail = mp;
2072 		}
2073 
2074 		if (count == nsegs - 1) {
2075 			/*
2076 			 * It seems that L1 controller has no way
2077 			 * to tell hardware to strip CRC bytes.
2078 			 */
2079 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2080 			if (nsegs > 1) {
2081 				/* Remove the CRC bytes in chained mbufs. */
2082 				pktlen -= ETHER_CRC_LEN;
2083 				if (mp->m_len <= ETHER_CRC_LEN) {
2084 					sc->age_cdata.age_rxtail =
2085 					    sc->age_cdata.age_rxprev_tail;
2086 					sc->age_cdata.age_rxtail->m_len -=
2087 					    (ETHER_CRC_LEN - mp->m_len);
2088 					sc->age_cdata.age_rxtail->m_next = NULL;
2089 					m_freem(mp);
2090 				} else {
2091 					mp->m_len -= ETHER_CRC_LEN;
2092 				}
2093 			}
2094 
2095 			m = sc->age_cdata.age_rxhead;
2096 			m->m_flags |= M_PKTHDR;
2097 			m->m_pkthdr.rcvif = ifp;
2098 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2099 			/* Set the first mbuf length. */
2100 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2101 
2102 			/*
2103 			 * Set checksum information.
2104 			 * It seems that L1 controller can compute partial
2105 			 * checksum. The partial checksum value can be used
2106 			 * to accelerate checksum computation for fragmented
2107 			 * TCP/UDP packets. Upper network stack already
2108 			 * takes advantage of the partial checksum value in
2109 			 * IP reassembly stage. But I'm not sure the
2110 			 * correctness of the partial hardware checksum
2111 			 * assistance due to lack of data sheet. If it is
2112 			 * proven to work on L1 I'll enable it.
2113 			 */
2114 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2115 			    (status & AGE_RRD_IPV4) != 0) {
2116 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2117 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2118 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2119 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2120 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2121 					m->m_pkthdr.csum_flags |=
2122 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2123 					m->m_pkthdr.csum_data = 0xffff;
2124 				}
2125 				/*
2126 				 * Don't mark bad checksum for TCP/UDP frames
2127 				 * as fragmented frames may always have set
2128 				 * bad checksummed bit of descriptor status.
2129 				 */
2130 			}
2131 
2132 			/* Check for VLAN tagged frames. */
2133 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2134 			    (status & AGE_RRD_VLAN) != 0) {
2135 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2136 				m->m_pkthdr.ether_vlantag =
2137 				    AGE_RX_VLAN_TAG(vtag);
2138 				m->m_flags |= M_VLANTAG;
2139 			}
2140 
2141 			/* Pass it on. */
2142 			ifp->if_input(ifp, m);
2143 
2144 			/* Reset mbuf chains. */
2145 			AGE_RXCHAIN_RESET(sc);
2146 		}
2147 	}
2148 
2149 	if (count != nsegs) {
2150 		sc->age_cdata.age_rx_cons += nsegs;
2151 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2152 	} else {
2153 		sc->age_cdata.age_rx_cons = rx_cons;
2154 	}
2155 }
2156 
2157 static void
2158 age_rxintr(struct age_softc *sc, int rr_prod)
2159 {
2160 	struct rx_rdesc *rxrd;
2161 	int rr_cons, nsegs, pktlen, prog;
2162 
2163 	rr_cons = sc->age_cdata.age_rr_cons;
2164 	if (rr_cons == rr_prod)
2165 		return;
2166 
2167 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2168 	    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_POSTREAD);
2169 
2170 	for (prog = 0; rr_cons != rr_prod; prog++) {
2171 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2172 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2173 		if (nsegs == 0)
2174 			break;
2175 
2176 		/*
2177 		 * Check number of segments against received bytes.
2178 		 * Non-matching value would indicate that hardware
2179 		 * is still trying to update Rx return descriptors.
2180 		 * I'm not sure whether this check is really needed.
