xref: /dragonfly/sys/dev/netif/alc/if_alc.c (revision 8accc937)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/alc/if_alc.c,v 1.6 2009/09/29 23:03:16 yongari Exp $
28  */
29 
30 /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/bitops.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/bpf.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/ifq_var.h>
53 #include <net/vlan/if_vlan_var.h>
54 #include <net/vlan/if_vlan_ether.h>
55 
56 #include <netinet/tcp.h>
57 
58 #include <dev/netif/mii_layer/mii.h>
59 #include <dev/netif/mii_layer/miivar.h>
60 
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcidevs.h>
64 
65 #include <dev/netif/alc/if_alcreg.h>
66 #include <dev/netif/alc/if_alcvar.h>
67 
68 /* "device miibus" required.  See GENERIC if you get errors here. */
69 #include "miibus_if.h"
70 
71 #undef ALC_USE_CUSTOM_CSUM
72 #ifdef ALC_USE_CUSTOM_CSUM
73 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
74 #else
75 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
76 #endif
77 
78 /* Tunables. */
79 static int alc_msi_enable = 1;
80 TUNABLE_INT("hw.alc.msi.enable", &alc_msi_enable);
81 
82 /*
83  * Devices supported by this driver.
84  */
85 
86 static struct alc_ident alc_ident_table[] = {
87 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
88 		"Atheros AR8131 PCIe Gigabit Ethernet" },
89 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
90 		"Atheros AR8132 PCIe Fast Ethernet" },
91 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
92 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
93 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
94 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
95 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
96 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
97 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
98 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
99 	{ 0, 0, 0, NULL }
100 };
101 
102 static int	alc_attach(device_t);
103 static int	alc_probe(device_t);
104 static int	alc_detach(device_t);
105 static int	alc_shutdown(device_t);
106 static int	alc_suspend(device_t);
107 static int	alc_resume(device_t);
108 static int	alc_miibus_readreg(device_t, int, int);
109 static void	alc_miibus_statchg(device_t);
110 static int	alc_miibus_writereg(device_t, int, int, int);
111 
112 static void	alc_init(void *);
113 static void	alc_start(struct ifnet *);
114 static void	alc_watchdog(struct alc_softc *);
115 static int	alc_mediachange(struct ifnet *);
116 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
117 static int	alc_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
118 
119 static void	alc_aspm(struct alc_softc *, int);
120 #ifdef foo
121 static int	alc_check_boundary(struct alc_softc *);
122 #endif
123 static void	alc_disable_l0s_l1(struct alc_softc *);
124 static int	alc_dma_alloc(struct alc_softc *);
125 static void	alc_dma_free(struct alc_softc *);
126 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
127 static int	alc_encap(struct alc_softc *, struct mbuf **);
128 static struct alc_ident *alc_find_ident(device_t);
129 static void	alc_get_macaddr(struct alc_softc *);
130 static void	alc_init_cmb(struct alc_softc *);
131 static void	alc_init_rr_ring(struct alc_softc *);
132 static int	alc_init_rx_ring(struct alc_softc *);
133 static void	alc_init_smb(struct alc_softc *);
134 static void	alc_init_tx_ring(struct alc_softc *);
135 static void	alc_intr(void *);
136 static void	alc_mac_config(struct alc_softc *);
137 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, boolean_t);
138 static void	alc_phy_down(struct alc_softc *);
139 static void	alc_phy_reset(struct alc_softc *);
140 static void	alc_reset(struct alc_softc *);
141 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
142 static int	alc_rxintr(struct alc_softc *);
143 static void	alc_rxfilter(struct alc_softc *);
144 static void	alc_rxvlan(struct alc_softc *);
145 #if 0
146 static void	alc_setlinkspeed(struct alc_softc *);
147 /* XXX: WOL */
148 static void	alc_setwol(struct alc_softc *);
149 #endif
150 static void	alc_start_queue(struct alc_softc *);
151 static void	alc_stats_clear(struct alc_softc *);
152 static void	alc_stats_update(struct alc_softc *);
153 static void	alc_stop(struct alc_softc *);
154 static void	alc_stop_mac(struct alc_softc *);
155 static void	alc_stop_queue(struct alc_softc *);
156 static void	alc_sysctl_node(struct alc_softc *);
157 static void	alc_tick(void *);
158 static void	alc_txeof(struct alc_softc *);
159 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
160 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
161 
162 static device_method_t alc_methods[] = {
163 	/* Device interface. */
164 	DEVMETHOD(device_probe,		alc_probe),
165 	DEVMETHOD(device_attach,	alc_attach),
166 	DEVMETHOD(device_detach,	alc_detach),
167 	DEVMETHOD(device_shutdown,	alc_shutdown),
168 	DEVMETHOD(device_suspend,	alc_suspend),
169 	DEVMETHOD(device_resume,	alc_resume),
170 
171 	/* MII interface. */
172 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
173 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
174 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
175 
176 	{ NULL, NULL }
177 };
178 
179 static DEFINE_CLASS_0(alc, alc_driver, alc_methods, sizeof(struct alc_softc));
180 static devclass_t alc_devclass;
181 
182 DECLARE_DUMMY_MODULE(if_alc);
183 DRIVER_MODULE(if_alc, pci, alc_driver, alc_devclass, NULL, NULL);
184 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, NULL, NULL);
185 
186 static const uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
187 
188 static int
189 alc_miibus_readreg(device_t dev, int phy, int reg)
190 {
191 	struct alc_softc *sc;
192 	uint32_t v;
193 	int i;
194 
195 	sc = device_get_softc(dev);
196 
197 	if (phy != sc->alc_phyaddr)
198 		return (0);
199 
200 	/*
201 	 * For AR8132 fast ethernet controller, do not report 1000baseT
202 	 * capability to mii(4). Even though AR8132 uses the same
203 	 * model/revision number of F1 gigabit PHY, the PHY has no
204 	 * ability to establish 1000baseT link.
205 	 */
206 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
207 	    reg == MII_EXTSR)
208 		return (0);
209 
210 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
211 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
212 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
213 		DELAY(5);
214 		v = CSR_READ_4(sc, ALC_MDIO);
215 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
216 			break;
217 	}
218 
219 	if (i == 0) {
220 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
221 		return (0);
222 	}
223 
224 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
225 }
226 
227 static int
228 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
229 {
230 	struct alc_softc *sc;
231 	uint32_t v;
232 	int i;
233 
234 	sc = device_get_softc(dev);
235 
236 	if (phy != sc->alc_phyaddr)
237 		return (0);
238 
239 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
240 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
241 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
242 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
243 		DELAY(5);
244 		v = CSR_READ_4(sc, ALC_MDIO);
245 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
246 			break;
247 	}
248 
249 	if (i == 0)
250 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
251 
252 	return (0);
253 }
254 
255 static void
256 alc_miibus_statchg(device_t dev)
257 {
258 	struct alc_softc *sc;
259 	struct mii_data *mii;
260 	struct ifnet *ifp;
261 	uint32_t reg;
262 
263 	sc = device_get_softc(dev);
264 
265 	mii = device_get_softc(sc->alc_miibus);
266 	ifp = sc->alc_ifp;
267 	if (mii == NULL || ifp == NULL ||
268 	    (ifp->if_flags & IFF_RUNNING) == 0)
269 		return;
270 
271 	sc->alc_flags &= ~ALC_FLAG_LINK;
272 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
273 	    (IFM_ACTIVE | IFM_AVALID)) {
274 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
275 		case IFM_10_T:
276 		case IFM_100_TX:
277 			sc->alc_flags |= ALC_FLAG_LINK;
278 			break;
279 		case IFM_1000_T:
280 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
281 				sc->alc_flags |= ALC_FLAG_LINK;
282 			break;
283 		default:
284 			break;
285 		}
286 	}
287 	alc_stop_queue(sc);
288 	/* Stop Rx/Tx MACs. */
289 	alc_stop_mac(sc);
290 
291 	/* Program MACs with resolved speed/duplex/flow-control. */
292 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
293 		alc_start_queue(sc);
294 		alc_mac_config(sc);
295 		/* Re-enable Tx/Rx MACs. */
296 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
297 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
298 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
299 	}
300 	alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
301 }
302 
303 static void
304 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
305 {
306 	struct alc_softc *sc;
307 	struct mii_data *mii;
308 
309 	sc = ifp->if_softc;
310 	if ((ifp->if_flags & IFF_UP) == 0)
311 		return;
312 	mii = device_get_softc(sc->alc_miibus);
313 
314 	mii_pollstat(mii);
315 	ifmr->ifm_status = mii->mii_media_status;
316 	ifmr->ifm_active = mii->mii_media_active;
317 }
318 
319 static int
320 alc_mediachange(struct ifnet *ifp)
321 {
322 	struct alc_softc *sc;
323 	struct mii_data *mii;
324 	struct mii_softc *miisc;
325 	int error;
326 
327 	sc = ifp->if_softc;
328 	mii = device_get_softc(sc->alc_miibus);
329 	if (mii->mii_instance != 0) {
330 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
331 			mii_phy_reset(miisc);
332 	}
333 	error = mii_mediachg(mii);
334 
335 	return (error);
336 }
337 
338 static struct alc_ident *
339 alc_find_ident(device_t dev)
340 {
341 	struct alc_ident *ident;
342 	uint16_t vendor, devid;
343 
344 	vendor = pci_get_vendor(dev);
345 	devid = pci_get_device(dev);
346 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
347 		if (vendor == ident->vendorid && devid == ident->deviceid)
348 			return (ident);
349 	}
350 	return (NULL);
351 }
352 
353 static int
354 alc_probe(device_t dev)
355 {
356 	struct alc_ident *ident;
357 
358 	ident = alc_find_ident(dev);
359 	if (ident != NULL) {
360 		device_set_desc(dev, ident->name);
361 		return (BUS_PROBE_DEFAULT);
362 	}
363 	return (ENXIO);
364 }
365 
366 static void
367 alc_get_macaddr(struct alc_softc *sc)
368 {
369 	uint32_t ea[2], opt;
370 	uint16_t val;
371 	int eeprom, i;
372 
373 	eeprom = 0;
374 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
375 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
376 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
377 		/*
378 		 * EEPROM found, let TWSI reload EEPROM configuration.
379 		 * This will set ethernet address of controller.
380 		 */
381 		eeprom++;
382 		switch (sc->alc_ident->deviceid) {
383 		case DEVICEID_ATHEROS_AR8131:
384 		case DEVICEID_ATHEROS_AR8132:
385 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
386 				opt |= OPT_CFG_CLK_ENB;
387 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
388 				CSR_READ_4(sc, ALC_OPT_CFG);
389 				DELAY(1000);
390 			}
391 			break;
392 		case DEVICEID_ATHEROS_AR8151:
393 		case DEVICEID_ATHEROS_AR8151_V2:
394 		case DEVICEID_ATHEROS_AR8152_B:
395 		case DEVICEID_ATHEROS_AR8152_B2:
396 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
397 					    ALC_MII_DBG_ADDR, 0x00);
398 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
399 						 ALC_MII_DBG_DATA);
400 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
401 					    ALC_MII_DBG_DATA, val & 0xFF7F);
402 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
403 					    ALC_MII_DBG_ADDR, 0x3B);
404 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
405 						 ALC_MII_DBG_DATA);
406 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
407 					    ALC_MII_DBG_DATA, val | 0x0008);
408 			DELAY(20);
409 			break;
410 		}
411 
412 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
413 			CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
414 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
415 		CSR_READ_4(sc, ALC_WOL_CFG);
416 
417 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
418 			    TWSI_CFG_SW_LD_START);
419 
420 		for (i = 100; i > 0; i--) {
421 			DELAY(1000);
422 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
423 			    TWSI_CFG_SW_LD_START) == 0)
424 				break;
425 		}
426 		if (i == 0)
427 			device_printf(sc->alc_dev,
428 			    "reloading EEPROM timeout!\n");
429 	} else {
430 		if (bootverbose)
431 			device_printf(sc->alc_dev, "EEPROM not found!\n");
432 	}
433 
434 	if (eeprom != 0) {
435 		switch (sc->alc_ident->deviceid) {
436 		case DEVICEID_ATHEROS_AR8131:
437 		case DEVICEID_ATHEROS_AR8132:
438 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
439 				opt &= ~OPT_CFG_CLK_ENB;
440 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
441 				CSR_READ_4(sc, ALC_OPT_CFG);
442 				DELAY(1000);
443 			}
444 			break;
445 		case DEVICEID_ATHEROS_AR8151:
446 		case DEVICEID_ATHEROS_AR8151_V2:
447 		case DEVICEID_ATHEROS_AR8152_B:
448 		case DEVICEID_ATHEROS_AR8152_B2:
449 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
450 					    ALC_MII_DBG_ADDR, 0x00);
451 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
452 						 ALC_MII_DBG_DATA);
453 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
454 					    ALC_MII_DBG_DATA, val | 0x0080);
455 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
456 					    ALC_MII_DBG_ADDR, 0x3B);
457 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
458 						 ALC_MII_DBG_DATA);
459 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
460 					    ALC_MII_DBG_DATA, val & 0xFFF7);
461 			DELAY(20);
462 			break;
463 		}
464 	}
465 
466 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
467 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
468 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
469 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
470 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
471 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
472 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
473 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
474 }
475 
476 static void
477 alc_disable_l0s_l1(struct alc_softc *sc)
478 {
479 	uint32_t pmcfg;
480 
481 	/* Another magic from vendor. */
482 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
483 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
484 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
485 	    PM_CFG_SERDES_PD_EX_L1);
486 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
487 	    PM_CFG_SERDES_L1_ENB;
488 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
489 }
490 
491 static void
492 alc_phy_reset(struct alc_softc *sc)
493 {
494 	uint16_t data;
495 
496 	/* Reset magic from Linux. */
497 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
498 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
499 	CSR_READ_2(sc, ALC_GPHY_CFG);
500 	DELAY(10 * 1000);
501 
502 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
503 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
504 	    GPHY_CFG_SEL_ANA_RESET);
505 	CSR_READ_2(sc, ALC_GPHY_CFG);
506 	DELAY(10 * 1000);
507 
508 	/* DSP fixup, Vendor magic. */
509 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
510 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
511 				    ALC_MII_DBG_ADDR, 0x000A);
512 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
513 					 ALC_MII_DBG_DATA);
514 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
515 				    ALC_MII_DBG_DATA, data & 0xDFFF);
516 	}
517 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
518 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
519 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
520 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
521 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
522 				    ALC_MII_DBG_ADDR, 0x003B);
523 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
524 					  ALC_MII_DBG_DATA);
525 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
526 				    ALC_MII_DBG_DATA, data & 0xFFF7);
527 		DELAY(20 * 1000);
528 	}
529 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
530 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
531 				    ALC_MII_DBG_ADDR, 0x0029);
532 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
533 				    ALC_MII_DBG_DATA, 0x929D);
534 	}
535 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
536 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
537 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
538 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
539 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
540 				    ALC_MII_DBG_ADDR, 0x0029);
541 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
542 				    ALC_MII_DBG_DATA, 0xB6DD);
543 	}
544 
545 	/* Load DSP codes, vendor magic. */
546 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
547 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
548 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
549 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
550 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
551 	    ALC_MII_DBG_DATA, data);
552 
553 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
554 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
555 	    ANA_SERDES_EN_LCKDT;
556 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
557 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
558 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
559 	    ALC_MII_DBG_DATA, data);
560 
561 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
562 	    ANA_LONG_CABLE_TH_100_MASK) |
563 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
564 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
565 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
566 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
567 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
568 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
569 	    ALC_MII_DBG_DATA, data);
570 
571 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
572 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
573 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
574 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
575 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
576 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
577 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
578 	    ALC_MII_DBG_DATA, data);
579 
580 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
581 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
582 	    ANA_OEN_125M;
583 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
584 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
585 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
586 	    ALC_MII_DBG_DATA, data);
587 	DELAY(1000);
588 }
589 
590 static void
591 alc_phy_down(struct alc_softc *sc)
592 {
593 	switch (sc->alc_ident->deviceid) {
594 	case DEVICEID_ATHEROS_AR8151:
595 	case DEVICEID_ATHEROS_AR8151_V2:
596 		/*
597 		 * GPHY power down caused more problems on AR8151 v2.0.
