xref: /dragonfly/sys/dev/netif/alc/if_alc.c (revision cecb9aae)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/alc/if_alc.c,v 1.6 2009/09/29 23:03:16 yongari Exp $
28  */
29 
30 /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/bitops.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/bpf.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/ifq_var.h>
53 #include <net/vlan/if_vlan_var.h>
54 #include <net/vlan/if_vlan_ether.h>
55 
56 #include <netinet/tcp.h>
57 
58 #include <dev/netif/mii_layer/mii.h>
59 #include <dev/netif/mii_layer/miivar.h>
60 
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcidevs.h>
64 
65 #include <dev/netif/alc/if_alcreg.h>
66 #include <dev/netif/alc/if_alcvar.h>
67 
68 /* "device miibus" required.  See GENERIC if you get errors here. */
69 #include "miibus_if.h"
70 
71 #undef ALC_USE_CUSTOM_CSUM
72 #ifdef ALC_USE_CUSTOM_CSUM
73 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
74 #else
75 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
76 #endif
77 
78 /* Tunables. */
79 static int alc_msi_enable = 1;
80 TUNABLE_INT("hw.alc.msi.enable", &alc_msi_enable);
81 
82 /*
83  * Devices supported by this driver.
84  */
85 
86 static struct alc_ident alc_ident_table[] = {
87 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
88 		"Atheros AR8131 PCIe Gigabit Ethernet" },
89 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
90 		"Atheros AR8132 PCIe Fast Ethernet" },
91 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
92 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
93 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
94 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
95 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
96 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
97 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
98 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
99 	{ 0, 0, 0, NULL }
100 };
101 
102 static int	alc_attach(device_t);
103 static int	alc_probe(device_t);
104 static int	alc_detach(device_t);
105 static int	alc_shutdown(device_t);
106 static int	alc_suspend(device_t);
107 static int	alc_resume(device_t);
108 static int	alc_miibus_readreg(device_t, int, int);
109 static void	alc_miibus_statchg(device_t);
110 static int	alc_miibus_writereg(device_t, int, int, int);
111 
112 static void	alc_init(void *);
113 static void	alc_start(struct ifnet *, struct ifaltq_subque *);
114 static void	alc_watchdog(struct alc_softc *);
115 static int	alc_mediachange(struct ifnet *);
116 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
117 static int	alc_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
118 
119 static void	alc_aspm(struct alc_softc *, int);
120 #ifdef foo
121 static int	alc_check_boundary(struct alc_softc *);
122 #endif
123 static void	alc_disable_l0s_l1(struct alc_softc *);
124 static int	alc_dma_alloc(struct alc_softc *);
125 static void	alc_dma_free(struct alc_softc *);
126 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
127 static int	alc_encap(struct alc_softc *, struct mbuf **);
128 static struct alc_ident *alc_find_ident(device_t);
129 static void	alc_get_macaddr(struct alc_softc *);
130 static void	alc_init_cmb(struct alc_softc *);
131 static void	alc_init_rr_ring(struct alc_softc *);
132 static int	alc_init_rx_ring(struct alc_softc *);
133 static void	alc_init_smb(struct alc_softc *);
134 static void	alc_init_tx_ring(struct alc_softc *);
135 static void	alc_intr(void *);
136 static void	alc_mac_config(struct alc_softc *);
137 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, boolean_t);
138 static void	alc_phy_down(struct alc_softc *);
139 static void	alc_phy_reset(struct alc_softc *);
140 static void	alc_reset(struct alc_softc *);
141 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
142 static int	alc_rxintr(struct alc_softc *);
143 static void	alc_rxfilter(struct alc_softc *);
144 static void	alc_rxvlan(struct alc_softc *);
145 #if 0
146 static void	alc_setlinkspeed(struct alc_softc *);
147 /* XXX: WOL */
148 static void	alc_setwol(struct alc_softc *);
149 #endif
150 static void	alc_start_queue(struct alc_softc *);
151 static void	alc_stats_clear(struct alc_softc *);
152 static void	alc_stats_update(struct alc_softc *);
153 static void	alc_stop(struct alc_softc *);
154 static void	alc_stop_mac(struct alc_softc *);
155 static void	alc_stop_queue(struct alc_softc *);
156 static void	alc_sysctl_node(struct alc_softc *);
157 static void	alc_tick(void *);
158 static void	alc_txeof(struct alc_softc *);
159 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
160 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
161 
162 static device_method_t alc_methods[] = {
163 	/* Device interface. */
164 	DEVMETHOD(device_probe,		alc_probe),
165 	DEVMETHOD(device_attach,	alc_attach),
166 	DEVMETHOD(device_detach,	alc_detach),
167 	DEVMETHOD(device_shutdown,	alc_shutdown),
168 	DEVMETHOD(device_suspend,	alc_suspend),
169 	DEVMETHOD(device_resume,	alc_resume),
170 
171 	/* MII interface. */
172 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
173 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
174 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
175 
176 	{ NULL, NULL }
177 };
178 
179 static DEFINE_CLASS_0(alc, alc_driver, alc_methods, sizeof(struct alc_softc));
180 static devclass_t alc_devclass;
181 
182 DECLARE_DUMMY_MODULE(if_alc);
183 DRIVER_MODULE(if_alc, pci, alc_driver, alc_devclass, NULL, NULL);
184 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, NULL, NULL);
185 
186 static const uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
187 
188 static int
189 alc_miibus_readreg(device_t dev, int phy, int reg)
190 {
191 	struct alc_softc *sc;
192 	uint32_t v;
193 	int i;
194 
195 	sc = device_get_softc(dev);
196 
197 	if (phy != sc->alc_phyaddr)
198 		return (0);
199 
200 	/*
201 	 * For AR8132 fast ethernet controller, do not report 1000baseT
202 	 * capability to mii(4). Even though AR8132 uses the same
203 	 * model/revision number of F1 gigabit PHY, the PHY has no
204 	 * ability to establish 1000baseT link.
205 	 */
206 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
207 	    reg == MII_EXTSR)
208 		return (0);
209 
210 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
211 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
212 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
213 		DELAY(5);
214 		v = CSR_READ_4(sc, ALC_MDIO);
215 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
216 			break;
217 	}
218 
219 	if (i == 0) {
220 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
221 		return (0);
222 	}
223 
224 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
225 }
226 
227 static int
228 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
229 {
230 	struct alc_softc *sc;
231 	uint32_t v;
232 	int i;
233 
234 	sc = device_get_softc(dev);
235 
236 	if (phy != sc->alc_phyaddr)
237 		return (0);
238 
239 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
240 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
241 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
242 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
243 		DELAY(5);
244 		v = CSR_READ_4(sc, ALC_MDIO);
245 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
246 			break;
247 	}
248 
249 	if (i == 0)
250 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
251 
252 	return (0);
253 }
254 
255 static void
256 alc_miibus_statchg(device_t dev)
257 {
258 	struct alc_softc *sc;
259 	struct mii_data *mii;
260 	struct ifnet *ifp;
261 	uint32_t reg;
262 
263 	sc = device_get_softc(dev);
264 
265 	mii = device_get_softc(sc->alc_miibus);
266 	ifp = sc->alc_ifp;
267 	if (mii == NULL || ifp == NULL ||
268 	    (ifp->if_flags & IFF_RUNNING) == 0)
269 		return;
270 
271 	sc->alc_flags &= ~ALC_FLAG_LINK;
272 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
273 	    (IFM_ACTIVE | IFM_AVALID)) {
274 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
275 		case IFM_10_T:
276 		case IFM_100_TX:
277 			sc->alc_flags |= ALC_FLAG_LINK;
278 			break;
279 		case IFM_1000_T:
280 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
281 				sc->alc_flags |= ALC_FLAG_LINK;
282 			break;
283 		default:
284 			break;
285 		}
286 	}
287 	alc_stop_queue(sc);
288 	/* Stop Rx/Tx MACs. */
289 	alc_stop_mac(sc);
290 
291 	/* Program MACs with resolved speed/duplex/flow-control. */
292 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
293 		alc_start_queue(sc);
294 		alc_mac_config(sc);
295 		/* Re-enable Tx/Rx MACs. */
296 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
297 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
298 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
299 	}
300 	alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
301 }
302 
303 static void
304 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
305 {
306 	struct alc_softc *sc;
307 	struct mii_data *mii;
308 
309 	sc = ifp->if_softc;
310 	if ((ifp->if_flags & IFF_UP) == 0)
311 		return;
312 	mii = device_get_softc(sc->alc_miibus);
313 
314 	mii_pollstat(mii);
315 	ifmr->ifm_status = mii->mii_media_status;
316 	ifmr->ifm_active = mii->mii_media_active;
317 }
318 
319 static int
320 alc_mediachange(struct ifnet *ifp)
321 {
322 	struct alc_softc *sc;
323 	struct mii_data *mii;
324 	struct mii_softc *miisc;
325 	int error;
326 
327 	sc = ifp->if_softc;
328 	mii = device_get_softc(sc->alc_miibus);
329 	if (mii->mii_instance != 0) {
330 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
331 			mii_phy_reset(miisc);
332 	}
333 	error = mii_mediachg(mii);
334 
335 	return (error);
336 }
337 
338 static struct alc_ident *
339 alc_find_ident(device_t dev)
340 {
341 	struct alc_ident *ident;
342 	uint16_t vendor, devid;
343 
344 	vendor = pci_get_vendor(dev);
345 	devid = pci_get_device(dev);
346 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
347 		if (vendor == ident->vendorid && devid == ident->deviceid)
348 			return (ident);
349 	}
350 	return (NULL);
351 }
352 
353 static int
354 alc_probe(device_t dev)
355 {
356 	struct alc_ident *ident;
357 
358 	ident = alc_find_ident(dev);
359 	if (ident != NULL) {
360 		device_set_desc(dev, ident->name);
361 		return (BUS_PROBE_DEFAULT);
362 	}
363 	return (ENXIO);
364 }
365 
366 static void
367 alc_get_macaddr(struct alc_softc *sc)
368 {
369 	uint32_t ea[2], opt;
370 	uint16_t val;
371 	int eeprom, i;
372 
373 	eeprom = 0;
374 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
375 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
376 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
377 		/*
378 		 * EEPROM found, let TWSI reload EEPROM configuration.
379 		 * This will set ethernet address of controller.
380 		 */
381 		eeprom++;
382 		switch (sc->alc_ident->deviceid) {
383 		case DEVICEID_ATHEROS_AR8131:
384 		case DEVICEID_ATHEROS_AR8132:
385 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
386 				opt |= OPT_CFG_CLK_ENB;
387 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
388 				CSR_READ_4(sc, ALC_OPT_CFG);
389 				DELAY(1000);
390 			}
391 			break;
392 		case DEVICEID_ATHEROS_AR8151:
393 		case DEVICEID_ATHEROS_AR8151_V2:
394 		case DEVICEID_ATHEROS_AR8152_B:
395 		case DEVICEID_ATHEROS_AR8152_B2:
396 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
397 					    ALC_MII_DBG_ADDR, 0x00);
398 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
399 						 ALC_MII_DBG_DATA);
400 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
401 					    ALC_MII_DBG_DATA, val & 0xFF7F);
402 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
403 					    ALC_MII_DBG_ADDR, 0x3B);
404 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
405 						 ALC_MII_DBG_DATA);
406 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
407 					    ALC_MII_DBG_DATA, val | 0x0008);
408 			DELAY(20);
409 			break;
410 		}
411 
412 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
413 			CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
414 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
415 		CSR_READ_4(sc, ALC_WOL_CFG);
416 
417 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
418 			    TWSI_CFG_SW_LD_START);
419 
420 		for (i = 100; i > 0; i--) {
421 			DELAY(1000);
422 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
423 			    TWSI_CFG_SW_LD_START) == 0)
424 				break;
425 		}
426 		if (i == 0)
427 			device_printf(sc->alc_dev,
428 			    "reloading EEPROM timeout!\n");
429 	} else {
430 		if (bootverbose)
431 			device_printf(sc->alc_dev, "EEPROM not found!\n");
432 	}
433 
434 	if (eeprom != 0) {
435 		switch (sc->alc_ident->deviceid) {
436 		case DEVICEID_ATHEROS_AR8131:
437 		case DEVICEID_ATHEROS_AR8132:
438 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
439 				opt &= ~OPT_CFG_CLK_ENB;
440 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
441 				CSR_READ_4(sc, ALC_OPT_CFG);
442 				DELAY(1000);
443 			}
444 			break;
445 		case DEVICEID_ATHEROS_AR8151:
446 		case DEVICEID_ATHEROS_AR8151_V2:
447 		case DEVICEID_ATHEROS_AR8152_B:
448 		case DEVICEID_ATHEROS_AR8152_B2:
449 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
450 					    ALC_MII_DBG_ADDR, 0x00);
451 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
452 						 ALC_MII_DBG_DATA);
453 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
454 					    ALC_MII_DBG_DATA, val | 0x0080);
455 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
456 					    ALC_MII_DBG_ADDR, 0x3B);
457 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
458 						 ALC_MII_DBG_DATA);
459 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
460 					    ALC_MII_DBG_DATA, val & 0xFFF7);
461 			DELAY(20);
462 			break;
463 		}
464 	}
465 
466 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
467 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
468 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
469 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
470 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
471 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
472 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
473 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
474 }
475 
476 static void
477 alc_disable_l0s_l1(struct alc_softc *sc)
478 {
479 	uint32_t pmcfg;
480 
481 	/* Another magic from vendor. */
482 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
483 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
484 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
485 	    PM_CFG_SERDES_PD_EX_L1);
486 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
487 	    PM_CFG_SERDES_L1_ENB;
488 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
489 }
490 
491 static void
492 alc_phy_reset(struct alc_softc *sc)
493 {
494 	uint16_t data;
495 
496 	/* Reset magic from Linux. */
497 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
498 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
499 	CSR_READ_2(sc, ALC_GPHY_CFG);
500 	DELAY(10 * 1000);
501 
502 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
503 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
504 	    GPHY_CFG_SEL_ANA_RESET);
505 	CSR_READ_2(sc, ALC_GPHY_CFG);
506 	DELAY(10 * 1000);
507 
508 	/* DSP fixup, Vendor magic. */
509 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
510 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
511 				    ALC_MII_DBG_ADDR, 0x000A);
512 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
513 					 ALC_MII_DBG_DATA);
514 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
515 				    ALC_MII_DBG_DATA, data & 0xDFFF);
516 	}
517 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
518 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
519 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
520 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
521 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
522 				    ALC_MII_DBG_ADDR, 0x003B);
523 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
524 					  ALC_MII_DBG_DATA);
525 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
526 				    ALC_MII_DBG_DATA, data & 0xFFF7);
527 		DELAY(20 * 1000);
528 	}
529 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
530 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
531 				    ALC_MII_DBG_ADDR, 0x0029);
532 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
533 				    ALC_MII_DBG_DATA, 0x929D);
534 	}
535 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
536 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
537 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
538 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
539 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
540 				    ALC_MII_DBG_ADDR, 0x0029);
541 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
542 				    ALC_MII_DBG_DATA, 0xB6DD);
543 	}
544 
545 	/* Load DSP codes, vendor magic. */
546 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
547 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
548 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
549 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
550 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
551 	    ALC_MII_DBG_DATA, data);
552 
553 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
554 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
555 	    ANA_SERDES_EN_LCKDT;
556 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
557 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
558 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
559 	    ALC_MII_DBG_DATA, data);
560 
561 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
562 	    ANA_LONG_CABLE_TH_100_MASK) |
563 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
564 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
565 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
566 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
567 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
568 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
569 	    ALC_MII_DBG_DATA, data);
570 
571 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
572 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
573 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
574 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
575 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
576 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
577 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
578 	    ALC_MII_DBG_DATA, data);
579 
580 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
581 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
582 	    ANA_OEN_125M;
583 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
584 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
585 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
586 	    ALC_MII_DBG_DATA, data);
587 	DELAY(1000);
588 }
589 
590 static void
591 alc_phy_down(struct alc_softc *sc)
592 {
593 	switch (sc->alc_ident->deviceid) {
594 	case DEVICEID_ATHEROS_AR8151:
595 	case DEVICEID_ATHEROS_AR8151_V2:
596 		/*
597 		 * GPHY power down caused more problems on AR8151 v2.0.
