xref: /dragonfly/sys/dev/netif/alc/if_alc.c (revision e0ecab34)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/alc/if_alc.c,v 1.6 2009/09/29 23:03:16 yongari Exp $
28  * $DragonFly$
29  */
30 
31 /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */
32 
33 #include <sys/cdefs.h>
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/spinlock.h>
45 #include <sys/rman.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/ethernet.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/ifq_var.h>
61 #include <net/vlan/if_vlan_var.h>
62 #include <net/vlan/if_vlan_ether.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 
69 #include <dev/netif/mii_layer/mii.h>
70 #include <dev/netif/mii_layer/miivar.h>
71 
72 #include <bus/pci/pcireg.h>
73 #include <bus/pci/pcivar.h>
74 
75 #include <machine/atomic.h>
76 /*
77 XXX
78 #include <machine/bus.h>
79 #include <machine/in_cksum.h>
80 */
81 
82 #include "if_alcreg.h"
83 #include "if_alcvar.h"
84 
85 /* "device miibus" required.  See GENERIC if you get errors here. */
86 #include "miibus_if.h"
87 #undef ALC_USE_CUSTOM_CSUM
88 
89 #ifdef ALC_USE_CUSTOM_CSUM
90 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
91 #else
92 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
93 #endif
94 #ifndef	IFCAP_VLAN_HWTSO
95 #define	IFCAP_VLAN_HWTSO	0
96 #endif
97 
98 MODULE_DEPEND(alc, pci, 1, 1, 1);
99 MODULE_DEPEND(alc, ether, 1, 1, 1);
100 MODULE_DEPEND(alc, miibus, 1, 1, 1);
101 
102 /* Tunables. */
103 static int msi_disable = 0;
104 static int msix_disable = 0;
105 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
106 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
107 
108 /*
109  * Devices supported by this driver.
110  */
111 static struct alc_dev {
112 	uint16_t	alc_vendorid;
113 	uint16_t	alc_deviceid;
114 	const char	*alc_name;
115 } alc_devs[] = {
116 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131,
117 		"Atheros AR8131 PCIe Gigabit Ethernet" },
118 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132,
119 		"Atheros AR8132 PCIe Fast Ethernet" }
120 };
121 
122 static void	alc_aspm(struct alc_softc *);
123 static int	alc_attach(device_t);
124 static int	alc_check_boundary(struct alc_softc *);
125 static int	alc_detach(device_t);
126 static void	alc_disable_l0s_l1(struct alc_softc *);
127 static int	alc_dma_alloc(struct alc_softc *);
128 static void	alc_dma_free(struct alc_softc *);
129 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
130 static int	alc_encap(struct alc_softc *, struct mbuf **);
131 #ifndef __NO_STRICT_ALIGNMENT
132 static struct mbuf *
133 		alc_fixup_rx(struct ifnet *, struct mbuf *);
134 #endif
135 static void	alc_get_macaddr(struct alc_softc *);
136 static void	alc_init(void *);
137 static void	alc_init_cmb(struct alc_softc *);
138 static void	alc_init_locked(struct alc_softc *);
139 static void	alc_init_rr_ring(struct alc_softc *);
140 static int	alc_init_rx_ring(struct alc_softc *);
141 static void	alc_init_smb(struct alc_softc *);
142 static void	alc_init_tx_ring(struct alc_softc *);
143 static void	alc_int_task(void *, int);
144 static void	alc_intr(void *);
145 static int	alc_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
146 static void	alc_mac_config(struct alc_softc *);
147 static int	alc_miibus_readreg(device_t, int, int);
148 static void	alc_miibus_statchg(device_t);
149 static int	alc_miibus_writereg(device_t, int, int, int);
150 static int	alc_mediachange(struct ifnet *);
151 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
152 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
153 static void	alc_phy_down(struct alc_softc *);
154 static void	alc_phy_reset(struct alc_softc *);
155 static int	alc_probe(device_t);
156 static void	alc_reset(struct alc_softc *);
157 static int	alc_resume(device_t);
158 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
159 static int	alc_rxintr(struct alc_softc *, int);
160 static void	alc_rxfilter(struct alc_softc *);
161 static void	alc_rxvlan(struct alc_softc *);
162 #if 0
163 static void	alc_setlinkspeed(struct alc_softc *);
164 /* XXX: WOL */
165 static void	alc_setwol(struct alc_softc *);
166 #endif
167 static int	alc_shutdown(device_t);
168 static void	alc_start(struct ifnet *);
169 static void	alc_start_queue(struct alc_softc *);
170 static void	alc_stats_clear(struct alc_softc *);
171 static void	alc_stats_update(struct alc_softc *);
172 static void	alc_stop(struct alc_softc *);
173 static void	alc_stop_mac(struct alc_softc *);
174 static void	alc_stop_queue(struct alc_softc *);
175 static int	alc_suspend(device_t);
176 static void	alc_sysctl_node(struct alc_softc *);
177 static void	alc_tick(void *);
178 static void	alc_tx_task(void *, int);
179 static void	alc_txeof(struct alc_softc *);
180 static void	alc_watchdog(struct alc_softc *);
181 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
182 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
183 
184 static device_method_t alc_methods[] = {
185 	/* Device interface. */
186 	DEVMETHOD(device_probe,		alc_probe),
187 	DEVMETHOD(device_attach,	alc_attach),
188 	DEVMETHOD(device_detach,	alc_detach),
189 	DEVMETHOD(device_shutdown,	alc_shutdown),
190 	DEVMETHOD(device_suspend,	alc_suspend),
191 	DEVMETHOD(device_resume,	alc_resume),
192 
193 	/* MII interface. */
194 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
195 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
196 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
197 
198 	{ NULL, NULL }
199 };
200 
201 static driver_t alc_driver = {
202 	"alc",
203 	alc_methods,
204 	sizeof(struct alc_softc)
205 };
206 
207 static devclass_t alc_devclass;
208 
209 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, 0, 0);
210 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, 0, 0);
211 
212 static struct resource_spec alc_res_spec_mem[] = {
213 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
214 	{ -1,			0,		0 }
215 };
216 
217 static struct resource_spec alc_irq_spec_legacy[] = {
218 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
219 	{ -1,			0,		0 }
220 };
221 
222 static struct resource_spec alc_irq_spec_msi[] = {
223 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
224 	{ -1,			0,		0 }
225 };
226 
227 static struct resource_spec alc_irq_spec_msix[] = {
228 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
229 	{ -1,			0,		0 }
230 };
231 
232 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
233 
234 static int
235 alc_miibus_readreg(device_t dev, int phy, int reg)
236 {
237 	struct alc_softc *sc;
238 	uint32_t v;
239 	int i;
240 
241 	sc = device_get_softc(dev);
242 
243 	if (phy != sc->alc_phyaddr)
244 		return (0);
245 
246 	/*
247 	 * For AR8132 fast ethernet controller, do not report 1000baseT
248 	 * capability to mii(4). Even though AR8132 uses the same
249 	 * model/revision number of F1 gigabit PHY, the PHY has no
250 	 * ability to establish 1000baseT link.