598 		 * When driver is reloaded after GPHY power down,
599 		 * accesses to PHY/MAC registers hung the system. Only
600 		 * cold boot recovered from it.  I'm not sure whether
601 		 * AR8151 v1.0 also requires this one though.  I don't
602 		 * have AR8151 v1.0 controller in hand.
603 		 * The only option left is to isolate the PHY and
604 		 * initiates power down the PHY which in turn saves
605 		 * more power when driver is unloaded.
606 		 */
607 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
608 				    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
609 		break;
610 	default:
611 		/* Force PHY down. */
612 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
613 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
614 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
615 		    GPHY_CFG_PWDOWN_HW);
616 		DELAY(1000);
617 		break;
618 	}
619 
620 }
621 
622 static void
623 alc_aspm(struct alc_softc *sc, int media)
624 {
625 	uint32_t pmcfg;
626 	uint16_t linkcfg;
627 
628 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
629 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
630 	    (ALC_FLAG_APS | ALC_FLAG_PCIE)) {
631 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
632 					 PCIR_EXPRESS_LINK_CTL);
633 	} else {
634 		linkcfg = 0;
635 	}
636 
637 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
638 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
639 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
640 	pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB;
641 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
642 
643 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
644 		/* Disable extended sync except AR8152 B v1.0 */
645 		linkcfg &= ~0x80;
646 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
647 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
648 			linkcfg |= 0x80;
649 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
650 			    linkcfg);
651 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
652 			   PM_CFG_HOTRST);
653 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
654 			  PM_CFG_L1_ENTRY_TIMER_SHIFT);
655 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
656 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
657 			  PM_CFG_PM_REQ_TIMER_SHIFT);
658 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
659 	}
660 
661 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
662 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
663 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
664 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
665 			pmcfg |= PM_CFG_ASPM_L1_ENB;
666 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
667 			if (sc->alc_ident->deviceid ==
668 			    DEVICEID_ATHEROS_AR8152_B) {
669 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
670 			}
671 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
672 				   PM_CFG_SERDES_PLL_L1_ENB |
673 				   PM_CFG_SERDES_BUDS_RX_L1_ENB);
674 			pmcfg |= PM_CFG_CLK_SWH_L1;
675 			if (media == IFM_100_TX || media == IFM_1000_T) {
676 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
677 				switch (sc->alc_ident->deviceid) {
678 				case DEVICEID_ATHEROS_AR8152_B:
679 					pmcfg |= (7 <<
680 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
681 					break;
682 				case DEVICEID_ATHEROS_AR8152_B2:
683 				case DEVICEID_ATHEROS_AR8151_V2:
684 					pmcfg |= (4 <<
685 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
686 					break;
687 				default:
688 					pmcfg |= (15 <<
689 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
690 					break;
691 				}
692 			}
693 		} else {
694 			pmcfg |= PM_CFG_SERDES_L1_ENB |
695 				PM_CFG_SERDES_PLL_L1_ENB |
696 				PM_CFG_SERDES_BUDS_RX_L1_ENB;
697 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
698 				PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
699 		}
700 	} else {
701 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
702 			   PM_CFG_SERDES_PLL_L1_ENB);
703 		pmcfg |= PM_CFG_CLK_SWH_L1;
704 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
705 			pmcfg |= PM_CFG_ASPM_L1_ENB;
706 	}
707 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
708 }
709 
710 static int
711 alc_attach(device_t dev)
712 {
713 	struct alc_softc *sc;
714 	struct ifnet *ifp;
715 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
716 	uint16_t burst;
717 	int base, error, state;
718 	uint32_t cap, ctl, val;
719 	u_int intr_flags;
720 
721 	error = 0;
722 	sc = device_get_softc(dev);
723 	sc->alc_dev = dev;
724 
725 	callout_init_mp(&sc->alc_tick_ch);
726 	sc->alc_ident = alc_find_ident(dev);
727 
728 	/* Enable bus mastering */
729 	pci_enable_busmaster(dev);
730 
731 	/* Map the device. */
732 	sc->alc_res_rid = PCIR_BAR(0);
733 	sc->alc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
734 	    &sc->alc_res_rid, RF_ACTIVE);
735 	if (error != 0) {
736 		device_printf(dev, "cannot allocate memory resources.\n");
737 		goto fail;
738 	}
739 	sc->alc_res_btag = rman_get_bustag(sc->alc_res);
740 	sc->alc_res_bhand = rman_get_bushandle(sc->alc_res);
741 
742 	/* Set PHY address. */
743 	sc->alc_phyaddr = ALC_PHY_ADDR;
744 
745 	/* Initialize DMA parameters. */
746 	sc->alc_dma_rd_burst = 0;
747 	sc->alc_dma_wr_burst = 0;
748 	sc->alc_rcb = DMA_CFG_RCB_64;
749 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
750 		sc->alc_flags |= ALC_FLAG_PCIE;
751 		sc->alc_expcap = base;
752 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
753 		sc->alc_dma_rd_burst =
754 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
755 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
756 		if (bootverbose) {
757 			device_printf(dev, "Read request size : %u bytes.\n",
758 			    alc_dma_burst[sc->alc_dma_rd_burst]);
759 			device_printf(dev, "TLP payload size : %u bytes.\n",
760 			    alc_dma_burst[sc->alc_dma_wr_burst]);
761 		}
762 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
763 			sc->alc_dma_rd_burst = 3;
764 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
765 			sc->alc_dma_wr_burst = 3;
766 		/* Clear data link and flow-control protocol error. */
767 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
768 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
769 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
770 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
771 			CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
772 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
773 			CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
774 			PCIE_PHYMISC_FORCE_RCV_DET);
775 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
776 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
777 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
778 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
779 				 PCIE_PHYMISC2_SERDES_TH_MASK);
780 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
781 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
782 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
783 		}
784 
785 		/* Disable ASPM L0S and L1. */
786 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
787 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
788 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
789 			if ((ctl & 0x08) != 0)
790 				sc->alc_rcb = DMA_CFG_RCB_128;
791 			if (bootverbose)
792 				device_printf(dev, "RCB %u bytes\n",
793 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
794 			state = ctl & 0x03;
795 			if (state & 0x01)
796 				sc->alc_flags |= ALC_FLAG_L0S;
797 			if (state & 0x02)
798 				sc->alc_flags |= ALC_FLAG_L1S;
799 			if (bootverbose)
800 				device_printf(sc->alc_dev, "ASPM %s %s\n",
801 				    aspm_state[state],
802 				    state == 0 ? "disabled" : "enabled");
803 			alc_disable_l0s_l1(sc);
804 		} else {
805 			if (bootverbose)
806 				device_printf(sc->alc_dev, "no ASPM support\n");
807 		}
808 	}
809 
810 	/* Reset PHY. */
811 	alc_phy_reset(sc);
812 
813 	/* Reset the ethernet controller. */
814 	alc_reset(sc);
815 
816 	/*
817 	 * One odd thing is AR8132 uses the same PHY hardware(F1
818 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
819 	 * the PHY supports 1000Mbps but that's not true. The PHY
820 	 * used in AR8132 can't establish gigabit link even if it
821 	 * shows the same PHY model/revision number of AR8131.
822 	 */
823 	switch (sc->alc_ident->deviceid) {
824 	case DEVICEID_ATHEROS_AR8152_B:
825 	case DEVICEID_ATHEROS_AR8152_B2:
826 		sc->alc_flags |= ALC_FLAG_APS;
827 		/* FALLTHROUGH */
828 	case DEVICEID_ATHEROS_AR8132:
829 		sc->alc_flags |= ALC_FLAG_FASTETHER;
830 		break;
831 	case DEVICEID_ATHEROS_AR8151:
832 	case DEVICEID_ATHEROS_AR8151_V2:
833 		sc->alc_flags |= ALC_FLAG_APS;
834 		/* FALLTHROUGH */
835 	default:
836 		break;
837 	}
838 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
839 
840 	/*
841 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
842 	 * addition, Atheros said that enabling SMB wouldn't improve
843 	 * performance. However I think it's bad to access lots of
844 	 * registers to extract MAC statistics.
845 	 */
846 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
847 
848 	/*
849 	 * Don't use Tx CMB. It is known to have silicon bug.
850 	 */
851 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
852 	sc->alc_rev = pci_get_revid(dev);
853 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
854 	    MASTER_CHIP_REV_SHIFT;
855 	if (bootverbose) {
856 		device_printf(dev, "PCI device revision : 0x%04x\n",
857 		    sc->alc_rev);
858 		device_printf(dev, "Chip id/revision : 0x%04x\n",
859 		    sc->alc_chip_rev);
860 	}
861 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
862 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
863 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
864 
865 	sc->alc_irq_type = pci_alloc_1intr(dev, alc_msi_enable,
866 	    &sc->alc_irq_rid, &intr_flags);
867 
868 	/* Allocate IRQ resources. */
869 	sc->alc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
870 	    &sc->alc_irq_rid, intr_flags);
871 	if (error != 0) {
872 		device_printf(dev, "cannot allocate IRQ resources.\n");
873 		goto fail;
874 	}
875 
876 	/* Create device sysctl node. */
877 	alc_sysctl_node(sc);
878 
879 	if ((error = alc_dma_alloc(sc) != 0))
880 		goto fail;
881 
882 	/* Load station address. */
883 	alc_get_macaddr(sc);
884 
885 	ifp = sc->alc_ifp = &sc->arpcom.ac_if;
886 	ifp->if_softc = sc;
887 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
888 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
889 	ifp->if_ioctl = alc_ioctl;
890 	ifp->if_start = alc_start;
891 	ifp->if_init = alc_init;
892 	ifq_set_maxlen(&ifp->if_snd, ALC_TX_RING_CNT - 1);
893 	ifq_set_ready(&ifp->if_snd);
894 	ifp->if_capabilities = IFCAP_TXCSUM;
895 	ifp->if_hwassist = ALC_CSUM_FEATURES;
896 #if 0
897 /* XXX: WOL */
898 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
899 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
900 		sc->alc_flags |= ALC_FLAG_PM;
901 		sc->alc_pmcap = base;
902 	}
903 #endif
904 	ifp->if_capenable = ifp->if_capabilities;
905 
906 	/* VLAN capability setup. */
907 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
908 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
909 	ifp->if_capenable = ifp->if_capabilities;
910 
911 	/*
912 	 * XXX
913 	 * It seems enabling Tx checksum offloading makes more trouble.
914 	 * Sometimes the controller does not receive any frames when
915 	 * Tx checksum offloading is enabled. I'm not sure whether this
916 	 * is a bug in Tx checksum offloading logic or I got broken
917 	 * sample boards. To safety, don't enable Tx checksum offloading
918 	 * by default but give chance to users to toggle it if they know
919 	 * their controllers work without problems.
