xref: /dragonfly/sys/dev/netif/age/if_age.c (revision f9993810)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/age/if_age.c,v 1.6 2008/11/07 07:02:28 yongari Exp $
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54 
55 #include <dev/netif/mii_layer/miivar.h>
56 #include <dev/netif/mii_layer/jmphyreg.h>
57 
58 #include <bus/pci/pcireg.h>
59 #include <bus/pci/pcivar.h>
60 #include "pcidevs.h"
61 
62 #include <dev/netif/age/if_agereg.h>
63 #include <dev/netif/age/if_agevar.h>
64 
65 /* "device miibus" required.  See GENERIC if you get errors here. */
66 #include "miibus_if.h"
67 
68 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
69 
70 struct age_dmamap_ctx {
71 	int			nsegs;
72 	bus_dma_segment_t	*segs;
73 };
74 
75 static int	age_probe(device_t);
76 static int	age_attach(device_t);
77 static int	age_detach(device_t);
78 static int	age_shutdown(device_t);
79 static int	age_suspend(device_t);
80 static int	age_resume(device_t);
81 
82 static int	age_miibus_readreg(device_t, int, int);
83 static int	age_miibus_writereg(device_t, int, int, int);
84 static void	age_miibus_statchg(device_t);
85 
86 static void	age_init(void *);
87 static int	age_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
88 static void	age_start(struct ifnet *, struct ifaltq_subque *);
89 static void	age_watchdog(struct ifnet *);
90 static void	age_mediastatus(struct ifnet *, struct ifmediareq *);
91 static int	age_mediachange(struct ifnet *);
92 
93 static void	age_intr(void *);
94 static void	age_txintr(struct age_softc *, int);
95 static void	age_rxintr(struct age_softc *, int);
96 static void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97 
98 static int	age_dma_alloc(struct age_softc *);
99 static void	age_dma_free(struct age_softc *);
100 static void	age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
101 static void	age_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
102 		    bus_size_t, int);
103 static int	age_check_boundary(struct age_softc *);
104 static int	age_newbuf(struct age_softc *, struct age_rxdesc *, int);
105 static int	age_encap(struct age_softc *, struct mbuf **);
106 static void	age_init_tx_ring(struct age_softc *);
107 static int	age_init_rx_ring(struct age_softc *);
108 static void	age_init_rr_ring(struct age_softc *);
109 static void	age_init_cmb_block(struct age_softc *);
110 static void	age_init_smb_block(struct age_softc *);
111 
112 static void	age_tick(void *);
113 static void	age_stop(struct age_softc *);
114 static void	age_reset(struct age_softc *);
115 static int	age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
116 		    uint32_t *);
117 static void	age_get_macaddr(struct age_softc *);
118 static void	age_phy_reset(struct age_softc *);
119 static void	age_mac_config(struct age_softc *);
120 static void	age_stats_update(struct age_softc *);
121 static void	age_stop_txmac(struct age_softc *);
122 static void	age_stop_rxmac(struct age_softc *);
123 static void	age_rxvlan(struct age_softc *);
124 static void	age_rxfilter(struct age_softc *);
125 #ifdef wol_notyet
126 static void age_setwol(struct age_softc *);
127 #endif
128 
129 static void	age_sysctl_node(struct age_softc *);
130 static int	sysctl_age_stats(SYSCTL_HANDLER_ARGS);
131 static int	sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
132 
133 /*
134  * Devices supported by this driver.
135  */
136 static struct age_dev {
137 	uint16_t	age_vendorid;
138 	uint16_t	age_deviceid;
139 	const char	*age_name;
140 } age_devs[] = {
141 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
142 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
143 };
144 
145 static device_method_t age_methods[] = {
146 	/* Device interface. */
147 	DEVMETHOD(device_probe,		age_probe),
148 	DEVMETHOD(device_attach,	age_attach),
149 	DEVMETHOD(device_detach,	age_detach),
150 	DEVMETHOD(device_shutdown,	age_shutdown),
151 	DEVMETHOD(device_suspend,	age_suspend),
152 	DEVMETHOD(device_resume,	age_resume),
153 
154 	/* Bus interface. */
155 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
156 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
157 
158 	/* MII interface. */
159 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
160 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
161 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
162 
163 	{ NULL, NULL }
164 };
165 
166 static driver_t age_driver = {
167 	"age",
168 	age_methods,
169 	sizeof(struct age_softc)
170 };
171 
172 static devclass_t age_devclass;
173 
174 DECLARE_DUMMY_MODULE(if_age);
175 MODULE_DEPEND(if_age, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_age, pci, age_driver, age_devclass, NULL, NULL);
177 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, NULL, NULL);
178 
179 /*
180  *	Read a PHY register on the MII of the L1.
181  */
182 static int
183 age_miibus_readreg(device_t dev, int phy, int reg)
184 {
185 	struct age_softc *sc;
186 	uint32_t v;
187 	int i;
188 
189 	sc = device_get_softc(dev);
190 	if (phy != sc->age_phyaddr)
191 		return (0);
192 
193 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
194 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
196 		DELAY(1);
197 		v = CSR_READ_4(sc, AGE_MDIO);
198 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 			break;
200 	}
201 
202 	if (i == 0) {
203 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
204 		return (0);
205 	}
206 
207 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
208 }
209 
210 /*
211  *	Write a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_writereg(device_t dev, int phy, int reg, int val)
215 {
216 	struct age_softc *sc;
217 	uint32_t v;
218 	int i;
219 
220 	sc = device_get_softc(dev);
221 	if (phy != sc->age_phyaddr)
222 		return (0);
223 
224 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
225 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
226 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
227 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
228 		DELAY(1);
229 		v = CSR_READ_4(sc, AGE_MDIO);
230 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
231 			break;
232 	}
233 
234 	if (i == 0)
235 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
236 
237 	return (0);
238 }
239 
240 /*
241  *	Callback from MII layer when media changes.
242  */
243 static void
244 age_miibus_statchg(device_t dev)
245 {
246 	struct age_softc *sc = device_get_softc(dev);
247 	struct ifnet *ifp = &sc->arpcom.ac_if;
248 	struct mii_data *mii;
249 
250 	ASSERT_SERIALIZED(ifp->if_serializer);
251 
252 	if ((ifp->if_flags & IFF_RUNNING) == 0)
253 		return;
254 
255 	mii = device_get_softc(sc->age_miibus);
256 
257 	sc->age_flags &= ~AGE_FLAG_LINK;
258 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
259 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
260 		case IFM_10_T:
261 		case IFM_100_TX:
262 		case IFM_1000_T:
263 			sc->age_flags |= AGE_FLAG_LINK;
264 			break;
265 		default:
266 			break;
267 		}
268 	}
269 
270 	/* Stop Rx/Tx MACs. */
271 	age_stop_rxmac(sc);
272 	age_stop_txmac(sc);
273 
274 	/* Program MACs with resolved speed/duplex/flow-control. */
275 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
276 		uint32_t reg;
277 
278 		age_mac_config(sc);
279 
280 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
281 		/* Restart DMA engine and Tx/Rx MAC. */
282 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
283 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
284 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
285 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
286 	}
287 }
288 
289 /*
290  *	Get the current interface media status.
291  */
292 static void
293 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
294 {
295 	struct age_softc *sc = ifp->if_softc;
296 	struct mii_data *mii = device_get_softc(sc->age_miibus);
297 
298 	ASSERT_SERIALIZED(ifp->if_serializer);
299 
300 	mii_pollstat(mii);
301 	ifmr->ifm_status = mii->mii_media_status;
302 	ifmr->ifm_active = mii->mii_media_active;
303 }
304 
305 /*
306  *	Set hardware to newly-selected media.
307  */
308 static int
309 age_mediachange(struct ifnet *ifp)
310 {
311 	struct age_softc *sc = ifp->if_softc;
312 	struct mii_data *mii = device_get_softc(sc->age_miibus);
313 	int error;
314 
315 	ASSERT_SERIALIZED(ifp->if_serializer);
316 
317 	if (mii->mii_instance != 0) {
318 		struct mii_softc *miisc;
319 
320 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321 			mii_phy_reset(miisc);
322 	}
323 	error = mii_mediachg(mii);
324 
325 	return (error);
326 }
327 
328 static int
329 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
330     uint32_t *word)
331 {
332 	int i;
333 
334 	pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
335 	for (i = AGE_TIMEOUT; i > 0; i--) {
336 		DELAY(10);
337 		if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
338 		    0x8000) == 0x8000)
339 			break;
340 	}
341 	if (i == 0) {
342 		device_printf(sc->age_dev, "VPD read timeout!\n");
343 		*word = 0;
344 		return (ETIMEDOUT);
345 	}
346 
347 	*word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
348 	return (0);
349 }
350 
351 static int
352 age_probe(device_t dev)
353 {
354 	struct age_dev *sp;
355 	int i;
356 	uint16_t vendor, devid;
357 
358 	vendor = pci_get_vendor(dev);
359 	devid = pci_get_device(dev);
360 	sp = age_devs;
361 	for (i = 0; i < NELEM(age_devs); i++, sp++) {
362 		if (vendor == sp->age_vendorid &&
363 		    devid == sp->age_deviceid) {
364 			device_set_desc(dev, sp->age_name);
365 			return (0);
366 		}
367 	}
368 	return (ENXIO);
369 }
370 
371 static void
372 age_get_macaddr(struct age_softc *sc)
373 {
374 	uint32_t ea[2], off, reg, word;
375 	int vpd_error, match, vpdc;
376 
377 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
378 	if ((reg & SPI_VPD_ENB) != 0) {
379 		/* Get VPD stored in TWSI EEPROM. */
380 		reg &= ~SPI_VPD_ENB;
381 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
382 	}
383 
384 	ea[0] = ea[1] = 0;
385 	vpdc = pci_get_vpdcap_ptr(sc->age_dev);
386 	if (vpdc) {
387 		vpd_error = 0;
388 
389 		/*
390 		 * PCI VPD capability exists, but it seems that it's
391 		 * not in the standard form as stated in PCI VPD
392 		 * specification such that driver could not use
393 		 * pci_get_vpd_readonly(9) with keyword 'NA'.
394 		 * Search VPD data starting at address 0x0100. The data
395 		 * should be used as initializers to set AGE_PAR0,
396 		 * AGE_PAR1 register including other PCI configuration
397 		 * registers.
398 		 */
399 		word = 0;
400 		match = 0;
401 		reg = 0;
402 		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
403 		    off += sizeof(uint32_t)) {
404 			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
405 			if (vpd_error != 0)
406 				break;
407 			if (match != 0) {
408 				switch (reg) {
409 				case AGE_PAR0:
410 					ea[0] = word;
411 					break;
412 				case AGE_PAR1:
413 					ea[1] = word;
414 					break;
415 				default:
416 					break;
417 				}
418 				match = 0;
419 			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
420 				match = 1;
421 				reg = word >> 16;
422 			} else
423 				break;
424 		}
425 		if (off >= AGE_VPD_REG_CONF_END)
426 			vpd_error = ENOENT;
427 		if (vpd_error == 0) {
428 			/*
429 			 * Don't blindly trust ethernet address obtained
430 			 * from VPD. Check whether ethernet address is
431 			 * valid one. Otherwise fall-back to reading
432 			 * PAR register.
433 			 */
434 			ea[1] &= 0xFFFF;
435 			if ((ea[0] == 0 && ea[1] == 0) ||
436 			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
437 				if (bootverbose)
438 					device_printf(sc->age_dev,
439 					    "invalid ethernet address "
440 					    "returned from VPD.\n");
441 				vpd_error = EINVAL;
442 			}
443 		}
444 		if (vpd_error != 0 && (bootverbose))
445 			device_printf(sc->age_dev, "VPD access failure!\n");
446 	} else {
447 		vpd_error = ENOENT;
448 		if (bootverbose)
449 			device_printf(sc->age_dev,
450 			    "PCI VPD capability not found!\n");
451 	}
452 
453 	/*
454 	 * It seems that L1 also provides a way to extract ethernet
455 	 * address via SPI flash interface. Because SPI flash memory
456 	 * device of different vendors vary in their instruction
457 	 * codes for read ID instruction, it's very hard to get
458 	 * instructions codes without detailed information for the
459 	 * flash memory device used on ethernet controller. To simplify
460 	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
461 	 * address which is supposed to be set by hardware during
462 	 * power on reset.