2181 		 */
2182 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2183 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2184 		    (MCLBYTES - ETHER_ALIGN)))
2185 			break;
2186 
2187 		/* Received a frame. */
2188 		age_rxeof(sc, rxrd);
2189 
2190 		/* Clear return ring. */
2191 		rxrd->index = 0;
2192 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2193 	}
2194 
2195 	if (prog > 0) {
2196 		/* Update the consumer index. */
2197 		sc->age_cdata.age_rr_cons = rr_cons;
2198 
2199 		/* Sync descriptors. */
2200 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2201 		    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2202 
2203 		/* Notify hardware availability of new Rx buffers. */
2204 		AGE_COMMIT_MBOX(sc);
2205 	}
2206 }
2207 
2208 static void
2209 age_tick(void *xsc)
2210 {
2211 	struct age_softc *sc = xsc;
2212 	struct ifnet *ifp = &sc->arpcom.ac_if;
2213 	struct mii_data *mii = device_get_softc(sc->age_miibus);
2214 
2215 	lwkt_serialize_enter(ifp->if_serializer);
2216 
2217 	mii_tick(mii);
2218 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2219 
2220 	lwkt_serialize_exit(ifp->if_serializer);
2221 }
2222 
2223 static void
2224 age_reset(struct age_softc *sc)
2225 {
2226 	uint32_t reg;
2227 	int i;
2228 
2229 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2230 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2231 		DELAY(1);
2232 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2233 			break;
2234 	}
2235 	if (i == 0)
2236 		device_printf(sc->age_dev, "master reset timeout!\n");
2237 
2238 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2239 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2240 			break;
2241 		DELAY(10);
2242 	}
2243 	if (i == 0)
2244 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2245 
2246 	/* Initialize PCIe module. From Linux. */
2247 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2248 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2249 }
2250 
2251 static void
2252 age_init(void *xsc)
2253 {
2254 	struct age_softc *sc = xsc;
2255 	struct ifnet *ifp = &sc->arpcom.ac_if;
2256 	struct mii_data *mii;
2257 	uint8_t eaddr[ETHER_ADDR_LEN];
2258 	bus_addr_t paddr;
2259 	uint32_t reg, fsize;
2260 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2261 	int error;
2262 
2263 	ASSERT_SERIALIZED(ifp->if_serializer);
2264 
2265 	mii = device_get_softc(sc->age_miibus);
2266 
2267 	/*
2268 	 * Cancel any pending I/O.
2269 	 */
2270 	age_stop(sc);
2271 
2272 	/*
2273 	 * Reset the chip to a known state.
2274 	 */
2275 	age_reset(sc);
2276 
2277 	/* Initialize descriptors. */
2278 	error = age_init_rx_ring(sc);
2279         if (error != 0) {
2280                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2281                 age_stop(sc);
2282 		return;
2283         }
2284 	age_init_rr_ring(sc);
2285 	age_init_tx_ring(sc);
2286 	age_init_cmb_block(sc);
2287 	age_init_smb_block(sc);
2288 
2289 	/* Reprogram the station address. */
2290 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2291 	CSR_WRITE_4(sc, AGE_PAR0,
2292 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2293 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2294 
2295 	/* Set descriptor base addresses. */
2296 	paddr = sc->age_rdata.age_tx_ring_paddr;
2297 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2298 	paddr = sc->age_rdata.age_rx_ring_paddr;
2299 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2300 	paddr = sc->age_rdata.age_rr_ring_paddr;
2301 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2302 	paddr = sc->age_rdata.age_tx_ring_paddr;
2303 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2304 	paddr = sc->age_rdata.age_cmb_block_paddr;
2305 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2306 	paddr = sc->age_rdata.age_smb_block_paddr;
2307 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2308 
2309 	/* Set Rx/Rx return descriptor counter. */
2310 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2311 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2312 	    DESC_RRD_CNT_MASK) |
2313 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2314 
2315 	/* Set Tx descriptor counter. */
2316 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2317 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2318 
2319 	/* Tell hardware that we're ready to load descriptors. */
2320 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2321 
2322 	/*
2323 	 * Initialize mailbox register.
2324 	 * Updated producer/consumer index information is exchanged
2325 	 * through this mailbox register. However Tx producer and
2326 	 * Rx return consumer/Rx producer are all shared such that
2327 	 * it's hard to separate code path between Tx and Rx without
2328 	 * locking. If L1 hardware have a separate mail box register
2329 	 * for Tx and Rx consumer/producer management we could have
2330 	 * indepent Tx/Rx handler which in turn Rx handler could have
2331 	 * been run without any locking.