920 	 */
921 	ifp->if_capenable &= ~IFCAP_TXCSUM;
922 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
923 
924 	/* Set up MII bus. */
925 	if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
926 	    alc_mediastatus)) != 0) {
927 		device_printf(dev, "no PHY found!\n");
928 		goto fail;
929 	}
930 
931 	ether_ifattach(ifp, sc->alc_eaddr, NULL);
932 
933 	/* Tell the upper layer(s) we support long frames. */
934 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
935 
936 #if 0
937 	/* Create local taskq. */
938 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
939 	sc->alc_tq = taskqueue_create("alc_taskq", M_WAITOK,
940 				      taskqueue_thread_enqueue, &sc->alc_tq);
941 	if (sc->alc_tq == NULL) {
942 		device_printf(dev, "could not create taskqueue.\n");
943 		ether_ifdetach(ifp);
944 		error = ENXIO;
945 		goto fail;
946 	}
947 	taskqueue_start_threads(&sc->alc_tq, 1, TDPRI_KERN_DAEMON, -1, "%s taskq",
948 	    device_get_nameunit(sc->alc_dev));
949 
950 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
951 		msic = ALC_MSIX_MESSAGES;
952 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
953 		msic = ALC_MSI_MESSAGES;
954 	else
955 		msic = 1;
956 	for (i = 0; i < msic; i++) {
957 		error = bus_setup_intr(dev, sc->alc_irq[i], INTR_MPSAFE,
958 				       alc_intr, sc,
959 				       &sc->alc_intrhand[i], NULL);
960 		if (error != 0)
961 			break;
962 	}
963 	if (error != 0) {
964 		device_printf(dev, "could not set up interrupt handler.\n");
965 		taskqueue_free(sc->alc_tq);
966 		sc->alc_tq = NULL;
967 		ether_ifdetach(ifp);
968 		goto fail;
969 	}
970 #else
971 	error = bus_setup_intr(dev, sc->alc_irq, INTR_MPSAFE, alc_intr, sc,
972 	    &sc->alc_intrhand, ifp->if_serializer);
973 	if (error) {
974 		device_printf(dev, "could not set up interrupt handler.\n");
975 		ether_ifdetach(ifp);
976 		goto fail;
977 	}
978 #endif
979 
980 fail:
981 	if (error != 0)
982 		alc_detach(dev);
983 
984 	return (error);
985 }
986 
987 static int
988 alc_detach(device_t dev)
989 {
990 	struct alc_softc *sc = device_get_softc(dev);
991 
992 	if (device_is_attached(dev)) {
993 		struct ifnet *ifp = sc->alc_ifp;
994 
995 		lwkt_serialize_enter(ifp->if_serializer);
996 		alc_stop(sc);
997 		bus_teardown_intr(dev, sc->alc_irq, sc->alc_intrhand);
998 		lwkt_serialize_exit(ifp->if_serializer);
999 
1000 		ether_ifdetach(ifp);
1001 	}
1002 
1003 	if (sc->alc_miibus != NULL)
1004 		device_delete_child(dev, sc->alc_miibus);
1005 	bus_generic_detach(dev);
1006 
1007 	if (sc->alc_res != NULL)
1008 		alc_phy_down(sc);
1009 
1010 	if (sc->alc_irq != NULL) {
1011 		bus_release_resource(dev, SYS_RES_IRQ, sc->alc_irq_rid,
1012 		    sc->alc_irq);
1013 	}
1014 	if (sc->alc_irq_type == PCI_INTR_TYPE_MSI)
1015 		pci_release_msi(dev);
1016 
1017 	if (sc->alc_res != NULL) {
1018 		bus_release_resource(dev, SYS_RES_MEMORY, sc->alc_res_rid,
1019 		    sc->alc_res);
1020 	}
1021 
1022 	alc_dma_free(sc);
1023 
1024 	return (0);
1025 }
1026 
1027 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1028 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1029 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1030 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1031 
1032 static void
1033 alc_sysctl_node(struct alc_softc *sc)
1034 {
1035 	struct sysctl_ctx_list *ctx;
1036 	struct sysctl_oid *tree;
1037 	struct sysctl_oid_list *child, *parent;
1038 	struct alc_hw_stats *stats;
1039 	int error;
1040 
1041 	stats = &sc->alc_stats;
1042 	ctx = &sc->alc_sysctl_ctx;
1043 	sysctl_ctx_init(ctx);
1044 
1045 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
1046 			       OID_AUTO,
1047 			       device_get_nameunit(sc->alc_dev),
1048 			       CTLFLAG_RD, 0, "");
1049 	if (tree == NULL) {
1050 		device_printf(sc->alc_dev, "can't add sysctl node\n");
1051 		return;
1052 	}
1053 	child = SYSCTL_CHILDREN(tree);
1054 
1055 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1056 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1057 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1058 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1059 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1060 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1061 	/* Pull in device tunables. */
1062 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1063 	error = resource_int_value(device_get_name(sc->alc_dev),
1064 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1065 	if (error == 0) {
1066 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1067 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1068 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1069 			    "range; using default: %d\n",
1070 			    ALC_IM_RX_TIMER_DEFAULT);
1071 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1072 		}
1073 	}
1074 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1075 	error = resource_int_value(device_get_name(sc->alc_dev),
1076 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1077 	if (error == 0) {
1078 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1079 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1080 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1081 			    "range; using default: %d\n",
1082 			    ALC_IM_TX_TIMER_DEFAULT);
1083 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1084 		}
1085 	}
1086 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1087 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1088 	    sysctl_hw_alc_proc_limit, "I",
1089 	    "max number of Rx events to process");
1090 	/* Pull in device tunables. */
1091 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1092 	error = resource_int_value(device_get_name(sc->alc_dev),
1093 	    device_get_unit(sc->alc_dev), "process_limit",
1094 	    &sc->alc_process_limit);
1095 	if (error == 0) {
1096 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1097 		    sc->alc_process_limit > ALC_PROC_MAX) {
1098 			device_printf(sc->alc_dev,
1099 			    "process_limit value out of range; "
1100 			    "using default: %d\n", ALC_PROC_DEFAULT);
1101 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1102 		}
1103 	}
1104 
1105 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1106 	    NULL, "ALC statistics");
1107 	parent = SYSCTL_CHILDREN(tree);
1108 
1109 	/* Rx statistics. */
1110 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1111 	    NULL, "Rx MAC statistics");
1112 	child = SYSCTL_CHILDREN(tree);
1113 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1114 	    &stats->rx_frames, "Good frames");
1115 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1116 	    &stats->rx_bcast_frames, "Good broadcast frames");
1117 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1118 	    &stats->rx_mcast_frames, "Good multicast frames");
1119 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1120 	    &stats->rx_pause_frames, "Pause control frames");
1121 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1122 	    &stats->rx_control_frames, "Control frames");
1123 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1124 	    &stats->rx_crcerrs, "CRC errors");
1125 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1126 	    &stats->rx_lenerrs, "Frames with length mismatched");
1127 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1128 	    &stats->rx_bytes, "Good octets");
1129 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1130 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1131 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1132 	    &stats->rx_mcast_bytes, "Good multicast octets");
1133 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1134 	    &stats->rx_runts, "Too short frames");
1135 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1136 	    &stats->rx_fragments, "Fragmented frames");
1137 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1138 	    &stats->rx_pkts_64, "64 bytes frames");
1139 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1140 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1141 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1142 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1143 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1144 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1145 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1146 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1147 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1148 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1149 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1150 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1151 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1152 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1153 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1154 	    &stats->rx_fifo_oflows, "FIFO overflows");
1155 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1156 	    &stats->rx_rrs_errs, "Return status write-back errors");
1157 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1158 	    &stats->rx_alignerrs, "Alignment errors");
1159 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1160 	    &stats->rx_pkts_filtered,
1161 	    "Frames dropped due to address filtering");
1162 
1163 	/* Tx statistics. */
1164 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1165 	    NULL, "Tx MAC statistics");
1166 	child = SYSCTL_CHILDREN(tree);
1167 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1168 	    &stats->tx_frames, "Good frames");
1169 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1170 	    &stats->tx_bcast_frames, "Good broadcast frames");
1171 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1172 	    &stats->tx_mcast_frames, "Good multicast frames");
1173 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1174 	    &stats->tx_pause_frames, "Pause control frames");
1175 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1176 	    &stats->tx_control_frames, "Control frames");
1177 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1178 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1179 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1180 	    &stats->tx_excess_defer, "Frames with derferrals");
1181 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1182 	    &stats->tx_bytes, "Good octets");
1183 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1184 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1185 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1186 	    &stats->tx_mcast_bytes, "Good multicast octets");
1187 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1188 	    &stats->tx_pkts_64, "64 bytes frames");
1189 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1190 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1191 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1192 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1193 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1194 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1195 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1196 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1197 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1198 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1199 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1200 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1201 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1202 	    &stats->tx_single_colls, "Single collisions");
1203 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1204 	    &stats->tx_multi_colls, "Multiple collisions");
1205 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1206 	    &stats->tx_late_colls, "Late collisions");
1207 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1208 	    &stats->tx_excess_colls, "Excessive collisions");
1209 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1210 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1211 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1212 	    &stats->tx_underrun, "FIFO underruns");
1213 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1214 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1215 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1216 	    &stats->tx_lenerrs, "Frames with length mismatched");
1217 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1218 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1219 }
1220 
1221 #undef ALC_SYSCTL_STAT_ADD32
1222 #undef ALC_SYSCTL_STAT_ADD64
1223 
1224 struct alc_dmamap_arg {
1225 	bus_addr_t	alc_busaddr;
1226 };
1227 
1228 static void
1229 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1230 {
1231 	struct alc_dmamap_arg *ctx;
1232 
1233 	if (error != 0)
1234 		return;
1235 
1236 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1237 
1238 	ctx = (struct alc_dmamap_arg *)arg;
1239 	ctx->alc_busaddr = segs[0].ds_addr;
1240 }
1241 
1242 #ifdef foo
1243 /*
1244  * Normal and high Tx descriptors shares single Tx high address.
1245  * Four Rx descriptor/return rings and CMB shares the same Rx
1246  * high address.
1247  */
1248 static int
1249 alc_check_boundary(struct alc_softc *sc)
1250 {
1251 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1252 
1253 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1254 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1255 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1256 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1257 
1258 	/* 4GB boundary crossing is not allowed. */
1259 	if ((ALC_ADDR_HI(rx_ring_end) !=
1260 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1261 	    (ALC_ADDR_HI(rr_ring_end) !=
1262 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1263 	    (ALC_ADDR_HI(cmb_end) !=
1264 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1265 	    (ALC_ADDR_HI(tx_ring_end) !=
1266 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1267 		return (EFBIG);
1268 	/*
1269 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1270 	 * the same high address.