598 		 * When driver is reloaded after GPHY power down,
599 		 * accesses to PHY/MAC registers hung the system. Only
600 		 * cold boot recovered from it.  I'm not sure whether
601 		 * AR8151 v1.0 also requires this one though.  I don't
602 		 * have AR8151 v1.0 controller in hand.
603 		 * The only option left is to isolate the PHY and
604 		 * initiates power down the PHY which in turn saves
605 		 * more power when driver is unloaded.
606 		 */
607 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
608 				    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
609 		break;
610 	default:
611 		/* Force PHY down. */
612 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
613 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
614 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
615 		    GPHY_CFG_PWDOWN_HW);
616 		DELAY(1000);
617 		break;
618 	}
619 
620 }
621 
622 static void
623 alc_aspm(struct alc_softc *sc, int media)
624 {
625 	uint32_t pmcfg;
626 	uint16_t linkcfg;
627 
628 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
629 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
630 	    (ALC_FLAG_APS | ALC_FLAG_PCIE)) {
631 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
632 					 PCIR_EXPRESS_LINK_CTL);
633 	} else {
634 		linkcfg = 0;
635 	}
636 
637 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
638 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
639 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
640 	pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB;
641 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
642 
643 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
644 		/* Disable extended sync except AR8152 B v1.0 */
645 		linkcfg &= ~0x80;
646 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
647 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
648 			linkcfg |= 0x80;
649 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
650 			    linkcfg);
651 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
652 			   PM_CFG_HOTRST);
653 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
654 			  PM_CFG_L1_ENTRY_TIMER_SHIFT);
655 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
656 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
657 			  PM_CFG_PM_REQ_TIMER_SHIFT);
658 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
659 	}
660 
661 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
662 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
663 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
664 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
665 			pmcfg |= PM_CFG_ASPM_L1_ENB;
666 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
667 			if (sc->alc_ident->deviceid ==
668 			    DEVICEID_ATHEROS_AR8152_B) {
669 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
670 			}
671 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
672 				   PM_CFG_SERDES_PLL_L1_ENB |
673 				   PM_CFG_SERDES_BUDS_RX_L1_ENB);
674 			pmcfg |= PM_CFG_CLK_SWH_L1;
675 			if (media == IFM_100_TX || media == IFM_1000_T) {
676 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
677 				switch (sc->alc_ident->deviceid) {
678 				case DEVICEID_ATHEROS_AR8152_B:
679 					pmcfg |= (7 <<
680 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
681 					break;
682 				case DEVICEID_ATHEROS_AR8152_B2:
683 				case DEVICEID_ATHEROS_AR8151_V2:
684 					pmcfg |= (4 <<
685 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
686 					break;
687 				default:
688 					pmcfg |= (15 <<
689 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
690 					break;
691 				}
692 			}
693 		} else {
694 			pmcfg |= PM_CFG_SERDES_L1_ENB |
695 				PM_CFG_SERDES_PLL_L1_ENB |
696 				PM_CFG_SERDES_BUDS_RX_L1_ENB;
697 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
698 				PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
699 		}
700 	} else {
701 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
702 			   PM_CFG_SERDES_PLL_L1_ENB);
703 		pmcfg |= PM_CFG_CLK_SWH_L1;
704 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
705 			pmcfg |= PM_CFG_ASPM_L1_ENB;
706 	}
707 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
708 }
709 
710 static int
711 alc_attach(device_t dev)
712 {
713 	struct alc_softc *sc;
714 	struct ifnet *ifp;
715 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
716 	uint16_t burst;
717 	int base, error, state;
718 	uint32_t cap, ctl, val;
719 	u_int intr_flags;
720 
721 	error = 0;
722 	sc = device_get_softc(dev);
723 	sc->alc_dev = dev;
724 
725 	callout_init_mp(&sc->alc_tick_ch);
726 	sc->alc_ident = alc_find_ident(dev);
727 
728 	/* Enable bus mastering */
729 	pci_enable_busmaster(dev);
730 
731 	/* Map the device. */
732 	sc->alc_res_rid = PCIR_BAR(0);
733 	sc->alc_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
734 	    &sc->alc_res_rid, RF_ACTIVE);
735 	if (error != 0) {
736 		device_printf(dev, "cannot allocate memory resources.\n");
737 		goto fail;
738 	}
739 	sc->alc_res_btag = rman_get_bustag(sc->alc_res);
740 	sc->alc_res_bhand = rman_get_bushandle(sc->alc_res);
741 
742 	/* Set PHY address. */
743 	sc->alc_phyaddr = ALC_PHY_ADDR;
744 
745 	/* Initialize DMA parameters. */
746 	sc->alc_dma_rd_burst = 0;
747 	sc->alc_dma_wr_burst = 0;
748 	sc->alc_rcb = DMA_CFG_RCB_64;
749 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
750 		sc->alc_flags |= ALC_FLAG_PCIE;
751 		sc->alc_expcap = base;
752 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
753 		sc->alc_dma_rd_burst =
754 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
755 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
756 		if (bootverbose) {
757 			device_printf(dev, "Read request size : %u bytes.\n",
758 			    alc_dma_burst[sc->alc_dma_rd_burst]);
759 			device_printf(dev, "TLP payload size : %u bytes.\n",
760 			    alc_dma_burst[sc->alc_dma_wr_burst]);
761 		}
762 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
763 			sc->alc_dma_rd_burst = 3;
764 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
765 			sc->alc_dma_wr_burst = 3;
766 		/* Clear data link and flow-control protocol error. */
767 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
768 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
769 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
770 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
771 			CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
772 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
773 			CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
774 			PCIE_PHYMISC_FORCE_RCV_DET);
775 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
776 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
777 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
778 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
779 				 PCIE_PHYMISC2_SERDES_TH_MASK);
780 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
781 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
782 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
783 		}
784 
785 		/* Disable ASPM L0S and L1. */
786 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
787 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
788 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
789 			if ((ctl & 0x08) != 0)
790 				sc->alc_rcb = DMA_CFG_RCB_128;
791 			if (bootverbose)
792 				device_printf(dev, "RCB %u bytes\n",
793 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
794 			state = ctl & 0x03;
795 			if (state & 0x01)
796 				sc->alc_flags |= ALC_FLAG_L0S;
797 			if (state & 0x02)
798 				sc->alc_flags |= ALC_FLAG_L1S;
799 			if (bootverbose)
800 				device_printf(sc->alc_dev, "ASPM %s %s\n",
801 				    aspm_state[state],
802 				    state == 0 ? "disabled" : "enabled");
803 			alc_disable_l0s_l1(sc);
804 		} else {
805 			if (bootverbose)
806 				device_printf(sc->alc_dev, "no ASPM support\n");
807 		}
808 	}
809 
810 	/* Reset PHY. */
811 	alc_phy_reset(sc);
812 
813 	/* Reset the ethernet controller. */
814 	alc_reset(sc);
815 
816 	/*
817 	 * One odd thing is AR8132 uses the same PHY hardware(F1
818 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
819 	 * the PHY supports 1000Mbps but that's not true. The PHY
820 	 * used in AR8132 can't establish gigabit link even if it
821 	 * shows the same PHY model/revision number of AR8131.
822 	 */
823 	switch (sc->alc_ident->deviceid) {
824 	case DEVICEID_ATHEROS_AR8152_B:
825 	case DEVICEID_ATHEROS_AR8152_B2:
826 		sc->alc_flags |= ALC_FLAG_APS;
827 		/* FALLTHROUGH */
828 	case DEVICEID_ATHEROS_AR8132:
829 		sc->alc_flags |= ALC_FLAG_FASTETHER;
830 		break;
831 	case DEVICEID_ATHEROS_AR8151:
832 	case DEVICEID_ATHEROS_AR8151_V2:
833 		sc->alc_flags |= ALC_FLAG_APS;
834 		/* FALLTHROUGH */
835 	default:
836 		break;
837 	}
838 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
839 
840 	/*
841 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
842 	 * addition, Atheros said that enabling SMB wouldn't improve
843 	 * performance. However I think it's bad to access lots of
844 	 * registers to extract MAC statistics.
845 	 */
846 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
847 
848 	/*
849 	 * Don't use Tx CMB. It is known to have silicon bug.
850 	 */
851 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
852 	sc->alc_rev = pci_get_revid(dev);
853 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
854 	    MASTER_CHIP_REV_SHIFT;
855 	if (bootverbose) {
856 		device_printf(dev, "PCI device revision : 0x%04x\n",
857 		    sc->alc_rev);
858 		device_printf(dev, "Chip id/revision : 0x%04x\n",
859 		    sc->alc_chip_rev);
860 	}
861 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
862 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
863 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
864 
865 	sc->alc_irq_type = pci_alloc_1intr(dev, alc_msi_enable,
866 	    &sc->alc_irq_rid, &intr_flags);
867 
868 	/* Allocate IRQ resources. */
869 	sc->alc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
870 	    &sc->alc_irq_rid, intr_flags);
871 	if (error != 0) {
872 		device_printf(dev, "cannot allocate IRQ resources.\n");
873 		goto fail;
874 	}
875 
876 	/* Create device sysctl node. */
877 	alc_sysctl_node(sc);
878 
879 	if ((error = alc_dma_alloc(sc) != 0))
880 		goto fail;
881 
882 	/* Load station address. */
883 	alc_get_macaddr(sc);
884 
885 	ifp = sc->alc_ifp = &sc->arpcom.ac_if;
886 	ifp->if_softc = sc;
887 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
888 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
889 	ifp->if_ioctl = alc_ioctl;
890 	ifp->if_start = alc_start;
891 	ifp->if_init = alc_init;
892 	ifq_set_maxlen(&ifp->if_snd, ALC_TX_RING_CNT - 1);
893 	ifq_set_ready(&ifp->if_snd);
894 	ifp->if_capabilities = IFCAP_TXCSUM;
895 	ifp->if_hwassist = ALC_CSUM_FEATURES;
896 #if 0
897 /* XXX: WOL */
898 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
899 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
900 		sc->alc_flags |= ALC_FLAG_PM;
901 		sc->alc_pmcap = base;
902 	}
903 #endif
904 	ifp->if_capenable = ifp->if_capabilities;
905 
906 	/* VLAN capability setup. */
907 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
908 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
909 	ifp->if_capenable = ifp->if_capabilities;
910 
911 	/*
912 	 * XXX
913 	 * It seems enabling Tx checksum offloading makes more trouble.
914 	 * Sometimes the controller does not receive any frames when
915 	 * Tx checksum offloading is enabled. I'm not sure whether this
916 	 * is a bug in Tx checksum offloading logic or I got broken
917 	 * sample boards. To safety, don't enable Tx checksum offloading
918 	 * by default but give chance to users to toggle it if they know
919 	 * their controllers work without problems.