463 	 */
464 	if (vpd_error != 0) {
465 		/*
466 		 * VPD is mapped to SPI flash memory or BIOS set it.
467 		 */
468 		ea[0] = CSR_READ_4(sc, AGE_PAR0);
469 		ea[1] = CSR_READ_4(sc, AGE_PAR1);
470 	}
471 
472 	ea[1] &= 0xFFFF;
473 	if ((ea[0] == 0 && ea[1]  == 0) ||
474 	    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
475 		device_printf(sc->age_dev,
476 		    "generating fake ethernet address.\n");
477 		ea[0] = karc4random();
478 		/* Set OUI to ASUSTek COMPUTER INC. */
479 		sc->age_eaddr[0] = 0x00;
480 		sc->age_eaddr[1] = 0x1B;
481 		sc->age_eaddr[2] = 0xFC;
482 		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
483 		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
484 		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
485 	} else {
486 		sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
487 		sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
488 		sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
489 		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
490 		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
491 		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
492 	}
493 }
494 
495 static void
496 age_phy_reset(struct age_softc *sc)
497 {
498 	/* Reset PHY. */
499 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
500 	DELAY(1000);
501 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
502 	DELAY(1000);
503 }
504 
505 static int
506 age_attach(device_t dev)
507 {
508 	struct age_softc *sc = device_get_softc(dev);
509 	struct ifnet *ifp = &sc->arpcom.ac_if;
510 	uint8_t pcie_ptr;
511 	int error;
512 
513 	error = 0;
514 	sc->age_dev = dev;
515 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
516 
517 	callout_init(&sc->age_tick_ch);
518 
519 #ifndef BURN_BRIDGES
520 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
521 		uint32_t irq, mem;
522 
523 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
524 		mem = pci_read_config(dev, AGE_PCIR_BAR, 4);
525 
526 		device_printf(dev, "chip is in D%d power mode "
527 		    "-- setting to D0\n", pci_get_powerstate(dev));
528 
529 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530 
531 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
532 		pci_write_config(dev, AGE_PCIR_BAR, mem, 4);
533 	}
534 #endif	/* !BURN_BRIDGE */
535 
536 	/* Enable bus mastering */
537 	pci_enable_busmaster(dev);
538 
539 	/*
540 	 * Allocate memory mapped IO
541 	 */
542 	sc->age_mem_rid = AGE_PCIR_BAR;
543 	sc->age_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
544 						 &sc->age_mem_rid, RF_ACTIVE);
545 	if (sc->age_mem_res == NULL) {
546 		device_printf(dev, "can't allocate IO memory\n");
547 		return ENXIO;
548 	}
549 	sc->age_mem_bt = rman_get_bustag(sc->age_mem_res);
550 	sc->age_mem_bh = rman_get_bushandle(sc->age_mem_res);
551 
552 	/*
553 	 * Allocate IRQ
554 	 */
555 	sc->age_irq_rid = 0;
556 	sc->age_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
557 						 &sc->age_irq_rid,
558 						 RF_SHAREABLE | RF_ACTIVE);
559 	if (sc->age_irq_res == NULL) {
560 		device_printf(dev, "can't allocate irq\n");
561 		error = ENXIO;
562 		goto fail;
563 	}
564 
565 	/* Set PHY address. */
566 	sc->age_phyaddr = AGE_PHY_ADDR;
567 
568 	/* Reset PHY. */
569 	age_phy_reset(sc);
570 
571 	/* Reset the ethernet controller. */
572 	age_reset(sc);
573 
574 	/* Get PCI and chip id/revision. */
575 	sc->age_rev = pci_get_revid(dev);
576 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
577 	    MASTER_CHIP_REV_SHIFT;
578 	if (bootverbose) {
579 		device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
580 		device_printf(dev, "Chip id/revision : 0x%04x\n",
581 		    sc->age_chip_rev);
582 	}
583 
584 	/*
585 	 * XXX
586 	 * Unintialized hardware returns an invalid chip id/revision
587 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
588 	 * unplugged cable results in putting hardware into automatic
589 	 * power down mode which in turn returns invalld chip revision.
590 	 */
591 	if (sc->age_chip_rev == 0xFFFF) {
592 		device_printf(dev,"invalid chip revision : 0x%04x -- "
593 		    "not initialized?\n", sc->age_chip_rev);
594 		error = ENXIO;
595 		goto fail;
596 	}
597 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
598 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
599 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
600 
601 	/* Get DMA parameters from PCIe device control register. */
602 	pcie_ptr = pci_get_pciecap_ptr(dev);
603 	if (pcie_ptr) {
604 		uint16_t devctl;
605 
606 		sc->age_flags |= AGE_FLAG_PCIE;
607 		devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
608 		/* Max read request size. */
609 		sc->age_dma_rd_burst = ((devctl >> 12) & 0x07) <<
610 		    DMA_CFG_RD_BURST_SHIFT;
611 		/* Max payload size. */
612 		sc->age_dma_wr_burst = ((devctl >> 5) & 0x07) <<
613 		    DMA_CFG_WR_BURST_SHIFT;
614 		if (bootverbose) {
615 			device_printf(dev, "Read request size : %d bytes.\n",
616 			    128 << ((devctl >> 12) & 0x07));
617 			device_printf(dev, "TLP payload size : %d bytes.\n",
618 			    128 << ((devctl >> 5) & 0x07));
619 		}
620 	} else {
621 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
622 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
623 	}
624 
625 	/* Create device sysctl node. */
626 	age_sysctl_node(sc);
627 
628 	if ((error = age_dma_alloc(sc)) != 0)
629 		goto fail;
630 
631 	/* Load station address. */
632 	age_get_macaddr(sc);
633 
634 	ifp->if_softc = sc;
635 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636 	ifp->if_ioctl = age_ioctl;
637 	ifp->if_start = age_start;
638 	ifp->if_init = age_init;
639 	ifp->if_watchdog = age_watchdog;
640 	ifq_set_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
641 	ifq_set_ready(&ifp->if_snd);
642 
643 	ifp->if_capabilities = IFCAP_HWCSUM |
644 			       IFCAP_VLAN_MTU |
645 			       IFCAP_VLAN_HWTAGGING;
646 	ifp->if_hwassist = AGE_CSUM_FEATURES;
647 	ifp->if_capenable = ifp->if_capabilities;
648 
649 	/* Set up MII bus. */
650 	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
651 	    age_mediastatus)) != 0) {
652 		device_printf(dev, "no PHY found!\n");
653 		goto fail;
654 	}
655 
656 	ether_ifattach(ifp, sc->age_eaddr, NULL);
657 
658 	/* Tell the upper layer(s) we support long frames. */
659 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
660 
661 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->age_irq_res));
662 
663 	error = bus_setup_intr(dev, sc->age_irq_res, INTR_MPSAFE, age_intr, sc,
664 			       &sc->age_irq_handle, ifp->if_serializer);
665 	if (error) {
666 		device_printf(dev, "could not set up interrupt handler.\n");
667 		ether_ifdetach(ifp);
668 		goto fail;
669 	}
670 
671 	return 0;
672 fail:
673 	age_detach(dev);
674 	return (error);
675 }
676 
677 static int
678 age_detach(device_t dev)
679 {
680 	struct age_softc *sc = device_get_softc(dev);
681 
682 	if (device_is_attached(dev)) {
683 		struct ifnet *ifp = &sc->arpcom.ac_if;
684 
685 		lwkt_serialize_enter(ifp->if_serializer);
686 		sc->age_flags |= AGE_FLAG_DETACH;
687 		age_stop(sc);
688 		bus_teardown_intr(dev, sc->age_irq_res, sc->age_irq_handle);
689 		lwkt_serialize_exit(ifp->if_serializer);
690 
691 		ether_ifdetach(ifp);
692 	}
693 
694 	if (sc->age_miibus != NULL)
695 		device_delete_child(dev, sc->age_miibus);
696 	bus_generic_detach(dev);
697 
698 	if (sc->age_irq_res != NULL) {
699 		bus_release_resource(dev, SYS_RES_IRQ, sc->age_irq_rid,
700 				     sc->age_irq_res);
701 	}
702 	if (sc->age_mem_res != NULL) {
703 		bus_release_resource(dev, SYS_RES_MEMORY, sc->age_mem_rid,
704 				     sc->age_mem_res);
705 	}
706 
707 	age_dma_free(sc);
708 
709 	return (0);
710 }
711 
712 static void
713 age_sysctl_node(struct age_softc *sc)
714 {
715 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->age_dev);
716 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->age_dev);
717 	int error;
718 
719 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
720 	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
721 	    "I", "Statistics");
722 
723 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
724 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
725 	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
726 
727 	/* Pull in device tunables. */
728 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
729 	error = resource_int_value(device_get_name(sc->age_dev),
730 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
731 	if (error == 0) {
732 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
733 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
734 			device_printf(sc->age_dev,
735 			    "int_mod value out of range; using default: %d\n",
736 			    AGE_IM_TIMER_DEFAULT);
737 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
738 		}
739 	}
740 }
741 
742 struct age_dmamap_arg {
743 	bus_addr_t	age_busaddr;
744 };
745 
746 static void
747 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
748 {
749 	struct age_dmamap_arg *ctx;
750 
751 	if (error != 0)
752 		return;
753 
754 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
755 
756 	ctx = (struct age_dmamap_arg *)arg;
757 	ctx->age_busaddr = segs[0].ds_addr;
758 }
759 
760 /*
761  * Attansic L1 controller have single register to specify high
762  * address part of DMA blocks. So all descriptor structures and
763  * DMA memory blocks should have the same high address of given
764  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
765  */
766 static int
767 age_check_boundary(struct age_softc *sc)
768 {
769 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
770 	bus_addr_t cmb_block_end, smb_block_end;
771 
772 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
773 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
774 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
775 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
776 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
777 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
778 
779 	if ((AGE_ADDR_HI(tx_ring_end) !=
780 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
781 	    (AGE_ADDR_HI(rx_ring_end) !=
782 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
783 	    (AGE_ADDR_HI(rr_ring_end) !=
784 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
785 	    (AGE_ADDR_HI(cmb_block_end) !=
786 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
787 	    (AGE_ADDR_HI(smb_block_end) !=
788 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
789 		return (EFBIG);
790 
791 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
792 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
793 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
794 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
795 		return (EFBIG);
796 
797 	return (0);
798 }
799 
800 static int
801 age_dma_alloc(struct age_softc *sc)
802 {
803 	struct age_txdesc *txd;
804 	struct age_rxdesc *rxd;
805 	bus_addr_t lowaddr;
806 	struct age_dmamap_arg ctx;
807 	int error, i;
808 
809 	lowaddr = BUS_SPACE_MAXADDR;
810 again:
811 	/* Create parent ring/DMA block tag. */
812 	error = bus_dma_tag_create(
813 	    NULL,			/* parent */
814 	    1, 0,			/* alignment, boundary */
815 	    lowaddr,			/* lowaddr */
816 	    BUS_SPACE_MAXADDR,		/* highaddr */
817 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
818 	    0,				/* nsegments */
819 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
820 	    0,				/* flags */
821 	    &sc->age_cdata.age_parent_tag);
822 	if (error != 0) {
823 		device_printf(sc->age_dev,
824 		    "could not create parent DMA tag.\n");
825 		goto fail;
826 	}
827 
828 	/* Create tag for Tx ring. */
829 	error = bus_dma_tag_create(
830 	    sc->age_cdata.age_parent_tag, /* parent */
831 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
832 	    BUS_SPACE_MAXADDR,		/* lowaddr */
833 	    BUS_SPACE_MAXADDR,		/* highaddr */
834 	    AGE_TX_RING_SZ,		/* maxsize */
835 	    1,				/* nsegments */
836 	    AGE_TX_RING_SZ,		/* maxsegsize */
837 	    0,				/* flags */
838 	    &sc->age_cdata.age_tx_ring_tag);
839 	if (error != 0) {
840 		device_printf(sc->age_dev,
841 		    "could not create Tx ring DMA tag.\n");
842 		goto fail;
843 	}
844 
845 	/* Create tag for Rx ring. */
846 	error = bus_dma_tag_create(
847 	    sc->age_cdata.age_parent_tag, /* parent */
848 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
849 	    BUS_SPACE_MAXADDR,		/* lowaddr */
850 	    BUS_SPACE_MAXADDR,		/* highaddr */
851 	    AGE_RX_RING_SZ,		/* maxsize */
852 	    1,				/* nsegments */
853 	    AGE_RX_RING_SZ,		/* maxsegsize */
854 	    0,				/* flags */
855 	    &sc->age_cdata.age_rx_ring_tag);
856 	if (error != 0) {
857 		device_printf(sc->age_dev,
858 		    "could not create Rx ring DMA tag.\n");
859 		goto fail;
860 	}
861 
862 	/* Create tag for Rx return ring. */
863 	error = bus_dma_tag_create(
864 	    sc->age_cdata.age_parent_tag, /* parent */
865 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
866 	    BUS_SPACE_MAXADDR,		/* lowaddr */
867 	    BUS_SPACE_MAXADDR,		/* highaddr */
868 	    AGE_RR_RING_SZ,		/* maxsize */
869 	    1,				/* nsegments */
870 	    AGE_RR_RING_SZ,		/* maxsegsize */
871 	    0,				/* flags */
872 	    &sc->age_cdata.age_rr_ring_tag);
873 	if (error != 0) {
874 		device_printf(sc->age_dev,
875 		    "could not create Rx return ring DMA tag.\n");
876 		goto fail;
877 	}
878 
879 	/* Create tag for coalesing message block. */
880 	error = bus_dma_tag_create(
881 	    sc->age_cdata.age_parent_tag, /* parent */
882 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
883 	    BUS_SPACE_MAXADDR,		/* lowaddr */
884 	    BUS_SPACE_MAXADDR,		/* highaddr */