1271 	 */
1272 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1273 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1274 		return (EFBIG);
1275 
1276 	return (0);
1277 }
1278 #endif
1279 
1280 static int
1281 alc_dma_alloc(struct alc_softc *sc)
1282 {
1283 	struct alc_txdesc *txd;
1284 	struct alc_rxdesc *rxd;
1285 	struct alc_dmamap_arg ctx;
1286 	int error, i;
1287 
1288 	/* Create parent DMA tag. */
1289 	error = bus_dma_tag_create(
1290 	    sc->alc_cdata.alc_parent_tag, /* parent */
1291 	    1, 0,			/* alignment, boundary */
1292 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1293 	    BUS_SPACE_MAXADDR,		/* highaddr */
1294 	    NULL, NULL,			/* filter, filterarg */
1295 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1296 	    0,				/* nsegments */
1297 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1298 	    0,				/* flags */
1299 	    &sc->alc_cdata.alc_parent_tag);
1300 	if (error != 0) {
1301 		device_printf(sc->alc_dev,
1302 		    "could not create parent DMA tag.\n");
1303 		goto fail;
1304 	}
1305 
1306 	/* Create DMA tag for Tx descriptor ring. */
1307 	error = bus_dma_tag_create(
1308 	    sc->alc_cdata.alc_parent_tag, /* parent */
1309 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1310 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1311 	    BUS_SPACE_MAXADDR,		/* highaddr */
1312 	    NULL, NULL,			/* filter, filterarg */
1313 	    ALC_TX_RING_SZ,		/* maxsize */
1314 	    1,				/* nsegments */
1315 	    ALC_TX_RING_SZ,		/* maxsegsize */
1316 	    0,				/* flags */
1317 	    &sc->alc_cdata.alc_tx_ring_tag);
1318 	if (error != 0) {
1319 		device_printf(sc->alc_dev,
1320 		    "could not create Tx ring DMA tag.\n");
1321 		goto fail;
1322 	}
1323 
1324 	/* Create DMA tag for Rx free descriptor ring. */
1325 	error = bus_dma_tag_create(
1326 	    sc->alc_cdata.alc_parent_tag, /* parent */
1327 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1328 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1329 	    BUS_SPACE_MAXADDR,		/* highaddr */
1330 	    NULL, NULL,			/* filter, filterarg */
1331 	    ALC_RX_RING_SZ,		/* maxsize */
1332 	    1,				/* nsegments */
1333 	    ALC_RX_RING_SZ,		/* maxsegsize */
1334 	    0,				/* flags */
1335 	    &sc->alc_cdata.alc_rx_ring_tag);
1336 	if (error != 0) {
1337 		device_printf(sc->alc_dev,
1338 		    "could not create Rx ring DMA tag.\n");
1339 		goto fail;
1340 	}
1341 	/* Create DMA tag for Rx return descriptor ring. */
1342 	error = bus_dma_tag_create(
1343 	    sc->alc_cdata.alc_parent_tag, /* parent */
1344 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1345 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1346 	    BUS_SPACE_MAXADDR,		/* highaddr */
1347 	    NULL, NULL,			/* filter, filterarg */
1348 	    ALC_RR_RING_SZ,		/* maxsize */
1349 	    1,				/* nsegments */
1350 	    ALC_RR_RING_SZ,		/* maxsegsize */
1351 	    0,				/* flags */
1352 	    &sc->alc_cdata.alc_rr_ring_tag);
1353 	if (error != 0) {
1354 		device_printf(sc->alc_dev,
1355 		    "could not create Rx return ring DMA tag.\n");
1356 		goto fail;
1357 	}
1358 
1359 	/* Create DMA tag for coalescing message block. */
1360 	error = bus_dma_tag_create(
1361 	    sc->alc_cdata.alc_parent_tag, /* parent */
1362 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1363 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1364 	    BUS_SPACE_MAXADDR,		/* highaddr */
1365 	    NULL, NULL,			/* filter, filterarg */
1366 	    ALC_CMB_SZ,			/* maxsize */
1367 	    1,				/* nsegments */
1368 	    ALC_CMB_SZ,			/* maxsegsize */
1369 	    0,				/* flags */
1370 	    &sc->alc_cdata.alc_cmb_tag);
1371 	if (error != 0) {
1372 		device_printf(sc->alc_dev,
1373 		    "could not create CMB DMA tag.\n");
1374 		goto fail;
1375 	}
1376 	/* Create DMA tag for status message block. */
1377 	error = bus_dma_tag_create(
1378 	    sc->alc_cdata.alc_parent_tag, /* parent */
1379 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1380 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1381 	    BUS_SPACE_MAXADDR,		/* highaddr */
1382 	    NULL, NULL,			/* filter, filterarg */
1383 	    ALC_SMB_SZ,			/* maxsize */
1384 	    1,				/* nsegments */
1385 	    ALC_SMB_SZ,			/* maxsegsize */
1386 	    0,				/* flags */
1387 	    &sc->alc_cdata.alc_smb_tag);
1388 	if (error != 0) {
1389 		device_printf(sc->alc_dev,
1390 		    "could not create SMB DMA tag.\n");
1391 		goto fail;
1392 	}
1393 
1394 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1395 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1396 	    (void **)&sc->alc_rdata.alc_tx_ring,
1397 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1398 	    &sc->alc_cdata.alc_tx_ring_map);
1399 	if (error != 0) {
1400 		device_printf(sc->alc_dev,
1401 		    "could not allocate DMA'able memory for Tx ring.\n");
1402 		goto fail;
1403 	}
1404 	ctx.alc_busaddr = 0;
1405 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1406 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1407 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1408 	if (error != 0 || ctx.alc_busaddr == 0) {
1409 		device_printf(sc->alc_dev,
1410 		    "could not load DMA'able memory for Tx ring.\n");
1411 		goto fail;
1412 	}
1413 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1414 
1415 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1416 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1417 	    (void **)&sc->alc_rdata.alc_rx_ring,
1418 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1419 	    &sc->alc_cdata.alc_rx_ring_map);
1420 	if (error != 0) {
1421 		device_printf(sc->alc_dev,
1422 		    "could not allocate DMA'able memory for Rx ring.\n");
1423 		goto fail;
1424 	}
1425 	ctx.alc_busaddr = 0;
1426 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1427 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1428 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1429 	if (error != 0 || ctx.alc_busaddr == 0) {
1430 		device_printf(sc->alc_dev,
1431 		    "could not load DMA'able memory for Rx ring.\n");
1432 		goto fail;
1433 	}
1434 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1435 
1436 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1437 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1438 	    (void **)&sc->alc_rdata.alc_rr_ring,
1439 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1440 	    &sc->alc_cdata.alc_rr_ring_map);
1441 	if (error != 0) {
1442 		device_printf(sc->alc_dev,
1443 		    "could not allocate DMA'able memory for Rx return ring.\n");
1444 		goto fail;
1445 	}
1446 	ctx.alc_busaddr = 0;
1447 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1448 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1449 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1450 	if (error != 0 || ctx.alc_busaddr == 0) {
1451 		device_printf(sc->alc_dev,
1452 		    "could not load DMA'able memory for Tx ring.\n");
1453 		goto fail;
1454 	}
1455 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1456 
1457 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1458 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1459 	    (void **)&sc->alc_rdata.alc_cmb,
1460 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1461 	    &sc->alc_cdata.alc_cmb_map);
1462 	if (error != 0) {
1463 		device_printf(sc->alc_dev,
1464 		    "could not allocate DMA'able memory for CMB.\n");
1465 		goto fail;
1466 	}
1467 	ctx.alc_busaddr = 0;
1468 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1469 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1470 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1471 	if (error != 0 || ctx.alc_busaddr == 0) {
1472 		device_printf(sc->alc_dev,
1473 		    "could not load DMA'able memory for CMB.\n");
1474 		goto fail;
1475 	}
1476 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1477 
1478 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1479 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1480 	    (void **)&sc->alc_rdata.alc_smb,
1481 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1482 	    &sc->alc_cdata.alc_smb_map);
1483 	if (error != 0) {
1484 		device_printf(sc->alc_dev,
1485 		    "could not allocate DMA'able memory for SMB.\n");
1486 		goto fail;
1487 	}
1488 	ctx.alc_busaddr = 0;
1489 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1490 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1491 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1492 	if (error != 0 || ctx.alc_busaddr == 0) {
1493 		device_printf(sc->alc_dev,
1494 		    "could not load DMA'able memory for CMB.\n");
1495 		goto fail;
1496 	}
1497 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1498 
1499 #ifdef foo
1500 	/*
1501 	 * All of the status blocks and descriptor rings are
1502 	 * allocated at lower 4GB, their addresses high 32bits
1503 	 * part are same (all 0).
1504 	 */
1505 
1506 	/* Make sure we've not crossed 4GB boundary. */
1507 	if ((error = alc_check_boundary(sc)) != 0) {
1508 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1509 		    "switching to 32bit DMA addressing mode.\n");
1510 		alc_dma_free(sc);
1511 		/*
1512 		 * Limit max allowable DMA address space to 32bit
1513 		 * and try again.
1514 		 */
1515 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1516 		goto again;
1517 	}
1518 #endif
1519 
1520 	/*
1521 	 * Create Tx buffer parent tag.
1522 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1523 	 * so it needs separate parent DMA tag as parent DMA address
1524 	 * space could be restricted to be within 32bit address space
1525 	 * by 4GB boundary crossing.
1526 	 */
1527 	error = bus_dma_tag_create(
1528 	    sc->alc_cdata.alc_parent_tag, /* parent */
1529 	    1, 0,			/* alignment, boundary */
1530 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1531 	    BUS_SPACE_MAXADDR,		/* highaddr */
1532 	    NULL, NULL,			/* filter, filterarg */
1533 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1534 	    0,				/* nsegments */
1535 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1536 	    0,				/* flags */
1537 	    &sc->alc_cdata.alc_buffer_tag);
1538 	if (error != 0) {
1539 		device_printf(sc->alc_dev,
1540 		    "could not create parent buffer DMA tag.\n");
1541 		goto fail;
1542 	}
1543 
1544 	/* Create DMA tag for Tx buffers. */
1545 	error = bus_dma_tag_create(
1546 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1547 	    1, 0,			/* alignment, boundary */
1548 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1549 	    BUS_SPACE_MAXADDR,		/* highaddr */
1550 	    NULL, NULL,			/* filter, filterarg */
1551 	    ALC_TSO_MAXSIZE,		/* maxsize */
1552 	    ALC_MAXTXSEGS,		/* nsegments */
1553 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1554 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, /* flags */
1555 	    &sc->alc_cdata.alc_tx_tag);
1556 	if (error != 0) {
1557 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1558 		goto fail;
1559 	}
1560 
1561 	/* Create DMA tag for Rx buffers. */
1562 	error = bus_dma_tag_create(
1563 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1564 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1565 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1566 	    BUS_SPACE_MAXADDR,		/* highaddr */
1567 	    NULL, NULL,			/* filter, filterarg */
1568 	    MCLBYTES,			/* maxsize */
1569 	    1,				/* nsegments */
1570 	    MCLBYTES,			/* maxsegsize */
1571 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED, /* flags */
1572 	    &sc->alc_cdata.alc_rx_tag);
1573 	if (error != 0) {
1574 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1575 		goto fail;
1576 	}
1577 	/* Create DMA maps for Tx buffers. */
1578 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1579 		txd = &sc->alc_cdata.alc_txdesc[i];
1580 		txd->tx_m = NULL;
1581 		txd->tx_dmamap = NULL;
1582 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag,
1583 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1584 					  &txd->tx_dmamap);
1585 		if (error != 0) {
1586 			device_printf(sc->alc_dev,
1587 			    "could not create Tx dmamap.\n");
1588 			goto fail;
1589 		}
1590 	}
1591 	/* Create DMA maps for Rx buffers. */
1592 	error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1593 				  BUS_DMA_WAITOK,
1594 				  &sc->alc_cdata.alc_rx_sparemap);
1595 	if (error) {
1596 		device_printf(sc->alc_dev,
1597 		    "could not create spare Rx dmamap.\n");
1598 		goto fail;
1599 	}
1600 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1601 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1602 		rxd->rx_m = NULL;
1603 		rxd->rx_dmamap = NULL;
1604 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1605 					  BUS_DMA_WAITOK,
1606 					  &rxd->rx_dmamap);
1607 		if (error != 0) {
1608 			device_printf(sc->alc_dev,
1609 			    "could not create Rx dmamap.\n");
1610 			goto fail;
1611 		}
1612 	}
1613 
1614 fail:
1615 	return (error);
1616 }
1617 
1618 static void
1619 alc_dma_free(struct alc_softc *sc)
1620 {
1621 	struct alc_txdesc *txd;
1622 	struct alc_rxdesc *rxd;
1623 	int i;
1624 
1625 	/* Tx buffers. */
1626 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1627 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1628 			txd = &sc->alc_cdata.alc_txdesc[i];
1629 			if (txd->tx_dmamap != NULL) {
1630 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1631 				    txd->tx_dmamap);
1632 				txd->tx_dmamap = NULL;
1633 			}
1634 		}
1635 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1636 		sc->alc_cdata.alc_tx_tag = NULL;
1637 	}
1638 	/* Rx buffers */
1639 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1640 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1641 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1642 			if (rxd->rx_dmamap != NULL) {
1643 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1644 				    rxd->rx_dmamap);
1645 				rxd->rx_dmamap = NULL;
1646 			}
1647 		}
1648 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1649 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1650 			    sc->alc_cdata.alc_rx_sparemap);
1651 			sc->alc_cdata.alc_rx_sparemap = NULL;
1652 		}
1653 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1654 		sc->alc_cdata.alc_rx_tag = NULL;
1655 	}
1656 	/* Tx descriptor ring. */
1657 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1658 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1659 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1660 			    sc->alc_cdata.alc_tx_ring_map);
1661 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1662 		    sc->alc_rdata.alc_tx_ring != NULL)
1663 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1664 			    sc->alc_rdata.alc_tx_ring,
1665 			    sc->alc_cdata.alc_tx_ring_map);
1666 		sc->alc_rdata.alc_tx_ring = NULL;
1667 		sc->alc_cdata.alc_tx_ring_map = NULL;
1668 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1669 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1670 	}
1671 	/* Rx ring. */
1672 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1673 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1674 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1675 			    sc->alc_cdata.alc_rx_ring_map);
1676 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1677 		    sc->alc_rdata.alc_rx_ring != NULL)
1678 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1679 			    sc->alc_rdata.alc_rx_ring,
1680 			    sc->alc_cdata.alc_rx_ring_map);
1681 		sc->alc_rdata.alc_rx_ring = NULL;
1682 		sc->alc_cdata.alc_rx_ring_map = NULL;
1683 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1684 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1685 	}
1686 	/* Rx return ring. */
1687 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1688 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1689 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1690 			    sc->alc_cdata.alc_rr_ring_map);
1691 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1692 		    sc->alc_rdata.alc_rr_ring != NULL)
1693 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1694 			    sc->alc_rdata.alc_rr_ring,
1695 			    sc->alc_cdata.alc_rr_ring_map);
1696 		sc->alc_rdata.alc_rr_ring = NULL;
1697 		sc->alc_cdata.alc_rr_ring_map = NULL;
1698 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1699 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1700 	}
1701 	/* CMB block */
1702 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1703 		if (sc->alc_cdata.alc_cmb_map != NULL)
1704 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1705 			    sc->alc_cdata.alc_cmb_map);
1706 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1707 		    sc->alc_rdata.alc_cmb != NULL)
1708 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1709 			    sc->alc_rdata.alc_cmb,
1710 			    sc->alc_cdata.alc_cmb_map);
1711 		sc->alc_rdata.alc_cmb = NULL;
1712 		sc->alc_cdata.alc_cmb_map = NULL;
1713 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1714 		sc->alc_cdata.alc_cmb_tag = NULL;
1715 	}
1716 	/* SMB block */
1717 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1718 		if (sc->alc_cdata.alc_smb_map != NULL)
1719 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1720 			    sc->alc_cdata.alc_smb_map);
1721 		if (sc->alc_cdata.alc_smb_map != NULL &&
1722 		    sc->alc_rdata.alc_smb != NULL)
1723 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1724 			    sc->alc_rdata.alc_smb,
1725 			    sc->alc_cdata.alc_smb_map);
1726 		sc->alc_rdata.alc_smb = NULL;
1727 		sc->alc_cdata.alc_smb_map = NULL;
1728 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1729 		sc->alc_cdata.alc_smb_tag = NULL;
1730 	}
1731 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1732 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1733 		sc->alc_cdata.alc_buffer_tag = NULL;
1734 	}
1735 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1736 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1737 		sc->alc_cdata.alc_parent_tag = NULL;
1738 	}
1739 }
1740 
1741 static int
1742 alc_shutdown(device_t dev)
1743 {
1744 
1745 	return (alc_suspend(dev));
1746 }
1747 
1748 #if 0
1749 /* XXX: LINK SPEED */
1750 /*
1751  * Note, this driver resets the link speed to 10/100Mbps by
1752  * restarting auto-negotiation in suspend/shutdown phase but we
1753  * don't know whether that auto-negotiation would succeed or not
1754  * as driver has no control after powering off/suspend operation.