251 	 */
252 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
253 	    reg == MII_EXTSR)
254 		return (0);
255 
256 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
257 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
258 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
259 		DELAY(5);
260 		v = CSR_READ_4(sc, ALC_MDIO);
261 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
262 			break;
263 	}
264 
265 	if (i == 0) {
266 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
267 		return (0);
268 	}
269 
270 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
271 }
272 
273 static int
274 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
275 {
276 	struct alc_softc *sc;
277 	uint32_t v;
278 	int i;
279 
280 	sc = device_get_softc(dev);
281 
282 	if (phy != sc->alc_phyaddr)
283 		return (0);
284 
285 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
286 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
287 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
288 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
289 		DELAY(5);
290 		v = CSR_READ_4(sc, ALC_MDIO);
291 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
292 			break;
293 	}
294 
295 	if (i == 0)
296 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
297 
298 	return (0);
299 }
300 
301 static void
302 alc_miibus_statchg(device_t dev)
303 {
304 	struct alc_softc *sc;
305 	struct mii_data *mii;
306 	struct ifnet *ifp;
307 	uint32_t reg;
308 
309 	sc = device_get_softc(dev);
310 
311 	mii = device_get_softc(sc->alc_miibus);
312 	ifp = sc->alc_ifp;
313 	if (mii == NULL || ifp == NULL ||
314 	    (ifp->if_flags & IFF_RUNNING) == 0)
315 		return;
316 
317 	sc->alc_flags &= ~ALC_FLAG_LINK;
318 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
319 	    (IFM_ACTIVE | IFM_AVALID)) {
320 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
321 		case IFM_10_T:
322 		case IFM_100_TX:
323 			sc->alc_flags |= ALC_FLAG_LINK;
324 			break;
325 		case IFM_1000_T:
326 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
327 				sc->alc_flags |= ALC_FLAG_LINK;
328 			break;
329 		default:
330 			break;
331 		}
332 	}
333 	alc_stop_queue(sc);
334 	/* Stop Rx/Tx MACs. */
335 	alc_stop_mac(sc);
336 
337 	/* Program MACs with resolved speed/duplex/flow-control. */
338 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
339 		alc_start_queue(sc);
340 		alc_mac_config(sc);
341 		/* Re-enable Tx/Rx MACs. */
342 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
343 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
344 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
345 	}
346 	alc_aspm(sc);
347 }
348 
349 static void
350 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
351 {
352 	struct alc_softc *sc;
353 	struct mii_data *mii;
354 
355 	sc = ifp->if_softc;
356 	ALC_LOCK(sc);
357 	if ((ifp->if_flags & IFF_UP) == 0) {
358 		ALC_UNLOCK(sc);
359 		return;
360 	}
361 	mii = device_get_softc(sc->alc_miibus);
362 
363 	mii_pollstat(mii);
364 	ALC_UNLOCK(sc);
365 	ifmr->ifm_status = mii->mii_media_status;
366 	ifmr->ifm_active = mii->mii_media_active;
367 }
368 
369 static int
370 alc_mediachange(struct ifnet *ifp)
371 {
372 	struct alc_softc *sc;
373 	struct mii_data *mii;
374 	struct mii_softc *miisc;
375 	int error;
376 
377 	sc = ifp->if_softc;
378 	ALC_LOCK(sc);
379 	mii = device_get_softc(sc->alc_miibus);
380 	if (mii->mii_instance != 0) {
381 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
382 			mii_phy_reset(miisc);
383 	}
384 	error = mii_mediachg(mii);
385 	ALC_UNLOCK(sc);
386 
387 	return (error);
388 }
389 
390 static int
391 alc_probe(device_t dev)
392 {
393 	struct alc_dev *sp;
394 	int i;
395 	uint16_t vendor, devid;
396 
397 	vendor = pci_get_vendor(dev);
398 	devid = pci_get_device(dev);
399 	sp = alc_devs;
400 	for (i = 0; i < sizeof(alc_devs) / sizeof(alc_devs[0]); i++) {
401 		if (vendor == sp->alc_vendorid &&
402 		    devid == sp->alc_deviceid) {
403 			device_set_desc(dev, sp->alc_name);
404 			return (BUS_PROBE_DEFAULT);
405 		}
406 		sp++;
407 	}
408 
409 	return (ENXIO);
410 }
411 
412 static void
413 alc_get_macaddr(struct alc_softc *sc)
414 {
415 	uint32_t ea[2], opt;
416 	int i;
417 
418 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
419 	if ((CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
420 		/*
421 		 * EEPROM found, let TWSI reload EEPROM configuration.
422 		 * This will set ethernet address of controller.
423 		 */
424 		if ((opt & OPT_CFG_CLK_ENB) == 0) {
425 			opt |= OPT_CFG_CLK_ENB;
426 			CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
427 			CSR_READ_4(sc, ALC_OPT_CFG);
428 			DELAY(1000);
429 		}
430 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
431 		    TWSI_CFG_SW_LD_START);
432 		for (i = 100; i > 0; i--) {
433 			DELAY(1000);
434 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
435 			    TWSI_CFG_SW_LD_START) == 0)
436 				break;
437 		}
438 		if (i == 0)
439 			device_printf(sc->alc_dev,
440 			    "reloading EEPROM timeout!\n");
441 	} else {
442 		if (bootverbose)
443 			device_printf(sc->alc_dev, "EEPROM not found!\n");
444 	}
445 	if ((opt & OPT_CFG_CLK_ENB) != 0) {
446 		opt &= ~OPT_CFG_CLK_ENB;
447 		CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
448 		CSR_READ_4(sc, ALC_OPT_CFG);
449 		DELAY(1000);
450 	}
451 
452 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
453 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
454 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
455 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
456 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
457 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
458 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
459 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
460 }
461 
462 static void
463 alc_disable_l0s_l1(struct alc_softc *sc)
464 {
465 	uint32_t pmcfg;
466 
467 	/* Another magic from vendor. */
468 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
469 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
470 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
471 	    PM_CFG_SERDES_PD_EX_L1);
472 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
473 	    PM_CFG_SERDES_L1_ENB;
474 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
475 }
476 
477 static void
478 alc_phy_reset(struct alc_softc *sc)
479 {
480 	uint16_t data;
481 
482 	/* Reset magic from Linux. */
483 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
484 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
485 	CSR_READ_2(sc, ALC_GPHY_CFG);
486 	DELAY(10 * 1000);
487 
488 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
489 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
490 	    GPHY_CFG_SEL_ANA_RESET);
491 	CSR_READ_2(sc, ALC_GPHY_CFG);
492 	DELAY(10 * 1000);
493 
494 	/* Load DSP codes, vendor magic. */
495 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
496 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
497 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
498 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
499 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
500 	    ALC_MII_DBG_DATA, data);
501 
502 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
503 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
504 	    ANA_SERDES_EN_LCKDT;
505 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
506 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
507 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
508 	    ALC_MII_DBG_DATA, data);
509 
510 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
511 	    ANA_LONG_CABLE_TH_100_MASK) |
512 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
513 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
514 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
515 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
516 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
517 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
518 	    ALC_MII_DBG_DATA, data);
519 
520 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
521 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
522 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
523 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
524 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
525 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
526 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
527 	    ALC_MII_DBG_DATA, data);
528 
529 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
530 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
531 	    ANA_OEN_125M;
532 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