2332 	 */
2333 	AGE_COMMIT_MBOX(sc);
2334 
2335 	/* Configure IPG/IFG parameters. */
2336 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2337 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2338 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2339 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2340 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2341 
2342 	/* Set parameters for half-duplex media. */
2343 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2344 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2345 	    HDPX_CFG_LCOL_MASK) |
2346 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2347 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2348 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2349 	    HDPX_CFG_ABEBT_MASK) |
2350 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2351 	    HDPX_CFG_JAMIPG_MASK));
2352 
2353 	/* Configure interrupt moderation timer. */
2354 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2355 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2356 	reg &= ~MASTER_MTIMER_ENB;
2357 	if (AGE_USECS(sc->age_int_mod) == 0)
2358 		reg &= ~MASTER_ITIMER_ENB;
2359 	else
2360 		reg |= MASTER_ITIMER_ENB;
2361 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2362 	if (bootverbose)
2363 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2364 		    sc->age_int_mod);
2365 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2366 
2367 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2368 	if (ifp->if_mtu < ETHERMTU)
2369 		sc->age_max_frame_size = ETHERMTU;
2370 	else
2371 		sc->age_max_frame_size = ifp->if_mtu;
2372 	sc->age_max_frame_size += ETHER_HDR_LEN +
2373 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2374 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2375 
2376 	/* Configure jumbo frame. */
2377 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2378 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2379 	    (((fsize / sizeof(uint64_t)) <<
2380 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2381 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2382 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2383 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2384 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2385 
2386 	/* Configure flow-control parameters. From Linux. */
2387 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2388 		/*
2389 		 * Magic workaround for old-L1.
2390 		 * Don't know which hw revision requires this magic.
2391 		 */
2392 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2393 		/*
2394 		 * Another magic workaround for flow-control mode
2395 		 * change. From Linux.
2396 		 */
2397 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2398 	}
2399 	/*
2400 	 * TODO
2401 	 *  Should understand pause parameter relationships between FIFO
2402 	 *  size and number of Rx descriptors and Rx return descriptors.
2403 	 *
2404 	 *  Magic parameters came from Linux.
2405 	 */
2406 	switch (sc->age_chip_rev) {
2407 	case 0x8001:
2408 	case 0x9001:
2409 	case 0x9002:
2410 	case 0x9003:
2411 		rxf_hi = AGE_RX_RING_CNT / 16;
2412 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2413 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2414 		rrd_lo = AGE_RR_RING_CNT / 16;
2415 		break;
2416 	default:
2417 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2418 		rxf_lo = reg / 16;
2419 		if (rxf_lo < 192)
2420 			rxf_lo = 192;
2421 		rxf_hi = (reg * 7) / 8;
2422 		if (rxf_hi < rxf_lo)
2423 			rxf_hi = rxf_lo + 16;
2424 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2425 		rrd_lo = reg / 8;
2426 		rrd_hi = (reg * 7) / 8;
2427 		if (rrd_lo < 2)
2428 			rrd_lo = 2;
2429 		if (rrd_hi < rrd_lo)
2430 			rrd_hi = rrd_lo + 3;
2431 		break;
2432 	}
2433 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2434 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2435 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2436 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2437 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2438 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2439 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2440 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2441 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2442 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2443 
2444 	/* Configure RxQ. */
2445 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2446 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2447 	    RXQ_CFG_RD_BURST_MASK) |
2448 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2449 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2450 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2451 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2452 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2453 
2454 	/* Configure TxQ. */
2455 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2456 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2457 	    TXQ_CFG_TPD_BURST_MASK) |
2458 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2459 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2460 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2461 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2462 	    TXQ_CFG_ENB);
2463 
2464 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2465 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2466 	    TX_JUMBO_TPD_TH_MASK) |
2467 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2468 	    TX_JUMBO_TPD_IPG_MASK));
2469 
2470 	/* Configure DMA parameters. */
2471 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2472 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2473 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2474 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2475 
2476 	/* Configure CMB DMA write threshold. */
2477 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2478 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2479 	    CMB_WR_THRESH_RRD_MASK) |
2480 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2481 	    CMB_WR_THRESH_TPD_MASK));
2482 
2483 	/* Set CMB/SMB timer and enable them. */
2484 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2485 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2486 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2487 
2488 	/* Request SMB updates for every seconds. */
2489 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2490 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2491 
2492 	/*
2493 	 * Disable all WOL bits as WOL can interfere normal Rx
2494 	 * operation.
2495 	 */
2496 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2497 
2498 	/*
2499 	 * Configure Tx/Rx MACs.
2500 	 *  - Auto-padding for short frames.
2501 	 *  - Enable CRC generation.