1755  * If the renegotiation fail WOL may not work. Running at 1Gbps
1756  * will draw more power than 375mA at 3.3V which is specified in
1757  * PCI specification and that would result in complete
1758  * shutdowning power to ethernet controller.
1759  *
1760  * TODO
1761  * Save current negotiated media speed/duplex/flow-control to
1762  * softc and restore the same link again after resuming. PHY
1763  * handling such as power down/resetting to 100Mbps may be better
1764  * handled in suspend method in phy driver.
1765  */
1766 static void
1767 alc_setlinkspeed(struct alc_softc *sc)
1768 {
1769 	struct mii_data *mii;
1770 	int aneg, i;
1771 
1772 	mii = device_get_softc(sc->alc_miibus);
1773 	mii_pollstat(mii);
1774 	aneg = 0;
1775 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1776 	    (IFM_ACTIVE | IFM_AVALID)) {
1777 		switch IFM_SUBTYPE(mii->mii_media_active) {
1778 		case IFM_10_T:
1779 		case IFM_100_TX:
1780 			return;
1781 		case IFM_1000_T:
1782 			aneg++;
1783 			break;
1784 		default:
1785 			break;
1786 		}
1787 	}
1788 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1789 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1790 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1791 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1792 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1793 	DELAY(1000);
1794 	if (aneg != 0) {
1795 		/*
1796 		 * Poll link state until alc(4) get a 10/100Mbps link.
1797 		 */
1798 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1799 			mii_pollstat(mii);
1800 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1801 			    == (IFM_ACTIVE | IFM_AVALID)) {
1802 				switch (IFM_SUBTYPE(
1803 				    mii->mii_media_active)) {
1804 				case IFM_10_T:
1805 				case IFM_100_TX:
1806 					alc_mac_config(sc);
1807 					return;
1808 				default:
1809 					break;
1810 				}
1811 			}
1812 			ALC_UNLOCK(sc);
1813 			pause("alclnk", hz);
1814 			ALC_LOCK(sc);
1815 		}
1816 		if (i == MII_ANEGTICKS_GIGE)
1817 			device_printf(sc->alc_dev,
1818 			    "establishing a link failed, WOL may not work!");
1819 	}
1820 	/*
1821 	 * No link, force MAC to have 100Mbps, full-duplex link.
1822 	 * This is the last resort and may/may not work.
1823 	 */
1824 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1825 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1826 	alc_mac_config(sc);
1827 }
1828 #endif
1829 
1830 #if 0
1831 /* XXX: WOL */
1832 static void
1833 alc_setwol(struct alc_softc *sc)
1834 {
1835 	struct ifnet *ifp;
1836 	uint32_t reg, pmcs;
1837 	uint16_t pmstat;
1838 
1839 	ALC_LOCK_ASSERT(sc);
1840 
1841 	alc_disable_l0s_l1(sc);
1842 	ifp = sc->alc_ifp;
1843 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1844 		/* Disable WOL. */
1845 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1846 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1847 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1848 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1849 		/* Force PHY power down. */
1850 		alc_phy_down(sc);
1851 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1852 			CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1853 		return;
1854 	}
1855 
1856 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1857 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1858 			alc_setlinkspeed(sc);
1859 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1860 			CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1861 	}
1862 
1863 	pmcs = 0;
1864 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1865 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1866 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1867 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1868 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1869 	    MAC_CFG_BCAST);
1870 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1871 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1872 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1873 		reg |= MAC_CFG_RX_ENB;
1874 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1875 
1876 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1877 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1878 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1879 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1880 		/* WOL disabled, PHY power down. */
1881 		alc_phy_down(sc);
1882 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1883 			CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1884 
1885 	}
1886 	/* Request PME. */
1887 	pmstat = pci_read_config(sc->alc_dev,
1888 				 sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1889 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1890 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1891 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1892 	pci_write_config(sc->alc_dev,
1893 			 sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1894 }
1895 #endif
1896 
1897 static int
1898 alc_suspend(device_t dev)
1899 {
1900 	struct alc_softc *sc = device_get_softc(dev);
1901 	struct ifnet *ifp = &sc->arpcom.ac_if;
1902 
1903 	lwkt_serialize_enter(ifp->if_serializer);
1904 	alc_stop(sc);
1905 #if 0
1906 /* XXX: WOL */
1907 	alc_setwol(sc);
1908 #endif
1909 	lwkt_serialize_exit(ifp->if_serializer);
1910 
1911 	return (0);
1912 }
1913 
1914 static int
1915 alc_resume(device_t dev)
1916 {
1917 	struct alc_softc *sc = device_get_softc(dev);
1918 	struct ifnet *ifp = &sc->arpcom.ac_if;
1919 	uint16_t pmstat;
1920 
1921 	lwkt_serialize_enter(ifp->if_serializer);
1922 
1923 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
1924 		/* Disable PME and clear PME status. */
1925 		pmstat = pci_read_config(sc->alc_dev,
1926 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1927 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1928 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1929 			pci_write_config(sc->alc_dev,
1930 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1931 		}
1932 	}
1933 
1934 	/* Reset PHY. */
1935 	alc_phy_reset(sc);
1936 	if (ifp->if_flags & IFF_UP)
1937 		alc_init(sc);
1938 
1939 	lwkt_serialize_exit(ifp->if_serializer);
1940 
1941 	return (0);
1942 }
1943 
1944 static int
1945 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1946 {
1947 	struct alc_txdesc *txd, *txd_last;
1948 	struct tx_desc *desc;
1949 	struct mbuf *m;
1950 #if 0 /* XXX: TSO */
1951 	struct ip *ip;
1952 #endif
1953 	struct tcphdr *tcp;
1954 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
1955 	bus_dmamap_t map;
1956 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1957 	int error, idx, nsegs, prod;
1958 
1959 	M_ASSERTPKTHDR((*m_head));
1960 
1961 	m = *m_head;
1962 	tcp = NULL;
1963 	ip_off = poff = 0;
1964 #if 0 /* XXX: TSO */
1965 	ip = NULL;
1966 
1967 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
1968 		/*
1969 		 * AR813x/AR815x requires offset of TCP/UDP header in its
1970 		 * Tx descriptor to perform Tx checksum offloading. TSO
1971 		 * also requires TCP header offset and modification of
1972 		 * IP/TCP header. This kind of operation takes many CPU
1973 		 * cycles on FreeBSD so fast host CPU is required to get
1974 		 * smooth TSO performance.
1975 		 */
1976 		struct ether_header *eh;
1977 
1978 		if (M_WRITABLE(m) == 0) {
1979 			/* Get a writable copy. */
1980 			m = m_dup(*m_head, MB_DONTWAIT);
1981 			/* Release original mbufs. */
1982 			m_freem(*m_head);
1983 			if (m == NULL) {
1984 				*m_head = NULL;
1985 				return (ENOBUFS);
1986 			}
1987 			*m_head = m;
1988 		}
1989 
1990 		ip_off = sizeof(struct ether_header);
1991 		m = m_pullup(m, ip_off + sizeof(struct ip));
1992 		if (m == NULL) {
1993 			*m_head = NULL;
1994 			return (ENOBUFS);
1995 		}
1996 		eh = mtod(m, struct ether_header *);
1997 		/*
1998 		 * Check if hardware VLAN insertion is off.
1999 		 * Additional check for LLC/SNAP frame?
2000 		 */
2001 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2002 			ip_off = sizeof(struct ether_vlan_header);
2003 			m = m_pullup(m, ip_off);
2004 			if (m == NULL) {
2005 				*m_head = NULL;
2006 				return (ENOBUFS);
2007 			}
2008 		}
2009 		m = m_pullup(m, ip_off + sizeof(struct ip));
2010 		if (m == NULL) {
2011 			*m_head = NULL;
2012 			return (ENOBUFS);
2013 		}
2014 		ip = (struct ip *)(mtod(m, char *) + ip_off);
2015 		poff = ip_off + (ip->ip_hl << 2);
2016 
2017 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2018 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2019 			if (m == NULL) {
2020 				*m_head = NULL;
2021 				return (ENOBUFS);
2022 			}
2023 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2024 			m = m_pullup(m, poff + (tcp->th_off << 2));
2025 			if (m == NULL) {
2026 				*m_head = NULL;
2027 				return (ENOBUFS);
2028 			}
2029 			/*
2030 			 * Due to strict adherence of Microsoft NDIS
2031 			 * Large Send specification, hardware expects
2032 			 * a pseudo TCP checksum inserted by upper
2033 			 * stack. Unfortunately the pseudo TCP
2034 			 * checksum that NDIS refers to does not include
2035 			 * TCP payload length so driver should recompute
2036 			 * the pseudo checksum here. Hopefully this
2037 			 * wouldn't be much burden on modern CPUs.
2038 			 *
2039 			 * Reset IP checksum and recompute TCP pseudo
2040 			 * checksum as NDIS specification said.
2041 			 */
2042 			ip->ip_sum = 0;
2043 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2044 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2045 		}
2046 		*m_head = m;
2047 	}
2048 #endif /* TSO */
2049 
2050 	prod = sc->alc_cdata.alc_tx_prod;
2051 	txd = &sc->alc_cdata.alc_txdesc[prod];
2052 	txd_last = txd;
2053 	map = txd->tx_dmamap;
2054 
2055 	error = bus_dmamap_load_mbuf_defrag(
2056 			sc->alc_cdata.alc_tx_tag, map, m_head,
2057 			txsegs, ALC_MAXTXSEGS, &nsegs, BUS_DMA_NOWAIT);
2058 	if (error) {
2059 		m_freem(*m_head);
2060 		*m_head = NULL;
2061 		return (error);
2062 	}
2063 	if (nsegs == 0) {
2064 		m_freem(*m_head);
2065 		*m_head = NULL;
2066 		return (EIO);
2067 	}
2068 
2069 	/* Check descriptor overrun. */
2070 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2071 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2072 		return (ENOBUFS);
2073 	}
2074 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2075 
2076 	m = *m_head;
2077 	cflags = TD_ETHERNET;
2078 	vtag = 0;
2079 	desc = NULL;
2080 	idx = 0;
2081 	/* Configure VLAN hardware tag insertion. */
2082 	if ((m->m_flags & M_VLANTAG) != 0) {
2083 		vtag = htons(m->m_pkthdr.ether_vlantag);
2084 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2085 		cflags |= TD_INS_VLAN_TAG;
2086 	}
2087 	/* Configure Tx checksum offload. */
2088 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2089 #ifdef ALC_USE_CUSTOM_CSUM
2090 		cflags |= TD_CUSTOM_CSUM;
2091 		/* Set checksum start offset. */
2092 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2093 		    TD_PLOAD_OFFSET_MASK;
2094 		/* Set checksum insertion position of TCP/UDP. */
2095 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2096 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2097 #else
2098 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2099 			cflags |= TD_IPCSUM;
2100 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2101 			cflags |= TD_TCPCSUM;
2102 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2103 			cflags |= TD_UDPCSUM;
2104 		/* Set TCP/UDP header offset. */
2105 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2106 		    TD_L4HDR_OFFSET_MASK;
2107 #endif
2108 	} else if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2109 		/* Request TSO and set MSS. */
2110 		cflags |= TD_TSO | TD_TSO_DESCV1;
2111 #if 0
2112 /* XXX: TSO */
2113 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2114 		    TD_MSS_MASK;
2115 		/* Set TCP header offset. */
2116 #endif
2117 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2118 		    TD_TCPHDR_OFFSET_MASK;
2119 		/*
2120 		 * AR813x/AR815x requires the first buffer should
2121 		 * only hold IP/TCP header data. Payload should
2122 		 * be handled in other descriptors.
2123 		 */
2124 		hdrlen = poff + (tcp->th_off << 2);
2125 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2126 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2127 		desc->flags = htole32(cflags);
2128 		desc->addr = htole64(txsegs[0].ds_addr);
2129 		sc->alc_cdata.alc_tx_cnt++;
2130 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2131 		if (m->m_len - hdrlen > 0) {
2132 			/* Handle remaining payload of the first fragment. */
2133 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2134 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2135 			    vtag));
2136 			desc->flags = htole32(cflags);
2137 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2138 			sc->alc_cdata.alc_tx_cnt++;
2139 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2140 		}
2141 		/* Handle remaining fragments. */
2142 		idx = 1;
2143 	}
2144 	for (; idx < nsegs; idx++) {
2145 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2146 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2147 		desc->flags = htole32(cflags);
2148 		desc->addr = htole64(txsegs[idx].ds_addr);
2149 		sc->alc_cdata.alc_tx_cnt++;
2150 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2151 	}
2152 	/* Update producer index. */
2153 	sc->alc_cdata.alc_tx_prod = prod;
2154 
2155 	/* Finally set EOP on the last descriptor. */
2156 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2157 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2158 	desc->flags |= htole32(TD_EOP);
2159 
2160 	/* Swap dmamap of the first and the last. */
2161 	txd = &sc->alc_cdata.alc_txdesc[prod];
2162 	map = txd_last->tx_dmamap;
2163 	txd_last->tx_dmamap = txd->tx_dmamap;
2164 	txd->tx_dmamap = map;
2165 	txd->tx_m = m;
2166 
2167 	return (0);
2168 }
2169 
2170 static void
2171 alc_start(struct ifnet *ifp)
2172 {
2173 	struct alc_softc *sc = ifp->if_softc;
2174 	struct mbuf *m_head;
2175 	int enq;
2176 
2177 	ASSERT_SERIALIZED(ifp->if_serializer);
2178 
2179 	/* Reclaim transmitted frames. */
2180 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2181 		alc_txeof(sc);
2182 
2183 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2184 		return;
2185 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2186 		ifq_purge(&ifp->if_snd);
2187 		return;
2188 	}
2189 
2190 	for (enq = 0; !ifq_is_empty(&ifp->if_snd); ) {
2191 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2192 		if (m_head == NULL)
2193 			break;
2194 		/*
2195 		 * Pack the data into the transmit ring. If we
2196 		 * don't have room, set the OACTIVE flag and wait
2197 		 * for the NIC to drain the ring.