920 	 */
921 	ifp->if_capenable &= ~IFCAP_TXCSUM;
922 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
923 
924 	/* Set up MII bus. */
925 	if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
926 	    alc_mediastatus)) != 0) {
927 		device_printf(dev, "no PHY found!\n");
928 		goto fail;
929 	}
930 
931 	ether_ifattach(ifp, sc->alc_eaddr, NULL);
932 
933 	/* Tell the upper layer(s) we support long frames. */
934 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
935 
936 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->alc_irq));
937 #if 0
938 	/* Create local taskq. */
939 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
940 	sc->alc_tq = taskqueue_create("alc_taskq", M_WAITOK,
941 				      taskqueue_thread_enqueue, &sc->alc_tq);
942 	if (sc->alc_tq == NULL) {
943 		device_printf(dev, "could not create taskqueue.\n");
944 		ether_ifdetach(ifp);
945 		error = ENXIO;
946 		goto fail;
947 	}
948 	taskqueue_start_threads(&sc->alc_tq, 1, TDPRI_KERN_DAEMON, -1, "%s taskq",
949 	    device_get_nameunit(sc->alc_dev));
950 
951 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
952 		msic = ALC_MSIX_MESSAGES;
953 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
954 		msic = ALC_MSI_MESSAGES;
955 	else
956 		msic = 1;
957 	for (i = 0; i < msic; i++) {
958 		error = bus_setup_intr(dev, sc->alc_irq[i], INTR_MPSAFE,
959 				       alc_intr, sc,
960 				       &sc->alc_intrhand[i], NULL);
961 		if (error != 0)
962 			break;
963 	}
964 	if (error != 0) {
965 		device_printf(dev, "could not set up interrupt handler.\n");
966 		taskqueue_free(sc->alc_tq);
967 		sc->alc_tq = NULL;
968 		ether_ifdetach(ifp);
969 		goto fail;
970 	}
971 #else
972 	error = bus_setup_intr(dev, sc->alc_irq, INTR_MPSAFE, alc_intr, sc,
973 	    &sc->alc_intrhand, ifp->if_serializer);
974 	if (error) {
975 		device_printf(dev, "could not set up interrupt handler.\n");
976 		ether_ifdetach(ifp);
977 		goto fail;
978 	}
979 #endif
980 
981 fail:
982 	if (error != 0)
983 		alc_detach(dev);
984 
985 	return (error);
986 }
987 
988 static int
989 alc_detach(device_t dev)
990 {
991 	struct alc_softc *sc = device_get_softc(dev);
992 
993 	if (device_is_attached(dev)) {
994 		struct ifnet *ifp = sc->alc_ifp;
995 
996 		lwkt_serialize_enter(ifp->if_serializer);
997 		alc_stop(sc);
998 		bus_teardown_intr(dev, sc->alc_irq, sc->alc_intrhand);
999 		lwkt_serialize_exit(ifp->if_serializer);
1000 
1001 		ether_ifdetach(ifp);
1002 	}
1003 
1004 	if (sc->alc_miibus != NULL)
1005 		device_delete_child(dev, sc->alc_miibus);
1006 	bus_generic_detach(dev);
1007 
1008 	if (sc->alc_res != NULL)
1009 		alc_phy_down(sc);
1010 
1011 	if (sc->alc_irq != NULL) {
1012 		bus_release_resource(dev, SYS_RES_IRQ, sc->alc_irq_rid,
1013 		    sc->alc_irq);
1014 	}
1015 	if (sc->alc_irq_type == PCI_INTR_TYPE_MSI)
1016 		pci_release_msi(dev);
1017 
1018 	if (sc->alc_res != NULL) {
1019 		bus_release_resource(dev, SYS_RES_MEMORY, sc->alc_res_rid,
1020 		    sc->alc_res);
1021 	}
1022 
1023 	alc_dma_free(sc);
1024 
1025 	return (0);
1026 }
1027 
1028 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1029 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1030 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1031 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1032 
1033 static void
1034 alc_sysctl_node(struct alc_softc *sc)
1035 {
1036 	struct sysctl_ctx_list *ctx;
1037 	struct sysctl_oid *tree;
1038 	struct sysctl_oid_list *child, *parent;
1039 	struct alc_hw_stats *stats;
1040 	int error;
1041 
1042 	stats = &sc->alc_stats;
1043 	ctx = &sc->alc_sysctl_ctx;
1044 	sysctl_ctx_init(ctx);
1045 
1046 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
1047 			       OID_AUTO,
1048 			       device_get_nameunit(sc->alc_dev),
1049 			       CTLFLAG_RD, 0, "");
1050 	if (tree == NULL) {
1051 		device_printf(sc->alc_dev, "can't add sysctl node\n");
1052 		return;
1053 	}
1054 	child = SYSCTL_CHILDREN(tree);
1055 
1056 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1057 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1058 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1059 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1060 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1061 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1062 	/* Pull in device tunables. */
1063 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1064 	error = resource_int_value(device_get_name(sc->alc_dev),
1065 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1066 	if (error == 0) {
1067 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1068 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1069 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1070 			    "range; using default: %d\n",
1071 			    ALC_IM_RX_TIMER_DEFAULT);
1072 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1073 		}
1074 	}
1075 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1076 	error = resource_int_value(device_get_name(sc->alc_dev),
1077 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1078 	if (error == 0) {
1079 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1080 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1081 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1082 			    "range; using default: %d\n",
1083 			    ALC_IM_TX_TIMER_DEFAULT);
1084 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1085 		}
1086 	}
1087 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1088 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1089 	    sysctl_hw_alc_proc_limit, "I",
1090 	    "max number of Rx events to process");
1091 	/* Pull in device tunables. */
1092 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1093 	error = resource_int_value(device_get_name(sc->alc_dev),
1094 	    device_get_unit(sc->alc_dev), "process_limit",
1095 	    &sc->alc_process_limit);
1096 	if (error == 0) {
1097 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1098 		    sc->alc_process_limit > ALC_PROC_MAX) {
1099 			device_printf(sc->alc_dev,
1100 			    "process_limit value out of range; "
1101 			    "using default: %d\n", ALC_PROC_DEFAULT);
1102 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1103 		}
1104 	}
1105 
1106 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1107 	    NULL, "ALC statistics");
1108 	parent = SYSCTL_CHILDREN(tree);
1109 
1110 	/* Rx statistics. */
1111 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1112 	    NULL, "Rx MAC statistics");
1113 	child = SYSCTL_CHILDREN(tree);
1114 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1115 	    &stats->rx_frames, "Good frames");
1116 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1117 	    &stats->rx_bcast_frames, "Good broadcast frames");
1118 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1119 	    &stats->rx_mcast_frames, "Good multicast frames");
1120 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1121 	    &stats->rx_pause_frames, "Pause control frames");
1122 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1123 	    &stats->rx_control_frames, "Control frames");
1124 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1125 	    &stats->rx_crcerrs, "CRC errors");
1126 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1127 	    &stats->rx_lenerrs, "Frames with length mismatched");
1128 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1129 	    &stats->rx_bytes, "Good octets");
1130 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1131 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1132 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1133 	    &stats->rx_mcast_bytes, "Good multicast octets");
1134 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1135 	    &stats->rx_runts, "Too short frames");
1136 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1137 	    &stats->rx_fragments, "Fragmented frames");
1138 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1139 	    &stats->rx_pkts_64, "64 bytes frames");
1140 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1141 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1142 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1143 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1144 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1145 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1146 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1147 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1148 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1149 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1150 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1151 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1152 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1153 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1154 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1155 	    &stats->rx_fifo_oflows, "FIFO overflows");
1156 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1157 	    &stats->rx_rrs_errs, "Return status write-back errors");
1158 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1159 	    &stats->rx_alignerrs, "Alignment errors");
1160 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1161 	    &stats->rx_pkts_filtered,
1162 	    "Frames dropped due to address filtering");
1163 
1164 	/* Tx statistics. */
1165 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1166 	    NULL, "Tx MAC statistics");
1167 	child = SYSCTL_CHILDREN(tree);
1168 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1169 	    &stats->tx_frames, "Good frames");
1170 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1171 	    &stats->tx_bcast_frames, "Good broadcast frames");
1172 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1173 	    &stats->tx_mcast_frames, "Good multicast frames");
1174 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1175 	    &stats->tx_pause_frames, "Pause control frames");
1176 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1177 	    &stats->tx_control_frames, "Control frames");
1178 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1179 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1180 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1181 	    &stats->tx_excess_defer, "Frames with derferrals");
1182 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1183 	    &stats->tx_bytes, "Good octets");
1184 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1185 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1186 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1187 	    &stats->tx_mcast_bytes, "Good multicast octets");
1188 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1189 	    &stats->tx_pkts_64, "64 bytes frames");
1190 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1191 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1192 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1193 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1194 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1195 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1196 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1197 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1198 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1199 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1200 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1201 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1202 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1203 	    &stats->tx_single_colls, "Single collisions");
1204 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1205 	    &stats->tx_multi_colls, "Multiple collisions");
1206 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1207 	    &stats->tx_late_colls, "Late collisions");
1208 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1209 	    &stats->tx_excess_colls, "Excessive collisions");
1210 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1211 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1212 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1213 	    &stats->tx_underrun, "FIFO underruns");
1214 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1215 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1216 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1217 	    &stats->tx_lenerrs, "Frames with length mismatched");
1218 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1219 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1220 }
1221 
1222 #undef ALC_SYSCTL_STAT_ADD32
1223 #undef ALC_SYSCTL_STAT_ADD64
1224 
1225 struct alc_dmamap_arg {
1226 	bus_addr_t	alc_busaddr;
1227 };
1228 
1229 static void
1230 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1231 {
1232 	struct alc_dmamap_arg *ctx;
1233 
1234 	if (error != 0)
1235 		return;
1236 
1237 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1238 
1239 	ctx = (struct alc_dmamap_arg *)arg;
1240 	ctx->alc_busaddr = segs[0].ds_addr;
1241 }
1242 
1243 #ifdef foo
1244 /*
1245  * Normal and high Tx descriptors shares single Tx high address.
1246  * Four Rx descriptor/return rings and CMB shares the same Rx
1247  * high address.
1248  */
1249 static int
1250 alc_check_boundary(struct alc_softc *sc)
1251 {
1252 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1253 
1254 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1255 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1256 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1257 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1258 
1259 	/* 4GB boundary crossing is not allowed. */
1260 	if ((ALC_ADDR_HI(rx_ring_end) !=
1261 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1262 	    (ALC_ADDR_HI(rr_ring_end) !=
1263 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1264 	    (ALC_ADDR_HI(cmb_end) !=
1265 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1266 	    (ALC_ADDR_HI(tx_ring_end) !=
1267 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1268 		return (EFBIG);
1269 	/*
1270 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1271 	 * the same high address.