885 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
886 	    1,				/* nsegments */
887 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
888 	    0,				/* flags */
889 	    &sc->age_cdata.age_cmb_block_tag);
890 	if (error != 0) {
891 		device_printf(sc->age_dev,
892 		    "could not create CMB DMA tag.\n");
893 		goto fail;
894 	}
895 
896 	/* Create tag for statistics message block. */
897 	error = bus_dma_tag_create(
898 	    sc->age_cdata.age_parent_tag, /* parent */
899 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
900 	    BUS_SPACE_MAXADDR,		/* lowaddr */
901 	    BUS_SPACE_MAXADDR,		/* highaddr */
902 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
903 	    1,				/* nsegments */
904 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
905 	    0,				/* flags */
906 	    &sc->age_cdata.age_smb_block_tag);
907 	if (error != 0) {
908 		device_printf(sc->age_dev,
909 		    "could not create SMB DMA tag.\n");
910 		goto fail;
911 	}
912 
913 	/* Allocate DMA'able memory and load the DMA map. */
914 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
915 	    (void **)&sc->age_rdata.age_tx_ring,
916 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
917 	    &sc->age_cdata.age_tx_ring_map);
918 	if (error != 0) {
919 		device_printf(sc->age_dev,
920 		    "could not allocate DMA'able memory for Tx ring.\n");
921 		goto fail;
922 	}
923 	ctx.age_busaddr = 0;
924 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
925 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
926 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
927 	if (error != 0 || ctx.age_busaddr == 0) {
928 		device_printf(sc->age_dev,
929 		    "could not load DMA'able memory for Tx ring.\n");
930 		goto fail;
931 	}
932 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
933 	/* Rx ring */
934 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
935 	    (void **)&sc->age_rdata.age_rx_ring,
936 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
937 	    &sc->age_cdata.age_rx_ring_map);
938 	if (error != 0) {
939 		device_printf(sc->age_dev,
940 		    "could not allocate DMA'able memory for Rx ring.\n");
941 		goto fail;
942 	}
943 	ctx.age_busaddr = 0;
944 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
945 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
946 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
947 	if (error != 0 || ctx.age_busaddr == 0) {
948 		device_printf(sc->age_dev,
949 		    "could not load DMA'able memory for Rx ring.\n");
950 		goto fail;
951 	}
952 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
953 	/* Rx return ring */
954 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
955 	    (void **)&sc->age_rdata.age_rr_ring,
956 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
957 	    &sc->age_cdata.age_rr_ring_map);
958 	if (error != 0) {
959 		device_printf(sc->age_dev,
960 		    "could not allocate DMA'able memory for Rx return ring.\n");
961 		goto fail;
962 	}
963 	ctx.age_busaddr = 0;
964 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
965 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
966 	    AGE_RR_RING_SZ, age_dmamap_cb, &ctx, 0);
967 	if (error != 0 || ctx.age_busaddr == 0) {
968 		device_printf(sc->age_dev,
969 		    "could not load DMA'able memory for Rx return ring.\n");
970 		goto fail;
971 	}
972 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
973 	/* CMB block */
974 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
975 	    (void **)&sc->age_rdata.age_cmb_block,
976 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
977 	    &sc->age_cdata.age_cmb_block_map);
978 	if (error != 0) {
979 		device_printf(sc->age_dev,
980 		    "could not allocate DMA'able memory for CMB block.\n");
981 		goto fail;
982 	}
983 	ctx.age_busaddr = 0;
984 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
985 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
986 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
987 	if (error != 0 || ctx.age_busaddr == 0) {
988 		device_printf(sc->age_dev,
989 		    "could not load DMA'able memory for CMB block.\n");
990 		goto fail;
991 	}
992 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
993 	/* SMB block */
994 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
995 	    (void **)&sc->age_rdata.age_smb_block,
996 	    BUS_DMA_WAITOK | BUS_DMA_ZERO,
997 	    &sc->age_cdata.age_smb_block_map);
998 	if (error != 0) {
999 		device_printf(sc->age_dev,
1000 		    "could not allocate DMA'able memory for SMB block.\n");
1001 		goto fail;
1002 	}
1003 	ctx.age_busaddr = 0;
1004 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1005 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1006 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1007 	if (error != 0 || ctx.age_busaddr == 0) {
1008 		device_printf(sc->age_dev,
1009 		    "could not load DMA'able memory for SMB block.\n");
1010 		goto fail;
1011 	}
1012 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1013 
1014 	/*
1015 	 * All ring buffer and DMA blocks should have the same
1016 	 * high address part of 64bit DMA address space.
1017 	 */
1018 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1019 	    (error = age_check_boundary(sc)) != 0) {
1020 		device_printf(sc->age_dev, "4GB boundary crossed, "
1021 		    "switching to 32bit DMA addressing mode.\n");
1022 		age_dma_free(sc);
1023 		/* Limit DMA address space to 32bit and try again. */
1024 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1025 		goto again;
1026 	}
1027 
1028 	/*
1029 	 * Create Tx/Rx buffer parent tag.
1030 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1031 	 * so it needs separate parent DMA tag.
1032 	 */
1033 	error = bus_dma_tag_create(
1034 	    NULL,			/* parent */
1035 	    1, 0,			/* alignment, boundary */
1036 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1037 	    BUS_SPACE_MAXADDR,		/* highaddr */
1038 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1039 	    0,				/* nsegments */
1040 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1041 	    0,				/* flags */
1042 	    &sc->age_cdata.age_buffer_tag);
1043 	if (error != 0) {
1044 		device_printf(sc->age_dev,
1045 		    "could not create parent buffer DMA tag.\n");
1046 		goto fail;
1047 	}
1048 
1049 	/* Create tag for Tx buffers. */
1050 	error = bus_dma_tag_create(
1051 	    sc->age_cdata.age_buffer_tag, /* parent */
1052 	    1, 0,			/* alignment, boundary */
1053 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1054 	    BUS_SPACE_MAXADDR,		/* highaddr */
1055 	    AGE_TSO_MAXSIZE,		/* maxsize */
1056 	    AGE_MAXTXSEGS,		/* nsegments */
1057 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1058 	    0,				/* flags */
1059 	    &sc->age_cdata.age_tx_tag);
1060 	if (error != 0) {
1061 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1062 		goto fail;
1063 	}
1064 
1065 	/* Create tag for Rx buffers. */
1066 	error = bus_dma_tag_create(
1067 	    sc->age_cdata.age_buffer_tag, /* parent */
1068 	    1, 0,			/* alignment, boundary */
1069 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1070 	    BUS_SPACE_MAXADDR,		/* highaddr */
1071 	    MCLBYTES,			/* maxsize */
1072 	    1,				/* nsegments */
1073 	    MCLBYTES,			/* maxsegsize */
1074 	    0,				/* flags */
1075 	    &sc->age_cdata.age_rx_tag);
1076 	if (error != 0) {
1077 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1078 		goto fail;
1079 	}
1080 
1081 	/* Create DMA maps for Tx buffers. */
1082 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1083 		txd = &sc->age_cdata.age_txdesc[i];
1084 		txd->tx_m = NULL;
1085 		txd->tx_dmamap = NULL;
1086 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1087 		    &txd->tx_dmamap);
1088 		if (error != 0) {
1089 			device_printf(sc->age_dev,
1090 			    "could not create Tx dmamap.\n");
1091 			goto fail;
1092 		}
1093 	}
1094 	/* Create DMA maps for Rx buffers. */
1095 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1096 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1097 		device_printf(sc->age_dev,
1098 		    "could not create spare Rx dmamap.\n");
1099 		goto fail;
1100 	}
1101 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1102 		rxd = &sc->age_cdata.age_rxdesc[i];
1103 		rxd->rx_m = NULL;
1104 		rxd->rx_dmamap = NULL;
1105 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1106 		    &rxd->rx_dmamap);
1107 		if (error != 0) {
1108 			device_printf(sc->age_dev,
1109 			    "could not create Rx dmamap.\n");
1110 			goto fail;
1111 		}
1112 	}
1113 fail:
1114 	return (error);
1115 }
1116 
1117 static void
1118 age_dma_free(struct age_softc *sc)
1119 {
1120 	struct age_txdesc *txd;
1121 	struct age_rxdesc *rxd;
1122 	int i;
1123 
1124 	/* Tx buffers */
1125 	if (sc->age_cdata.age_tx_tag != NULL) {
1126 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1127 			txd = &sc->age_cdata.age_txdesc[i];
1128 			if (txd->tx_dmamap != NULL) {
1129 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1130 				    txd->tx_dmamap);
1131 				txd->tx_dmamap = NULL;
1132 			}
1133 		}
1134 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1135 		sc->age_cdata.age_tx_tag = NULL;
1136 	}
1137 	/* Rx buffers */
1138 	if (sc->age_cdata.age_rx_tag != NULL) {
1139 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1140 			rxd = &sc->age_cdata.age_rxdesc[i];
1141 			if (rxd->rx_dmamap != NULL) {
1142 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1143 				    rxd->rx_dmamap);
1144 				rxd->rx_dmamap = NULL;
1145 			}
1146 		}
1147 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1148 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1149 			    sc->age_cdata.age_rx_sparemap);
1150 			sc->age_cdata.age_rx_sparemap = NULL;
1151 		}
1152 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1153 		sc->age_cdata.age_rx_tag = NULL;
1154 	}
1155 	/* Tx ring. */
1156 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1157 		if (sc->age_cdata.age_tx_ring_map != NULL)
1158 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1159 			    sc->age_cdata.age_tx_ring_map);
1160 		if (sc->age_cdata.age_tx_ring_map != NULL &&
1161 		    sc->age_rdata.age_tx_ring != NULL)
1162 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1163 			    sc->age_rdata.age_tx_ring,
1164 			    sc->age_cdata.age_tx_ring_map);
1165 		sc->age_rdata.age_tx_ring = NULL;
1166 		sc->age_cdata.age_tx_ring_map = NULL;
1167 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1168 		sc->age_cdata.age_tx_ring_tag = NULL;
1169 	}
1170 	/* Rx ring. */
1171 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1172 		if (sc->age_cdata.age_rx_ring_map != NULL)
1173 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1174 			    sc->age_cdata.age_rx_ring_map);
1175 		if (sc->age_cdata.age_rx_ring_map != NULL &&
1176 		    sc->age_rdata.age_rx_ring != NULL)
1177 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1178 			    sc->age_rdata.age_rx_ring,
1179 			    sc->age_cdata.age_rx_ring_map);
1180 		sc->age_rdata.age_rx_ring = NULL;
1181 		sc->age_cdata.age_rx_ring_map = NULL;
1182 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1183 		sc->age_cdata.age_rx_ring_tag = NULL;
1184 	}
1185 	/* Rx return ring. */
1186 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1187 		if (sc->age_cdata.age_rr_ring_map != NULL)
1188 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1189 			    sc->age_cdata.age_rr_ring_map);
1190 		if (sc->age_cdata.age_rr_ring_map != NULL &&
1191 		    sc->age_rdata.age_rr_ring != NULL)
1192 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1193 			    sc->age_rdata.age_rr_ring,
1194 			    sc->age_cdata.age_rr_ring_map);
1195 		sc->age_rdata.age_rr_ring = NULL;
1196 		sc->age_cdata.age_rr_ring_map = NULL;
1197 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1198 		sc->age_cdata.age_rr_ring_tag = NULL;
1199 	}
1200 	/* CMB block */
1201 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1202 		if (sc->age_cdata.age_cmb_block_map != NULL)
1203 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1204 			    sc->age_cdata.age_cmb_block_map);
1205 		if (sc->age_cdata.age_cmb_block_map != NULL &&
1206 		    sc->age_rdata.age_cmb_block != NULL)
1207 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1208 			    sc->age_rdata.age_cmb_block,
1209 			    sc->age_cdata.age_cmb_block_map);
1210 		sc->age_rdata.age_cmb_block = NULL;
1211 		sc->age_cdata.age_cmb_block_map = NULL;
1212 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1213 		sc->age_cdata.age_cmb_block_tag = NULL;
1214 	}
1215 	/* SMB block */
1216 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1217 		if (sc->age_cdata.age_smb_block_map != NULL)
1218 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1219 			    sc->age_cdata.age_smb_block_map);
1220 		if (sc->age_cdata.age_smb_block_map != NULL &&
1221 		    sc->age_rdata.age_smb_block != NULL)
1222 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1223 			    sc->age_rdata.age_smb_block,
1224 			    sc->age_cdata.age_smb_block_map);
1225 		sc->age_rdata.age_smb_block = NULL;
1226 		sc->age_cdata.age_smb_block_map = NULL;
1227 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1228 		sc->age_cdata.age_smb_block_tag = NULL;
1229 	}
1230 
1231 	if (sc->age_cdata.age_buffer_tag != NULL) {
1232 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1233 		sc->age_cdata.age_buffer_tag = NULL;
1234 	}
1235 	if (sc->age_cdata.age_parent_tag != NULL) {
1236 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1237 		sc->age_cdata.age_parent_tag = NULL;
1238 	}
1239 }
1240 
1241 /*
1242  *	Make sure the interface is stopped at reboot time.