2198 		 */
2199 		if (alc_encap(sc, &m_head)) {
2200 			if (m_head == NULL)
2201 				break;
2202 			ifq_prepend(&ifp->if_snd, m_head);
2203 			ifp->if_flags |= IFF_OACTIVE;
2204 			break;
2205 		}
2206 
2207 		enq++;
2208 		/*
2209 		 * If there's a BPF listener, bounce a copy of this frame
2210 		 * to him.
2211 		 */
2212 		ETHER_BPF_MTAP(ifp, m_head);
2213 	}
2214 
2215 	if (enq > 0) {
2216 		/* Sync descriptors. */
2217 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2218 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2219 		/* Kick. Assume we're using normal Tx priority queue. */
2220 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2221 		    (sc->alc_cdata.alc_tx_prod <<
2222 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2223 		    MBOX_TD_PROD_LO_IDX_MASK);
2224 		/* Set a timeout in case the chip goes out to lunch. */
2225 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2226 	}
2227 }
2228 
2229 static void
2230 alc_watchdog(struct alc_softc *sc)
2231 {
2232 	struct ifnet *ifp = &sc->arpcom.ac_if;
2233 
2234 	ASSERT_SERIALIZED(ifp->if_serializer);
2235 
2236 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2237 		return;
2238 
2239 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2240 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2241 		ifp->if_oerrors++;
2242 		alc_init(sc);
2243 		return;
2244 	}
2245 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2246 	ifp->if_oerrors++;
2247 	alc_init(sc);
2248 	if (!ifq_is_empty(&ifp->if_snd))
2249 		if_devstart(ifp);
2250 }
2251 
2252 static int
2253 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2254 {
2255 	struct alc_softc *sc;
2256 	struct ifreq *ifr;
2257 	struct mii_data *mii;
2258 	int error, mask;
2259 
2260 	ASSERT_SERIALIZED(ifp->if_serializer);
2261 
2262 	sc = ifp->if_softc;
2263 	ifr = (struct ifreq *)data;
2264 	error = 0;
2265 	switch (cmd) {
2266 	case SIOCSIFMTU:
2267 		if (ifr->ifr_mtu < ETHERMIN ||
2268 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2269 			    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2270 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2271 		    ifr->ifr_mtu > ETHERMTU)) {
2272 			error = EINVAL;
2273 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2274 			ifp->if_mtu = ifr->ifr_mtu;
2275 #if 0
2276 			/* AR813x/AR815x has 13 bits MSS field. */
2277 			if (ifp->if_mtu > ALC_TSO_MTU &&
2278 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2279 				ifp->if_capenable &= ~IFCAP_TSO4;
2280 				ifp->if_hwassist &= ~CSUM_TSO;
2281 			}
2282 #endif
2283 		}
2284 		break;
2285 	case SIOCSIFFLAGS:
2286 		if ((ifp->if_flags & IFF_UP) != 0) {
2287 			if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2288 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2289 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2290 				alc_rxfilter(sc);
2291 			else if ((ifp->if_flags & IFF_RUNNING) == 0)
2292 				alc_init(sc);
2293 		} else if ((ifp->if_flags & IFF_RUNNING) != 0)
2294 			alc_stop(sc);
2295 		sc->alc_if_flags = ifp->if_flags;
2296 		break;
2297 	case SIOCADDMULTI:
2298 	case SIOCDELMULTI:
2299 		if ((ifp->if_flags & IFF_RUNNING) != 0)
2300 			alc_rxfilter(sc);
2301 		break;
2302 	case SIOCSIFMEDIA:
2303 	case SIOCGIFMEDIA:
2304 		mii = device_get_softc(sc->alc_miibus);
2305 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2306 		break;
2307 	case SIOCSIFCAP:
2308 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2309 		if ((mask & IFCAP_TXCSUM) != 0 &&
2310 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2311 			ifp->if_capenable ^= IFCAP_TXCSUM;
2312 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2313 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2314 			else
2315 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2316 		}
2317 #if 0
2318 /* XXX: WOL */
2319 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2320 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2321 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2322 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2323 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2324 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2325 #endif
2326 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2327 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2328 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2329 			alc_rxvlan(sc);
2330 		}
2331 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2332 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2333 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2334 
2335 		/*
2336 		 * VLAN hardware tagging is required to do checksum
2337 		 * offload or TSO on VLAN interface. Checksum offload
2338 		 * on VLAN interface also requires hardware checksum
2339 		 * offload of parent interface.
2340 		 */
2341 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2342 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2343 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2344 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2345 // XXX		VLAN_CAPABILITIES(ifp);
2346 		break;
2347 	default:
2348 		error = ether_ioctl(ifp, cmd, data);
2349 		break;
2350 	}
2351 
2352 	return (error);
2353 }
2354 
2355 static void
2356 alc_mac_config(struct alc_softc *sc)
2357 {
2358 	struct mii_data *mii;
2359 	uint32_t reg;
2360 
2361 	mii = device_get_softc(sc->alc_miibus);
2362 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2363 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2364 	    MAC_CFG_SPEED_MASK);
2365 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2366 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2367 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
2368 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2369 	}
2370 	/* Reprogram MAC with resolved speed/duplex. */
2371 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2372 	case IFM_10_T:
2373 	case IFM_100_TX:
2374 		reg |= MAC_CFG_SPEED_10_100;
2375 		break;
2376 	case IFM_1000_T:
2377 		reg |= MAC_CFG_SPEED_1000;
2378 		break;
2379 	}
2380 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2381 		reg |= MAC_CFG_FULL_DUPLEX;
2382 #ifdef notyet
2383 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2384 			reg |= MAC_CFG_TX_FC;
2385 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2386 			reg |= MAC_CFG_RX_FC;
2387 #endif
2388 	}
2389 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2390 }
2391 
2392 static void
2393 alc_stats_clear(struct alc_softc *sc)
2394 {
2395 	struct smb sb, *smb;
2396 	uint32_t *reg;
2397 	int i;
2398 
2399 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2400 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2401 		    sc->alc_cdata.alc_smb_map,
2402 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2403 		smb = sc->alc_rdata.alc_smb;
2404 		/* Update done, clear. */
2405 		smb->updated = 0;
2406 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2407 		    sc->alc_cdata.alc_smb_map,
2408 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2409 	} else {
2410 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2411 		    reg++) {
2412 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2413 			i += sizeof(uint32_t);
2414 		}
2415 		/* Read Tx statistics. */
2416 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2417 		    reg++) {
2418 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2419 			i += sizeof(uint32_t);
2420 		}
2421 	}
2422 }
2423 
2424 static void
2425 alc_stats_update(struct alc_softc *sc)
2426 {
2427 	struct alc_hw_stats *stat;
2428 	struct smb sb, *smb;
2429 	struct ifnet *ifp;
2430 	uint32_t *reg;
2431 	int i;
2432 
2433 	ifp = sc->alc_ifp;
2434 	stat = &sc->alc_stats;
2435 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2436 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2437 		    sc->alc_cdata.alc_smb_map,
2438 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2439 		smb = sc->alc_rdata.alc_smb;
2440 		if (smb->updated == 0)
2441 			return;
2442 	} else {
2443 		smb = &sb;
2444 		/* Read Rx statistics. */
2445 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2446 		    reg++) {
2447 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2448 			i += sizeof(uint32_t);
2449 		}
2450 		/* Read Tx statistics. */
2451 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2452 		    reg++) {
2453 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2454 			i += sizeof(uint32_t);
2455 		}
2456 	}
2457 
2458 	/* Rx stats. */
2459 	stat->rx_frames += smb->rx_frames;
2460 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2461 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2462 	stat->rx_pause_frames += smb->rx_pause_frames;
2463 	stat->rx_control_frames += smb->rx_control_frames;
2464 	stat->rx_crcerrs += smb->rx_crcerrs;
2465 	stat->rx_lenerrs += smb->rx_lenerrs;
2466 	stat->rx_bytes += smb->rx_bytes;
2467 	stat->rx_runts += smb->rx_runts;
2468 	stat->rx_fragments += smb->rx_fragments;
2469 	stat->rx_pkts_64 += smb->rx_pkts_64;
2470 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2471 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2472 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2473 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2474 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2475 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2476 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2477 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2478 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2479 	stat->rx_alignerrs += smb->rx_alignerrs;
2480 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2481 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2482 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2483 
2484 	/* Tx stats. */
2485 	stat->tx_frames += smb->tx_frames;
2486 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2487 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2488 	stat->tx_pause_frames += smb->tx_pause_frames;
2489 	stat->tx_excess_defer += smb->tx_excess_defer;
2490 	stat->tx_control_frames += smb->tx_control_frames;
2491 	stat->tx_deferred += smb->tx_deferred;
2492 	stat->tx_bytes += smb->tx_bytes;
2493 	stat->tx_pkts_64 += smb->tx_pkts_64;
2494 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2495 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2496 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2497 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2498 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2499 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2500 	stat->tx_single_colls += smb->tx_single_colls;
2501 	stat->tx_multi_colls += smb->tx_multi_colls;
2502 	stat->tx_late_colls += smb->tx_late_colls;
2503 	stat->tx_excess_colls += smb->tx_excess_colls;
2504 	stat->tx_abort += smb->tx_abort;
2505 	stat->tx_underrun += smb->tx_underrun;
2506 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2507 	stat->tx_lenerrs += smb->tx_lenerrs;
2508 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2509 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2510 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2511 
2512 	/* Update counters in ifnet. */
2513 	ifp->if_opackets += smb->tx_frames;
2514 
2515 	ifp->if_collisions += smb->tx_single_colls +
2516 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2517 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2518 
2519 	/*
2520 	 * XXX
2521 	 * tx_pkts_truncated counter looks suspicious. It constantly
2522 	 * increments with no sign of Tx errors. This may indicate
2523 	 * the counter name is not correct one so I've removed the
2524 	 * counter in output errors.
2525 	 */
2526 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2527 	    smb->tx_underrun;
2528 
2529 	ifp->if_ipackets += smb->rx_frames;
2530 
2531 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2532 	    smb->rx_runts + smb->rx_pkts_truncated +
2533 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2534 	    smb->rx_alignerrs;
2535 
2536 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2537 		/* Update done, clear. */
2538 		smb->updated = 0;
2539 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2540 		    sc->alc_cdata.alc_smb_map,
2541 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2542 	}
2543 }
2544 
2545 static void
2546 alc_intr(void *arg)
2547 {
2548 	struct alc_softc *sc = arg;
2549 	struct ifnet *ifp = &sc->arpcom.ac_if;
2550 	uint32_t status;
2551 
2552 	ASSERT_SERIALIZED(ifp->if_serializer);
2553 
2554 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2555 	if ((status & ALC_INTRS) == 0)
2556 		return;
2557 
2558 	/* Acknowledge interrupts and disable interrupts. */
2559 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2560 
2561 	if (ifp->if_flags & IFF_RUNNING) {
2562 		if (status & INTR_RX_PKT) {
2563 			if (alc_rxintr(sc)) {
2564 				alc_init(sc);
2565 				return;
2566 			}
2567 		}
2568 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2569 		    INTR_TXQ_TO_RST)) {
2570 			if (status & INTR_DMA_RD_TO_RST) {
2571 				if_printf(ifp,
2572 				    "DMA read error! -- resetting\n");
2573 			}
2574 			if (status & INTR_DMA_WR_TO_RST) {
2575 				if_printf(ifp,
2576 				    "DMA write error! -- resetting\n");
2577 			}
2578 			if (status & INTR_TXQ_TO_RST)
2579 				if_printf(ifp, "TxQ reset! -- resetting\n");
2580 			alc_init(sc);
2581 			return;
2582 		}
2583 		if (!ifq_is_empty(&ifp->if_snd))
2584 			if_devstart(ifp);
2585 
2586 		/* Re-enable interrupts */
2587 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2588 	}
2589 }
2590 
2591 static void
2592 alc_txeof(struct alc_softc *sc)
2593 {
2594 	struct ifnet *ifp;
2595 	struct alc_txdesc *txd;
2596 	uint32_t cons, prod;
2597 	int prog;
2598 
2599 	ifp = sc->alc_ifp;
2600 
2601 	if (sc->alc_cdata.alc_tx_cnt == 0)
2602 		return;
2603 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2604 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2605 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2606 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2607 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2608 		prod = sc->alc_rdata.alc_cmb->cons;
2609 	} else
2610 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2611 	/* Assume we're using normal Tx priority queue. */
2612 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2613 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2614 	cons = sc->alc_cdata.alc_tx_cons;
2615 	/*
2616 	 * Go through our Tx list and free mbufs for those
2617 	 * frames which have been transmitted.