2502 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2503 	 *  of MAC is followed after link establishment.
2504 	 */
2505 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2506 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2507 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2508 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2509 	    MAC_CFG_PREAMBLE_MASK));
2510 
2511 	/* Set up the receive filter. */
2512 	age_rxfilter(sc);
2513 	age_rxvlan(sc);
2514 
2515 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2516 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2517 		reg |= MAC_CFG_RXCSUM_ENB;
2518 
2519 	/* Ack all pending interrupts and clear it. */
2520 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2521 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2522 
2523 	/* Finally enable Tx/Rx MAC. */
2524 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2525 
2526 	sc->age_flags &= ~AGE_FLAG_LINK;
2527 	/* Switch to the current media. */
2528 	mii_mediachg(mii);
2529 
2530 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2531 
2532 	ifp->if_flags |= IFF_RUNNING;
2533 	ifq_clr_oactive(&ifp->if_snd);
2534 }
2535 
2536 static void
2537 age_stop(struct age_softc *sc)
2538 {
2539 	struct ifnet *ifp = &sc->arpcom.ac_if;
2540 	struct age_txdesc *txd;
2541 	struct age_rxdesc *rxd;
2542 	uint32_t reg;
2543 	int i;
2544 
2545 	ASSERT_SERIALIZED(ifp->if_serializer);
2546 
2547 	/*
2548 	 * Mark the interface down and cancel the watchdog timer.
2549 	 */
2550 	ifp->if_flags &= ~IFF_RUNNING;
2551 	ifq_clr_oactive(&ifp->if_snd);
2552 	ifp->if_timer = 0;
2553 
2554 	sc->age_flags &= ~AGE_FLAG_LINK;
2555 	callout_stop(&sc->age_tick_ch);
2556 
2557 	/*
2558 	 * Disable interrupts.
2559 	 */
2560 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2561 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2562 
2563 	/* Stop CMB/SMB updates. */
2564 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2565 
2566 	/* Stop Rx/Tx MAC. */
2567 	age_stop_rxmac(sc);
2568 	age_stop_txmac(sc);
2569 
2570 	/* Stop DMA. */
2571 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2572 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2573 
2574 	/* Stop TxQ/RxQ. */
2575 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2576 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2577 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2578 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2579 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2580 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2581 			break;
2582 		DELAY(10);
2583 	}
2584 	if (i == 0)
2585 		device_printf(sc->age_dev,
2586 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2587 
2588 	/* Reclaim Rx buffers that have been processed. */
2589 	if (sc->age_cdata.age_rxhead != NULL)
2590 		m_freem(sc->age_cdata.age_rxhead);
2591 	AGE_RXCHAIN_RESET(sc);
2592 
2593 	/*
2594 	 * Free RX and TX mbufs still in the queues.
2595 	 */
2596 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2597 		rxd = &sc->age_cdata.age_rxdesc[i];
2598 		if (rxd->rx_m != NULL) {
2599 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2600 			    rxd->rx_dmamap);
2601 			m_freem(rxd->rx_m);
2602 			rxd->rx_m = NULL;
2603 		}
2604         }
2605 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2606 		txd = &sc->age_cdata.age_txdesc[i];
2607 		if (txd->tx_m != NULL) {
2608 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2609 			    txd->tx_dmamap);
2610 			m_freem(txd->tx_m);
2611 			txd->tx_m = NULL;
2612 		}
2613         }
2614 }
2615 
2616 static void
2617 age_stop_txmac(struct age_softc *sc)
2618 {
2619 	uint32_t reg;
2620 	int i;
2621 
2622 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2623 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2624 		reg &= ~MAC_CFG_TX_ENB;
2625 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2626 	}
2627 	/* Stop Tx DMA engine. */
2628 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2629 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2630 		reg &= ~DMA_CFG_RD_ENB;
2631 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2632 	}
2633 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2634 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2635 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2636 			break;