1243  */
1244 static int
1245 age_shutdown(device_t dev)
1246 {
1247 	return age_suspend(dev);
1248 }
1249 
1250 #ifdef wol_notyet
1251 
1252 static void
1253 age_setwol(struct age_softc *sc)
1254 {
1255 	struct ifnet *ifp;
1256 	struct mii_data *mii;
1257 	uint32_t reg, pmcs;
1258 	uint16_t pmstat;
1259 	int aneg, i, pmc;
1260 
1261 	AGE_LOCK_ASSERT(sc);
1262 
1263 	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1264 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1265 		/*
1266 		 * No PME capability, PHY power down.
1267 		 * XXX
1268 		 * Due to an unknown reason powering down PHY resulted
1269 		 * in unexpected results such as inaccessbility of
1270 		 * hardware of freshly rebooted system. Disable
1271 		 * powering down PHY until I got more information for
1272 		 * Attansic/Atheros PHY hardwares.
1273 		 */
1274 #ifdef notyet
1275 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1276 		    MII_BMCR, BMCR_PDOWN);
1277 #endif
1278 		return;
1279 	}
1280 
1281 	ifp = sc->age_ifp;
1282 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1283 		/*
1284 		 * Note, this driver resets the link speed to 10/100Mbps with
1285 		 * auto-negotiation but we don't know whether that operation
1286 		 * would succeed or not as it have no control after powering
1287 		 * off. If the renegotiation fail WOL may not work. Running
1288 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1289 		 * specified in PCI specification and that would result in
1290 		 * complete shutdowning power to ethernet controller.
1291 		 *
1292 		 * TODO
1293 		 *  Save current negotiated media speed/duplex/flow-control
1294 		 *  to softc and restore the same link again after resuming.
1295 		 *  PHY handling such as power down/resetting to 100Mbps
1296 		 *  may be better handled in suspend method in phy driver.
1297 		 */
1298 		mii = device_get_softc(sc->age_miibus);
1299 		mii_pollstat(mii);
1300 		aneg = 0;
1301 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1302 			switch IFM_SUBTYPE(mii->mii_media_active) {
1303 			case IFM_10_T:
1304 			case IFM_100_TX:
1305 				goto got_link;
1306 			case IFM_1000_T:
1307 				aneg++;
1308 			default:
1309 				break;
1310 			}
1311 		}
1312 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1313 		    MII_100T2CR, 0);
1314 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1315 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1316 		    ANAR_10 | ANAR_CSMA);
1317 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1318 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1319 		DELAY(1000);
1320 		if (aneg != 0) {
1321 			/* Poll link state until age(4) get a 10/100 link. */
1322 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1323 				mii_pollstat(mii);
1324 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1325 					switch (IFM_SUBTYPE(
1326 					    mii->mii_media_active)) {
1327 					case IFM_10_T:
1328 					case IFM_100_TX:
1329 						age_mac_config(sc);
1330 						goto got_link;
1331 					default:
1332 						break;
1333 					}
1334 				}
1335 				AGE_UNLOCK(sc);
1336 				pause("agelnk", hz);
1337 				AGE_LOCK(sc);
1338 			}
1339 			if (i == MII_ANEGTICKS_GIGE)
1340 				device_printf(sc->age_dev,
1341 				    "establishing link failed, "
1342 				    "WOL may not work!");
1343 		}
1344 		/*
1345 		 * No link, force MAC to have 100Mbps, full-duplex link.
1346 		 * This is the last resort and may/may not work.
1347 		 */
1348 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1349 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1350 		age_mac_config(sc);
1351 	}
1352 
1353 got_link:
1354 	pmcs = 0;
1355 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1356 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1357 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1358 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1359 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1360 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1361 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1362 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1363 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1364 		reg |= MAC_CFG_RX_ENB;
1365 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1366 	}
1367 
1368 	/* Request PME. */
1369 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1370 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1371 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1372 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1373 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1374 #ifdef notyet
1375 	/* See above for powering down PHY issues. */
1376 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1377 		/* No WOL, PHY power down. */
1378 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1379 		    MII_BMCR, BMCR_PDOWN);
1380 	}
1381 #endif
1382 }
1383 
1384 #endif	/* wol_notyet */
1385 
1386 static int
1387 age_suspend(device_t dev)
1388 {
1389 	struct age_softc *sc = device_get_softc(dev);
1390 	struct ifnet *ifp = &sc->arpcom.ac_if;
1391 
1392 	lwkt_serialize_enter(ifp->if_serializer);
1393 	age_stop(sc);
1394 #ifdef wol_notyet
1395 	age_setwol(sc);
1396 #endif
1397 	lwkt_serialize_exit(ifp->if_serializer);
1398 
1399 	return (0);
1400 }
1401 
1402 static int
1403 age_resume(device_t dev)
1404 {
1405 	struct age_softc *sc = device_get_softc(dev);
1406 	struct ifnet *ifp = &sc->arpcom.ac_if;
1407 	uint16_t cmd;
1408 
1409 	lwkt_serialize_enter(ifp->if_serializer);
1410 
1411 	/*
1412 	 * Clear INTx emulation disable for hardwares that
1413 	 * is set in resume event. From Linux.
1414 	 */
1415 	cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1416 	if ((cmd & 0x0400) != 0) {
1417 		cmd &= ~0x0400;
1418 		pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1419 	}
1420 	if ((ifp->if_flags & IFF_UP) != 0)
1421 		age_init(sc);
1422 
1423 	lwkt_serialize_exit(ifp->if_serializer);
1424 
1425 	return (0);
1426 }
1427 
1428 static int
1429 age_encap(struct age_softc *sc, struct mbuf **m_head)
1430 {
1431 	struct age_txdesc *txd, *txd_last;
1432 	struct tx_desc *desc;
1433 	struct mbuf *m;
1434 	struct age_dmamap_ctx ctx;
1435 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1436 	bus_dmamap_t map;
1437 	uint32_t cflags, poff, vtag;
1438 	int error, i, nsegs, prod;
1439 
1440 	M_ASSERTPKTHDR((*m_head));
1441 
1442 	m = *m_head;
1443 	cflags = vtag = 0;
1444 	poff = 0;
1445 
1446 	prod = sc->age_cdata.age_tx_prod;
1447 	txd = &sc->age_cdata.age_txdesc[prod];
1448 	txd_last = txd;
1449 	map = txd->tx_dmamap;
1450 
1451 	ctx.nsegs = AGE_MAXTXSEGS;
1452 	ctx.segs = txsegs;
1453 	error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1454 				     *m_head, age_dmamap_buf_cb, &ctx,
1455 				     BUS_DMA_NOWAIT);
1456 	if (!error && ctx.nsegs == 0) {
1457 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1458 		error = EFBIG;
1459 	}
1460 	if (error == EFBIG) {
1461 		m = m_defrag(*m_head, M_NOWAIT);
1462 		if (m == NULL) {
1463 			m_freem(*m_head);
1464 			*m_head = NULL;
1465 			return (ENOBUFS);
1466 		}
1467 		*m_head = m;
1468 
1469 		ctx.nsegs = AGE_MAXTXSEGS;
1470 		ctx.segs = txsegs;
1471 		error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1472 					     *m_head, age_dmamap_buf_cb, &ctx,
1473 					     BUS_DMA_NOWAIT);
1474 		if (error || ctx.nsegs == 0) {
1475 			if (!error) {
1476 				bus_dmamap_unload(sc->age_cdata.age_tx_tag,
1477 						  map);
1478 				error = EFBIG;
1479 			}
1480 			m_freem(*m_head);
1481 			*m_head = NULL;
1482 			return (error);
1483 		}
1484 	} else if (error != 0) {
1485 		return (error);
1486 	}
1487 	nsegs = ctx.nsegs;
1488 
1489 	if (nsegs == 0) {
1490 		m_freem(*m_head);
1491 		*m_head = NULL;
1492 		return (EIO);
1493 	}
1494 
1495 	/* Check descriptor overrun. */
1496 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1497 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1498 		return (ENOBUFS);
1499 	}
1500 
1501 	m = *m_head;
1502 	/* Configure Tx IP/TCP/UDP checksum offload. */
1503 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1504 		cflags |= AGE_TD_CSUM;
1505 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1506 			cflags |= AGE_TD_TCPCSUM;
1507 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1508 			cflags |= AGE_TD_UDPCSUM;
1509 		/* Set checksum start offset. */
1510 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1511 		/* Set checksum insertion position of TCP/UDP. */
1512 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1513 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1514 	}
1515 
1516 	/* Configure VLAN hardware tag insertion. */
1517 	if ((m->m_flags & M_VLANTAG) != 0) {
1518 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
1519 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1520 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1521 	}
1522 
1523 	desc = NULL;
1524 	for (i = 0; i < nsegs; i++) {
1525 		desc = &sc->age_rdata.age_tx_ring[prod];
1526 		desc->addr = htole64(txsegs[i].ds_addr);
1527 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1528 		desc->flags = htole32(cflags);
1529 		sc->age_cdata.age_tx_cnt++;
1530 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1531 	}
1532 	/* Update producer index. */
1533 	sc->age_cdata.age_tx_prod = prod;
1534 
1535 	/* Set EOP on the last descriptor. */
1536 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1537 	desc = &sc->age_rdata.age_tx_ring[prod];
1538 	desc->flags |= htole32(AGE_TD_EOP);
1539 
1540 	/* Swap dmamap of the first and the last. */
1541 	txd = &sc->age_cdata.age_txdesc[prod];
1542 	map = txd_last->tx_dmamap;
1543 	txd_last->tx_dmamap = txd->tx_dmamap;
1544 	txd->tx_dmamap = map;
1545 	txd->tx_m = m;
1546 
1547 	/* Sync descriptors. */
1548 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1549 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1550 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1551 
1552 	return (0);
1553 }
1554 
1555 static void
1556 age_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1557 {
1558 	struct age_softc *sc = ifp->if_softc;
1559 	struct mbuf *m_head;
1560 	int enq;
1561 
1562 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1563 	ASSERT_SERIALIZED(ifp->if_serializer);
1564 
1565 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1566 		ifq_purge(&ifp->if_snd);
1567 		return;
1568 	}
1569 
1570 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1571 		return;
1572 
1573 	enq = 0;
1574 	while (!ifq_is_empty(&ifp->if_snd)) {
1575 		m_head = ifq_dequeue(&ifp->if_snd);
1576 		if (m_head == NULL)
1577 			break;
1578 
1579 		/*
1580 		 * Pack the data into the transmit ring. If we
1581 		 * don't have room, set the OACTIVE flag and wait
1582 		 * for the NIC to drain the ring.