533 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
534 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
535 	    ALC_MII_DBG_DATA, data);
536 	DELAY(1000);
537 }
538 
539 static void
540 alc_phy_down(struct alc_softc *sc)
541 {
542 
543 	/* Force PHY down. */
544 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
545 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
546 	    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW);
547 	DELAY(1000);
548 }
549 
550 static void
551 alc_aspm(struct alc_softc *sc)
552 {
553 	uint32_t pmcfg;
554 
555 	ALC_LOCK_ASSERT(sc);
556 
557 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
558 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
559 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB;
560 	pmcfg |= PM_CFG_SERDES_L1_ENB;
561 	pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
562 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
563 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
564 		pmcfg |= PM_CFG_SERDES_PLL_L1_ENB;
565 		pmcfg &= ~PM_CFG_CLK_SWH_L1;
566 		pmcfg &= ~PM_CFG_ASPM_L1_ENB;
567 		pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
568 	} else {
569 		pmcfg &= ~PM_CFG_SERDES_PLL_L1_ENB;
570 		pmcfg |= PM_CFG_CLK_SWH_L1;
571 		pmcfg &= ~PM_CFG_ASPM_L1_ENB;
572 		pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
573 	}
574 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
575 }
576 
577 static int
578 alc_attach(device_t dev)
579 {
580 	struct alc_softc *sc;
581 	struct ifnet *ifp;
582 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/l1" };
583 	uint16_t burst;
584 	int base, error, i, msic, msixc, state;
585 	uint32_t cap, ctl, val;
586 
587 	error = 0;
588 	sc = device_get_softc(dev);
589 	sc->alc_dev = dev;
590 
591 	lockinit(&sc->alc_lock, "alc_lock", 0, LK_CANRECURSE);
592 	callout_init_mp(&sc->alc_tick_ch);
593 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
594 
595 	/* Map the device. */
596 	pci_enable_busmaster(dev);
597 	sc->alc_res_spec = alc_res_spec_mem;
598 	sc->alc_irq_spec = alc_irq_spec_legacy;
599 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
600 	if (error != 0) {
601 		device_printf(dev, "cannot allocate memory resources.\n");
602 		goto fail;
603 	}
604 
605 	/* Set PHY address. */
606 	sc->alc_phyaddr = ALC_PHY_ADDR;
607 
608 	/* Initialize DMA parameters. */
609 	sc->alc_dma_rd_burst = 0;
610 	sc->alc_dma_wr_burst = 0;
611 	sc->alc_rcb = DMA_CFG_RCB_64;
612 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
613 		sc->alc_flags |= ALC_FLAG_PCIE;
614 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
615 		sc->alc_dma_rd_burst =
616 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
617 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
618 		if (bootverbose) {
619 			device_printf(dev, "Read request size : %u bytes.\n",
620 			    alc_dma_burst[sc->alc_dma_rd_burst]);
621 			device_printf(dev, "TLP payload size : %u bytes.\n",
622 			    alc_dma_burst[sc->alc_dma_wr_burst]);
623 		}
624 		/* Clear data link and flow-control protocol error. */
625 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
626 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
627 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
628 		/* Disable ASPM L0S and L1. */
629 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
630 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
631 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
632 			if ((ctl & 0x08) != 0)
633 				sc->alc_rcb = DMA_CFG_RCB_128;
634 			if (bootverbose)
635 				device_printf(dev, "RCB %u bytes\n",
636 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
637 			state = ctl & 0x03;
638 			if (bootverbose)
639 				device_printf(sc->alc_dev, "ASPM %s %s\n",
640 				    aspm_state[state],
641 				    state == 0 ? "disabled" : "enabled");
642 			if (state != 0)
643 				alc_disable_l0s_l1(sc);
644 		}
645 	}
646 
647 	/* Reset PHY. */
648 	alc_phy_reset(sc);
649 
650 	/* Reset the ethernet controller. */
651 	alc_reset(sc);
652 
653 	/*
654 	 * One odd thing is AR8132 uses the same PHY hardware(F1
655 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
656 	 * the PHY supports 1000Mbps but that's not true. The PHY
657 	 * used in AR8132 can't establish gigabit link even if it
658 	 * shows the same PHY model/revision number of AR8131.
659 	 */
660 	if (pci_get_device(dev) == DEVICEID_ATHEROS_AR8132)
661 		sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_JUMBO;
662 	else
663 		sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
664 	/*
665 	 * It seems that AR8131/AR8132 has silicon bug for SMB. In
666 	 * addition, Atheros said that enabling SMB wouldn't improve
667 	 * performance. However I think it's bad to access lots of
668 	 * registers to extract MAC statistics.
669 	 */
670 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
671 	/*
672 	 * Don't use Tx CMB. It is known to have silicon bug.
673 	 */
674 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
675 	sc->alc_rev = pci_get_revid(dev);
676 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
677 	    MASTER_CHIP_REV_SHIFT;
678 	if (bootverbose) {
679 		device_printf(dev, "PCI device revision : 0x%04x\n",
680 		    sc->alc_rev);
681 		device_printf(dev, "Chip id/revision : 0x%04x\n",
682 		    sc->alc_chip_rev);
683 	}
684 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
685 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
686 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
687 
688 	/* Allocate IRQ resources. */
689 	msixc = pci_msix_count(dev);
690 	msic = pci_msi_count(dev);
691 	if (bootverbose) {
692 		device_printf(dev, "MSIX count : %d\n", msixc);
693 		device_printf(dev, "MSI count : %d\n", msic);
694 	}
695 	/* Prefer MSIX over MSI. */
696 	if (msix_disable == 0 || msi_disable == 0) {
697 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
698 		    pci_alloc_msix(dev, &msixc) == 0) {
699 			if (msic == ALC_MSIX_MESSAGES) {
700 				device_printf(dev,
701 				    "Using %d MSIX message(s).\n", msixc);
702 				sc->alc_flags |= ALC_FLAG_MSIX;
703 				sc->alc_irq_spec = alc_irq_spec_msix;
704 			} else
705 				pci_release_msi(dev);
706 		}
707 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
708 		    msic == ALC_MSI_MESSAGES &&
709 		    pci_alloc_msi(dev, &msic) == 0) {
710 			if (msic == ALC_MSI_MESSAGES) {
711 				device_printf(dev,
712 				    "Using %d MSI message(s).\n", msic);
713 				sc->alc_flags |= ALC_FLAG_MSI;
714 				sc->alc_irq_spec = alc_irq_spec_msi;
715 			} else
716 				pci_release_msi(dev);
717 		}
718 	}
719 
720 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
721 	if (error != 0) {
722 		device_printf(dev, "cannot allocate IRQ resources.\n");
723 		goto fail;
724 	}
725 
726 	/* Create device sysctl node. */
727 	alc_sysctl_node(sc);
728 
729 	if ((error = alc_dma_alloc(sc) != 0))
730 		goto fail;
731 
732 	/* Load station address. */
733 	alc_get_macaddr(sc);
734 
735 	ifp = sc->alc_ifp = &sc->arpcom.ac_if;
736 	ifp->if_softc = sc;
737 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
738 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
739 	ifp->if_ioctl = alc_ioctl;
740 	ifp->if_start = alc_start;
741 	ifp->if_init = alc_init;
742 	ifp->if_snd.ifq_maxlen = ALC_TX_RING_CNT - 1;
743 	ifq_set_maxlen(&ifp->if_snd, ifp->if_snd.ifq_maxlen);
744 	ifq_set_ready(&ifp->if_snd);
745 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
746 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
747 #if 0
748 /* XXX: WOL */
749 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
750 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
751 #endif
752 	ifp->if_capenable = ifp->if_capabilities;
753 
754 	/* Set up MII bus. */
755 	if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
756 	    alc_mediastatus)) != 0) {
757 		device_printf(dev, "no PHY found!\n");
758 		goto fail;
759 	}
760 
761 	ether_ifattach(ifp, sc->alc_eaddr, NULL);
762 
763 	/* VLAN capability setup. */
764 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
765 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
766 	ifp->if_capenable = ifp->if_capabilities;
767 	/*
768 	 * XXX
769 	 * It seems enabling Tx checksum offloading makes more trouble.
770 	 * Sometimes the controller does not receive any frames when
771 	 * Tx checksum offloading is enabled. I'm not sure whether this
772 	 * is a bug in Tx checksum offloading logic or I got broken
773 	 * sample boards. To safety, don't enable Tx checksum offloading
774 	 * by default but give chance to users to toggle it if they know
775 	 * their controllers work without problems.