2637 		DELAY(10);
2638 	}
2639 	if (i == 0)
2640 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2641 }
2642 
2643 static void
2644 age_stop_rxmac(struct age_softc *sc)
2645 {
2646 	uint32_t reg;
2647 	int i;
2648 
2649 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2650 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2651 		reg &= ~MAC_CFG_RX_ENB;
2652 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2653 	}
2654 	/* Stop Rx DMA engine. */
2655 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2656 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2657 		reg &= ~DMA_CFG_WR_ENB;
2658 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2659 	}
2660 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2661 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2662 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2663 			break;
2664 		DELAY(10);
2665 	}
2666 	if (i == 0)
2667 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2668 }
2669 
2670 static void
2671 age_init_tx_ring(struct age_softc *sc)
2672 {
2673 	struct age_ring_data *rd;
2674 	struct age_txdesc *txd;
2675 	int i;
2676 
2677 	sc->age_cdata.age_tx_prod = 0;
2678 	sc->age_cdata.age_tx_cons = 0;
2679 	sc->age_cdata.age_tx_cnt = 0;
2680 
2681 	rd = &sc->age_rdata;
2682 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2683 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2684 		txd = &sc->age_cdata.age_txdesc[i];
2685 		txd->tx_desc = &rd->age_tx_ring[i];
2686 		txd->tx_m = NULL;
2687 	}
2688 
2689 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2690 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2691 }
2692 
2693 static int
2694 age_init_rx_ring(struct age_softc *sc)
2695 {
2696 	struct age_ring_data *rd;
2697 	struct age_rxdesc *rxd;
2698 	int i;
2699 
2700 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2701 	rd = &sc->age_rdata;
2702 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2703 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2704 		rxd = &sc->age_cdata.age_rxdesc[i];
2705 		rxd->rx_m = NULL;
2706 		rxd->rx_desc = &rd->age_rx_ring[i];
2707 		if (age_newbuf(sc, rxd, 1) != 0)
2708 			return (ENOBUFS);
2709 	}
2710 
2711 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2712 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2713 
2714 	return (0);
2715 }
2716 
2717 static void
2718 age_init_rr_ring(struct age_softc *sc)
2719 {
2720 	struct age_ring_data *rd;
2721 
2722 	sc->age_cdata.age_rr_cons = 0;
2723 	AGE_RXCHAIN_RESET(sc);
2724 
2725 	rd = &sc->age_rdata;
2726 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2727 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2728 	    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2729 }
2730 
2731 static void
2732 age_init_cmb_block(struct age_softc *sc)
2733 {
2734 	struct age_ring_data *rd;
2735 
2736 	rd = &sc->age_rdata;
2737 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2738 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2739 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
2740 }
2741 
2742 static void
2743 age_init_smb_block(struct age_softc *sc)
2744 {
2745 	struct age_ring_data *rd;
2746 
2747 	rd = &sc->age_rdata;
2748 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2749 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2750 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
2751 }
2752 
2753 static int
2754 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2755 {
2756 	struct rx_desc *desc;
2757 	struct mbuf *m;
2758 	struct age_dmamap_ctx ctx;
2759 	bus_dma_segment_t segs[1];
2760 	bus_dmamap_t map;
2761 	int error;
2762 
2763 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2764 	if (m == NULL)
2765 		return (ENOBUFS);
2766 
2767 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2768 	m_adj(m, ETHER_ALIGN);
2769 
2770 	ctx.nsegs = 1;
2771 	ctx.segs = segs;
2772 	error = bus_dmamap_load_mbuf(sc->age_cdata.age_rx_tag,
2773 				     sc->age_cdata.age_rx_sparemap,
2774 				     m, age_dmamap_buf_cb, &ctx,
2775 				     BUS_DMA_NOWAIT);
2776 	if (error || ctx.nsegs == 0) {
2777 		if (!error) {
2778 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2779 					  sc->age_cdata.age_rx_sparemap);
2780 			error = EFBIG;