2618 	 */
2619 	for (prog = 0; cons != prod; prog++,
2620 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2621 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2622 			break;
2623 		prog++;
2624 		ifp->if_flags &= ~IFF_OACTIVE;
2625 		sc->alc_cdata.alc_tx_cnt--;
2626 		txd = &sc->alc_cdata.alc_txdesc[cons];
2627 		if (txd->tx_m != NULL) {
2628 			/* Reclaim transmitted mbufs. */
2629 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2630 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2631 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2632 			    txd->tx_dmamap);
2633 			m_freem(txd->tx_m);
2634 			txd->tx_m = NULL;
2635 		}
2636 	}
2637 
2638 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2639 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2640 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2641 	sc->alc_cdata.alc_tx_cons = cons;
2642 	/*
2643 	 * Unarm watchdog timer only when there is no pending
2644 	 * frames in Tx queue.
2645 	 */
2646 	if (sc->alc_cdata.alc_tx_cnt == 0)
2647 		sc->alc_watchdog_timer = 0;
2648 }
2649 
2650 static int
2651 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, boolean_t wait)
2652 {
2653 	struct mbuf *m;
2654 	bus_dma_segment_t segs[1];
2655 	bus_dmamap_t map;
2656 	int nsegs;
2657 	int error;
2658 
2659 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2660 	if (m == NULL)
2661 		return (ENOBUFS);
2662 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2663 #ifdef foo
2664 	/* Hardware require 4 bytes align */
2665 	m_adj(m, ETHER_ALIGN);
2666 #endif
2667 
2668 	error = bus_dmamap_load_mbuf_segment(
2669 			sc->alc_cdata.alc_rx_tag,
2670 			sc->alc_cdata.alc_rx_sparemap,
2671 			m, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2672 	if (error) {
2673 		m_freem(m);
2674 		return (ENOBUFS);
2675 	}
2676 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2677 
2678 	if (rxd->rx_m != NULL) {
2679 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2680 		    BUS_DMASYNC_POSTREAD);
2681 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2682 	}
2683 	map = rxd->rx_dmamap;
2684 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2685 	sc->alc_cdata.alc_rx_sparemap = map;
2686 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2687 	    BUS_DMASYNC_PREREAD);
2688 	rxd->rx_m = m;
2689 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2690 	return (0);
2691 }
2692 
2693 static int
2694 alc_rxintr(struct alc_softc *sc)
2695 {
2696 	struct ifnet *ifp;
2697 	struct rx_rdesc *rrd;
2698 	uint32_t nsegs, status;
2699 	int rr_cons, prog;
2700 
2701 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2702 	    sc->alc_cdata.alc_rr_ring_map,
2703 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2704 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2705 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2706 	rr_cons = sc->alc_cdata.alc_rr_cons;
2707 	ifp = sc->alc_ifp;
2708 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2709 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2710 		status = le32toh(rrd->status);
2711 		if ((status & RRD_VALID) == 0)
2712 			break;
2713 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2714 		if (nsegs == 0) {
2715 			/* This should not happen! */
2716 			device_printf(sc->alc_dev,
2717 			    "unexpected segment count -- resetting\n");
2718 			return (EIO);
2719 		}
2720 		alc_rxeof(sc, rrd);
2721 		/* Clear Rx return status. */
2722 		rrd->status = 0;
2723 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2724 		sc->alc_cdata.alc_rx_cons += nsegs;
2725 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2726 		prog += nsegs;
2727 	}
2728 
2729 	if (prog > 0) {
2730 		/* Update the consumer index. */
2731 		sc->alc_cdata.alc_rr_cons = rr_cons;
2732 		/* Sync Rx return descriptors. */
2733 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2734 		    sc->alc_cdata.alc_rr_ring_map,
2735 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2736 		/*
2737 		 * Sync updated Rx descriptors such that controller see
2738 		 * modified buffer addresses.
2739 		 */
2740 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2741 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2742 		/*
2743 		 * Let controller know availability of new Rx buffers.
2744 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2745 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2746 		 * only when Rx buffer pre-fetching is required. In
2747 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2748 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2749 		 * it still seems that pre-fetching needs more
2750 		 * experimentation.
2751 		 */
2752 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2753 		    sc->alc_cdata.alc_rx_cons);
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 /* Receive a frame. */
2760 static void
2761 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2762 {
2763 	struct alc_rxdesc *rxd;
2764 	struct ifnet *ifp;
2765 	struct mbuf *mp, *m;
2766 	uint32_t rdinfo, status, vtag;
2767 	int count, nsegs, rx_cons;
2768 
2769 	ifp = sc->alc_ifp;
2770 	status = le32toh(rrd->status);
2771 	rdinfo = le32toh(rrd->rdinfo);
2772 	rx_cons = RRD_RD_IDX(rdinfo);
2773 	nsegs = RRD_RD_CNT(rdinfo);
2774 
2775 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2776 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2777 		/*
2778 		 * We want to pass the following frames to upper
2779 		 * layer regardless of error status of Rx return
2780 		 * ring.
2781 		 *
2782 		 *  o IP/TCP/UDP checksum is bad.
2783 		 *  o frame length and protocol specific length
2784 		 *     does not match.
2785 		 *
2786 		 *  Force network stack compute checksum for
2787 		 *  errored frames.
2788 		 */
2789 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2790 		if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
2791 		    RRD_ERR_RUNT) != 0)
2792 			return;
2793 	}
2794 
2795 	for (count = 0; count < nsegs; count++,
2796 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2797 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2798 		mp = rxd->rx_m;
2799 		/* Add a new receive buffer to the ring. */
2800 		if (alc_newbuf(sc, rxd, FALSE) != 0) {
2801 			ifp->if_iqdrops++;
2802 			/* Reuse Rx buffers. */
2803 			if (sc->alc_cdata.alc_rxhead != NULL)
2804 				m_freem(sc->alc_cdata.alc_rxhead);
2805 			break;
2806 		}
2807 
2808 		/*
2809 		 * Assume we've received a full sized frame.
2810 		 * Actual size is fixed when we encounter the end of
2811 		 * multi-segmented frame.
2812 		 */
2813 		mp->m_len = sc->alc_buf_size;
2814 
2815 		/* Chain received mbufs. */
2816 		if (sc->alc_cdata.alc_rxhead == NULL) {
2817 			sc->alc_cdata.alc_rxhead = mp;
2818 			sc->alc_cdata.alc_rxtail = mp;
2819 		} else {
2820 			sc->alc_cdata.alc_rxprev_tail =
2821 			    sc->alc_cdata.alc_rxtail;
2822 			sc->alc_cdata.alc_rxtail->m_next = mp;
2823 			sc->alc_cdata.alc_rxtail = mp;
2824 		}
2825 
2826 		if (count == nsegs - 1) {
2827 			/* Last desc. for this frame. */
2828 			m = sc->alc_cdata.alc_rxhead;
2829 			/*
2830 			 * It seems that L1C/L2C controller has no way
2831 			 * to tell hardware to strip CRC bytes.
2832 			 */
2833 			m->m_pkthdr.len =
2834 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2835 			if (nsegs > 1) {
2836 				/* Set last mbuf size. */
2837 				mp->m_len = sc->alc_cdata.alc_rxlen -
2838 				    (nsegs - 1) * sc->alc_buf_size;
2839 				/* Remove the CRC bytes in chained mbufs. */
2840 				if (mp->m_len <= ETHER_CRC_LEN) {
2841 					sc->alc_cdata.alc_rxtail =
2842 					    sc->alc_cdata.alc_rxprev_tail;
2843 					sc->alc_cdata.alc_rxtail->m_len -=
2844 					    (ETHER_CRC_LEN - mp->m_len);
2845 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2846 					m_freem(mp);
2847 				} else {
2848 					mp->m_len -= ETHER_CRC_LEN;
2849 				}
2850 			} else
2851 				m->m_len = m->m_pkthdr.len;
2852 			m->m_pkthdr.rcvif = ifp;
2853 			/*
2854 			 * Due to hardware bugs, Rx checksum offloading
2855 			 * was intentionally disabled.
2856 			 */
2857 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2858 			    (status & RRD_VLAN_TAG) != 0) {
2859 				vtag = RRD_VLAN(le32toh(rrd->vtag));
2860 				m->m_pkthdr.ether_vlantag = ntohs(vtag);
2861 				m->m_flags |= M_VLANTAG;
2862 			}
2863 
2864 			/* Pass it on. */
2865 			ifp->if_input(ifp, m);
2866 		}
2867 	}
2868 	/* Reset mbuf chains. */
2869 	ALC_RXCHAIN_RESET(sc);
2870 }
2871 
2872 static void
2873 alc_tick(void *arg)
2874 {
2875 	struct alc_softc *sc = arg;
2876 	struct ifnet *ifp = &sc->arpcom.ac_if;
2877 	struct mii_data *mii;
2878 
2879 	lwkt_serialize_enter(ifp->if_serializer);
2880 
2881 	mii = device_get_softc(sc->alc_miibus);
2882 	mii_tick(mii);
2883 	alc_stats_update(sc);
2884 	/*
2885 	 * alc(4) does not rely on Tx completion interrupts to reclaim
2886 	 * transferred buffers. Instead Tx completion interrupts are
2887 	 * used to hint for scheduling Tx task. So it's necessary to
2888 	 * release transmitted buffers by kicking Tx completion
2889 	 * handler. This limits the maximum reclamation delay to a hz.
2890 	 */
2891 	alc_txeof(sc);
2892 	alc_watchdog(sc);
2893 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
2894 
2895 	lwkt_serialize_exit(ifp->if_serializer);
2896 }
2897 
2898 static void
2899 alc_reset(struct alc_softc *sc)
2900 {
2901 	uint32_t reg;
2902 	int i;
2903 
2904 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2905 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2906 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2907 
2908 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2909 		DELAY(10);
2910 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2911 			break;
2912 	}
2913 	if (i == 0)
2914 		device_printf(sc->alc_dev, "master reset timeout!\n");
2915 
2916 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2917 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2918 			break;
2919 		DELAY(10);
2920 	}
2921 
2922 	if (i == 0)
2923 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
2924 }
2925 
2926 static void
2927 alc_init(void *xsc)
2928 {
2929 	struct alc_softc *sc = xsc;
2930 	struct ifnet *ifp = &sc->arpcom.ac_if;
2931 	struct mii_data *mii;
2932 	uint8_t eaddr[ETHER_ADDR_LEN];
2933 	bus_addr_t paddr;
2934 	uint32_t reg, rxf_hi, rxf_lo;
2935 
2936 	ASSERT_SERIALIZED(ifp->if_serializer);
2937 
2938 	mii = device_get_softc(sc->alc_miibus);
2939 
2940 	/*
2941 	 * Cancel any pending I/O.
2942 	 */
2943 	alc_stop(sc);
2944 	/*
2945 	 * Reset the chip to a known state.
2946 	 */
2947 	alc_reset(sc);
2948 
2949 	/* Initialize Rx descriptors. */
2950 	if (alc_init_rx_ring(sc) != 0) {
2951 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
2952 		alc_stop(sc);
2953 		return;
2954 	}
2955 	alc_init_rr_ring(sc);
2956 	alc_init_tx_ring(sc);
2957 	alc_init_cmb(sc);
2958 	alc_init_smb(sc);
2959 
2960 	/* Reprogram the station address. */
2961 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2962 	CSR_WRITE_4(sc, ALC_PAR0,
2963 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2964 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2965 	/*
2966 	 * Clear WOL status and disable all WOL feature as WOL
2967 	 * would interfere Rx operation under normal environments.
2968 	 */
2969 	CSR_READ_4(sc, ALC_WOL_CFG);
2970 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2971 	/* Set Tx descriptor base addresses. */
2972 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2973 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2974 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2975 	/* We don't use high priority ring. */
2976 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2977 	/* Set Tx descriptor counter. */
2978 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2979 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2980 	/* Set Rx descriptor base addresses. */
2981 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2982 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2983 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2984 	/* We use one Rx ring. */
2985 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2986 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2987 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2988 	/* Set Rx descriptor counter. */
2989 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2990 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2991 
2992 	/*
2993 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2994 	 * if it do not fit the buffer size. Rx return descriptor holds
2995 	 * a counter that indicates how many fragments were made by the
2996 	 * hardware. The buffer size should be multiple of 8 bytes.
2997 	 * Since hardware has limit on the size of buffer size, always
2998 	 * use the maximum value.
2999 	 * For strict-alignment architectures make sure to reduce buffer
3000 	 * size by 8 bytes to make room for alignment fixup.
3001 	 */
3002 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3003 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3004 
3005 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3006 	/* Set Rx return descriptor base addresses. */
3007 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3008 	/* We use one Rx return ring. */
3009 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3010 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3011 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3012 	/* Set Rx return descriptor counter. */
3013 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3014 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3015 	paddr = sc->alc_rdata.alc_cmb_paddr;
3016 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3017 	paddr = sc->alc_rdata.alc_smb_paddr;
3018 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3019 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3020 
3021 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3022 		/* Reconfigure SRAM - Vendor magic. */
3023 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3024 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3025 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3026 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3027 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3028 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3029 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3030 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3031 	}
3032 
3033 	/* Tell hardware that we're ready to load DMA blocks. */
3034 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3035 
3036 	/* Configure interrupt moderation timer. */
3037 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3038 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3039 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3040 	/*
3041 	 * We don't want to automatic interrupt clear as task queue
3042 	 * for the interrupt should know interrupt status.
3043 	 */
3044 	reg = MASTER_SA_TIMER_ENB;
3045 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3046 		reg |= MASTER_IM_RX_TIMER_ENB;
3047 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3048 		reg |= MASTER_IM_TX_TIMER_ENB;
3049 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3050 	/*
3051 	 * Disable interrupt re-trigger timer. We don't want automatic
3052 	 * re-triggering of un-ACKed interrupts.
3053 	 */
3054 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3055 	/* Configure CMB. */
3056 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3057 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3058 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3059 	} else {
3060 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3061 	}
3062 	/*
3063 	 * Hardware can be configured to issue SMB interrupt based
3064 	 * on programmed interval. Since there is a callout that is
3065 	 * invoked for every hz in driver we use that instead of
3066 	 * relying on periodic SMB interrupt.