1272 	 */
1273 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1274 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1275 		return (EFBIG);
1276 
1277 	return (0);
1278 }
1279 #endif
1280 
1281 static int
1282 alc_dma_alloc(struct alc_softc *sc)
1283 {
1284 	struct alc_txdesc *txd;
1285 	struct alc_rxdesc *rxd;
1286 	struct alc_dmamap_arg ctx;
1287 	int error, i;
1288 
1289 	/* Create parent DMA tag. */
1290 	error = bus_dma_tag_create(
1291 	    sc->alc_cdata.alc_parent_tag, /* parent */
1292 	    1, 0,			/* alignment, boundary */
1293 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1294 	    BUS_SPACE_MAXADDR,		/* highaddr */
1295 	    NULL, NULL,			/* filter, filterarg */
1296 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1297 	    0,				/* nsegments */
1298 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1299 	    0,				/* flags */
1300 	    &sc->alc_cdata.alc_parent_tag);
1301 	if (error != 0) {
1302 		device_printf(sc->alc_dev,
1303 		    "could not create parent DMA tag.\n");
1304 		goto fail;
1305 	}
1306 
1307 	/* Create DMA tag for Tx descriptor ring. */
1308 	error = bus_dma_tag_create(
1309 	    sc->alc_cdata.alc_parent_tag, /* parent */
1310 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1311 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1312 	    BUS_SPACE_MAXADDR,		/* highaddr */
1313 	    NULL, NULL,			/* filter, filterarg */
1314 	    ALC_TX_RING_SZ,		/* maxsize */
1315 	    1,				/* nsegments */
1316 	    ALC_TX_RING_SZ,		/* maxsegsize */
1317 	    0,				/* flags */
1318 	    &sc->alc_cdata.alc_tx_ring_tag);
1319 	if (error != 0) {
1320 		device_printf(sc->alc_dev,
1321 		    "could not create Tx ring DMA tag.\n");
1322 		goto fail;
1323 	}
1324 
1325 	/* Create DMA tag for Rx free descriptor ring. */
1326 	error = bus_dma_tag_create(
1327 	    sc->alc_cdata.alc_parent_tag, /* parent */
1328 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1329 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1330 	    BUS_SPACE_MAXADDR,		/* highaddr */
1331 	    NULL, NULL,			/* filter, filterarg */
1332 	    ALC_RX_RING_SZ,		/* maxsize */
1333 	    1,				/* nsegments */
1334 	    ALC_RX_RING_SZ,		/* maxsegsize */
1335 	    0,				/* flags */
1336 	    &sc->alc_cdata.alc_rx_ring_tag);
1337 	if (error != 0) {
1338 		device_printf(sc->alc_dev,
1339 		    "could not create Rx ring DMA tag.\n");
1340 		goto fail;
1341 	}
1342 	/* Create DMA tag for Rx return descriptor ring. */
1343 	error = bus_dma_tag_create(
1344 	    sc->alc_cdata.alc_parent_tag, /* parent */
1345 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1346 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1347 	    BUS_SPACE_MAXADDR,		/* highaddr */
1348 	    NULL, NULL,			/* filter, filterarg */
1349 	    ALC_RR_RING_SZ,		/* maxsize */
1350 	    1,				/* nsegments */
1351 	    ALC_RR_RING_SZ,		/* maxsegsize */
1352 	    0,				/* flags */
1353 	    &sc->alc_cdata.alc_rr_ring_tag);
1354 	if (error != 0) {
1355 		device_printf(sc->alc_dev,
1356 		    "could not create Rx return ring DMA tag.\n");
1357 		goto fail;
1358 	}
1359 
1360 	/* Create DMA tag for coalescing message block. */
1361 	error = bus_dma_tag_create(
1362 	    sc->alc_cdata.alc_parent_tag, /* parent */
1363 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1364 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1365 	    BUS_SPACE_MAXADDR,		/* highaddr */
1366 	    NULL, NULL,			/* filter, filterarg */
1367 	    ALC_CMB_SZ,			/* maxsize */
1368 	    1,				/* nsegments */
1369 	    ALC_CMB_SZ,			/* maxsegsize */
1370 	    0,				/* flags */
1371 	    &sc->alc_cdata.alc_cmb_tag);
1372 	if (error != 0) {
1373 		device_printf(sc->alc_dev,
1374 		    "could not create CMB DMA tag.\n");
1375 		goto fail;
1376 	}
1377 	/* Create DMA tag for status message block. */
1378 	error = bus_dma_tag_create(
1379 	    sc->alc_cdata.alc_parent_tag, /* parent */
1380 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1381 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1382 	    BUS_SPACE_MAXADDR,		/* highaddr */
1383 	    NULL, NULL,			/* filter, filterarg */
1384 	    ALC_SMB_SZ,			/* maxsize */
1385 	    1,				/* nsegments */
1386 	    ALC_SMB_SZ,			/* maxsegsize */
1387 	    0,				/* flags */
1388 	    &sc->alc_cdata.alc_smb_tag);
1389 	if (error != 0) {
1390 		device_printf(sc->alc_dev,
1391 		    "could not create SMB DMA tag.\n");
1392 		goto fail;
1393 	}
1394 
1395 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1396 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1397 	    (void **)&sc->alc_rdata.alc_tx_ring,
1398 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1399 	    &sc->alc_cdata.alc_tx_ring_map);
1400 	if (error != 0) {
1401 		device_printf(sc->alc_dev,
1402 		    "could not allocate DMA'able memory for Tx ring.\n");
1403 		goto fail;
1404 	}
1405 	ctx.alc_busaddr = 0;
1406 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1407 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1408 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1409 	if (error != 0 || ctx.alc_busaddr == 0) {
1410 		device_printf(sc->alc_dev,
1411 		    "could not load DMA'able memory for Tx ring.\n");
1412 		goto fail;
1413 	}
1414 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1415 
1416 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1417 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1418 	    (void **)&sc->alc_rdata.alc_rx_ring,
1419 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1420 	    &sc->alc_cdata.alc_rx_ring_map);
1421 	if (error != 0) {
1422 		device_printf(sc->alc_dev,
1423 		    "could not allocate DMA'able memory for Rx ring.\n");
1424 		goto fail;
1425 	}
1426 	ctx.alc_busaddr = 0;
1427 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1428 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1429 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1430 	if (error != 0 || ctx.alc_busaddr == 0) {
1431 		device_printf(sc->alc_dev,
1432 		    "could not load DMA'able memory for Rx ring.\n");
1433 		goto fail;
1434 	}
1435 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1436 
1437 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1438 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1439 	    (void **)&sc->alc_rdata.alc_rr_ring,
1440 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1441 	    &sc->alc_cdata.alc_rr_ring_map);
1442 	if (error != 0) {
1443 		device_printf(sc->alc_dev,
1444 		    "could not allocate DMA'able memory for Rx return ring.\n");
1445 		goto fail;
1446 	}
1447 	ctx.alc_busaddr = 0;
1448 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1449 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1450 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1451 	if (error != 0 || ctx.alc_busaddr == 0) {
1452 		device_printf(sc->alc_dev,
1453 		    "could not load DMA'able memory for Tx ring.\n");
1454 		goto fail;
1455 	}
1456 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1457 
1458 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1459 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1460 	    (void **)&sc->alc_rdata.alc_cmb,
1461 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1462 	    &sc->alc_cdata.alc_cmb_map);
1463 	if (error != 0) {
1464 		device_printf(sc->alc_dev,
1465 		    "could not allocate DMA'able memory for CMB.\n");
1466 		goto fail;
1467 	}
1468 	ctx.alc_busaddr = 0;
1469 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1470 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1471 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1472 	if (error != 0 || ctx.alc_busaddr == 0) {
1473 		device_printf(sc->alc_dev,
1474 		    "could not load DMA'able memory for CMB.\n");
1475 		goto fail;
1476 	}
1477 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1478 
1479 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1480 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1481 	    (void **)&sc->alc_rdata.alc_smb,
1482 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1483 	    &sc->alc_cdata.alc_smb_map);
1484 	if (error != 0) {
1485 		device_printf(sc->alc_dev,
1486 		    "could not allocate DMA'able memory for SMB.\n");
1487 		goto fail;
1488 	}
1489 	ctx.alc_busaddr = 0;
1490 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1491 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1492 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1493 	if (error != 0 || ctx.alc_busaddr == 0) {
1494 		device_printf(sc->alc_dev,
1495 		    "could not load DMA'able memory for CMB.\n");
1496 		goto fail;
1497 	}
1498 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1499 
1500 #ifdef foo
1501 	/*
1502 	 * All of the status blocks and descriptor rings are
1503 	 * allocated at lower 4GB, their addresses high 32bits
1504 	 * part are same (all 0).
1505 	 */
1506 
1507 	/* Make sure we've not crossed 4GB boundary. */
1508 	if ((error = alc_check_boundary(sc)) != 0) {
1509 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1510 		    "switching to 32bit DMA addressing mode.\n");
1511 		alc_dma_free(sc);
1512 		/*
1513 		 * Limit max allowable DMA address space to 32bit
1514 		 * and try again.
1515 		 */
1516 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1517 		goto again;
1518 	}
1519 #endif
1520 
1521 	/*
1522 	 * Create Tx buffer parent tag.
1523 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1524 	 * so it needs separate parent DMA tag as parent DMA address
1525 	 * space could be restricted to be within 32bit address space
1526 	 * by 4GB boundary crossing.
1527 	 */
1528 	error = bus_dma_tag_create(
1529 	    sc->alc_cdata.alc_parent_tag, /* parent */
1530 	    1, 0,			/* alignment, boundary */
1531 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1532 	    BUS_SPACE_MAXADDR,		/* highaddr */
1533 	    NULL, NULL,			/* filter, filterarg */
1534 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1535 	    0,				/* nsegments */
1536 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1537 	    0,				/* flags */
1538 	    &sc->alc_cdata.alc_buffer_tag);
1539 	if (error != 0) {
1540 		device_printf(sc->alc_dev,
1541 		    "could not create parent buffer DMA tag.\n");
1542 		goto fail;
1543 	}
1544 
1545 	/* Create DMA tag for Tx buffers. */
1546 	error = bus_dma_tag_create(
1547 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1548 	    1, 0,			/* alignment, boundary */
1549 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1550 	    BUS_SPACE_MAXADDR,		/* highaddr */
1551 	    NULL, NULL,			/* filter, filterarg */
1552 	    ALC_TSO_MAXSIZE,		/* maxsize */
1553 	    ALC_MAXTXSEGS,		/* nsegments */
1554 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1555 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, /* flags */
1556 	    &sc->alc_cdata.alc_tx_tag);
1557 	if (error != 0) {
1558 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1559 		goto fail;
1560 	}
1561 
1562 	/* Create DMA tag for Rx buffers. */
1563 	error = bus_dma_tag_create(
1564 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1565 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1566 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1567 	    BUS_SPACE_MAXADDR,		/* highaddr */
1568 	    NULL, NULL,			/* filter, filterarg */
1569 	    MCLBYTES,			/* maxsize */
1570 	    1,				/* nsegments */
1571 	    MCLBYTES,			/* maxsegsize */
1572 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED, /* flags */
1573 	    &sc->alc_cdata.alc_rx_tag);
1574 	if (error != 0) {
1575 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1576 		goto fail;
1577 	}
1578 	/* Create DMA maps for Tx buffers. */
1579 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1580 		txd = &sc->alc_cdata.alc_txdesc[i];
1581 		txd->tx_m = NULL;
1582 		txd->tx_dmamap = NULL;
1583 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag,
1584 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1585 					  &txd->tx_dmamap);
1586 		if (error != 0) {
1587 			device_printf(sc->alc_dev,
1588 			    "could not create Tx dmamap.\n");
1589 			goto fail;
1590 		}
1591 	}
1592 	/* Create DMA maps for Rx buffers. */
1593 	error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1594 				  BUS_DMA_WAITOK,
1595 				  &sc->alc_cdata.alc_rx_sparemap);
1596 	if (error) {
1597 		device_printf(sc->alc_dev,
1598 		    "could not create spare Rx dmamap.\n");
1599 		goto fail;
1600 	}
1601 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1602 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1603 		rxd->rx_m = NULL;
1604 		rxd->rx_dmamap = NULL;
1605 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1606 					  BUS_DMA_WAITOK,
1607 					  &rxd->rx_dmamap);
1608 		if (error != 0) {
1609 			device_printf(sc->alc_dev,
1610 			    "could not create Rx dmamap.\n");
1611 			goto fail;
1612 		}
1613 	}
1614 
1615 fail:
1616 	return (error);
1617 }
1618 
1619 static void
1620 alc_dma_free(struct alc_softc *sc)
1621 {
1622 	struct alc_txdesc *txd;
1623 	struct alc_rxdesc *rxd;
1624 	int i;
1625 
1626 	/* Tx buffers. */
1627 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1628 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1629 			txd = &sc->alc_cdata.alc_txdesc[i];
1630 			if (txd->tx_dmamap != NULL) {
1631 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1632 				    txd->tx_dmamap);
1633 				txd->tx_dmamap = NULL;
1634 			}
1635 		}
1636 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1637 		sc->alc_cdata.alc_tx_tag = NULL;
1638 	}
1639 	/* Rx buffers */
1640 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1641 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1642 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1643 			if (rxd->rx_dmamap != NULL) {
1644 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1645 				    rxd->rx_dmamap);
1646 				rxd->rx_dmamap = NULL;
1647 			}
1648 		}
1649 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1650 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1651 			    sc->alc_cdata.alc_rx_sparemap);
1652 			sc->alc_cdata.alc_rx_sparemap = NULL;
1653 		}
1654 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1655 		sc->alc_cdata.alc_rx_tag = NULL;
1656 	}
1657 	/* Tx descriptor ring. */
1658 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1659 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1660 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1661 			    sc->alc_cdata.alc_tx_ring_map);
1662 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1663 		    sc->alc_rdata.alc_tx_ring != NULL)
1664 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1665 			    sc->alc_rdata.alc_tx_ring,
1666 			    sc->alc_cdata.alc_tx_ring_map);
1667 		sc->alc_rdata.alc_tx_ring = NULL;
1668 		sc->alc_cdata.alc_tx_ring_map = NULL;
1669 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1670 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1671 	}
1672 	/* Rx ring. */
1673 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1674 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1675 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1676 			    sc->alc_cdata.alc_rx_ring_map);
1677 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1678 		    sc->alc_rdata.alc_rx_ring != NULL)
1679 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1680 			    sc->alc_rdata.alc_rx_ring,
1681 			    sc->alc_cdata.alc_rx_ring_map);
1682 		sc->alc_rdata.alc_rx_ring = NULL;
1683 		sc->alc_cdata.alc_rx_ring_map = NULL;
1684 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1685 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1686 	}
1687 	/* Rx return ring. */
1688 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1689 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1690 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1691 			    sc->alc_cdata.alc_rr_ring_map);
1692 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1693 		    sc->alc_rdata.alc_rr_ring != NULL)
1694 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1695 			    sc->alc_rdata.alc_rr_ring,
1696 			    sc->alc_cdata.alc_rr_ring_map);
1697 		sc->alc_rdata.alc_rr_ring = NULL;
1698 		sc->alc_cdata.alc_rr_ring_map = NULL;
1699 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1700 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1701 	}
1702 	/* CMB block */
1703 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1704 		if (sc->alc_cdata.alc_cmb_map != NULL)
1705 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1706 			    sc->alc_cdata.alc_cmb_map);
1707 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1708 		    sc->alc_rdata.alc_cmb != NULL)
1709 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1710 			    sc->alc_rdata.alc_cmb,
1711 			    sc->alc_cdata.alc_cmb_map);
1712 		sc->alc_rdata.alc_cmb = NULL;
1713 		sc->alc_cdata.alc_cmb_map = NULL;
1714 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1715 		sc->alc_cdata.alc_cmb_tag = NULL;
1716 	}
1717 	/* SMB block */
1718 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1719 		if (sc->alc_cdata.alc_smb_map != NULL)
1720 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1721 			    sc->alc_cdata.alc_smb_map);
1722 		if (sc->alc_cdata.alc_smb_map != NULL &&
1723 		    sc->alc_rdata.alc_smb != NULL)
1724 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1725 			    sc->alc_rdata.alc_smb,
1726 			    sc->alc_cdata.alc_smb_map);
1727 		sc->alc_rdata.alc_smb = NULL;
1728 		sc->alc_cdata.alc_smb_map = NULL;
1729 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1730 		sc->alc_cdata.alc_smb_tag = NULL;
1731 	}
1732 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1733 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1734 		sc->alc_cdata.alc_buffer_tag = NULL;
1735 	}
1736 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1737 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1738 		sc->alc_cdata.alc_parent_tag = NULL;
1739 	}
1740 }
1741 
1742 static int
1743 alc_shutdown(device_t dev)
1744 {
1745 
1746 	return (alc_suspend(dev));
1747 }
1748 
1749 #if 0
1750 /* XXX: LINK SPEED */
1751 /*
1752  * Note, this driver resets the link speed to 10/100Mbps by
1753  * restarting auto-negotiation in suspend/shutdown phase but we
1754  * don't know whether that auto-negotiation would succeed or not
1755  * as driver has no control after powering off/suspend operation.