776 	 */
777 	ifp->if_capenable &= ~IFCAP_TXCSUM;
778 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
779 
780 	/* Tell the upper layer(s) we support long frames. */
781 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
782 
783 	/* Create local taskq. */
784 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
785 	sc->alc_tq = taskqueue_create("alc_taskq", M_WAITOK,
786 				      taskqueue_thread_enqueue, &sc->alc_tq);
787 	if (sc->alc_tq == NULL) {
788 		device_printf(dev, "could not create taskqueue.\n");
789 		ether_ifdetach(ifp);
790 		error = ENXIO;
791 		goto fail;
792 	}
793 	taskqueue_start_threads(&sc->alc_tq, 1, TDPRI_KERN_DAEMON, -1, "%s taskq",
794 	    device_get_nameunit(sc->alc_dev));
795 
796 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
797 		msic = ALC_MSIX_MESSAGES;
798 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
799 		msic = ALC_MSI_MESSAGES;
800 	else
801 		msic = 1;
802 	for (i = 0; i < msic; i++) {
803 		error = bus_setup_intr(dev, sc->alc_irq[i], INTR_MPSAFE,
804 				       alc_intr, sc,
805 				       &sc->alc_intrhand[i], NULL);
806 		if (error != 0)
807 			break;
808 	}
809 	if (error != 0) {
810 		device_printf(dev, "could not set up interrupt handler.\n");
811 		taskqueue_free(sc->alc_tq);
812 		sc->alc_tq = NULL;
813 		ether_ifdetach(ifp);
814 		goto fail;
815 	}
816 
817 fail:
818 	if (error != 0)
819 		alc_detach(dev);
820 
821 	return (error);
822 }
823 
824 static int
825 alc_detach(device_t dev)
826 {
827 	struct alc_softc *sc;
828 	struct ifnet *ifp;
829 	int i, msic;
830 
831 	sc = device_get_softc(dev);
832 
833 	ifp = sc->alc_ifp;
834 	if (device_is_attached(dev)) {
835 		ALC_LOCK(sc);
836 		sc->alc_flags |= ALC_FLAG_DETACH;
837 		alc_stop(sc);
838 		ALC_UNLOCK(sc);
839 #if 0
840 		/* XXX */
841 		callout_drain(&sc->alc_tick_ch);
842 #endif
843 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
844 		taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
845 		ether_ifdetach(ifp);
846 	}
847 
848 	if (sc->alc_tq != NULL) {
849 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
850 		taskqueue_free(sc->alc_tq);
851 		sc->alc_tq = NULL;
852 	}
853 
854 	if (sc->alc_miibus != NULL) {
855 		device_delete_child(dev, sc->alc_miibus);
856 		sc->alc_miibus = NULL;
857 	}
858 	bus_generic_detach(dev);
859 	alc_dma_free(sc);
860 
861 	if (ifp != NULL) {
862 // XXX?		if_free(ifp);
863 		sc->alc_ifp = NULL;
864 	}
865 
866 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
867 		msic = ALC_MSIX_MESSAGES;
868 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
869 		msic = ALC_MSI_MESSAGES;
870 	else
871 		msic = 1;
872 	for (i = 0; i < msic; i++) {
873 		if (sc->alc_intrhand[i] != NULL) {
874 			bus_teardown_intr(dev, sc->alc_irq[i],
875 					  sc->alc_intrhand[i]);
876 			sc->alc_intrhand[i] = NULL;
877 		}
878 	}
879 	if (sc->alc_res[0] != NULL)
880 		alc_phy_down(sc);
881 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
882 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
883 		pci_release_msi(dev);
884 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
885 	lockuninit(&sc->alc_lock);
886 
887 	return (0);
888 }
889 
890 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
891 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
892 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
893 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
894 
895 static void
896 alc_sysctl_node(struct alc_softc *sc)
897 {
898 	struct sysctl_ctx_list *ctx;
899 	struct sysctl_oid *tree;
900 	struct sysctl_oid_list *child, *parent;
901 	struct alc_hw_stats *stats;
902 	int error;
903 
904 	stats = &sc->alc_stats;
905 	ctx = &sc->alc_sysctl_ctx;
906 	sysctl_ctx_init(ctx);
907 
908 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
909 			       OID_AUTO,
910 			       device_get_nameunit(sc->alc_dev),
911 			       CTLFLAG_RD, 0, "");
912 	if (tree == NULL) {
913 		device_printf(sc->alc_dev, "can't add sysctl node\n");
914 		return;
915 	}
916 	child = SYSCTL_CHILDREN(tree);
917 
918 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
919 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
920 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
921 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
922 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
923 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
924 	/* Pull in device tunables. */
925 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
926 	error = resource_int_value(device_get_name(sc->alc_dev),
927 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
928 	if (error == 0) {
929 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
930 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
931 			device_printf(sc->alc_dev, "int_rx_mod value out of "
932 			    "range; using default: %d\n",
933 			    ALC_IM_RX_TIMER_DEFAULT);
934 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
935 		}
936 	}
937 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
938 	error = resource_int_value(device_get_name(sc->alc_dev),
939 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
940 	if (error == 0) {
941 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
942 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
943 			device_printf(sc->alc_dev, "int_tx_mod value out of "
944 			    "range; using default: %d\n",
945 			    ALC_IM_TX_TIMER_DEFAULT);
946 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
947 		}
948 	}
949 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
950 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
951 	    sysctl_hw_alc_proc_limit, "I",
952 	    "max number of Rx events to process");
953 	/* Pull in device tunables. */
954 	sc->alc_process_limit = ALC_PROC_DEFAULT;
955 	error = resource_int_value(device_get_name(sc->alc_dev),
956 	    device_get_unit(sc->alc_dev), "process_limit",
957 	    &sc->alc_process_limit);
958 	if (error == 0) {
959 		if (sc->alc_process_limit < ALC_PROC_MIN ||
960 		    sc->alc_process_limit > ALC_PROC_MAX) {
961 			device_printf(sc->alc_dev,
962 			    "process_limit value out of range; "
963 			    "using default: %d\n", ALC_PROC_DEFAULT);
964 			sc->alc_process_limit = ALC_PROC_DEFAULT;
965 		}
966 	}
967 
968 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
969 	    NULL, "ALC statistics");
970 	parent = SYSCTL_CHILDREN(tree);
971 
972 	/* Rx statistics. */
973 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
974 	    NULL, "Rx MAC statistics");
975 	child = SYSCTL_CHILDREN(tree);
976 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
977 	    &stats->rx_frames, "Good frames");
978 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
979 	    &stats->rx_bcast_frames, "Good broadcast frames");
980 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
981 	    &stats->rx_mcast_frames, "Good multicast frames");
982 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
983 	    &stats->rx_pause_frames, "Pause control frames");
984 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
985 	    &stats->rx_control_frames, "Control frames");
986 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
987 	    &stats->rx_crcerrs, "CRC errors");
988 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
989 	    &stats->rx_lenerrs, "Frames with length mismatched");
990 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
991 	    &stats->rx_bytes, "Good octets");
992 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
993 	    &stats->rx_bcast_bytes, "Good broadcast octets");
994 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
995 	    &stats->rx_mcast_bytes, "Good multicast octets");
996 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
997 	    &stats->rx_runts, "Too short frames");
998 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
999 	    &stats->rx_fragments, "Fragmented frames");
1000 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1001 	    &stats->rx_pkts_64, "64 bytes frames");
1002 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1003 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1004 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1005 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1006 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1007 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1008 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1009 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1010 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1011 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1012 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1013 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1014 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1015 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1016 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1017 	    &stats->rx_fifo_oflows, "FIFO overflows");