3067 	 */
3068 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3069 	/* Clear MAC statistics. */
3070 	alc_stats_clear(sc);
3071 
3072 	/*
3073 	 * Always use maximum frame size that controller can support.
3074 	 * Otherwise received frames that has larger frame length
3075 	 * than alc(4) MTU would be silently dropped in hardware. This
3076 	 * would make path-MTU discovery hard as sender wouldn't get
3077 	 * any responses from receiver. alc(4) supports
3078 	 * multi-fragmented frames on Rx path so it has no issue on
3079 	 * assembling fragmented frames. Using maximum frame size also
3080 	 * removes the need to reinitialize hardware when interface
3081 	 * MTU configuration was changed.
3082 	 *
3083 	 * Be conservative in what you do, be liberal in what you
3084 	 * accept from others - RFC 793.
3085 	 */
3086 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3087 
3088 	/* Disable header split(?) */
3089 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3090 
3091 	/* Configure IPG/IFG parameters. */
3092 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3093 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3094 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3095 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3096 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3097 	/* Set parameters for half-duplex media. */
3098 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3099 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3100 	    HDPX_CFG_LCOL_MASK) |
3101 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3102 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3103 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3104 	    HDPX_CFG_ABEBT_MASK) |
3105 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3106 	    HDPX_CFG_JAMIPG_MASK));
3107 	/*
3108 	 * Set TSO/checksum offload threshold. For frames that is
3109 	 * larger than this threshold, hardware wouldn't do
3110 	 * TSO/checksum offloading.
3111 	 */
3112 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3113 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3114 	    TSO_OFFLOAD_THRESH_MASK);
3115 	/* Configure TxQ. */
3116 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3117 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3118 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3119 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3120 		reg >>= 1;
3121 	}
3122 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3123 	    TXQ_CFG_TD_BURST_MASK;
3124 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3125 
3126 	/* Configure Rx free descriptor pre-fetching. */
3127 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3128 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3129 	    RX_RD_FREE_THRESH_HI_MASK) |
3130 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3131 	    RX_RD_FREE_THRESH_LO_MASK));
3132 
3133 	/*
3134 	 * Configure flow control parameters.
3135 	 * XON  : 80% of Rx FIFO
3136 	 * XOFF : 30% of Rx FIFO
3137 	 */
3138 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3139 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3140 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3141 		rxf_hi = (reg * 8) / 10;
3142 		rxf_lo = (reg * 3) / 10;
3143 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3144 			((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3145 			 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3146 			((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3147 			 RX_FIFO_PAUSE_THRESH_HI_MASK));
3148 	}
3149 
3150 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3151 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2) {
3152 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3153 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3154 		    SERDES_PHY_CLK_SLOWDOWN);
3155 	}
3156 
3157 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3158 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3159 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3160 
3161 	/* Configure RxQ. */
3162 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3163 	    RXQ_CFG_RD_BURST_MASK;
3164 	reg |= RXQ_CFG_RSS_MODE_DIS;
3165 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3166 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3167 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3168 
3169 	/* Configure DMA parameters. */
3170 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3171 	reg |= sc->alc_rcb;
3172 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3173 		reg |= DMA_CFG_CMB_ENB;
3174 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3175 		reg |= DMA_CFG_SMB_ENB;
3176 	else
3177 		reg |= DMA_CFG_SMB_DIS;
3178 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3179 	    DMA_CFG_RD_BURST_SHIFT;
3180 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3181 	    DMA_CFG_WR_BURST_SHIFT;
3182 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3183 	    DMA_CFG_RD_DELAY_CNT_MASK;
3184 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3185 	    DMA_CFG_WR_DELAY_CNT_MASK;
3186 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3187 
3188 	/*
3189 	 * Configure Tx/Rx MACs.
3190 	 *  - Auto-padding for short frames.
3191 	 *  - Enable CRC generation.
3192 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3193 	 *  is followed after detection of link establishment.
3194 	 *  AR813x/AR815x always does checksum computation regardless
3195 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3196 	 *  have bug in protocol field in Rx return structure so
3197 	 *  these controllers can't handle fragmented frames. Disable
3198 	 *  Rx checksum offloading until there is a newer controller
3199 	 *  that has sane implementation.
3200 	 */
3201 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3202 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3203 	    MAC_CFG_PREAMBLE_MASK);
3204 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3205 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3206 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3207 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3208 	}
3209 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3210 		reg |= MAC_CFG_SPEED_10_100;
3211 	else
3212 		reg |= MAC_CFG_SPEED_1000;
3213 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3214 
3215 	/* Set up the receive filter. */
3216 	alc_rxfilter(sc);
3217 	alc_rxvlan(sc);
3218 
3219 	/* Acknowledge all pending interrupts and clear it. */
3220 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3221 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3222 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3223 
3224 	sc->alc_flags &= ~ALC_FLAG_LINK;
3225 	/* Switch to the current media. */
3226 	mii_mediachg(mii);
3227 
3228 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3229 
3230 	ifp->if_flags |= IFF_RUNNING;
3231 	ifp->if_flags &= ~IFF_OACTIVE;
3232 }
3233 
3234 static void
3235 alc_stop(struct alc_softc *sc)
3236 {
3237 	struct ifnet *ifp = &sc->arpcom.ac_if;
3238 	struct alc_txdesc *txd;
3239 	struct alc_rxdesc *rxd;
3240 	uint32_t reg;
3241 	int i;
3242 
3243 	ASSERT_SERIALIZED(ifp->if_serializer);
3244 
3245 	/*
3246 	 * Mark the interface down and cancel the watchdog timer.
3247 	 */
3248 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3249 	sc->alc_flags &= ~ALC_FLAG_LINK;
3250 	callout_stop(&sc->alc_tick_ch);
3251 	sc->alc_watchdog_timer = 0;
3252 	alc_stats_update(sc);
3253 	/* Disable interrupts. */
3254 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3255 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3256 	alc_stop_queue(sc);
3257 	/* Disable DMA. */
3258 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3259 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3260 	reg |= DMA_CFG_SMB_DIS;
3261 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3262 	DELAY(1000);
3263 	/* Stop Rx/Tx MACs. */
3264 	alc_stop_mac(sc);
3265 	/* Disable interrupts which might be touched in taskq handler. */
3266 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3267 
3268 	/* Reclaim Rx buffers that have been processed. */
3269 	if (sc->alc_cdata.alc_rxhead != NULL)
3270 		m_freem(sc->alc_cdata.alc_rxhead);
3271 	ALC_RXCHAIN_RESET(sc);
3272 	/*
3273 	 * Free Tx/Rx mbufs still in the queues.
3274 	 */
3275 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3276 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3277 		if (rxd->rx_m != NULL) {
3278 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3279 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3280 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3281 			    rxd->rx_dmamap);
3282 			m_freem(rxd->rx_m);
3283 			rxd->rx_m = NULL;
3284 		}
3285 	}
3286 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3287 		txd = &sc->alc_cdata.alc_txdesc[i];
3288 		if (txd->tx_m != NULL) {
3289 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3290 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3291 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3292 			    txd->tx_dmamap);
3293 			m_freem(txd->tx_m);
3294 			txd->tx_m = NULL;
3295 		}
3296 	}
3297 }
3298 
3299 static void
3300 alc_stop_mac(struct alc_softc *sc)
3301 {
3302 	uint32_t reg;
3303 	int i;
3304 
3305 	/* Disable Rx/Tx MAC. */
3306 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3307 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3308 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
3309 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3310 	}
3311 	for (i = ALC_TIMEOUT; i > 0; i--) {
3312 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3313 		if (reg == 0)
3314 			break;
3315 		DELAY(10);
3316 	}
3317 	if (i == 0)
3318 		device_printf(sc->alc_dev,
3319 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3320 }
3321 
3322 static void
3323 alc_start_queue(struct alc_softc *sc)
3324 {
3325 	uint32_t qcfg[] = {
3326 		0,
3327 		RXQ_CFG_QUEUE0_ENB,
3328 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3329 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3330 		RXQ_CFG_ENB
3331 	};
3332 	uint32_t cfg;
3333 
3334 	/* Enable RxQ. */
3335 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3336 	cfg &= ~RXQ_CFG_ENB;
3337 	cfg |= qcfg[1];
3338 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3339 	/* Enable TxQ. */
3340 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3341 	cfg |= TXQ_CFG_ENB;
3342 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3343 }
3344 
3345 static void
3346 alc_stop_queue(struct alc_softc *sc)
3347 {
3348 	uint32_t reg;
3349 	int i;
3350 
3351 	/* Disable RxQ. */
3352 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3353 	if ((reg & RXQ_CFG_ENB) != 0) {
3354 		reg &= ~RXQ_CFG_ENB;
3355 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3356 	}
3357 	/* Disable TxQ. */
3358 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3359 	if ((reg & TXQ_CFG_ENB) == 0) {
3360 		reg &= ~TXQ_CFG_ENB;
3361 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3362 	}
3363 	for (i = ALC_TIMEOUT; i > 0; i--) {
3364 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3365 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3366 			break;
3367 		DELAY(10);
3368 	}
3369 	if (i == 0)
3370 		device_printf(sc->alc_dev,
3371 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3372 }
3373 
3374 static void
3375 alc_init_tx_ring(struct alc_softc *sc)
3376 {
3377 	struct alc_ring_data *rd;
3378 	struct alc_txdesc *txd;
3379 	int i;
3380 
3381 	sc->alc_cdata.alc_tx_prod = 0;
3382 	sc->alc_cdata.alc_tx_cons = 0;
3383 	sc->alc_cdata.alc_tx_cnt = 0;
3384 
3385 	rd = &sc->alc_rdata;
3386 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3387 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3388 		txd = &sc->alc_cdata.alc_txdesc[i];
3389 		txd->tx_m = NULL;
3390 	}
3391 
3392 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3393 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3394 }
3395 
3396 static int
3397 alc_init_rx_ring(struct alc_softc *sc)
3398 {
3399 	struct alc_ring_data *rd;
3400 	struct alc_rxdesc *rxd;
3401 	int i;
3402 
3403 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3404 	rd = &sc->alc_rdata;
3405 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3406 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3407 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3408 		rxd->rx_m = NULL;
3409 		rxd->rx_desc = &rd->alc_rx_ring[i];
3410 		if (alc_newbuf(sc, rxd, TRUE) != 0)
3411 			return (ENOBUFS);
3412 	}
3413 
3414 	/*
3415 	 * Since controller does not update Rx descriptors, driver
3416 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3417 	 * is enough to ensure coherence.
3418 	 */
3419 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3420 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3421 	/* Let controller know availability of new Rx buffers. */
3422 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3423 
3424 	return (0);
3425 }
3426 
3427 static void
3428 alc_init_rr_ring(struct alc_softc *sc)
3429 {
3430 	struct alc_ring_data *rd;
3431 
3432 	sc->alc_cdata.alc_rr_cons = 0;
3433 	ALC_RXCHAIN_RESET(sc);
3434 
3435 	rd = &sc->alc_rdata;
3436 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3437 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3438 	    sc->alc_cdata.alc_rr_ring_map,
3439 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3440 }
3441 
3442 static void
3443 alc_init_cmb(struct alc_softc *sc)
3444 {
3445 	struct alc_ring_data *rd;
3446 
3447 	rd = &sc->alc_rdata;
3448 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3449 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3450 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3451 }
3452 
3453 static void
3454 alc_init_smb(struct alc_softc *sc)
3455 {
3456 	struct alc_ring_data *rd;
3457 
3458 	rd = &sc->alc_rdata;
3459 	bzero(rd->alc_smb, ALC_SMB_SZ);
3460 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3461 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3462 }
3463 
3464 static void
3465 alc_rxvlan(struct alc_softc *sc)
3466 {
3467 	struct ifnet *ifp;
3468 	uint32_t reg;
3469 
3470 	ifp = sc->alc_ifp;
3471 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3472 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3473 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3474 	else
3475 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3476 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3477 }
3478 
3479 static void
3480 alc_rxfilter(struct alc_softc *sc)
3481 {
3482 	struct ifnet *ifp;
3483 	struct ifmultiaddr *ifma;
3484 	uint32_t crc;
3485 	uint32_t mchash[2];
3486 	uint32_t rxcfg;
3487 
3488 	ifp = sc->alc_ifp;
3489 
3490 	bzero(mchash, sizeof(mchash));
3491 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3492 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3493 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3494 		rxcfg |= MAC_CFG_BCAST;
3495 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3496 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3497 			rxcfg |= MAC_CFG_PROMISC;
3498 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3499 			rxcfg |= MAC_CFG_ALLMULTI;
3500 		mchash[0] = 0xFFFFFFFF;
3501 		mchash[1] = 0xFFFFFFFF;
3502 		goto chipit;
3503 	}
3504 
3505 #if 0
3506 	/* XXX */
3507 	if_maddr_rlock(ifp);
3508 #endif
3509 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3510 		if (ifma->ifma_addr->sa_family != AF_LINK)
3511 			continue;
3512 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3513 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3514 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3515 	}
3516 #if 0
3517 	/* XXX */
3518 	if_maddr_runlock(ifp);
3519 #endif
3520 
3521 chipit:
3522 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3523 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3524 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3525 }
3526 
3527 static int
3528 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3529 {
3530 	return (sysctl_int_range(oidp, arg1, arg2, req,
3531 	    ALC_PROC_MIN, ALC_PROC_MAX));
3532 }
3533 
3534 static int
3535 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3536 {
3537 
3538 	return (sysctl_int_range(oidp, arg1, arg2, req,
3539 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3540 }
3541