1756  * If the renegotiation fail WOL may not work. Running at 1Gbps
1757  * will draw more power than 375mA at 3.3V which is specified in
1758  * PCI specification and that would result in complete
1759  * shutdowning power to ethernet controller.
1760  *
1761  * TODO
1762  * Save current negotiated media speed/duplex/flow-control to
1763  * softc and restore the same link again after resuming. PHY
1764  * handling such as power down/resetting to 100Mbps may be better
1765  * handled in suspend method in phy driver.
1766  */
1767 static void
1768 alc_setlinkspeed(struct alc_softc *sc)
1769 {
1770 	struct mii_data *mii;
1771 	int aneg, i;
1772 
1773 	mii = device_get_softc(sc->alc_miibus);
1774 	mii_pollstat(mii);
1775 	aneg = 0;
1776 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1777 	    (IFM_ACTIVE | IFM_AVALID)) {
1778 		switch IFM_SUBTYPE(mii->mii_media_active) {
1779 		case IFM_10_T:
1780 		case IFM_100_TX:
1781 			return;
1782 		case IFM_1000_T:
1783 			aneg++;
1784 			break;
1785 		default:
1786 			break;
1787 		}
1788 	}
1789 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1790 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1791 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1792 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1793 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1794 	DELAY(1000);
1795 	if (aneg != 0) {
1796 		/*
1797 		 * Poll link state until alc(4) get a 10/100Mbps link.
1798 		 */
1799 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1800 			mii_pollstat(mii);
1801 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1802 			    == (IFM_ACTIVE | IFM_AVALID)) {
1803 				switch (IFM_SUBTYPE(
1804 				    mii->mii_media_active)) {
1805 				case IFM_10_T:
1806 				case IFM_100_TX:
1807 					alc_mac_config(sc);
1808 					return;
1809 				default:
1810 					break;
1811 				}
1812 			}
1813 			ALC_UNLOCK(sc);
1814 			pause("alclnk", hz);
1815 			ALC_LOCK(sc);
1816 		}
1817 		if (i == MII_ANEGTICKS_GIGE)
1818 			device_printf(sc->alc_dev,
1819 			    "establishing a link failed, WOL may not work!");
1820 	}
1821 	/*
1822 	 * No link, force MAC to have 100Mbps, full-duplex link.
1823 	 * This is the last resort and may/may not work.
1824 	 */
1825 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1826 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1827 	alc_mac_config(sc);
1828 }
1829 #endif
1830 
1831 #if 0
1832 /* XXX: WOL */
1833 static void
1834 alc_setwol(struct alc_softc *sc)
1835 {
1836 	struct ifnet *ifp;
1837 	uint32_t reg, pmcs;
1838 	uint16_t pmstat;
1839 
1840 	ALC_LOCK_ASSERT(sc);
1841 
1842 	alc_disable_l0s_l1(sc);
1843 	ifp = sc->alc_ifp;
1844 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1845 		/* Disable WOL. */
1846 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1847 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1848 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1849 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1850 		/* Force PHY power down. */
1851 		alc_phy_down(sc);
1852 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1853 			CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1854 		return;
1855 	}
1856 
1857 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1858 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1859 			alc_setlinkspeed(sc);
1860 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1861 			CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1862 	}
1863 
1864 	pmcs = 0;
1865 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1866 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1867 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1868 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1869 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1870 	    MAC_CFG_BCAST);
1871 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1872 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1873 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1874 		reg |= MAC_CFG_RX_ENB;
1875 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1876 
1877 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1878 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1879 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1880 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1881 		/* WOL disabled, PHY power down. */
1882 		alc_phy_down(sc);
1883 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1884 			CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1885 
1886 	}
1887 	/* Request PME. */
1888 	pmstat = pci_read_config(sc->alc_dev,
1889 				 sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1890 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1891 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1892 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1893 	pci_write_config(sc->alc_dev,
1894 			 sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1895 }
1896 #endif
1897 
1898 static int
1899 alc_suspend(device_t dev)
1900 {
1901 	struct alc_softc *sc = device_get_softc(dev);
1902 	struct ifnet *ifp = &sc->arpcom.ac_if;
1903 
1904 	lwkt_serialize_enter(ifp->if_serializer);
1905 	alc_stop(sc);
1906 #if 0
1907 /* XXX: WOL */
1908 	alc_setwol(sc);
1909 #endif
1910 	lwkt_serialize_exit(ifp->if_serializer);
1911 
1912 	return (0);
1913 }
1914 
1915 static int
1916 alc_resume(device_t dev)
1917 {
1918 	struct alc_softc *sc = device_get_softc(dev);
1919 	struct ifnet *ifp = &sc->arpcom.ac_if;
1920 	uint16_t pmstat;
1921 
1922 	lwkt_serialize_enter(ifp->if_serializer);
1923 
1924 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
1925 		/* Disable PME and clear PME status. */
1926 		pmstat = pci_read_config(sc->alc_dev,
1927 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1928 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1929 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1930 			pci_write_config(sc->alc_dev,
1931 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1932 		}
1933 	}
1934 
1935 	/* Reset PHY. */
1936 	alc_phy_reset(sc);
1937 	if (ifp->if_flags & IFF_UP)
1938 		alc_init(sc);
1939 
1940 	lwkt_serialize_exit(ifp->if_serializer);
1941 
1942 	return (0);
1943 }
1944 
1945 static int
1946 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1947 {
1948 	struct alc_txdesc *txd, *txd_last;
1949 	struct tx_desc *desc;
1950 	struct mbuf *m;
1951 #if 0 /* XXX: TSO */
1952 	struct ip *ip;
1953 #endif
1954 	struct tcphdr *tcp;
1955 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
1956 	bus_dmamap_t map;
1957 	uint32_t cflags, hdrlen, poff, vtag;
1958 #if 0 /* XXX: TSO */
1959 	uint32_t ip_off;
1960 #endif
1961 	int error, idx, nsegs, prod;
1962 
1963 	M_ASSERTPKTHDR((*m_head));
1964 
1965 	m = *m_head;
1966 	tcp = NULL;
1967 	poff = 0;
1968 #if 0 /* XXX: TSO */
1969 	ip_off = 0;
1970 	ip = NULL;
1971 
1972 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
1973 		/*
1974 		 * AR813x/AR815x requires offset of TCP/UDP header in its
1975 		 * Tx descriptor to perform Tx checksum offloading. TSO
1976 		 * also requires TCP header offset and modification of
1977 		 * IP/TCP header. This kind of operation takes many CPU
1978 		 * cycles on FreeBSD so fast host CPU is required to get
1979 		 * smooth TSO performance.
1980 		 */
1981 		struct ether_header *eh;
1982 
1983 		if (M_WRITABLE(m) == 0) {
1984 			/* Get a writable copy. */
1985 			m = m_dup(*m_head, MB_DONTWAIT);
1986 			/* Release original mbufs. */
1987 			m_freem(*m_head);
1988 			if (m == NULL) {
1989 				*m_head = NULL;
1990 				return (ENOBUFS);
1991 			}
1992 			*m_head = m;
1993 		}
1994 
1995 		ip_off = sizeof(struct ether_header);
1996 		m = m_pullup(m, ip_off + sizeof(struct ip));
1997 		if (m == NULL) {
1998 			*m_head = NULL;
1999 			return (ENOBUFS);
2000 		}
2001 		eh = mtod(m, struct ether_header *);
2002 		/*
2003 		 * Check if hardware VLAN insertion is off.
2004 		 * Additional check for LLC/SNAP frame?
2005 		 */
2006 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2007 			ip_off = sizeof(struct ether_vlan_header);
2008 			m = m_pullup(m, ip_off);
2009 			if (m == NULL) {
2010 				*m_head = NULL;
2011 				return (ENOBUFS);
2012 			}
2013 		}
2014 		m = m_pullup(m, ip_off + sizeof(struct ip));
2015 		if (m == NULL) {
2016 			*m_head = NULL;
2017 			return (ENOBUFS);
2018 		}
2019 		ip = (struct ip *)(mtod(m, char *) + ip_off);
2020 		poff = ip_off + (ip->ip_hl << 2);
2021 
2022 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2023 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2024 			if (m == NULL) {
2025 				*m_head = NULL;
2026 				return (ENOBUFS);
2027 			}
2028 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2029 			m = m_pullup(m, poff + (tcp->th_off << 2));
2030 			if (m == NULL) {
2031 				*m_head = NULL;
2032 				return (ENOBUFS);
2033 			}
2034 			/*
2035 			 * Due to strict adherence of Microsoft NDIS
2036 			 * Large Send specification, hardware expects
2037 			 * a pseudo TCP checksum inserted by upper
2038 			 * stack. Unfortunately the pseudo TCP
2039 			 * checksum that NDIS refers to does not include
2040 			 * TCP payload length so driver should recompute
2041 			 * the pseudo checksum here. Hopefully this
2042 			 * wouldn't be much burden on modern CPUs.
2043 			 *
2044 			 * Reset IP checksum and recompute TCP pseudo
2045 			 * checksum as NDIS specification said.
2046 			 */
2047 			ip->ip_sum = 0;
2048 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2049 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2050 		}
2051 		*m_head = m;
2052 	}
2053 #endif /* TSO */
2054 
2055 	prod = sc->alc_cdata.alc_tx_prod;
2056 	txd = &sc->alc_cdata.alc_txdesc[prod];
2057 	txd_last = txd;
2058 	map = txd->tx_dmamap;
2059 
2060 	error = bus_dmamap_load_mbuf_defrag(
2061 			sc->alc_cdata.alc_tx_tag, map, m_head,
2062 			txsegs, ALC_MAXTXSEGS, &nsegs, BUS_DMA_NOWAIT);
2063 	if (error) {
2064 		m_freem(*m_head);
2065 		*m_head = NULL;
2066 		return (error);
2067 	}
2068 	if (nsegs == 0) {
2069 		m_freem(*m_head);
2070 		*m_head = NULL;
2071 		return (EIO);
2072 	}
2073 
2074 	/* Check descriptor overrun. */
2075 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2076 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2077 		return (ENOBUFS);
2078 	}
2079 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2080 
2081 	m = *m_head;
2082 	cflags = TD_ETHERNET;
2083 	vtag = 0;
2084 	desc = NULL;
2085 	idx = 0;
2086 	/* Configure VLAN hardware tag insertion. */
2087 	if ((m->m_flags & M_VLANTAG) != 0) {
2088 		vtag = htons(m->m_pkthdr.ether_vlantag);
2089 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2090 		cflags |= TD_INS_VLAN_TAG;
2091 	}
2092 	/* Configure Tx checksum offload. */
2093 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2094 #ifdef ALC_USE_CUSTOM_CSUM
2095 		cflags |= TD_CUSTOM_CSUM;
2096 		/* Set checksum start offset. */
2097 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2098 		    TD_PLOAD_OFFSET_MASK;
2099 		/* Set checksum insertion position of TCP/UDP. */
2100 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2101 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2102 #else
2103 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2104 			cflags |= TD_IPCSUM;
2105 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2106 			cflags |= TD_TCPCSUM;
2107 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2108 			cflags |= TD_UDPCSUM;
2109 		/* Set TCP/UDP header offset. */
2110 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2111 		    TD_L4HDR_OFFSET_MASK;
2112 #endif
2113 	} else if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2114 		/* Request TSO and set MSS. */
2115 		cflags |= TD_TSO | TD_TSO_DESCV1;
2116 #if 0
2117 /* XXX: TSO */
2118 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2119 		    TD_MSS_MASK;
2120 		/* Set TCP header offset. */
2121 #endif
2122 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2123 		    TD_TCPHDR_OFFSET_MASK;
2124 		/*
2125 		 * AR813x/AR815x requires the first buffer should
2126 		 * only hold IP/TCP header data. Payload should
2127 		 * be handled in other descriptors.
2128 		 */
2129 		hdrlen = poff + (tcp->th_off << 2);
2130 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2131 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2132 		desc->flags = htole32(cflags);
2133 		desc->addr = htole64(txsegs[0].ds_addr);
2134 		sc->alc_cdata.alc_tx_cnt++;
2135 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2136 		if (m->m_len - hdrlen > 0) {
2137 			/* Handle remaining payload of the first fragment. */
2138 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2139 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2140 			    vtag));
2141 			desc->flags = htole32(cflags);
2142 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2143 			sc->alc_cdata.alc_tx_cnt++;
2144 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2145 		}
2146 		/* Handle remaining fragments. */
2147 		idx = 1;
2148 	}
2149 	for (; idx < nsegs; idx++) {
2150 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2151 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2152 		desc->flags = htole32(cflags);
2153 		desc->addr = htole64(txsegs[idx].ds_addr);
2154 		sc->alc_cdata.alc_tx_cnt++;
2155 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2156 	}
2157 	/* Update producer index. */
2158 	sc->alc_cdata.alc_tx_prod = prod;
2159 
2160 	/* Finally set EOP on the last descriptor. */
2161 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2162 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2163 	desc->flags |= htole32(TD_EOP);
2164 
2165 	/* Swap dmamap of the first and the last. */
2166 	txd = &sc->alc_cdata.alc_txdesc[prod];
2167 	map = txd_last->tx_dmamap;
2168 	txd_last->tx_dmamap = txd->tx_dmamap;
2169 	txd->tx_dmamap = map;
2170 	txd->tx_m = m;
2171 
2172 	return (0);
2173 }
2174 
2175 static void
2176 alc_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2177 {
2178 	struct alc_softc *sc = ifp->if_softc;
2179 	struct mbuf *m_head;
2180 	int enq;
2181 
2182 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2183 	ASSERT_SERIALIZED(ifp->if_serializer);
2184 
2185 	/* Reclaim transmitted frames. */
2186 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2187 		alc_txeof(sc);
2188 
2189 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2190 		return;
2191 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2192 		ifq_purge(&ifp->if_snd);
2193 		return;
2194 	}
2195 
2196 	for (enq = 0; !ifq_is_empty(&ifp->if_snd); ) {
2197 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2198 		if (m_head == NULL)
2199 			break;
2200 		/*
2201 		 * Pack the data into the transmit ring. If we
2202 		 * don't have room, set the OACTIVE flag and wait
2203 		 * for the NIC to drain the ring.