1018 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1019 	    &stats->rx_rrs_errs, "Return status write-back errors");
1020 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1021 	    &stats->rx_alignerrs, "Alignment errors");
1022 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1023 	    &stats->rx_pkts_filtered,
1024 	    "Frames dropped due to address filtering");
1025 
1026 	/* Tx statistics. */
1027 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1028 	    NULL, "Tx MAC statistics");
1029 	child = SYSCTL_CHILDREN(tree);
1030 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1031 	    &stats->tx_frames, "Good frames");
1032 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1033 	    &stats->tx_bcast_frames, "Good broadcast frames");
1034 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1035 	    &stats->tx_mcast_frames, "Good multicast frames");
1036 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1037 	    &stats->tx_pause_frames, "Pause control frames");
1038 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1039 	    &stats->tx_control_frames, "Control frames");
1040 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1041 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1042 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1043 	    &stats->tx_excess_defer, "Frames with derferrals");
1044 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1045 	    &stats->tx_bytes, "Good octets");
1046 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1047 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1048 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1049 	    &stats->tx_mcast_bytes, "Good multicast octets");
1050 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1051 	    &stats->tx_pkts_64, "64 bytes frames");
1052 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1053 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1054 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1055 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1056 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1057 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1058 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1059 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1060 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1061 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1062 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1063 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1064 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1065 	    &stats->tx_single_colls, "Single collisions");
1066 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1067 	    &stats->tx_multi_colls, "Multiple collisions");
1068 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1069 	    &stats->tx_late_colls, "Late collisions");
1070 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1071 	    &stats->tx_excess_colls, "Excessive collisions");
1072 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1073 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1074 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1075 	    &stats->tx_underrun, "FIFO underruns");
1076 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1077 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1078 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1079 	    &stats->tx_lenerrs, "Frames with length mismatched");
1080 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1081 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1082 }
1083 
1084 #undef ALC_SYSCTL_STAT_ADD32
1085 #undef ALC_SYSCTL_STAT_ADD64
1086 
1087 struct alc_dmamap_arg {
1088 	bus_addr_t	alc_busaddr;
1089 };
1090 
1091 static void
1092 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1093 {
1094 	struct alc_dmamap_arg *ctx;
1095 
1096 	if (error != 0)
1097 		return;
1098 
1099 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1100 
1101 	ctx = (struct alc_dmamap_arg *)arg;
1102 	ctx->alc_busaddr = segs[0].ds_addr;
1103 }
1104 
1105 /*
1106  * Normal and high Tx descriptors shares single Tx high address.
1107  * Four Rx descriptor/return rings and CMB shares the same Rx
1108  * high address.
1109  */
1110 static int
1111 alc_check_boundary(struct alc_softc *sc)
1112 {
1113 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1114 
1115 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1116 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1117 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1118 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1119 
1120 	/* 4GB boundary crossing is not allowed. */
1121 	if ((ALC_ADDR_HI(rx_ring_end) !=
1122 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1123 	    (ALC_ADDR_HI(rr_ring_end) !=
1124 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1125 	    (ALC_ADDR_HI(cmb_end) !=
1126 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1127 	    (ALC_ADDR_HI(tx_ring_end) !=
1128 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1129 		return (EFBIG);
1130 	/*
1131 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1132 	 * the same high address.
1133 	 */
1134 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1135 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1136 		return (EFBIG);
1137 
1138 	return (0);
1139 }
1140 
1141 static int
1142 alc_dma_alloc(struct alc_softc *sc)
1143 {
1144 	struct alc_txdesc *txd;
1145 	struct alc_rxdesc *rxd;
1146 	bus_addr_t lowaddr;
1147 	struct alc_dmamap_arg ctx;
1148 	int error, i;
1149 
1150 	lowaddr = BUS_SPACE_MAXADDR;
1151 again:
1152 	/* Create parent DMA tag. */
1153 	error = bus_dma_tag_create(
1154 	    sc->alc_cdata.alc_parent_tag, /* parent */
1155 	    1, 0,			/* alignment, boundary */
1156 	    lowaddr,			/* lowaddr */
1157 	    BUS_SPACE_MAXADDR,		/* highaddr */
1158 	    NULL, NULL,			/* filter, filterarg */
1159 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1160 	    0,				/* nsegments */
1161 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1162 	    0,				/* flags */
1163 	    &sc->alc_cdata.alc_parent_tag);
1164 	if (error != 0) {
1165 		device_printf(sc->alc_dev,
1166 		    "could not create parent DMA tag.\n");
1167 		goto fail;
1168 	}
1169 
1170 	/* Create DMA tag for Tx descriptor ring. */
1171 	error = bus_dma_tag_create(
1172 	    sc->alc_cdata.alc_parent_tag, /* parent */
1173 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1174 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1175 	    BUS_SPACE_MAXADDR,		/* highaddr */
1176 	    NULL, NULL,			/* filter, filterarg */
1177 	    ALC_TX_RING_SZ,		/* maxsize */
1178 	    1,				/* nsegments */
1179 	    ALC_TX_RING_SZ,		/* maxsegsize */
1180 	    0,				/* flags */
1181 	    &sc->alc_cdata.alc_tx_ring_tag);
1182 	if (error != 0) {
1183 		device_printf(sc->alc_dev,
1184 		    "could not create Tx ring DMA tag.\n");
1185 		goto fail;
1186 	}
1187 
1188 	/* Create DMA tag for Rx free descriptor ring. */
1189 	error = bus_dma_tag_create(
1190 	    sc->alc_cdata.alc_parent_tag, /* parent */
1191 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1192 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1193 	    BUS_SPACE_MAXADDR,		/* highaddr */
1194 	    NULL, NULL,			/* filter, filterarg */
1195 	    ALC_RX_RING_SZ,		/* maxsize */
1196 	    1,				/* nsegments */
1197 	    ALC_RX_RING_SZ,		/* maxsegsize */
1198 	    0,				/* flags */
1199 	    &sc->alc_cdata.alc_rx_ring_tag);
1200 	if (error != 0) {
1201 		device_printf(sc->alc_dev,
1202 		    "could not create Rx ring DMA tag.\n");
1203 		goto fail;
1204 	}
1205 	/* Create DMA tag for Rx return descriptor ring. */
1206 	error = bus_dma_tag_create(
1207 	    sc->alc_cdata.alc_parent_tag, /* parent */
1208 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1209 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1210 	    BUS_SPACE_MAXADDR,		/* highaddr */
1211 	    NULL, NULL,			/* filter, filterarg */
1212 	    ALC_RR_RING_SZ,		/* maxsize */
1213 	    1,				/* nsegments */
1214 	    ALC_RR_RING_SZ,		/* maxsegsize */
1215 	    0,				/* flags */
1216 	    &sc->alc_cdata.alc_rr_ring_tag);
1217 	if (error != 0) {
1218 		device_printf(sc->alc_dev,
1219 		    "could not create Rx return ring DMA tag.\n");
1220 		goto fail;
1221 	}
1222 