1583 		 */
1584 		if (age_encap(sc, &m_head)) {
1585 			if (m_head == NULL)
1586 				break;
1587 			ifq_prepend(&ifp->if_snd, m_head);
1588 			ifq_set_oactive(&ifp->if_snd);
1589 			break;
1590 		}
1591 		enq = 1;
1592 
1593 		/*
1594 		 * If there's a BPF listener, bounce a copy of this frame
1595 		 * to him.
1596 		 */
1597 		ETHER_BPF_MTAP(ifp, m_head);
1598 	}
1599 
1600 	if (enq) {
1601 		/* Update mbox. */
1602 		AGE_COMMIT_MBOX(sc);
1603 		/* Set a timeout in case the chip goes out to lunch. */
1604 		ifp->if_timer = AGE_TX_TIMEOUT;
1605 	}
1606 }
1607 
1608 static void
1609 age_watchdog(struct ifnet *ifp)
1610 {
1611 	struct age_softc *sc = ifp->if_softc;
1612 
1613 	ASSERT_SERIALIZED(ifp->if_serializer);
1614 
1615 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1616 		if_printf(ifp, "watchdog timeout (missed link)\n");
1617 		IFNET_STAT_INC(ifp, oerrors, 1);
1618 		age_init(sc);
1619 		return;
1620 	}
1621 
1622 	if (sc->age_cdata.age_tx_cnt == 0) {
1623 		if_printf(ifp,
1624 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1625 		if (!ifq_is_empty(&ifp->if_snd))
1626 			if_devstart(ifp);
1627 		return;
1628 	}
1629 
1630 	if_printf(ifp, "watchdog timeout\n");
1631 	IFNET_STAT_INC(ifp, oerrors, 1);
1632 	age_init(sc);
1633 	if (!ifq_is_empty(&ifp->if_snd))
1634 		if_devstart(ifp);
1635 }
1636 
1637 static int
1638 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1639 {
1640 	struct age_softc *sc = ifp->if_softc;
1641 	struct ifreq *ifr;
1642 	struct mii_data *mii;
1643 	uint32_t reg;
1644 	int error, mask;
1645 
1646 	ASSERT_SERIALIZED(ifp->if_serializer);
1647 
1648 	ifr = (struct ifreq *)data;
1649 	error = 0;
1650 	switch (cmd) {
1651 	case SIOCSIFMTU:
1652 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) {
1653 			error = EINVAL;
1654 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
1655 			ifp->if_mtu = ifr->ifr_mtu;
1656 			if ((ifp->if_flags & IFF_RUNNING) != 0)
1657 				age_init(sc);
1658 		}
1659 		break;
1660 
1661 	case SIOCSIFFLAGS:
1662 		if ((ifp->if_flags & IFF_UP) != 0) {
1663 			if ((ifp->if_flags & IFF_RUNNING) != 0) {
1664 				if (((ifp->if_flags ^ sc->age_if_flags)
1665 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1666 					age_rxfilter(sc);
1667 			} else {
1668 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1669 					age_init(sc);
1670 			}
1671 		} else {
1672 			if ((ifp->if_flags & IFF_RUNNING) != 0)
1673 				age_stop(sc);
1674 		}
1675 		sc->age_if_flags = ifp->if_flags;
1676 		break;
1677 
1678 	case SIOCADDMULTI:
1679 	case SIOCDELMULTI:
1680 		if ((ifp->if_flags & IFF_RUNNING) != 0)
1681 			age_rxfilter(sc);
1682 		break;
1683 
1684 	case SIOCSIFMEDIA:
1685 	case SIOCGIFMEDIA:
1686 		mii = device_get_softc(sc->age_miibus);
1687 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1688 		break;
1689 
1690 	case SIOCSIFCAP:
1691 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1692 
1693 		if ((mask & IFCAP_TXCSUM) != 0 &&
1694 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1695 			ifp->if_capenable ^= IFCAP_TXCSUM;
1696 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1697 				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1698 			else
1699 				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1700 		}
1701 
1702 		if ((mask & IFCAP_RXCSUM) != 0 &&
1703 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1704 			ifp->if_capenable ^= IFCAP_RXCSUM;
1705 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1706 			reg &= ~MAC_CFG_RXCSUM_ENB;
1707 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1708 				reg |= MAC_CFG_RXCSUM_ENB;
1709 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1710 		}
1711 
1712 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1713 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1714 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1715 			age_rxvlan(sc);
1716 		}
1717 		break;
1718 
1719 	default:
1720 		error = ether_ioctl(ifp, cmd, data);
1721 		break;
1722 	}
1723 	return (error);
1724 }
1725 
1726 static void
1727 age_mac_config(struct age_softc *sc)
1728 {
1729 	struct mii_data *mii = device_get_softc(sc->age_miibus);
1730 	uint32_t reg;
1731 
1732 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1733 	reg &= ~MAC_CFG_FULL_DUPLEX;
1734 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1735 	reg &= ~MAC_CFG_SPEED_MASK;
1736 
1737 	/* Reprogram MAC with resolved speed/duplex. */
1738 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1739 	case IFM_10_T:
1740 	case IFM_100_TX:
1741 		reg |= MAC_CFG_SPEED_10_100;
1742 		break;
1743 	case IFM_1000_T:
1744 		reg |= MAC_CFG_SPEED_1000;
1745 		break;
1746 	}
1747 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1748 		reg |= MAC_CFG_FULL_DUPLEX;
1749 #ifdef notyet
1750 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1751 			reg |= MAC_CFG_TX_FC;
1752 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1753 			reg |= MAC_CFG_RX_FC;
1754 #endif
1755 	}
1756 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1757 }
1758 
1759 static void
1760 age_stats_update(struct age_softc *sc)
1761 {
1762 	struct ifnet *ifp = &sc->arpcom.ac_if;
1763 	struct age_stats *stat;
1764 	struct smb *smb;
1765 
1766 	stat = &sc->age_stat;
1767 
1768 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1769 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_POSTREAD);
1770 
1771 	smb = sc->age_rdata.age_smb_block;
1772 	if (smb->updated == 0)
1773 		return;
1774 
1775 	/* Rx stats. */
1776 	stat->rx_frames += smb->rx_frames;
1777 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1778 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1779 	stat->rx_pause_frames += smb->rx_pause_frames;
1780 	stat->rx_control_frames += smb->rx_control_frames;
1781 	stat->rx_crcerrs += smb->rx_crcerrs;
1782 	stat->rx_lenerrs += smb->rx_lenerrs;
1783 	stat->rx_bytes += smb->rx_bytes;
1784 	stat->rx_runts += smb->rx_runts;
1785 	stat->rx_fragments += smb->rx_fragments;
1786 	stat->rx_pkts_64 += smb->rx_pkts_64;
1787 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1788 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1789 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1790 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1791 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1792 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1793 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1794 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1795 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1796 	stat->rx_alignerrs += smb->rx_alignerrs;
1797 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1798 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1799 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1800 
1801 	/* Tx stats. */
1802 	stat->tx_frames += smb->tx_frames;
1803 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1804 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1805 	stat->tx_pause_frames += smb->tx_pause_frames;
1806 	stat->tx_excess_defer += smb->tx_excess_defer;
1807 	stat->tx_control_frames += smb->tx_control_frames;
1808 	stat->tx_deferred += smb->tx_deferred;
1809 	stat->tx_bytes += smb->tx_bytes;
1810 	stat->tx_pkts_64 += smb->tx_pkts_64;
1811 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1812 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1813 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1814 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1815 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1816 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1817 	stat->tx_single_colls += smb->tx_single_colls;
1818 	stat->tx_multi_colls += smb->tx_multi_colls;
1819 	stat->tx_late_colls += smb->tx_late_colls;
1820 	stat->tx_excess_colls += smb->tx_excess_colls;
1821 	stat->tx_underrun += smb->tx_underrun;
1822 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1823 	stat->tx_lenerrs += smb->tx_lenerrs;
1824 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1825 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1826 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1827 
1828 	/* Update counters in ifnet. */
1829 	IFNET_STAT_INC(ifp, opackets, smb->tx_frames);
1830 
1831 	IFNET_STAT_INC(ifp, collisions, smb->tx_single_colls +
1832 	    smb->tx_multi_colls + smb->tx_late_colls +
1833 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
1834 
1835 	IFNET_STAT_INC(ifp, oerrors, smb->tx_excess_colls +
1836 	    smb->tx_late_colls + smb->tx_underrun +
1837 	    smb->tx_pkts_truncated);
1838 
1839 	IFNET_STAT_INC(ifp, ipackets, smb->rx_frames);
1840 
1841 	IFNET_STAT_INC(ifp, ierrors, smb->rx_crcerrs + smb->rx_lenerrs +
1842 	    smb->rx_runts + smb->rx_pkts_truncated +
1843 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1844 	    smb->rx_alignerrs);
1845 
1846 	/* Update done, clear. */
1847 	smb->updated = 0;
1848 
1849 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1850 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
1851 }
1852 
1853 static void
1854 age_intr(void *xsc)
1855 {
1856 	struct age_softc *sc = xsc;
1857 	struct ifnet *ifp = &sc->arpcom.ac_if;
1858 	struct cmb *cmb;
1859 	uint32_t status;
1860 
1861 	ASSERT_SERIALIZED(ifp->if_serializer);
1862 
1863 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
1864 	if (status == 0 || (status & AGE_INTRS) == 0)
1865 		return;
1866 
1867 	/* Disable and acknowledge interrupts. */
1868 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1869 
1870 	cmb = sc->age_rdata.age_cmb_block;
1871 
1872 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1873 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1874 	status = le32toh(cmb->intr_status);
1875 	if ((status & AGE_INTRS) == 0)
1876 		goto done;
1877 again:
1878 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
1879 	    TPD_CONS_SHIFT;
1880 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
1881 	    RRD_PROD_SHIFT;
1882 
1883 	/* Let hardware know CMB was served. */
1884 	cmb->intr_status = 0;
1885 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1886 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
1887 
1888 #if 0
1889 	kprintf("INTR: 0x%08x\n", status);
1890 	status &= ~INTR_DIS_DMA;
1891 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1892 #endif
1893 
1894 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
1895 		if ((status & INTR_CMB_RX) != 0)
1896 			age_rxintr(sc, sc->age_rr_prod);
1897 
1898 		if ((status & INTR_CMB_TX) != 0)
1899 			age_txintr(sc, sc->age_tpd_cons);
1900 
1901 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
1902 			if ((status & INTR_DMA_RD_TO_RST) != 0)
1903 				device_printf(sc->age_dev,
1904 				    "DMA read error! -- resetting\n");
1905 			if ((status & INTR_DMA_WR_TO_RST) != 0)
1906 				device_printf(sc->age_dev,
1907 				    "DMA write error! -- resetting\n");
1908 			age_init(sc);
1909 			/* XXX return? */
1910 		}
1911 
1912 		if (!ifq_is_empty(&ifp->if_snd))
1913 			if_devstart(ifp);
1914 
1915 		if ((status & INTR_SMB) != 0)
1916 			age_stats_update(sc);
1917 	}
1918 
1919 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
1920 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1921 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1922 	status = le32toh(cmb->intr_status);
1923 	if ((status & AGE_INTRS) != 0)
1924 		goto again;
1925 done:
1926 	/* Re-enable interrupts. */
1927 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1928 }
1929 
1930 static void
1931 age_txintr(struct age_softc *sc, int tpd_cons)
1932 {
1933 	struct ifnet *ifp = &sc->arpcom.ac_if;
1934 	struct age_txdesc *txd;
1935 	int cons, prog;
1936 
1937 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1938 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_POSTREAD);
1939 
1940 	/*
1941 	 * Go through our Tx list and free mbufs for those
1942 	 * frames which have been transmitted.