2204 		 */
2205 		if (alc_encap(sc, &m_head)) {
2206 			if (m_head == NULL)
2207 				break;
2208 			ifq_prepend(&ifp->if_snd, m_head);
2209 			ifq_set_oactive(&ifp->if_snd);
2210 			break;
2211 		}
2212 
2213 		enq++;
2214 		/*
2215 		 * If there's a BPF listener, bounce a copy of this frame
2216 		 * to him.
2217 		 */
2218 		ETHER_BPF_MTAP(ifp, m_head);
2219 	}
2220 
2221 	if (enq > 0) {
2222 		/* Sync descriptors. */
2223 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2224 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2225 		/* Kick. Assume we're using normal Tx priority queue. */
2226 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2227 		    (sc->alc_cdata.alc_tx_prod <<
2228 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2229 		    MBOX_TD_PROD_LO_IDX_MASK);
2230 		/* Set a timeout in case the chip goes out to lunch. */
2231 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2232 	}
2233 }
2234 
2235 static void
2236 alc_watchdog(struct alc_softc *sc)
2237 {
2238 	struct ifnet *ifp = &sc->arpcom.ac_if;
2239 
2240 	ASSERT_SERIALIZED(ifp->if_serializer);
2241 
2242 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2243 		return;
2244 
2245 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2246 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2247 		IFNET_STAT_INC(ifp, oerrors, 1);
2248 		alc_init(sc);
2249 		return;
2250 	}
2251 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2252 	IFNET_STAT_INC(ifp, oerrors, 1);
2253 	alc_init(sc);
2254 	if (!ifq_is_empty(&ifp->if_snd))
2255 		if_devstart(ifp);
2256 }
2257 
2258 static int
2259 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2260 {
2261 	struct alc_softc *sc;
2262 	struct ifreq *ifr;
2263 	struct mii_data *mii;
2264 	int error, mask;
2265 
2266 	ASSERT_SERIALIZED(ifp->if_serializer);
2267 
2268 	sc = ifp->if_softc;
2269 	ifr = (struct ifreq *)data;
2270 	error = 0;
2271 	switch (cmd) {
2272 	case SIOCSIFMTU:
2273 		if (ifr->ifr_mtu < ETHERMIN ||
2274 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2275 			    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2276 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2277 		    ifr->ifr_mtu > ETHERMTU)) {
2278 			error = EINVAL;
2279 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2280 			ifp->if_mtu = ifr->ifr_mtu;
2281 #if 0
2282 			/* AR813x/AR815x has 13 bits MSS field. */
2283 			if (ifp->if_mtu > ALC_TSO_MTU &&
2284 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2285 				ifp->if_capenable &= ~IFCAP_TSO4;
2286 				ifp->if_hwassist &= ~CSUM_TSO;
2287 			}
2288 #endif
2289 		}
2290 		break;
2291 	case SIOCSIFFLAGS:
2292 		if ((ifp->if_flags & IFF_UP) != 0) {
2293 			if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2294 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2295 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2296 				alc_rxfilter(sc);
2297 			else if ((ifp->if_flags & IFF_RUNNING) == 0)
2298 				alc_init(sc);
2299 		} else if ((ifp->if_flags & IFF_RUNNING) != 0)
2300 			alc_stop(sc);
2301 		sc->alc_if_flags = ifp->if_flags;
2302 		break;
2303 	case SIOCADDMULTI:
2304 	case SIOCDELMULTI:
2305 		if ((ifp->if_flags & IFF_RUNNING) != 0)
2306 			alc_rxfilter(sc);
2307 		break;
2308 	case SIOCSIFMEDIA:
2309 	case SIOCGIFMEDIA:
2310 		mii = device_get_softc(sc->alc_miibus);
2311 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2312 		break;
2313 	case SIOCSIFCAP:
2314 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2315 		if ((mask & IFCAP_TXCSUM) != 0 &&
2316 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2317 			ifp->if_capenable ^= IFCAP_TXCSUM;
2318 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2319 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2320 			else
2321 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2322 		}
2323 #if 0
2324 /* XXX: WOL */
2325 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2326 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2327 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2328 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2329 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2330 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2331 #endif
2332 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2333 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2334 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2335 			alc_rxvlan(sc);
2336 		}
2337 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2338 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2339 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2340 
2341 		/*
2342 		 * VLAN hardware tagging is required to do checksum
2343 		 * offload or TSO on VLAN interface. Checksum offload
2344 		 * on VLAN interface also requires hardware checksum
2345 		 * offload of parent interface.
2346 		 */
2347 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2348 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2349 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2350 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2351 // XXX		VLAN_CAPABILITIES(ifp);
2352 		break;
2353 	default:
2354 		error = ether_ioctl(ifp, cmd, data);
2355 		break;
2356 	}
2357 
2358 	return (error);
2359 }
2360 
2361 static void
2362 alc_mac_config(struct alc_softc *sc)
2363 {
2364 	struct mii_data *mii;
2365 	uint32_t reg;
2366 
2367 	mii = device_get_softc(sc->alc_miibus);
2368 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2369 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2370 	    MAC_CFG_SPEED_MASK);
2371 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2372 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2373 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
2374 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2375 	}
2376 	/* Reprogram MAC with resolved speed/duplex. */
2377 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2378 	case IFM_10_T:
2379 	case IFM_100_TX:
2380 		reg |= MAC_CFG_SPEED_10_100;
2381 		break;
2382 	case IFM_1000_T:
2383 		reg |= MAC_CFG_SPEED_1000;
2384 		break;
2385 	}
2386 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2387 		reg |= MAC_CFG_FULL_DUPLEX;
2388 #ifdef notyet
2389 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2390 			reg |= MAC_CFG_TX_FC;
2391 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2392 			reg |= MAC_CFG_RX_FC;
2393 #endif
2394 	}
2395 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2396 }
2397 
2398 static void
2399 alc_stats_clear(struct alc_softc *sc)
2400 {
2401 	struct smb sb, *smb;
2402 	uint32_t *reg;
2403 	int i;
2404 
2405 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2406 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2407 		    sc->alc_cdata.alc_smb_map,
2408 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2409 		smb = sc->alc_rdata.alc_smb;
2410 		/* Update done, clear. */
2411 		smb->updated = 0;
2412 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2413 		    sc->alc_cdata.alc_smb_map,
2414 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2415 	} else {
2416 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2417 		    reg++) {
2418 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2419 			i += sizeof(uint32_t);
2420 		}
2421 		/* Read Tx statistics. */
2422 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2423 		    reg++) {
2424 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2425 			i += sizeof(uint32_t);
2426 		}
2427 	}
2428 }
2429 
2430 static void
2431 alc_stats_update(struct alc_softc *sc)
2432 {
2433 	struct alc_hw_stats *stat;
2434 	struct smb sb, *smb;
2435 	struct ifnet *ifp;
2436 	uint32_t *reg;
2437 	int i;
2438 
2439 	ifp = sc->alc_ifp;
2440 	stat = &sc->alc_stats;
2441 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2442 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2443 		    sc->alc_cdata.alc_smb_map,
2444 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2445 		smb = sc->alc_rdata.alc_smb;
2446 		if (smb->updated == 0)
2447 			return;
2448 	} else {
2449 		smb = &sb;
2450 		/* Read Rx statistics. */
2451 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2452 		    reg++) {
2453 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2454 			i += sizeof(uint32_t);
2455 		}
2456 		/* Read Tx statistics. */
2457 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2458 		    reg++) {
2459 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2460 			i += sizeof(uint32_t);
2461 		}
2462 	}
2463 
2464 	/* Rx stats. */
2465 	stat->rx_frames += smb->rx_frames;
2466 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2467 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2468 	stat->rx_pause_frames += smb->rx_pause_frames;
2469 	stat->rx_control_frames += smb->rx_control_frames;
2470 	stat->rx_crcerrs += smb->rx_crcerrs;
2471 	stat->rx_lenerrs += smb->rx_lenerrs;
2472 	stat->rx_bytes += smb->rx_bytes;
2473 	stat->rx_runts += smb->rx_runts;
2474 	stat->rx_fragments += smb->rx_fragments;
2475 	stat->rx_pkts_64 += smb->rx_pkts_64;
2476 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2477 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2478 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2479 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2480 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2481 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2482 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2483 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2484 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2485 	stat->rx_alignerrs += smb->rx_alignerrs;
2486 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2487 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2488 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2489 
2490 	/* Tx stats. */
2491 	stat->tx_frames += smb->tx_frames;
2492 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2493 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2494 	stat->tx_pause_frames += smb->tx_pause_frames;
2495 	stat->tx_excess_defer += smb->tx_excess_defer;
2496 	stat->tx_control_frames += smb->tx_control_frames;
2497 	stat->tx_deferred += smb->tx_deferred;
2498 	stat->tx_bytes += smb->tx_bytes;
2499 	stat->tx_pkts_64 += smb->tx_pkts_64;
2500 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2501 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2502 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2503 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2504 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2505 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2506 	stat->tx_single_colls += smb->tx_single_colls;
2507 	stat->tx_multi_colls += smb->tx_multi_colls;
2508 	stat->tx_late_colls += smb->tx_late_colls;
2509 	stat->tx_excess_colls += smb->tx_excess_colls;
2510 	stat->tx_abort += smb->tx_abort;
2511 	stat->tx_underrun += smb->tx_underrun;
2512 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2513 	stat->tx_lenerrs += smb->tx_lenerrs;
2514 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2515 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2516 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2517 
2518 	/* Update counters in ifnet. */
2519 	IFNET_STAT_INC(ifp, opackets, smb->tx_frames);
2520 
2521 	IFNET_STAT_INC(ifp, collisions, smb->tx_single_colls +
2522 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2523 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT);
2524 
2525 	/*
2526 	 * XXX
2527 	 * tx_pkts_truncated counter looks suspicious. It constantly
2528 	 * increments with no sign of Tx errors. This may indicate
2529 	 * the counter name is not correct one so I've removed the
2530 	 * counter in output errors.
2531 	 */
2532 	IFNET_STAT_INC(ifp, oerrors, smb->tx_abort + smb->tx_late_colls +
2533 	    smb->tx_underrun);
2534 
2535 	IFNET_STAT_INC(ifp, ipackets, smb->rx_frames);
2536 
2537 	IFNET_STAT_INC(ifp, ierrors, smb->rx_crcerrs + smb->rx_lenerrs +
2538 	    smb->rx_runts + smb->rx_pkts_truncated +
2539 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2540 	    smb->rx_alignerrs);
2541 
2542 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2543 		/* Update done, clear. */
2544 		smb->updated = 0;
2545 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2546 		    sc->alc_cdata.alc_smb_map,
2547 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2548 	}
2549 }
2550 
2551 static void
2552 alc_intr(void *arg)
2553 {
2554 	struct alc_softc *sc = arg;
2555 	struct ifnet *ifp = &sc->arpcom.ac_if;
2556 	uint32_t status;
2557 
2558 	ASSERT_SERIALIZED(ifp->if_serializer);
2559 
2560 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2561 	if ((status & ALC_INTRS) == 0)
2562 		return;
2563 
2564 	/* Acknowledge interrupts and disable interrupts. */
2565 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2566 
2567 	if (ifp->if_flags & IFF_RUNNING) {
2568 		if (status & INTR_RX_PKT) {
2569 			if (alc_rxintr(sc)) {
2570 				alc_init(sc);
2571 				return;
2572 			}
2573 		}
2574 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2575 		    INTR_TXQ_TO_RST)) {
2576 			if (status & INTR_DMA_RD_TO_RST) {
2577 				if_printf(ifp,
2578 				    "DMA read error! -- resetting\n");
2579 			}
2580 			if (status & INTR_DMA_WR_TO_RST) {
2581 				if_printf(ifp,
2582 				    "DMA write error! -- resetting\n");
2583 			}
2584 			if (status & INTR_TXQ_TO_RST)
2585 				if_printf(ifp, "TxQ reset! -- resetting\n");
2586 			alc_init(sc);
2587 			return;
2588 		}
2589 		if (!ifq_is_empty(&ifp->if_snd))
2590 			if_devstart(ifp);
2591 
2592 		/* Re-enable interrupts */
2593 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2594 	}
2595 }
2596 
2597 static void
2598 alc_txeof(struct alc_softc *sc)
2599 {
2600 	struct ifnet *ifp;
2601 	struct alc_txdesc *txd;
2602 	uint32_t cons, prod;
2603 	int prog;
2604 
2605 	ifp = sc->alc_ifp;
2606 
2607 	if (sc->alc_cdata.alc_tx_cnt == 0)
2608 		return;
2609 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2610 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2611 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2612 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2613 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2614 		prod = sc->alc_rdata.alc_cmb->cons;
2615 	} else
2616 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2617 	/* Assume we're using normal Tx priority queue. */
2618 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2619 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2620 	cons = sc->alc_cdata.alc_tx_cons;
2621 	/*
2622 	 * Go through our Tx list and free mbufs for those
2623 	 * frames which have been transmitted.