1223 	/* Create DMA tag for coalescing message block. */
1224 	error = bus_dma_tag_create(
1225 	    sc->alc_cdata.alc_parent_tag, /* parent */
1226 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1227 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1228 	    BUS_SPACE_MAXADDR,		/* highaddr */
1229 	    NULL, NULL,			/* filter, filterarg */
1230 	    ALC_CMB_SZ,			/* maxsize */
1231 	    1,				/* nsegments */
1232 	    ALC_CMB_SZ,			/* maxsegsize */
1233 	    0,				/* flags */
1234 	    &sc->alc_cdata.alc_cmb_tag);
1235 	if (error != 0) {
1236 		device_printf(sc->alc_dev,
1237 		    "could not create CMB DMA tag.\n");
1238 		goto fail;
1239 	}
1240 	/* Create DMA tag for status message block. */
1241 	error = bus_dma_tag_create(
1242 	    sc->alc_cdata.alc_parent_tag, /* parent */
1243 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1244 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1245 	    BUS_SPACE_MAXADDR,		/* highaddr */
1246 	    NULL, NULL,			/* filter, filterarg */
1247 	    ALC_SMB_SZ,			/* maxsize */
1248 	    1,				/* nsegments */
1249 	    ALC_SMB_SZ,			/* maxsegsize */
1250 	    0,				/* flags */
1251 	    &sc->alc_cdata.alc_smb_tag);
1252 	if (error != 0) {
1253 		device_printf(sc->alc_dev,
1254 		    "could not create SMB DMA tag.\n");
1255 		goto fail;
1256 	}
1257 
1258 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1259 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1260 	    (void **)&sc->alc_rdata.alc_tx_ring,
1261 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1262 	    &sc->alc_cdata.alc_tx_ring_map);
1263 	if (error != 0) {
1264 		device_printf(sc->alc_dev,
1265 		    "could not allocate DMA'able memory for Tx ring.\n");
1266 		goto fail;
1267 	}
1268 	ctx.alc_busaddr = 0;
1269 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1270 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1271 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1272 	if (error != 0 || ctx.alc_busaddr == 0) {
1273 		device_printf(sc->alc_dev,
1274 		    "could not load DMA'able memory for Tx ring.\n");
1275 		goto fail;
1276 	}
1277 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1278 
1279 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1280 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1281 	    (void **)&sc->alc_rdata.alc_rx_ring,
1282 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1283 	    &sc->alc_cdata.alc_rx_ring_map);
1284 	if (error != 0) {
1285 		device_printf(sc->alc_dev,
1286 		    "could not allocate DMA'able memory for Rx ring.\n");
1287 		goto fail;
1288 	}
1289 	ctx.alc_busaddr = 0;
1290 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1291 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1292 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1293 	if (error != 0 || ctx.alc_busaddr == 0) {
1294 		device_printf(sc->alc_dev,
1295 		    "could not load DMA'able memory for Rx ring.\n");
1296 		goto fail;
1297 	}
1298 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1299 
1300 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1301 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1302 	    (void **)&sc->alc_rdata.alc_rr_ring,
1303 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1304 	    &sc->alc_cdata.alc_rr_ring_map);
1305 	if (error != 0) {
1306 		device_printf(sc->alc_dev,
1307 		    "could not allocate DMA'able memory for Rx return ring.\n");
1308 		goto fail;
1309 	}
1310 	ctx.alc_busaddr = 0;
1311 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1312 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1313 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1314 	if (error != 0 || ctx.alc_busaddr == 0) {
1315 		device_printf(sc->alc_dev,
1316 		    "could not load DMA'able memory for Tx ring.\n");
1317 		goto fail;
1318 	}
1319 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1320 
1321 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1322 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1323 	    (void **)&sc->alc_rdata.alc_cmb,
1324 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1325 	    &sc->alc_cdata.alc_cmb_map);
1326 	if (error != 0) {
1327 		device_printf(sc->alc_dev,
1328 		    "could not allocate DMA'able memory for CMB.\n");
1329 		goto fail;
1330 	}
1331 	ctx.alc_busaddr = 0;
1332 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1333 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1334 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1335 	if (error != 0 || ctx.alc_busaddr == 0) {
1336 		device_printf(sc->alc_dev,
1337 		    "could not load DMA'able memory for CMB.\n");
1338 		goto fail;
1339 	}
1340 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1341 
1342 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1343 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1344 	    (void **)&sc->alc_rdata.alc_smb,
1345 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1346 	    &sc->alc_cdata.alc_smb_map);
1347 	if (error != 0) {
1348 		device_printf(sc->alc_dev,
1349 		    "could not allocate DMA'able memory for SMB.\n");
1350 		goto fail;
1351 	}
1352 	ctx.alc_busaddr = 0;
1353 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1354 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1355 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1356 	if (error != 0 || ctx.alc_busaddr == 0) {
1357 		device_printf(sc->alc_dev,
1358 		    "could not load DMA'able memory for CMB.\n");
1359 		goto fail;
1360 	}
1361 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1362 
1363 	/* Make sure we've not crossed 4GB boundary. */
1364 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1365 	    (error = alc_check_boundary(sc)) != 0) {
1366 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1367 		    "switching to 32bit DMA addressing mode.\n");
1368 		alc_dma_free(sc);
1369 		/*
1370 		 * Limit max allowable DMA address space to 32bit
1371 		 * and try again.
1372 		 */
1373 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1374 		goto again;
1375 	}
1376 
1377 	/*
1378 	 * Create Tx buffer parent tag.
1379 	 * AR8131/AR8132 allows 64bit DMA addressing of Tx/Rx buffers
1380 	 * so it needs separate parent DMA tag as parent DMA address
1381 	 * space could be restricted to be within 32bit address space
1382 	 * by 4GB boundary crossing.
1383 	 */
1384 	error = bus_dma_tag_create(
1385 	    sc->alc_cdata.alc_parent_tag, /* parent */
1386 	    1, 0,			/* alignment, boundary */
1387 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1388 	    BUS_SPACE_MAXADDR,		/* highaddr */
1389 	    NULL, NULL,			/* filter, filterarg */
1390 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1391 	    0,				/* nsegments */
1392 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1393 	    0,				/* flags */
1394 	    &sc->alc_cdata.alc_buffer_tag);
1395 	if (error != 0) {
1396 		device_printf(sc->alc_dev,
1397 		    "could not create parent buffer DMA tag.\n");
1398 		goto fail;
1399 	}
1400 
1401 	/* Create DMA tag for Tx buffers. */
1402 	error = bus_dma_tag_create(
1403 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1404 	    1, 0,			/* alignment, boundary */
1405 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1406 	    BUS_SPACE_MAXADDR,		/* highaddr */
1407 	    NULL, NULL,			/* filter, filterarg */
1408 	    ALC_TSO_MAXSIZE,		/* maxsize */
1409 	    ALC_MAXTXSEGS,		/* nsegments */
1410 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1411 	    0,				/* flags */
1412 	    &sc->alc_cdata.alc_tx_tag);
1413 	if (error != 0) {
1414 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1415 		goto fail;
1416 	}
1417 
1418 	/* Create DMA tag for Rx buffers. */
1419 	error = bus_dma_tag_create(
1420 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1421 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1422 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1423 	    BUS_SPACE_MAXADDR,		/* highaddr */
1424 	    NULL, NULL,			/* filter, filterarg */
1425 	    MCLBYTES,			/* maxsize */
1426 	    1,				/* nsegments */
1427 	    MCLBYTES,			/* maxsegsize */
1428 	    0,				/* flags */
1429 	    &sc->alc_cdata.alc_rx_tag);
1430 	if (error != 0) {
1431 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1432 		goto fail;
1433 	}
1434 	/* Create DMA maps for Tx buffers. */
1435 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1436 		txd = &sc->alc_cdata.alc_txdesc[i];
1437 		txd->tx_m = NULL;
1438 		txd->tx_dmamap = NULL;
1439 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag,
1440 					  BUS_DMA_WAITOK, &txd->tx_dmamap);
1441 		if (error != 0) {