1943 	 */
1944 	cons = sc->age_cdata.age_tx_cons;
1945 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1946 		if (sc->age_cdata.age_tx_cnt <= 0)
1947 			break;
1948 		prog++;
1949 		ifq_clr_oactive(&ifp->if_snd);
1950 		sc->age_cdata.age_tx_cnt--;
1951 		txd = &sc->age_cdata.age_txdesc[cons];
1952 		/*
1953 		 * Clear Tx descriptors, it's not required but would
1954 		 * help debugging in case of Tx issues.
1955 		 */
1956 		txd->tx_desc->addr = 0;
1957 		txd->tx_desc->len = 0;
1958 		txd->tx_desc->flags = 0;
1959 
1960 		if (txd->tx_m == NULL)
1961 			continue;
1962 		/* Reclaim transmitted mbufs. */
1963 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
1964 		m_freem(txd->tx_m);
1965 		txd->tx_m = NULL;
1966 	}
1967 
1968 	if (prog > 0) {
1969 		sc->age_cdata.age_tx_cons = cons;
1970 
1971 		/*
1972 		 * Unarm watchdog timer only when there are no pending
1973 		 * Tx descriptors in queue.
1974 		 */
1975 		if (sc->age_cdata.age_tx_cnt == 0)
1976 			ifp->if_timer = 0;
1977 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1978 		    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1979 	}
1980 }
1981 
1982 /* Receive a frame. */
1983 static void
1984 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1985 {
1986 	struct ifnet *ifp = &sc->arpcom.ac_if;
1987 	struct age_rxdesc *rxd;
1988 	struct rx_desc *desc;
1989 	struct mbuf *mp, *m;
1990 	uint32_t status, index, vtag;
1991 	int count, nsegs, pktlen;
1992 	int rx_cons;
1993 
1994 	status = le32toh(rxrd->flags);
1995 	index = le32toh(rxrd->index);
1996 	rx_cons = AGE_RX_CONS(index);
1997 	nsegs = AGE_RX_NSEGS(index);
1998 
1999 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2000 	if ((status & AGE_RRD_ERROR) != 0 &&
2001 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2002 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2003 		/*
2004 		 * We want to pass the following frames to upper
2005 		 * layer regardless of error status of Rx return
2006 		 * ring.
2007 		 *
2008 		 *  o IP/TCP/UDP checksum is bad.
2009 		 *  o frame length and protocol specific length
2010 		 *     does not match.
2011 		 */
2012 		sc->age_cdata.age_rx_cons += nsegs;
2013 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2014 		return;
2015 	}
2016 
2017 	pktlen = 0;
2018 	for (count = 0; count < nsegs; count++,
2019 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2020 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2021 		mp = rxd->rx_m;
2022 		desc = rxd->rx_desc;
2023 		/* Add a new receive buffer to the ring. */
2024 		if (age_newbuf(sc, rxd, 0) != 0) {
2025 			IFNET_STAT_INC(ifp, iqdrops, 1);
2026 			/* Reuse Rx buffers. */
2027 			if (sc->age_cdata.age_rxhead != NULL) {
2028 				m_freem(sc->age_cdata.age_rxhead);
2029 				AGE_RXCHAIN_RESET(sc);
2030 			}
2031 			break;
2032 		}
2033 
2034 		/* The length of the first mbuf is computed last. */
2035 		if (count != 0) {
2036 			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2037 			pktlen += mp->m_len;
2038 		}
2039 
2040 		/* Chain received mbufs. */
2041 		if (sc->age_cdata.age_rxhead == NULL) {
2042 			sc->age_cdata.age_rxhead = mp;
2043 			sc->age_cdata.age_rxtail = mp;
2044 		} else {
2045 			mp->m_flags &= ~M_PKTHDR;
2046 			sc->age_cdata.age_rxprev_tail =
2047 			    sc->age_cdata.age_rxtail;
2048 			sc->age_cdata.age_rxtail->m_next = mp;
2049 			sc->age_cdata.age_rxtail = mp;
2050 		}
2051 
2052 		if (count == nsegs - 1) {
2053 			/*
2054 			 * It seems that L1 controller has no way
2055 			 * to tell hardware to strip CRC bytes.
2056 			 */
2057 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2058 			if (nsegs > 1) {
2059 				/* Remove the CRC bytes in chained mbufs. */
2060 				pktlen -= ETHER_CRC_LEN;
2061 				if (mp->m_len <= ETHER_CRC_LEN) {
2062 					sc->age_cdata.age_rxtail =
2063 					    sc->age_cdata.age_rxprev_tail;
2064 					sc->age_cdata.age_rxtail->m_len -=
2065 					    (ETHER_CRC_LEN - mp->m_len);
2066 					sc->age_cdata.age_rxtail->m_next = NULL;
2067 					m_freem(mp);
2068 				} else {
2069 					mp->m_len -= ETHER_CRC_LEN;
2070 				}
2071 			}
2072 
2073 			m = sc->age_cdata.age_rxhead;
2074 			m->m_flags |= M_PKTHDR;
2075 			m->m_pkthdr.rcvif = ifp;
2076 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2077 			/* Set the first mbuf length. */
2078 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2079 
2080 			/*
2081 			 * Set checksum information.
2082 			 * It seems that L1 controller can compute partial
2083 			 * checksum. The partial checksum value can be used
2084 			 * to accelerate checksum computation for fragmented
2085 			 * TCP/UDP packets. Upper network stack already
2086 			 * takes advantage of the partial checksum value in
2087 			 * IP reassembly stage. But I'm not sure the
2088 			 * correctness of the partial hardware checksum
2089 			 * assistance due to lack of data sheet. If it is
2090 			 * proven to work on L1 I'll enable it.
2091 			 */
2092 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2093 			    (status & AGE_RRD_IPV4) != 0) {
2094 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2095 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2096 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2097 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2098 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2099 					m->m_pkthdr.csum_flags |=
2100 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2101 					m->m_pkthdr.csum_data = 0xffff;
2102 				}
2103 				/*
2104 				 * Don't mark bad checksum for TCP/UDP frames
2105 				 * as fragmented frames may always have set
2106 				 * bad checksummed bit of descriptor status.
2107 				 */
2108 			}
2109 
2110 			/* Check for VLAN tagged frames. */
2111 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2112 			    (status & AGE_RRD_VLAN) != 0) {
2113 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2114 				m->m_pkthdr.ether_vlantag =
2115 				    AGE_RX_VLAN_TAG(vtag);
2116 				m->m_flags |= M_VLANTAG;
2117 			}
2118 
2119 			/* Pass it on. */
2120 			ifp->if_input(ifp, m, NULL, -1);
2121 
2122 			/* Reset mbuf chains. */
2123 			AGE_RXCHAIN_RESET(sc);
2124 		}
2125 	}
2126 
2127 	if (count != nsegs) {
2128 		sc->age_cdata.age_rx_cons += nsegs;
2129 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2130 	} else {
2131 		sc->age_cdata.age_rx_cons = rx_cons;
2132 	}
2133 }
2134 
2135 static void
2136 age_rxintr(struct age_softc *sc, int rr_prod)
2137 {
2138 	struct rx_rdesc *rxrd;
2139 	int rr_cons, nsegs, pktlen, prog;
2140 
2141 	rr_cons = sc->age_cdata.age_rr_cons;
2142 	if (rr_cons == rr_prod)
2143 		return;
2144 
2145 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2146 	    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_POSTREAD);
2147 
2148 	for (prog = 0; rr_cons != rr_prod; prog++) {
2149 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2150 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2151 		if (nsegs == 0)
2152 			break;
2153 
2154 		/*
2155 		 * Check number of segments against received bytes.
2156 		 * Non-matching value would indicate that hardware
2157 		 * is still trying to update Rx return descriptors.
2158 		 * I'm not sure whether this check is really needed.
2159 		 */
2160 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2161 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2162 		    (MCLBYTES - ETHER_ALIGN)))
2163 			break;
2164 
2165 		/* Received a frame. */
2166 		age_rxeof(sc, rxrd);
2167 
2168 		/* Clear return ring. */
2169 		rxrd->index = 0;
2170 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2171 	}
2172 
2173 	if (prog > 0) {
2174 		/* Update the consumer index. */
2175 		sc->age_cdata.age_rr_cons = rr_cons;
2176 
2177 		/* Sync descriptors. */
2178 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2179 		    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2180 
2181 		/* Notify hardware availability of new Rx buffers. */
2182 		AGE_COMMIT_MBOX(sc);
2183 	}
2184 }
2185 
2186 static void
2187 age_tick(void *xsc)
2188 {
2189 	struct age_softc *sc = xsc;
2190 	struct ifnet *ifp = &sc->arpcom.ac_if;
2191 	struct mii_data *mii = device_get_softc(sc->age_miibus);
2192 
2193 	lwkt_serialize_enter(ifp->if_serializer);
2194 
2195 	mii_tick(mii);
2196 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2197 
2198 	lwkt_serialize_exit(ifp->if_serializer);
2199 }
2200 
2201 static void
2202 age_reset(struct age_softc *sc)
2203 {
2204 	uint32_t reg;
2205 	int i;
2206 
2207 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2208 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2209 		DELAY(1);
2210 		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2211 			break;
2212 	}
2213 	if (i == 0)
2214 		device_printf(sc->age_dev, "master reset timeout!\n");
2215 
2216 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2217 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2218 			break;
2219 		DELAY(10);
2220 	}
2221 	if (i == 0)
2222 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2223 
2224 	/* Initialize PCIe module. From Linux. */
2225 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2226 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2227 }
2228 
2229 static void
2230 age_init(void *xsc)
2231 {
2232 	struct age_softc *sc = xsc;
2233 	struct ifnet *ifp = &sc->arpcom.ac_if;
2234 	struct mii_data *mii;
2235 	uint8_t eaddr[ETHER_ADDR_LEN];
2236 	bus_addr_t paddr;
2237 	uint32_t reg, fsize;
2238 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2239 	int error;
2240 
2241 	ASSERT_SERIALIZED(ifp->if_serializer);
2242 
2243 	mii = device_get_softc(sc->age_miibus);
2244 
2245 	/*
2246 	 * Cancel any pending I/O.