2781 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2782 		}
2783 		m_freem(m);
2784 
2785 		if (init)
2786 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2787 		return (error);
2788 	}
2789 	KASSERT(ctx.nsegs == 1,
2790 		("%s: %d segments returned!", __func__, ctx.nsegs));
2791 
2792 	if (rxd->rx_m != NULL) {
2793 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
2794 		    BUS_DMASYNC_POSTREAD);
2795 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
2796 	}
2797 	map = rxd->rx_dmamap;
2798 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2799 	sc->age_cdata.age_rx_sparemap = map;
2800 	rxd->rx_m = m;
2801 
2802 	desc = rxd->rx_desc;
2803 	desc->addr = htole64(segs[0].ds_addr);
2804 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
2805 	    AGE_RD_LEN_SHIFT);
2806 	return (0);
2807 }
2808 
2809 static void
2810 age_rxvlan(struct age_softc *sc)
2811 {
2812 	struct ifnet *ifp = &sc->arpcom.ac_if;
2813 	uint32_t reg;
2814 
2815 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2816 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2817 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2818 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2819 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2820 }
2821 
2822 static void
2823 age_rxfilter(struct age_softc *sc)
2824 {
2825 	struct ifnet *ifp = &sc->arpcom.ac_if;
2826 	struct ifmultiaddr *ifma;
2827 	uint32_t crc;
2828 	uint32_t mchash[2];
2829 	uint32_t rxcfg;
2830 
2831 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2832 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2833 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2834 		rxcfg |= MAC_CFG_BCAST;
2835 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2836 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2837 			rxcfg |= MAC_CFG_PROMISC;
2838 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2839 			rxcfg |= MAC_CFG_ALLMULTI;
2840 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2841 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2842 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2843 		return;
2844 	}
2845 
2846 	/* Program new filter. */
2847 	bzero(mchash, sizeof(mchash));
2848 
2849 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2850 		if (ifma->ifma_addr->sa_family != AF_LINK)
2851 			continue;
2852 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2853 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2854 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2855 	}
2856 
2857 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2858 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2859 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2860 }
2861 
2862 static int
2863 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
2864 {
2865 	struct age_softc *sc;
2866 	struct age_stats *stats;
2867 	int error, result;
2868 
2869 	result = -1;
2870 	error = sysctl_handle_int(oidp, &result, 0, req);
2871 
2872 	if (error != 0 || req->newptr == NULL)
2873 		return (error);
2874 
2875 	if (result != 1)
2876 		return (error);
2877 
2878 	sc = (struct age_softc *)arg1;
2879 	stats = &sc->age_stat;
2880 	kprintf("%s statistics:\n", device_get_nameunit(sc->age_dev));
2881 	kprintf("Transmit good frames : %ju\n",
2882 	    (uintmax_t)stats->tx_frames);
2883 	kprintf("Transmit good broadcast frames : %ju\n",
2884 	    (uintmax_t)stats->tx_bcast_frames);
2885 	kprintf("Transmit good multicast frames : %ju\n",
2886 	    (uintmax_t)stats->tx_mcast_frames);
2887 	kprintf("Transmit pause control frames : %u\n",
2888 	    stats->tx_pause_frames);
2889 	kprintf("Transmit control frames : %u\n",
2890 	    stats->tx_control_frames);
2891 	kprintf("Transmit frames with excessive deferrals : %u\n",
2892 	    stats->tx_excess_defer);
2893 	kprintf("Transmit deferrals : %u\n",
2894 	    stats->tx_deferred);
2895 	kprintf("Transmit good octets : %ju\n",
2896 	    (uintmax_t)stats->tx_bytes);
2897 	kprintf("Transmit good broadcast octets : %ju\n",
2898 	    (uintmax_t)stats->tx_bcast_bytes);
2899 	kprintf("Transmit good multicast octets : %ju\n",
2900 	    (uintmax_t)stats->tx_mcast_bytes);
2901 	kprintf("Transmit frames 64 bytes : %ju\n",
2902 	    (uintmax_t)stats->tx_pkts_64);
2903 	kprintf("Transmit frames 65 to 127 bytes : %ju\n",