1442 			device_printf(sc->alc_dev,
1443 			    "could not create Tx dmamap.\n");
1444 			goto fail;
1445 		}
1446 	}
1447 	/* Create DMA maps for Rx buffers. */
1448 	error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1449 				  BUS_DMA_WAITOK,
1450 				  &sc->alc_cdata.alc_rx_sparemap);
1451 	if (error) {
1452 		device_printf(sc->alc_dev,
1453 		    "could not create spare Rx dmamap.\n");
1454 		goto fail;
1455 	}
1456 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1457 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1458 		rxd->rx_m = NULL;
1459 		rxd->rx_dmamap = NULL;
1460 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1461 					  BUS_DMA_WAITOK,
1462 					  &rxd->rx_dmamap);
1463 		if (error != 0) {
1464 			device_printf(sc->alc_dev,
1465 			    "could not create Rx dmamap.\n");
1466 			goto fail;
1467 		}
1468 	}
1469 
1470 fail:
1471 	return (error);
1472 }
1473 
1474 static void
1475 alc_dma_free(struct alc_softc *sc)
1476 {
1477 	struct alc_txdesc *txd;
1478 	struct alc_rxdesc *rxd;
1479 	int i;
1480 
1481 	/* Tx buffers. */
1482 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1483 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1484 			txd = &sc->alc_cdata.alc_txdesc[i];
1485 			if (txd->tx_dmamap != NULL) {
1486 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1487 				    txd->tx_dmamap);
1488 				txd->tx_dmamap = NULL;
1489 			}
1490 		}
1491 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1492 		sc->alc_cdata.alc_tx_tag = NULL;
1493 	}
1494 	/* Rx buffers */
1495 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1496 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1497 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1498 			if (rxd->rx_dmamap != NULL) {
1499 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1500 				    rxd->rx_dmamap);
1501 				rxd->rx_dmamap = NULL;
1502 			}
1503 		}
1504 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1505 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1506 			    sc->alc_cdata.alc_rx_sparemap);
1507 			sc->alc_cdata.alc_rx_sparemap = NULL;
1508 		}
1509 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1510 		sc->alc_cdata.alc_rx_tag = NULL;
1511 	}
1512 	/* Tx descriptor ring. */
1513 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1514 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1515 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1516 			    sc->alc_cdata.alc_tx_ring_map);
1517 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1518 		    sc->alc_rdata.alc_tx_ring != NULL)
1519 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1520 			    sc->alc_rdata.alc_tx_ring,
1521 			    sc->alc_cdata.alc_tx_ring_map);
1522 		sc->alc_rdata.alc_tx_ring = NULL;
1523 		sc->alc_cdata.alc_tx_ring_map = NULL;
1524 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1525 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1526 	}
1527 	/* Rx ring. */
1528 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1529 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1530 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1531 			    sc->alc_cdata.alc_rx_ring_map);
1532 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1533 		    sc->alc_rdata.alc_rx_ring != NULL)
1534 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1535 			    sc->alc_rdata.alc_rx_ring,
1536 			    sc->alc_cdata.alc_rx_ring_map);
1537 		sc->alc_rdata.alc_rx_ring = NULL;
1538 		sc->alc_cdata.alc_rx_ring_map = NULL;
1539 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1540 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1541 	}
1542 	/* Rx return ring. */
1543 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1544 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1545 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1546 			    sc->alc_cdata.alc_rr_ring_map);
1547 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1548 		    sc->alc_rdata.alc_rr_ring != NULL)
1549 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1550 			    sc->alc_rdata.alc_rr_ring,
1551 			    sc->alc_cdata.alc_rr_ring_map);
1552 		sc->alc_rdata.alc_rr_ring = NULL;
1553 		sc->alc_cdata.alc_rr_ring_map = NULL;
1554 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1555 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1556 	}
1557 	/* CMB block */
1558 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1559 		if (sc->alc_cdata.alc_cmb_map != NULL)
1560 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1561 			    sc->alc_cdata.alc_cmb_map);
1562 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1563 		    sc->alc_rdata.alc_cmb != NULL)
1564 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1565 			    sc->alc_rdata.alc_cmb,
1566 			    sc->alc_cdata.alc_cmb_map);
1567 		sc->alc_rdata.alc_cmb = NULL;
1568 		sc->alc_cdata.alc_cmb_map = NULL;
1569 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1570 		sc->alc_cdata.alc_cmb_tag = NULL;
1571 	}
1572 	/* SMB block */
1573 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1574 		if (sc->alc_cdata.alc_smb_map != NULL)
1575 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1576 			    sc->alc_cdata.alc_smb_map);
1577 		if (sc->alc_cdata.alc_smb_map != NULL &&
1578 		    sc->alc_rdata.alc_smb != NULL)
1579 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1580 			    sc->alc_rdata.alc_smb,
1581 			    sc->alc_cdata.alc_smb_map);
1582 		sc->alc_rdata.alc_smb = NULL;
1583 		sc->alc_cdata.alc_smb_map = NULL;
1584 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1585 		sc->alc_cdata.alc_smb_tag = NULL;
1586 	}
1587 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1588 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1589 		sc->alc_cdata.alc_buffer_tag = NULL;
1590 	}
1591 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1592 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1593 		sc->alc_cdata.alc_parent_tag = NULL;
1594 	}
1595 }
1596 
1597 static int
1598 alc_shutdown(device_t dev)
1599 {
1600 
1601 	return (alc_suspend(dev));
1602 }
1603 
1604 #if 0
1605 /* XXX: LINK SPEED */
1606 /*
1607  * Note, this driver resets the link speed to 10/100Mbps by
1608  * restarting auto-negotiation in suspend/shutdown phase but we
1609  * don't know whether that auto-negotiation would succeed or not
1610  * as driver has no control after powering off/suspend operation.
1611  * If the renegotiation fail WOL may not work. Running at 1Gbps
1612  * will draw more power than 375mA at 3.3V which is specified in
1613  * PCI specification and that would result in complete
1614  * shutdowning power to ethernet controller.
1615  *
1616  * TODO
1617  * Save current negotiated media speed/duplex/flow-control to
1618  * softc and restore the same link again after resuming. PHY
1619  * handling such as power down/resetting to 100Mbps may be better
1620  * handled in suspend method in phy driver.
1621  */
1622 static void
1623 alc_setlinkspeed(struct alc_softc *sc)
1624 {
1625 	struct mii_data *mii;
1626 	int aneg, i;
1627 
1628 	mii = device_get_softc(sc->alc_miibus);
1629 	mii_pollstat(mii);
1630 	aneg = 0;
1631 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1632 	    (IFM_ACTIVE | IFM_AVALID)) {
1633 		switch IFM_SUBTYPE(mii->mii_media_active) {
1634 		case IFM_10_T:
1635 		case IFM_100_TX:
1636 			return;
1637 		case IFM_1000_T:
1638 			aneg++;
1639 			break;
1640 		default:
1641 			break;
1642 		}
1643 	}
1644 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1645 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1646 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1647 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1648 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1649 	DELAY(1000);
1650 	if (aneg != 0) {
1651 		/*
1652 		 * Poll link state until alc(4) get a 10/100Mbps link.
1653 		 */
1654 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1655 			mii_pollstat(mii);
1656 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1657 			    == (IFM_ACTIVE | IFM_AVALID)) {
1658 				switch (IFM_SUBTYPE(
1659 				    mii->mii_media_active)) {
1660 				case IFM_10_T:
1661 				case IFM_100_TX:
1662 					alc_mac_config(sc);
1663 					return;
1664 				default:
1665 					break;
1666 				}
1667 			}
1668 			ALC_UNLOCK(sc);
1669 			pause("alclnk", hz);
1670 			ALC_LOCK(sc);
1671 		}
1672 		if (i == MII_ANEGTICKS_GIGE)
1673 			device_printf(sc->alc_dev,
1674 			    "establishing a link failed, WOL may not work!");
1675 	}
1676 	/*
1677 	 * No link, force MAC to have 100Mbps, full-duplex link.
1678 	 * This is the last resort and may/may not work.