2247 	 */
2248 	age_stop(sc);
2249 
2250 	/*
2251 	 * Reset the chip to a known state.
2252 	 */
2253 	age_reset(sc);
2254 
2255 	/* Initialize descriptors. */
2256 	error = age_init_rx_ring(sc);
2257         if (error != 0) {
2258                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2259                 age_stop(sc);
2260 		return;
2261         }
2262 	age_init_rr_ring(sc);
2263 	age_init_tx_ring(sc);
2264 	age_init_cmb_block(sc);
2265 	age_init_smb_block(sc);
2266 
2267 	/* Reprogram the station address. */
2268 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2269 	CSR_WRITE_4(sc, AGE_PAR0,
2270 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2271 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2272 
2273 	/* Set descriptor base addresses. */
2274 	paddr = sc->age_rdata.age_tx_ring_paddr;
2275 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2276 	paddr = sc->age_rdata.age_rx_ring_paddr;
2277 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2278 	paddr = sc->age_rdata.age_rr_ring_paddr;
2279 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2280 	paddr = sc->age_rdata.age_tx_ring_paddr;
2281 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2282 	paddr = sc->age_rdata.age_cmb_block_paddr;
2283 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2284 	paddr = sc->age_rdata.age_smb_block_paddr;
2285 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2286 
2287 	/* Set Rx/Rx return descriptor counter. */
2288 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2289 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2290 	    DESC_RRD_CNT_MASK) |
2291 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2292 
2293 	/* Set Tx descriptor counter. */
2294 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2295 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2296 
2297 	/* Tell hardware that we're ready to load descriptors. */
2298 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2299 
2300 	/*
2301 	 * Initialize mailbox register.
2302 	 * Updated producer/consumer index information is exchanged
2303 	 * through this mailbox register. However Tx producer and
2304 	 * Rx return consumer/Rx producer are all shared such that
2305 	 * it's hard to separate code path between Tx and Rx without
2306 	 * locking. If L1 hardware have a separate mail box register
2307 	 * for Tx and Rx consumer/producer management we could have
2308 	 * indepent Tx/Rx handler which in turn Rx handler could have
2309 	 * been run without any locking.
2310 	 */
2311 	AGE_COMMIT_MBOX(sc);
2312 
2313 	/* Configure IPG/IFG parameters. */
2314 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2315 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2316 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2317 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2318 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2319 
2320 	/* Set parameters for half-duplex media. */
2321 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2322 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2323 	    HDPX_CFG_LCOL_MASK) |
2324 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2325 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2326 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2327 	    HDPX_CFG_ABEBT_MASK) |
2328 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2329 	    HDPX_CFG_JAMIPG_MASK));
2330 
2331 	/* Configure interrupt moderation timer. */
2332 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2333 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2334 	reg &= ~MASTER_MTIMER_ENB;
2335 	if (AGE_USECS(sc->age_int_mod) == 0)
2336 		reg &= ~MASTER_ITIMER_ENB;
2337 	else
2338 		reg |= MASTER_ITIMER_ENB;
2339 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2340 	if (bootverbose)
2341 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2342 		    sc->age_int_mod);
2343 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2344 
2345 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2346 	if (ifp->if_mtu < ETHERMTU)
2347 		sc->age_max_frame_size = ETHERMTU;
2348 	else
2349 		sc->age_max_frame_size = ifp->if_mtu;
2350 	sc->age_max_frame_size += ETHER_HDR_LEN +
2351 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2352 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2353 
2354 	/* Configure jumbo frame. */
2355 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2356 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2357 	    (((fsize / sizeof(uint64_t)) <<
2358 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2359 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2360 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2361 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2362 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2363 
2364 	/* Configure flow-control parameters. From Linux. */
2365 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2366 		/*
2367 		 * Magic workaround for old-L1.
2368 		 * Don't know which hw revision requires this magic.
2369 		 */
2370 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2371 		/*
2372 		 * Another magic workaround for flow-control mode
2373 		 * change. From Linux.
2374 		 */
2375 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2376 	}
2377 	/*
2378 	 * TODO
2379 	 *  Should understand pause parameter relationships between FIFO
2380 	 *  size and number of Rx descriptors and Rx return descriptors.
2381 	 *
2382 	 *  Magic parameters came from Linux.
2383 	 */
2384 	switch (sc->age_chip_rev) {
2385 	case 0x8001:
2386 	case 0x9001:
2387 	case 0x9002:
2388 	case 0x9003:
2389 		rxf_hi = AGE_RX_RING_CNT / 16;
2390 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2391 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2392 		rrd_lo = AGE_RR_RING_CNT / 16;
2393 		break;
2394 	default:
2395 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2396 		rxf_lo = reg / 16;
2397 		if (rxf_lo < 192)
2398 			rxf_lo = 192;
2399 		rxf_hi = (reg * 7) / 8;
2400 		if (rxf_hi < rxf_lo)
2401 			rxf_hi = rxf_lo + 16;
2402 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2403 		rrd_lo = reg / 8;
2404 		rrd_hi = (reg * 7) / 8;
2405 		if (rrd_lo < 2)
2406 			rrd_lo = 2;
2407 		if (rrd_hi < rrd_lo)
2408 			rrd_hi = rrd_lo + 3;
2409 		break;
2410 	}
2411 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2412 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2413 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2414 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2415 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2416 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2417 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2418 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2419 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2420 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2421 
2422 	/* Configure RxQ. */
2423 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2424 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2425 	    RXQ_CFG_RD_BURST_MASK) |
2426 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2427 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2428 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2429 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2430 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2431 
2432 	/* Configure TxQ. */
2433 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2434 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2435 	    TXQ_CFG_TPD_BURST_MASK) |
2436 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2437 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2438 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2439 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2440 	    TXQ_CFG_ENB);
2441 
2442 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2443 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2444 	    TX_JUMBO_TPD_TH_MASK) |
2445 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2446 	    TX_JUMBO_TPD_IPG_MASK));
2447 
2448 	/* Configure DMA parameters. */
2449 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2450 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2451 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2452 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2453 
2454 	/* Configure CMB DMA write threshold. */
2455 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2456 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2457 	    CMB_WR_THRESH_RRD_MASK) |
2458 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2459 	    CMB_WR_THRESH_TPD_MASK));
2460 
2461 	/* Set CMB/SMB timer and enable them. */
2462 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2463 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2464 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2465 
2466 	/* Request SMB updates for every seconds. */
2467 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2468 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2469 
2470 	/*
2471 	 * Disable all WOL bits as WOL can interfere normal Rx
2472 	 * operation.
2473 	 */
2474 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2475 
2476 	/*
2477 	 * Configure Tx/Rx MACs.
2478 	 *  - Auto-padding for short frames.
2479 	 *  - Enable CRC generation.
2480 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2481 	 *  of MAC is followed after link establishment.
2482 	 */
2483 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2484 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2485 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2486 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2487 	    MAC_CFG_PREAMBLE_MASK));
2488 
2489 	/* Set up the receive filter. */
2490 	age_rxfilter(sc);
2491 	age_rxvlan(sc);
2492 
2493 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2494 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2495 		reg |= MAC_CFG_RXCSUM_ENB;
2496 
2497 	/* Ack all pending interrupts and clear it. */
2498 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2499 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2500 
2501 	/* Finally enable Tx/Rx MAC. */
2502 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2503 
2504 	sc->age_flags &= ~AGE_FLAG_LINK;
2505 	/* Switch to the current media. */
2506 	mii_mediachg(mii);
2507 
2508 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2509 
2510 	ifp->if_flags |= IFF_RUNNING;
2511 	ifq_clr_oactive(&ifp->if_snd);
2512 }
2513 
2514 static void
2515 age_stop(struct age_softc *sc)
2516 {
2517 	struct ifnet *ifp = &sc->arpcom.ac_if;
2518 	struct age_txdesc *txd;
2519 	struct age_rxdesc *rxd;
2520 	uint32_t reg;
2521 	int i;
2522 
2523 	ASSERT_SERIALIZED(ifp->if_serializer);
2524 
2525 	/*
2526 	 * Mark the interface down and cancel the watchdog timer.
2527 	 */
2528 	ifp->if_flags &= ~IFF_RUNNING;
2529 	ifq_clr_oactive(&ifp->if_snd);
2530 	ifp->if_timer = 0;
2531 
2532 	sc->age_flags &= ~AGE_FLAG_LINK;
2533 	callout_stop(&sc->age_tick_ch);
2534 
2535 	/*
2536 	 * Disable interrupts.
2537 	 */
2538 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2539 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2540 
2541 	/* Stop CMB/SMB updates. */
2542 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2543 
2544 	/* Stop Rx/Tx MAC. */
2545 	age_stop_rxmac(sc);
2546 	age_stop_txmac(sc);
2547 
2548 	/* Stop DMA. */
2549 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2550 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2551 
2552 	/* Stop TxQ/RxQ. */
2553 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2554 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2555 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2556 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2557 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2558 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2559 			break;
2560 		DELAY(10);
2561 	}
2562 	if (i == 0)
2563 		device_printf(sc->age_dev,
2564 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2565 
2566 	/* Reclaim Rx buffers that have been processed. */
2567 	if (sc->age_cdata.age_rxhead != NULL)
2568 		m_freem(sc->age_cdata.age_rxhead);
2569 	AGE_RXCHAIN_RESET(sc);
2570 
2571 	/*
2572 	 * Free RX and TX mbufs still in the queues.