2624 	 */
2625 	for (prog = 0; cons != prod; prog++,
2626 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2627 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2628 			break;
2629 		prog++;
2630 		ifq_clr_oactive(&ifp->if_snd);
2631 		sc->alc_cdata.alc_tx_cnt--;
2632 		txd = &sc->alc_cdata.alc_txdesc[cons];
2633 		if (txd->tx_m != NULL) {
2634 			/* Reclaim transmitted mbufs. */
2635 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2636 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2637 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2638 			    txd->tx_dmamap);
2639 			m_freem(txd->tx_m);
2640 			txd->tx_m = NULL;
2641 		}
2642 	}
2643 
2644 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2645 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2646 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2647 	sc->alc_cdata.alc_tx_cons = cons;
2648 	/*
2649 	 * Unarm watchdog timer only when there is no pending
2650 	 * frames in Tx queue.
2651 	 */
2652 	if (sc->alc_cdata.alc_tx_cnt == 0)
2653 		sc->alc_watchdog_timer = 0;
2654 }
2655 
2656 static int
2657 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, boolean_t wait)
2658 {
2659 	struct mbuf *m;
2660 	bus_dma_segment_t segs[1];
2661 	bus_dmamap_t map;
2662 	int nsegs;
2663 	int error;
2664 
2665 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2666 	if (m == NULL)
2667 		return (ENOBUFS);
2668 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2669 #ifdef foo
2670 	/* Hardware require 4 bytes align */
2671 	m_adj(m, ETHER_ALIGN);
2672 #endif
2673 
2674 	error = bus_dmamap_load_mbuf_segment(
2675 			sc->alc_cdata.alc_rx_tag,
2676 			sc->alc_cdata.alc_rx_sparemap,
2677 			m, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2678 	if (error) {
2679 		m_freem(m);
2680 		return (ENOBUFS);
2681 	}
2682 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2683 
2684 	if (rxd->rx_m != NULL) {
2685 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2686 		    BUS_DMASYNC_POSTREAD);
2687 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2688 	}
2689 	map = rxd->rx_dmamap;
2690 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2691 	sc->alc_cdata.alc_rx_sparemap = map;
2692 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2693 	    BUS_DMASYNC_PREREAD);
2694 	rxd->rx_m = m;
2695 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2696 	return (0);
2697 }
2698 
2699 static int
2700 alc_rxintr(struct alc_softc *sc)
2701 {
2702 	struct ifnet *ifp;
2703 	struct rx_rdesc *rrd;
2704 	uint32_t nsegs, status;
2705 	int rr_cons, prog;
2706 
2707 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2708 	    sc->alc_cdata.alc_rr_ring_map,
2709 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2710 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2711 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2712 	rr_cons = sc->alc_cdata.alc_rr_cons;
2713 	ifp = sc->alc_ifp;
2714 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2715 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2716 		status = le32toh(rrd->status);
2717 		if ((status & RRD_VALID) == 0)
2718 			break;
2719 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2720 		if (nsegs == 0) {
2721 			/* This should not happen! */
2722 			device_printf(sc->alc_dev,
2723 			    "unexpected segment count -- resetting\n");
2724 			return (EIO);
2725 		}
2726 		alc_rxeof(sc, rrd);
2727 		/* Clear Rx return status. */
2728 		rrd->status = 0;
2729 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2730 		sc->alc_cdata.alc_rx_cons += nsegs;
2731 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2732 		prog += nsegs;
2733 	}
2734 
2735 	if (prog > 0) {
2736 		/* Update the consumer index. */
2737 		sc->alc_cdata.alc_rr_cons = rr_cons;
2738 		/* Sync Rx return descriptors. */
2739 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2740 		    sc->alc_cdata.alc_rr_ring_map,
2741 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2742 		/*
2743 		 * Sync updated Rx descriptors such that controller see
2744 		 * modified buffer addresses.
2745 		 */
2746 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2747 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2748 		/*
2749 		 * Let controller know availability of new Rx buffers.
2750 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2751 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2752 		 * only when Rx buffer pre-fetching is required. In
2753 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2754 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2755 		 * it still seems that pre-fetching needs more
2756 		 * experimentation.
2757 		 */
2758 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2759 		    sc->alc_cdata.alc_rx_cons);
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 /* Receive a frame. */
2766 static void
2767 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2768 {
2769 	struct alc_rxdesc *rxd;
2770 	struct ifnet *ifp;
2771 	struct mbuf *mp, *m;
2772 	uint32_t rdinfo, status, vtag;
2773 	int count, nsegs, rx_cons;
2774 
2775 	ifp = sc->alc_ifp;
2776 	status = le32toh(rrd->status);
2777 	rdinfo = le32toh(rrd->rdinfo);
2778 	rx_cons = RRD_RD_IDX(rdinfo);
2779 	nsegs = RRD_RD_CNT(rdinfo);
2780 
2781 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2782 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2783 		/*
2784 		 * We want to pass the following frames to upper
2785 		 * layer regardless of error status of Rx return
2786 		 * ring.
2787 		 *
2788 		 *  o IP/TCP/UDP checksum is bad.
2789 		 *  o frame length and protocol specific length
2790 		 *     does not match.
2791 		 *
2792 		 *  Force network stack compute checksum for
2793 		 *  errored frames.
2794 		 */
2795 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2796 		if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
2797 		    RRD_ERR_RUNT) != 0)
2798 			return;
2799 	}
2800 
2801 	for (count = 0; count < nsegs; count++,
2802 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2803 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2804 		mp = rxd->rx_m;
2805 		/* Add a new receive buffer to the ring. */
2806 		if (alc_newbuf(sc, rxd, FALSE) != 0) {
2807 			IFNET_STAT_INC(ifp, iqdrops, 1);
2808 			/* Reuse Rx buffers. */
2809 			if (sc->alc_cdata.alc_rxhead != NULL)
2810 				m_freem(sc->alc_cdata.alc_rxhead);
2811 			break;
2812 		}
2813 
2814 		/*
2815 		 * Assume we've received a full sized frame.
2816 		 * Actual size is fixed when we encounter the end of
2817 		 * multi-segmented frame.
2818 		 */
2819 		mp->m_len = sc->alc_buf_size;
2820 
2821 		/* Chain received mbufs. */
2822 		if (sc->alc_cdata.alc_rxhead == NULL) {
2823 			sc->alc_cdata.alc_rxhead = mp;
2824 			sc->alc_cdata.alc_rxtail = mp;
2825 		} else {
2826 			sc->alc_cdata.alc_rxprev_tail =
2827 			    sc->alc_cdata.alc_rxtail;
2828 			sc->alc_cdata.alc_rxtail->m_next = mp;
2829 			sc->alc_cdata.alc_rxtail = mp;
2830 		}
2831 
2832 		if (count == nsegs - 1) {
2833 			/* Last desc. for this frame. */
2834 			m = sc->alc_cdata.alc_rxhead;
2835 			/*
2836 			 * It seems that L1C/L2C controller has no way
2837 			 * to tell hardware to strip CRC bytes.
2838 			 */
2839 			m->m_pkthdr.len =
2840 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2841 			if (nsegs > 1) {
2842 				/* Set last mbuf size. */
2843 				mp->m_len = sc->alc_cdata.alc_rxlen -
2844 				    (nsegs - 1) * sc->alc_buf_size;
2845 				/* Remove the CRC bytes in chained mbufs. */
2846 				if (mp->m_len <= ETHER_CRC_LEN) {
2847 					sc->alc_cdata.alc_rxtail =
2848 					    sc->alc_cdata.alc_rxprev_tail;
2849 					sc->alc_cdata.alc_rxtail->m_len -=
2850 					    (ETHER_CRC_LEN - mp->m_len);
2851 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2852 					m_freem(mp);
2853 				} else {
2854 					mp->m_len -= ETHER_CRC_LEN;
2855 				}
2856 			} else
2857 				m->m_len = m->m_pkthdr.len;
2858 			m->m_pkthdr.rcvif = ifp;
2859 			/*
2860 			 * Due to hardware bugs, Rx checksum offloading
2861 			 * was intentionally disabled.
2862 			 */
2863 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2864 			    (status & RRD_VLAN_TAG) != 0) {
2865 				vtag = RRD_VLAN(le32toh(rrd->vtag));
2866 				m->m_pkthdr.ether_vlantag = ntohs(vtag);
2867 				m->m_flags |= M_VLANTAG;
2868 			}
2869 
2870 			/* Pass it on. */
2871 			ifp->if_input(ifp, m);
2872 		}
2873 	}
2874 	/* Reset mbuf chains. */
2875 	ALC_RXCHAIN_RESET(sc);
2876 }
2877 
2878 static void
2879 alc_tick(void *arg)
2880 {
2881 	struct alc_softc *sc = arg;
2882 	struct ifnet *ifp = &sc->arpcom.ac_if;
2883 	struct mii_data *mii;
2884 
2885 	lwkt_serialize_enter(ifp->if_serializer);
2886 
2887 	mii = device_get_softc(sc->alc_miibus);
2888 	mii_tick(mii);
2889 	alc_stats_update(sc);
2890 	/*
2891 	 * alc(4) does not rely on Tx completion interrupts to reclaim
2892 	 * transferred buffers. Instead Tx completion interrupts are
2893 	 * used to hint for scheduling Tx task. So it's necessary to
2894 	 * release transmitted buffers by kicking Tx completion
2895 	 * handler. This limits the maximum reclamation delay to a hz.
2896 	 */
2897 	alc_txeof(sc);
2898 	alc_watchdog(sc);
2899 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
2900 
2901 	lwkt_serialize_exit(ifp->if_serializer);
2902 }
2903 
2904 static void
2905 alc_reset(struct alc_softc *sc)
2906 {
2907 	uint32_t reg;
2908 	int i;
2909 
2910 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2911 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2912 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2913 
2914 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2915 		DELAY(10);
2916 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2917 			break;
2918 	}
2919 	if (i == 0)
2920 		device_printf(sc->alc_dev, "master reset timeout!\n");
2921 
2922 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2923 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2924 			break;
2925 		DELAY(10);
2926 	}
2927 
2928 	if (i == 0)
2929 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
2930 }
2931 
2932 static void
2933 alc_init(void *xsc)
2934 {
2935 	struct alc_softc *sc = xsc;
2936 	struct ifnet *ifp = &sc->arpcom.ac_if;
2937 	struct mii_data *mii;
2938 	uint8_t eaddr[ETHER_ADDR_LEN];
2939 	bus_addr_t paddr;
2940 	uint32_t reg, rxf_hi, rxf_lo;
2941 
2942 	ASSERT_SERIALIZED(ifp->if_serializer);
2943 
2944 	mii = device_get_softc(sc->alc_miibus);
2945 
2946 	/*
2947 	 * Cancel any pending I/O.
2948 	 */
2949 	alc_stop(sc);
2950 	/*
2951 	 * Reset the chip to a known state.
2952 	 */
2953 	alc_reset(sc);
2954 
2955 	/* Initialize Rx descriptors. */
2956 	if (alc_init_rx_ring(sc) != 0) {
2957 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
2958 		alc_stop(sc);
2959 		return;
2960 	}
2961 	alc_init_rr_ring(sc);
2962 	alc_init_tx_ring(sc);
2963 	alc_init_cmb(sc);
2964 	alc_init_smb(sc);
2965 
2966 	/* Reprogram the station address. */
2967 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2968 	CSR_WRITE_4(sc, ALC_PAR0,
2969 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2970 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2971 	/*
2972 	 * Clear WOL status and disable all WOL feature as WOL
2973 	 * would interfere Rx operation under normal environments.
2974 	 */
2975 	CSR_READ_4(sc, ALC_WOL_CFG);
2976 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2977 	/* Set Tx descriptor base addresses. */
2978 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2979 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2980 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2981 	/* We don't use high priority ring. */
2982 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2983 	/* Set Tx descriptor counter. */
2984 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2985 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2986 	/* Set Rx descriptor base addresses. */
2987 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2988 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2989 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2990 	/* We use one Rx ring. */
2991 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2992 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2993 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2994 	/* Set Rx descriptor counter. */
2995 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2996 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2997 
2998 	/*
2999 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3000 	 * if it do not fit the buffer size. Rx return descriptor holds
3001 	 * a counter that indicates how many fragments were made by the
3002 	 * hardware. The buffer size should be multiple of 8 bytes.
3003 	 * Since hardware has limit on the size of buffer size, always
3004 	 * use the maximum value.
3005 	 * For strict-alignment architectures make sure to reduce buffer
3006 	 * size by 8 bytes to make room for alignment fixup.
3007 	 */
3008 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3009 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3010 
3011 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3012 	/* Set Rx return descriptor base addresses. */
3013 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3014 	/* We use one Rx return ring. */
3015 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3016 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3017 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3018 	/* Set Rx return descriptor counter. */
3019 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3020 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3021 	paddr = sc->alc_rdata.alc_cmb_paddr;
3022 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3023 	paddr = sc->alc_rdata.alc_smb_paddr;
3024 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3025 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3026 
3027 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3028 		/* Reconfigure SRAM - Vendor magic. */
3029 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3030 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3031 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3032 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3033 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3034 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3035 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3036 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3037 	}
3038 
3039 	/* Tell hardware that we're ready to load DMA blocks. */
3040 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3041 
3042 	/* Configure interrupt moderation timer. */
3043 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3044 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3045 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3046 	/*
3047 	 * We don't want to automatic interrupt clear as task queue
3048 	 * for the interrupt should know interrupt status.
3049 	 */
3050 	reg = MASTER_SA_TIMER_ENB;
3051 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3052 		reg |= MASTER_IM_RX_TIMER_ENB;
3053 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3054 		reg |= MASTER_IM_TX_TIMER_ENB;
3055 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3056 	/*
3057 	 * Disable interrupt re-trigger timer. We don't want automatic
3058 	 * re-triggering of un-ACKed interrupts.
3059 	 */
3060 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3061 	/* Configure CMB. */
3062 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3063 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3064 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3065 	} else {
3066 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3067 	}
3068 	/*
3069 	 * Hardware can be configured to issue SMB interrupt based
3070 	 * on programmed interval. Since there is a callout that is
3071 	 * invoked for every hz in driver we use that instead of
3072 	 * relying on periodic SMB interrupt.