2904 	    (uintmax_t)stats->tx_pkts_65_127);
2905 	kprintf("Transmit frames 128 to 255 bytes : %ju\n",
2906 	    (uintmax_t)stats->tx_pkts_128_255);
2907 	kprintf("Transmit frames 256 to 511 bytes : %ju\n",
2908 	    (uintmax_t)stats->tx_pkts_256_511);
2909 	kprintf("Transmit frames 512 to 1024 bytes : %ju\n",
2910 	    (uintmax_t)stats->tx_pkts_512_1023);
2911 	kprintf("Transmit frames 1024 to 1518 bytes : %ju\n",
2912 	    (uintmax_t)stats->tx_pkts_1024_1518);
2913 	kprintf("Transmit frames 1519 to MTU bytes : %ju\n",
2914 	    (uintmax_t)stats->tx_pkts_1519_max);
2915 	kprintf("Transmit single collisions : %u\n",
2916 	    stats->tx_single_colls);
2917 	kprintf("Transmit multiple collisions : %u\n",
2918 	    stats->tx_multi_colls);
2919 	kprintf("Transmit late collisions : %u\n",
2920 	    stats->tx_late_colls);
2921 	kprintf("Transmit abort due to excessive collisions : %u\n",
2922 	    stats->tx_excess_colls);
2923 	kprintf("Transmit underruns due to FIFO underruns : %u\n",
2924 	    stats->tx_underrun);
2925 	kprintf("Transmit descriptor write-back errors : %u\n",
2926 	    stats->tx_desc_underrun);
2927 	kprintf("Transmit frames with length mismatched frame size : %u\n",
2928 	    stats->tx_lenerrs);
2929 	kprintf("Transmit frames with truncated due to MTU size : %u\n",
2930 	    stats->tx_lenerrs);
2931 
2932 	kprintf("Receive good frames : %ju\n",
2933 	    (uintmax_t)stats->rx_frames);
2934 	kprintf("Receive good broadcast frames : %ju\n",
2935 	    (uintmax_t)stats->rx_bcast_frames);
2936 	kprintf("Receive good multicast frames : %ju\n",
2937 	    (uintmax_t)stats->rx_mcast_frames);
2938 	kprintf("Receive pause control frames : %u\n",
2939 	    stats->rx_pause_frames);
2940 	kprintf("Receive control frames : %u\n",
2941 	    stats->rx_control_frames);
2942 	kprintf("Receive CRC errors : %u\n",
2943 	    stats->rx_crcerrs);
2944 	kprintf("Receive frames with length errors : %u\n",
2945 	    stats->rx_lenerrs);
2946 	kprintf("Receive good octets : %ju\n",
2947 	    (uintmax_t)stats->rx_bytes);
2948 	kprintf("Receive good broadcast octets : %ju\n",
2949 	    (uintmax_t)stats->rx_bcast_bytes);
2950 	kprintf("Receive good multicast octets : %ju\n",
2951 	    (uintmax_t)stats->rx_mcast_bytes);
2952 	kprintf("Receive frames too short : %u\n",
2953 	    stats->rx_runts);
2954 	kprintf("Receive fragmented frames : %ju\n",
2955 	    (uintmax_t)stats->rx_fragments);
2956 	kprintf("Receive frames 64 bytes : %ju\n",
2957 	    (uintmax_t)stats->rx_pkts_64);
2958 	kprintf("Receive frames 65 to 127 bytes : %ju\n",
2959 	    (uintmax_t)stats->rx_pkts_65_127);
2960 	kprintf("Receive frames 128 to 255 bytes : %ju\n",
2961 	    (uintmax_t)stats->rx_pkts_128_255);
2962 	kprintf("Receive frames 256 to 511 bytes : %ju\n",
2963 	    (uintmax_t)stats->rx_pkts_256_511);
2964 	kprintf("Receive frames 512 to 1024 bytes : %ju\n",
2965 	    (uintmax_t)stats->rx_pkts_512_1023);
2966 	kprintf("Receive frames 1024 to 1518 bytes : %ju\n",
2967 	    (uintmax_t)stats->rx_pkts_1024_1518);
2968 	kprintf("Receive frames 1519 to MTU bytes : %ju\n",
2969 	    (uintmax_t)stats->rx_pkts_1519_max);
2970 	kprintf("Receive frames too long : %ju\n",
2971 	    (uint64_t)stats->rx_pkts_truncated);
2972 	kprintf("Receive frames with FIFO overflow : %u\n",
2973 	    stats->rx_fifo_oflows);
2974 	kprintf("Receive frames with return descriptor overflow : %u\n",
2975 	    stats->rx_desc_oflows);
2976 	kprintf("Receive frames with alignment errors : %u\n",
2977 	    stats->rx_alignerrs);
2978 	kprintf("Receive frames dropped due to address filtering : %ju\n",
2979 	    (uint64_t)stats->rx_pkts_filtered);
2980 
2981 	return (error);
2982 }
2983 
2984 static int
2985 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
2986 {
2987 
2988 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
2989 	    AGE_IM_TIMER_MAX));
2990 }
2991 
2992 static void
2993 age_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
2994 		  bus_size_t mapsz __unused, int error)
2995 {
2996 	struct age_dmamap_ctx *ctx = xctx;
2997 	int i;
2998 
2999 	if (error)
3000 		return;
3001 
3002 	if (nsegs > ctx->nsegs) {
3003 		ctx->nsegs = 0;
3004 		return;
3005 	}
3006 
3007 	ctx->nsegs = nsegs;
3008 	for (i = 0; i < nsegs; ++i)
3009 		ctx->segs[i] = segs[i];
3010 }
3011