2573 	 */
2574 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2575 		rxd = &sc->age_cdata.age_rxdesc[i];
2576 		if (rxd->rx_m != NULL) {
2577 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2578 			    rxd->rx_dmamap);
2579 			m_freem(rxd->rx_m);
2580 			rxd->rx_m = NULL;
2581 		}
2582         }
2583 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2584 		txd = &sc->age_cdata.age_txdesc[i];
2585 		if (txd->tx_m != NULL) {
2586 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2587 			    txd->tx_dmamap);
2588 			m_freem(txd->tx_m);
2589 			txd->tx_m = NULL;
2590 		}
2591         }
2592 }
2593 
2594 static void
2595 age_stop_txmac(struct age_softc *sc)
2596 {
2597 	uint32_t reg;
2598 	int i;
2599 
2600 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2601 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2602 		reg &= ~MAC_CFG_TX_ENB;
2603 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2604 	}
2605 	/* Stop Tx DMA engine. */
2606 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2607 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2608 		reg &= ~DMA_CFG_RD_ENB;
2609 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2610 	}
2611 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2612 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2613 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2614 			break;
2615 		DELAY(10);
2616 	}
2617 	if (i == 0)
2618 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2619 }
2620 
2621 static void
2622 age_stop_rxmac(struct age_softc *sc)
2623 {
2624 	uint32_t reg;
2625 	int i;
2626 
2627 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2628 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2629 		reg &= ~MAC_CFG_RX_ENB;
2630 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2631 	}
2632 	/* Stop Rx DMA engine. */
2633 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2634 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2635 		reg &= ~DMA_CFG_WR_ENB;
2636 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2637 	}
2638 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2639 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2640 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2641 			break;
2642 		DELAY(10);
2643 	}
2644 	if (i == 0)
2645 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2646 }
2647 
2648 static void
2649 age_init_tx_ring(struct age_softc *sc)
2650 {
2651 	struct age_ring_data *rd;
2652 	struct age_txdesc *txd;
2653 	int i;
2654 
2655 	sc->age_cdata.age_tx_prod = 0;
2656 	sc->age_cdata.age_tx_cons = 0;
2657 	sc->age_cdata.age_tx_cnt = 0;
2658 
2659 	rd = &sc->age_rdata;
2660 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2661 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2662 		txd = &sc->age_cdata.age_txdesc[i];
2663 		txd->tx_desc = &rd->age_tx_ring[i];
2664 		txd->tx_m = NULL;
2665 	}
2666 
2667 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2668 	    sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2669 }
2670 
2671 static int
2672 age_init_rx_ring(struct age_softc *sc)
2673 {
2674 	struct age_ring_data *rd;
2675 	struct age_rxdesc *rxd;
2676 	int i;
2677 
2678 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2679 	rd = &sc->age_rdata;
2680 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2681 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2682 		rxd = &sc->age_cdata.age_rxdesc[i];
2683 		rxd->rx_m = NULL;
2684 		rxd->rx_desc = &rd->age_rx_ring[i];
2685 		if (age_newbuf(sc, rxd, 1) != 0)
2686 			return (ENOBUFS);
2687 	}
2688 
2689 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2690 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2691 
2692 	return (0);
2693 }
2694 
2695 static void
2696 age_init_rr_ring(struct age_softc *sc)
2697 {
2698 	struct age_ring_data *rd;
2699 
2700 	sc->age_cdata.age_rr_cons = 0;
2701 	AGE_RXCHAIN_RESET(sc);
2702 
2703 	rd = &sc->age_rdata;
2704 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2705 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2706 	    sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2707 }
2708 
2709 static void
2710 age_init_cmb_block(struct age_softc *sc)
2711 {
2712 	struct age_ring_data *rd;
2713 
2714 	rd = &sc->age_rdata;
2715 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2716 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2717 	    sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
2718 }
2719 
2720 static void
2721 age_init_smb_block(struct age_softc *sc)
2722 {
2723 	struct age_ring_data *rd;
2724 
2725 	rd = &sc->age_rdata;
2726 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2727 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2728 	    sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
2729 }
2730 
2731 static int
2732 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2733 {
2734 	struct rx_desc *desc;
2735 	struct mbuf *m;
2736 	struct age_dmamap_ctx ctx;
2737 	bus_dma_segment_t segs[1];
2738 	bus_dmamap_t map;
2739 	int error;
2740 
2741 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2742 	if (m == NULL)
2743 		return (ENOBUFS);
2744 
2745 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2746 	m_adj(m, ETHER_ALIGN);
2747 
2748 	ctx.nsegs = 1;
2749 	ctx.segs = segs;
2750 	error = bus_dmamap_load_mbuf(sc->age_cdata.age_rx_tag,
2751 				     sc->age_cdata.age_rx_sparemap,
2752 				     m, age_dmamap_buf_cb, &ctx,
2753 				     BUS_DMA_NOWAIT);
2754 	if (error || ctx.nsegs == 0) {
2755 		if (!error) {
2756 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2757 					  sc->age_cdata.age_rx_sparemap);
2758 			error = EFBIG;
2759 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2760 		}
2761 		m_freem(m);
2762 
2763 		if (init)
2764 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2765 		return (error);
2766 	}
2767 	KASSERT(ctx.nsegs == 1,
2768 		("%s: %d segments returned!", __func__, ctx.nsegs));
2769 
2770 	if (rxd->rx_m != NULL) {
2771 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
2772 		    BUS_DMASYNC_POSTREAD);
2773 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
2774 	}
2775 	map = rxd->rx_dmamap;
2776 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2777 	sc->age_cdata.age_rx_sparemap = map;
2778 	rxd->rx_m = m;
2779 
2780 	desc = rxd->rx_desc;
2781 	desc->addr = htole64(segs[0].ds_addr);
2782 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
2783 	    AGE_RD_LEN_SHIFT);
2784 	return (0);
2785 }
2786 
2787 static void
2788 age_rxvlan(struct age_softc *sc)
2789 {
2790 	struct ifnet *ifp = &sc->arpcom.ac_if;
2791 	uint32_t reg;
2792 
2793 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2794 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2795 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2796 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2797 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2798 }
2799 
2800 static void
2801 age_rxfilter(struct age_softc *sc)
2802 {
2803 	struct ifnet *ifp = &sc->arpcom.ac_if;
2804 	struct ifmultiaddr *ifma;
2805 	uint32_t crc;
2806 	uint32_t mchash[2];
2807 	uint32_t rxcfg;
2808 
2809 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2810 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2811 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2812 		rxcfg |= MAC_CFG_BCAST;
2813 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2814 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2815 			rxcfg |= MAC_CFG_PROMISC;
2816 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2817 			rxcfg |= MAC_CFG_ALLMULTI;
2818 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2819 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2820 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2821 		return;
2822 	}
2823 
2824 	/* Program new filter. */
2825 	bzero(mchash, sizeof(mchash));
2826 
2827 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2828 		if (ifma->ifma_addr->sa_family != AF_LINK)
2829 			continue;
2830 		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2831 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2832 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2833 	}
2834 
2835 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2836 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2837 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2838 }
2839 
2840 static int
2841 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
2842 {
2843 	struct age_softc *sc;
2844 	struct age_stats *stats;
2845 	int error, result;
2846 
2847 	result = -1;
2848 	error = sysctl_handle_int(oidp, &result, 0, req);
2849 
2850 	if (error != 0 || req->newptr == NULL)
2851 		return (error);
2852 
2853 	if (result != 1)
2854 		return (error);
2855 
2856 	sc = (struct age_softc *)arg1;
2857 	stats = &sc->age_stat;
2858 	kprintf("%s statistics:\n", device_get_nameunit(sc->age_dev));
2859 	kprintf("Transmit good frames : %ju\n",
2860 	    (uintmax_t)stats->tx_frames);
2861 	kprintf("Transmit good broadcast frames : %ju\n",
2862 	    (uintmax_t)stats->tx_bcast_frames);
2863 	kprintf("Transmit good multicast frames : %ju\n",
2864 	    (uintmax_t)stats->tx_mcast_frames);
2865 	kprintf("Transmit pause control frames : %u\n",
2866 	    stats->tx_pause_frames);
2867 	kprintf("Transmit control frames : %u\n",
2868 	    stats->tx_control_frames);
2869 	kprintf("Transmit frames with excessive deferrals : %u\n",
2870 	    stats->tx_excess_defer);
2871 	kprintf("Transmit deferrals : %u\n",
2872 	    stats->tx_deferred);
2873 	kprintf("Transmit good octets : %ju\n",
2874 	    (uintmax_t)stats->tx_bytes);
2875 	kprintf("Transmit good broadcast octets : %ju\n",
2876 	    (uintmax_t)stats->tx_bcast_bytes);
2877 	kprintf("Transmit good multicast octets : %ju\n",
2878 	    (uintmax_t)stats->tx_mcast_bytes);
2879 	kprintf("Transmit frames 64 bytes : %ju\n",
2880 	    (uintmax_t)stats->tx_pkts_64);
2881 	kprintf("Transmit frames 65 to 127 bytes : %ju\n",
2882 	    (uintmax_t)stats->tx_pkts_65_127);
2883 	kprintf("Transmit frames 128 to 255 bytes : %ju\n",
2884 	    (uintmax_t)stats->tx_pkts_128_255);
2885 	kprintf("Transmit frames 256 to 511 bytes : %ju\n",
2886 	    (uintmax_t)stats->tx_pkts_256_511);
2887 	kprintf("Transmit frames 512 to 1024 bytes : %ju\n",
2888 	    (uintmax_t)stats->tx_pkts_512_1023);
2889 	kprintf("Transmit frames 1024 to 1518 bytes : %ju\n",
2890 	    (uintmax_t)stats->tx_pkts_1024_1518);
2891 	kprintf("Transmit frames 1519 to MTU bytes : %ju\n",
2892 	    (uintmax_t)stats->tx_pkts_1519_max);
2893 	kprintf("Transmit single collisions : %u\n",
2894 	    stats->tx_single_colls);
2895 	kprintf("Transmit multiple collisions : %u\n",
2896 	    stats->tx_multi_colls);
2897 	kprintf("Transmit late collisions : %u\n",
2898 	    stats->tx_late_colls);
2899 	kprintf("Transmit abort due to excessive collisions : %u\n",
2900 	    stats->tx_excess_colls);
2901 	kprintf("Transmit underruns due to FIFO underruns : %u\n",
2902 	    stats->tx_underrun);
2903 	kprintf("Transmit descriptor write-back errors : %u\n",
2904 	    stats->tx_desc_underrun);
2905 	kprintf("Transmit frames with length mismatched frame size : %u\n",
2906 	    stats->tx_lenerrs);
2907 	kprintf("Transmit frames with truncated due to MTU size : %u\n",
2908 	    stats->tx_lenerrs);
2909 
2910 	kprintf("Receive good frames : %ju\n",
2911 	    (uintmax_t)stats->rx_frames);
2912 	kprintf("Receive good broadcast frames : %ju\n",
2913 	    (uintmax_t)stats->rx_bcast_frames);
2914 	kprintf("Receive good multicast frames : %ju\n",
2915 	    (uintmax_t)stats->rx_mcast_frames);
2916 	kprintf("Receive pause control frames : %u\n",
2917 	    stats->rx_pause_frames);
2918 	kprintf("Receive control frames : %u\n",
2919 	    stats->rx_control_frames);
2920 	kprintf("Receive CRC errors : %u\n",
2921 	    stats->rx_crcerrs);
2922 	kprintf("Receive frames with length errors : %u\n",
2923 	    stats->rx_lenerrs);
2924 	kprintf("Receive good octets : %ju\n",
2925 	    (uintmax_t)stats->rx_bytes);
2926 	kprintf("Receive good broadcast octets : %ju\n",
2927 	    (uintmax_t)stats->rx_bcast_bytes);
2928 	kprintf("Receive good multicast octets : %ju\n",
2929 	    (uintmax_t)stats->rx_mcast_bytes);
2930 	kprintf("Receive frames too short : %u\n",
2931 	    stats->rx_runts);
2932 	kprintf("Receive fragmented frames : %ju\n",
2933 	    (uintmax_t)stats->rx_fragments);
2934 	kprintf("Receive frames 64 bytes : %ju\n",
2935 	    (uintmax_t)stats->rx_pkts_64);
2936 	kprintf("Receive frames 65 to 127 bytes : %ju\n",
2937 	    (uintmax_t)stats->rx_pkts_65_127);
2938 	kprintf("Receive frames 128 to 255 bytes : %ju\n",
2939 	    (uintmax_t)stats->rx_pkts_128_255);
2940 	kprintf("Receive frames 256 to 511 bytes : %ju\n",
2941 	    (uintmax_t)stats->rx_pkts_256_511);
2942 	kprintf("Receive frames 512 to 1024 bytes : %ju\n",
2943 	    (uintmax_t)stats->rx_pkts_512_1023);
2944 	kprintf("Receive frames 1024 to 1518 bytes : %ju\n",
2945 	    (uintmax_t)stats->rx_pkts_1024_1518);
2946 	kprintf("Receive frames 1519 to MTU bytes : %ju\n",
2947 	    (uintmax_t)stats->rx_pkts_1519_max);
2948 	kprintf("Receive frames too long : %ju\n",
2949 	    (uint64_t)stats->rx_pkts_truncated);
2950 	kprintf("Receive frames with FIFO overflow : %u\n",
2951 	    stats->rx_fifo_oflows);
2952 	kprintf("Receive frames with return descriptor overflow : %u\n",
2953 	    stats->rx_desc_oflows);
2954 	kprintf("Receive frames with alignment errors : %u\n",
2955 	    stats->rx_alignerrs);
2956 	kprintf("Receive frames dropped due to address filtering : %ju\n",
2957 	    (uint64_t)stats->rx_pkts_filtered);
2958 
2959 	return (error);
2960 }
2961 
2962 static int
2963 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
2964 {
2965 
2966 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
2967 	    AGE_IM_TIMER_MAX));
2968 }
2969 
2970 static void
2971 age_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
2972 		  bus_size_t mapsz __unused, int error)
2973 {
2974 	struct age_dmamap_ctx *ctx = xctx;
2975 	int i;
2976 
2977 	if (error)
2978 		return;
2979 
2980 	if (nsegs > ctx->nsegs) {
2981 		ctx->nsegs = 0;
2982 		return;
2983 	}
2984 
2985 	ctx->nsegs = nsegs;
2986 	for (i = 0; i < nsegs; ++i)
2987 		ctx->segs[i] = segs[i];
2988 }
2989