3073 	 */
3074 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3075 	/* Clear MAC statistics. */
3076 	alc_stats_clear(sc);
3077 
3078 	/*
3079 	 * Always use maximum frame size that controller can support.
3080 	 * Otherwise received frames that has larger frame length
3081 	 * than alc(4) MTU would be silently dropped in hardware. This
3082 	 * would make path-MTU discovery hard as sender wouldn't get
3083 	 * any responses from receiver. alc(4) supports
3084 	 * multi-fragmented frames on Rx path so it has no issue on
3085 	 * assembling fragmented frames. Using maximum frame size also
3086 	 * removes the need to reinitialize hardware when interface
3087 	 * MTU configuration was changed.
3088 	 *
3089 	 * Be conservative in what you do, be liberal in what you
3090 	 * accept from others - RFC 793.
3091 	 */
3092 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3093 
3094 	/* Disable header split(?) */
3095 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3096 
3097 	/* Configure IPG/IFG parameters. */
3098 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3099 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3100 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3101 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3102 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3103 	/* Set parameters for half-duplex media. */
3104 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3105 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3106 	    HDPX_CFG_LCOL_MASK) |
3107 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3108 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3109 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3110 	    HDPX_CFG_ABEBT_MASK) |
3111 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3112 	    HDPX_CFG_JAMIPG_MASK));
3113 	/*
3114 	 * Set TSO/checksum offload threshold. For frames that is
3115 	 * larger than this threshold, hardware wouldn't do
3116 	 * TSO/checksum offloading.
3117 	 */
3118 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3119 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3120 	    TSO_OFFLOAD_THRESH_MASK);
3121 	/* Configure TxQ. */
3122 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3123 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3124 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3125 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3126 		reg >>= 1;
3127 	}
3128 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3129 	    TXQ_CFG_TD_BURST_MASK;
3130 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3131 
3132 	/* Configure Rx free descriptor pre-fetching. */
3133 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3134 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3135 	    RX_RD_FREE_THRESH_HI_MASK) |
3136 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3137 	    RX_RD_FREE_THRESH_LO_MASK));
3138 
3139 	/*
3140 	 * Configure flow control parameters.
3141 	 * XON  : 80% of Rx FIFO
3142 	 * XOFF : 30% of Rx FIFO
3143 	 */
3144 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3145 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3146 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3147 		rxf_hi = (reg * 8) / 10;
3148 		rxf_lo = (reg * 3) / 10;
3149 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3150 			((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3151 			 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3152 			((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3153 			 RX_FIFO_PAUSE_THRESH_HI_MASK));
3154 	}
3155 
3156 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3157 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2) {
3158 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3159 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3160 		    SERDES_PHY_CLK_SLOWDOWN);
3161 	}
3162 
3163 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3164 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3165 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3166 
3167 	/* Configure RxQ. */
3168 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3169 	    RXQ_CFG_RD_BURST_MASK;
3170 	reg |= RXQ_CFG_RSS_MODE_DIS;
3171 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3172 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3173 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3174 
3175 	/* Configure DMA parameters. */
3176 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3177 	reg |= sc->alc_rcb;
3178 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3179 		reg |= DMA_CFG_CMB_ENB;
3180 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3181 		reg |= DMA_CFG_SMB_ENB;
3182 	else
3183 		reg |= DMA_CFG_SMB_DIS;
3184 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3185 	    DMA_CFG_RD_BURST_SHIFT;
3186 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3187 	    DMA_CFG_WR_BURST_SHIFT;
3188 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3189 	    DMA_CFG_RD_DELAY_CNT_MASK;
3190 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3191 	    DMA_CFG_WR_DELAY_CNT_MASK;
3192 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3193 
3194 	/*
3195 	 * Configure Tx/Rx MACs.
3196 	 *  - Auto-padding for short frames.
3197 	 *  - Enable CRC generation.
3198 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3199 	 *  is followed after detection of link establishment.
3200 	 *  AR813x/AR815x always does checksum computation regardless
3201 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3202 	 *  have bug in protocol field in Rx return structure so
3203 	 *  these controllers can't handle fragmented frames. Disable
3204 	 *  Rx checksum offloading until there is a newer controller
3205 	 *  that has sane implementation.
3206 	 */
3207 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3208 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3209 	    MAC_CFG_PREAMBLE_MASK);
3210 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3211 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3212 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3213 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3214 	}
3215 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3216 		reg |= MAC_CFG_SPEED_10_100;
3217 	else
3218 		reg |= MAC_CFG_SPEED_1000;
3219 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3220 
3221 	/* Set up the receive filter. */
3222 	alc_rxfilter(sc);
3223 	alc_rxvlan(sc);
3224 
3225 	/* Acknowledge all pending interrupts and clear it. */
3226 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3227 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3228 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3229 
3230 	sc->alc_flags &= ~ALC_FLAG_LINK;
3231 	/* Switch to the current media. */
3232 	mii_mediachg(mii);
3233 
3234 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3235 
3236 	ifp->if_flags |= IFF_RUNNING;
3237 	ifq_clr_oactive(&ifp->if_snd);
3238 }
3239 
3240 static void
3241 alc_stop(struct alc_softc *sc)
3242 {
3243 	struct ifnet *ifp = &sc->arpcom.ac_if;
3244 	struct alc_txdesc *txd;
3245 	struct alc_rxdesc *rxd;
3246 	uint32_t reg;
3247 	int i;
3248 
3249 	ASSERT_SERIALIZED(ifp->if_serializer);
3250 
3251 	/*
3252 	 * Mark the interface down and cancel the watchdog timer.
3253 	 */
3254 	ifp->if_flags &= ~IFF_RUNNING;
3255 	ifq_clr_oactive(&ifp->if_snd);
3256 	sc->alc_flags &= ~ALC_FLAG_LINK;
3257 	callout_stop(&sc->alc_tick_ch);
3258 	sc->alc_watchdog_timer = 0;
3259 	alc_stats_update(sc);
3260 	/* Disable interrupts. */
3261 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3262 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3263 	alc_stop_queue(sc);
3264 	/* Disable DMA. */
3265 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3266 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3267 	reg |= DMA_CFG_SMB_DIS;
3268 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3269 	DELAY(1000);
3270 	/* Stop Rx/Tx MACs. */
3271 	alc_stop_mac(sc);
3272 	/* Disable interrupts which might be touched in taskq handler. */
3273 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3274 
3275 	/* Reclaim Rx buffers that have been processed. */
3276 	if (sc->alc_cdata.alc_rxhead != NULL)
3277 		m_freem(sc->alc_cdata.alc_rxhead);
3278 	ALC_RXCHAIN_RESET(sc);
3279 	/*
3280 	 * Free Tx/Rx mbufs still in the queues.
3281 	 */
3282 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3283 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3284 		if (rxd->rx_m != NULL) {
3285 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3286 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3287 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3288 			    rxd->rx_dmamap);
3289 			m_freem(rxd->rx_m);
3290 			rxd->rx_m = NULL;
3291 		}
3292 	}
3293 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3294 		txd = &sc->alc_cdata.alc_txdesc[i];
3295 		if (txd->tx_m != NULL) {
3296 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3297 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3298 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3299 			    txd->tx_dmamap);
3300 			m_freem(txd->tx_m);
3301 			txd->tx_m = NULL;
3302 		}
3303 	}
3304 }
3305 
3306 static void
3307 alc_stop_mac(struct alc_softc *sc)
3308 {
3309 	uint32_t reg;
3310 	int i;
3311 
3312 	/* Disable Rx/Tx MAC. */
3313 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3314 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3315 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
3316 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3317 	}
3318 	for (i = ALC_TIMEOUT; i > 0; i--) {
3319 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3320 		if (reg == 0)
3321 			break;
3322 		DELAY(10);
3323 	}
3324 	if (i == 0)
3325 		device_printf(sc->alc_dev,
3326 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3327 }
3328 
3329 static void
3330 alc_start_queue(struct alc_softc *sc)
3331 {
3332 	uint32_t qcfg[] = {
3333 		0,
3334 		RXQ_CFG_QUEUE0_ENB,
3335 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3336 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3337 		RXQ_CFG_ENB
3338 	};
3339 	uint32_t cfg;
3340 
3341 	/* Enable RxQ. */
3342 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3343 	cfg &= ~RXQ_CFG_ENB;
3344 	cfg |= qcfg[1];
3345 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3346 	/* Enable TxQ. */
3347 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3348 	cfg |= TXQ_CFG_ENB;
3349 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3350 }
3351 
3352 static void
3353 alc_stop_queue(struct alc_softc *sc)
3354 {
3355 	uint32_t reg;
3356 	int i;
3357 
3358 	/* Disable RxQ. */
3359 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3360 	if ((reg & RXQ_CFG_ENB) != 0) {
3361 		reg &= ~RXQ_CFG_ENB;
3362 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3363 	}
3364 	/* Disable TxQ. */
3365 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3366 	if ((reg & TXQ_CFG_ENB) == 0) {
3367 		reg &= ~TXQ_CFG_ENB;
3368 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3369 	}
3370 	for (i = ALC_TIMEOUT; i > 0; i--) {
3371 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3372 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3373 			break;
3374 		DELAY(10);
3375 	}
3376 	if (i == 0)
3377 		device_printf(sc->alc_dev,
3378 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3379 }
3380 
3381 static void
3382 alc_init_tx_ring(struct alc_softc *sc)
3383 {
3384 	struct alc_ring_data *rd;
3385 	struct alc_txdesc *txd;
3386 	int i;
3387 
3388 	sc->alc_cdata.alc_tx_prod = 0;
3389 	sc->alc_cdata.alc_tx_cons = 0;
3390 	sc->alc_cdata.alc_tx_cnt = 0;
3391 
3392 	rd = &sc->alc_rdata;
3393 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3394 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3395 		txd = &sc->alc_cdata.alc_txdesc[i];
3396 		txd->tx_m = NULL;
3397 	}
3398 
3399 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3400 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3401 }
3402 
3403 static int
3404 alc_init_rx_ring(struct alc_softc *sc)
3405 {
3406 	struct alc_ring_data *rd;
3407 	struct alc_rxdesc *rxd;
3408 	int i;
3409 
3410 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3411 	rd = &sc->alc_rdata;
3412 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3413 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3414 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3415 		rxd->rx_m = NULL;
3416 		rxd->rx_desc = &rd->alc_rx_ring[i];
3417 		if (alc_newbuf(sc, rxd, TRUE) != 0)
3418 			return (ENOBUFS);
3419 	}
3420 
3421 	/*
3422 	 * Since controller does not update Rx descriptors, driver
3423 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3424 	 * is enough to ensure coherence.
3425 	 */
3426 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3427 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3428 	/* Let controller know availability of new Rx buffers. */
3429 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3430 
3431 	return (0);
3432 }
3433 
3434 static void
3435 alc_init_rr_ring(struct alc_softc *sc)
3436 {
3437 	struct alc_ring_data *rd;
3438 
3439 	sc->alc_cdata.alc_rr_cons = 0;
3440 	ALC_RXCHAIN_RESET(sc);
3441 
3442 	rd = &sc->alc_rdata;
3443 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3444 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3445 	    sc->alc_cdata.alc_rr_ring_map,
3446 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3447 }
3448 
3449 static void
3450 alc_init_cmb(struct alc_softc *sc)
3451 {
3452 	struct alc_ring_data *rd;
3453 
3454 	rd = &sc->alc_rdata;
3455 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3456 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3457 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3458 }
3459 
3460 static void
3461 alc_init_smb(struct alc_softc *sc)
3462 {
3463 	struct alc_ring_data *rd;
3464 
3465 	rd = &sc->alc_rdata;
3466 	bzero(rd->alc_smb, ALC_SMB_SZ);
3467 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3468 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3469 }
3470 
3471 static void
3472 alc_rxvlan(struct alc_softc *sc)
3473 {
3474 	struct ifnet *ifp;
3475 	uint32_t reg;
3476 
3477 	ifp = sc->alc_ifp;
3478 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3479 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3480 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3481 	else
3482 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3483 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3484 }
3485 
3486 static void
3487 alc_rxfilter(struct alc_softc *sc)
3488 {
3489 	struct ifnet *ifp;
3490 	struct ifmultiaddr *ifma;
3491 	uint32_t crc;
3492 	uint32_t mchash[2];
3493 	uint32_t rxcfg;
3494 
3495 	ifp = sc->alc_ifp;
3496 
3497 	bzero(mchash, sizeof(mchash));
3498 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3499 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3500 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3501 		rxcfg |= MAC_CFG_BCAST;
3502 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3503 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3504 			rxcfg |= MAC_CFG_PROMISC;
3505 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3506 			rxcfg |= MAC_CFG_ALLMULTI;
3507 		mchash[0] = 0xFFFFFFFF;
3508 		mchash[1] = 0xFFFFFFFF;
3509 		goto chipit;
3510 	}
3511 
3512 #if 0
3513 	/* XXX */
3514 	if_maddr_rlock(ifp);
3515 #endif
3516 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3517 		if (ifma->ifma_addr->sa_family != AF_LINK)
3518 			continue;
3519 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3520 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3521 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3522 	}
3523 #if 0
3524 	/* XXX */
3525 	if_maddr_runlock(ifp);
3526 #endif
3527 
3528 chipit:
3529 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3530 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3531 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3532 }
3533 
3534 static int
3535 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3536 {
3537 	return (sysctl_int_range(oidp, arg1, arg2, req,
3538 	    ALC_PROC_MIN, ALC_PROC_MAX));
3539 }
3540 
3541 static int
3542 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3543 {
3544 
3545 	return (sysctl_int_range(oidp, arg1, arg2, req,
3546 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3547 }
3548