1679 	 */
1680 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1681 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1682 	alc_mac_config(sc);
1683 }
1684 #endif
1685 
1686 #if 0
1687 /* XXX: WOL */
1688 static void
1689 alc_setwol(struct alc_softc *sc)
1690 {
1691 	struct ifnet *ifp;
1692 	uint32_t cap, reg, pmcs;
1693 	uint16_t pmstat;
1694 	int base, pmc;
1695 
1696 	ALC_LOCK_ASSERT(sc);
1697 
1698 	if (pci_find_extcap(sc->alc_dev, PCIY_EXPRESS, &base) == 0) {
1699 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
1700 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
1701 			cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
1702 			alc_disable_l0s_l1(sc);
1703 		}
1704 	}
1705 	if (pci_find_extcap(sc->alc_dev, PCIY_PMG, &pmc) != 0) {
1706 		/* Disable WOL. */
1707 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1708 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1709 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1710 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1711 		/* Force PHY power down. */
1712 		alc_phy_down(sc);
1713 		return;
1714 	}
1715 
1716 	ifp = sc->alc_ifp;
1717 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1718 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1719 			alc_setlinkspeed(sc);
1720 		reg = CSR_READ_4(sc, ALC_MASTER_CFG);
1721 		reg &= ~MASTER_CLK_SEL_DIS;
1722 		CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
1723 	}
1724 
1725 	pmcs = 0;
1726 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1727 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1728 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1729 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1730 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1731 	    MAC_CFG_BCAST);
1732 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1733 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1734 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1735 		reg |= MAC_CFG_RX_ENB;
1736 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1737 
1738 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1739 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1740 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1741 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1742 		/* WOL disabled, PHY power down. */
1743 		alc_phy_down(sc);
1744 	}
1745 	/* Request PME. */
1746 	pmstat = pci_read_config(sc->alc_dev, pmc + PCIR_POWER_STATUS, 2);
1747 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1748 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1749 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1750 	pci_write_config(sc->alc_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1751 }
1752 #endif
1753 
1754 static int
1755 alc_suspend(device_t dev)
1756 {
1757 	struct alc_softc *sc;
1758 
1759 	sc = device_get_softc(dev);
1760 
1761 	ALC_LOCK(sc);
1762 	alc_stop(sc);
1763 #if 0
1764 /* XXX: WOL */
1765 	alc_setwol(sc);
1766 #endif
1767 	ALC_UNLOCK(sc);
1768 
1769 	return (0);
1770 }
1771 
1772 static int
1773 alc_resume(device_t dev)
1774 {
1775 	struct alc_softc *sc;
1776 	struct ifnet *ifp;
1777 	int pmc;
1778 	uint16_t pmstat;
1779 
1780 	sc = device_get_softc(dev);
1781 
1782 	ALC_LOCK(sc);
1783 	if (pci_find_extcap(sc->alc_dev, PCIY_PMG, &pmc) == 0) {
1784 		/* Disable PME and clear PME status. */
1785 		pmstat = pci_read_config(sc->alc_dev,
1786 		    pmc + PCIR_POWER_STATUS, 2);
1787 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1788 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1789 			pci_write_config(sc->alc_dev,
1790 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1791 		}
1792 	}
1793 	/* Reset PHY. */
1794 	alc_phy_reset(sc);
1795 	ifp = sc->alc_ifp;
1796 	if ((ifp->if_flags & IFF_UP) != 0) {
1797 		ifp->if_flags &= ~IFF_RUNNING;
1798 		alc_init_locked(sc);
1799 	}
1800 	ALC_UNLOCK(sc);
1801 
1802 	return (0);
1803 }
1804 
1805 static int
1806 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1807 {
1808 	struct alc_txdesc *txd, *txd_last;
1809 	struct tx_desc *desc;
1810 	struct mbuf *m;
1811 	struct ip *ip;
1812 	struct tcphdr *tcp;
1813 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
1814 	bus_dmamap_t map;
1815 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1816 	int error, idx, nsegs, prod;
1817 
1818 	ALC_LOCK_ASSERT(sc);
1819 
1820 	M_ASSERTPKTHDR((*m_head));
1821 
1822 	m = *m_head;
1823 	ip = NULL;
1824 	tcp = NULL;
1825 	ip_off = poff = 0;
1826 #if 0
1827 /* XXX: TSO */
1828 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
1829 		/*
1830 		 * AR8131/AR8132 requires offset of TCP/UDP header in its
1831 		 * Tx descriptor to perform Tx checksum offloading. TSO
1832 		 * also requires TCP header offset and modification of
1833 		 * IP/TCP header. This kind of operation takes many CPU
1834 		 * cycles on FreeBSD so fast host CPU is required to get
1835 		 * smooth TSO performance.
1836 		 */
1837 		struct ether_header *eh;
1838 
1839 		if (M_WRITABLE(m) == 0) {
1840 			/* Get a writable copy. */
1841 			m = m_dup(*m_head, MB_DONTWAIT);
1842 			/* Release original mbufs. */
1843 			m_freem(*m_head);
1844 			if (m == NULL) {
1845 				*m_head = NULL;
1846 				return (ENOBUFS);
1847 			}
1848 			*m_head = m;
1849 		}
1850 
1851 		ip_off = sizeof(struct ether_header);
1852 		m = m_pullup(m, ip_off);
1853 		if (m == NULL) {
1854 			*m_head = NULL;
1855 			return (ENOBUFS);
1856 		}
1857 		eh = mtod(m, struct ether_header *);
1858 		/*
1859 		 * Check if hardware VLAN insertion is off.
1860 		 * Additional check for LLC/SNAP frame?
1861 		 */
1862 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1863 			ip_off = sizeof(struct ether_vlan_header);
1864 			m = m_pullup(m, ip_off);
1865 			if (m == NULL) {
1866 				*m_head = NULL;
1867 				return (ENOBUFS);
1868 			}
1869 		}
1870 		m = m_pullup(m, ip_off + sizeof(struct ip));
1871 		if (m == NULL) {
1872 			*m_head = NULL;
1873 			return (ENOBUFS);
1874 		}
1875 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1876 		poff = ip_off + (ip->ip_hl << 2);
1877 
1878 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1879 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1880 			if (m == NULL) {
1881 				*m_head = NULL;
1882 				return (ENOBUFS);
1883 			}
1884 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1885 			m = m_pullup(m, poff + (tcp->th_off << 2));
1886 			if (m == NULL) {
1887 				*m_head = NULL;
1888 				return (ENOBUFS);
1889 			}
1890 			/*
1891 			 * Due to strict adherence of Microsoft NDIS
1892 			 * Large Send specification, hardware expects
1893 			 * a pseudo TCP checksum inserted by upper
1894 			 * stack. Unfortunately the pseudo TCP
1895 			 * checksum that NDIS refers to does not include
1896 			 * TCP payload length so driver should recompute
1897 			 * the pseudo checksum here. Hopefully this
1898 			 * wouldn't be much burden on modern CPUs.
1899 			 *
1900 			 * Reset IP checksum and recompute TCP pseudo
1901 			 * checksum as NDIS specification said.
1902 			 */
1903 			ip->ip_sum = 0;
1904 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1905 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1906 		}
1907 		*m_head = m;
1908 	}
1909 #endif /* TSO */
1910 
1911 	prod = sc->alc_cdata.alc_tx_prod;
1912 	txd = &sc->alc_cdata.alc_txdesc[prod];
1913 	txd_last = txd;
1914 	map = txd->tx_dmamap;
1915 
1916 	error = bus_dmamap_load_mbuf_defrag(
1917 			sc->alc_cdata.alc_tx_tag, map, m_head,
1918 			txsegs, ALC_MAXTXSEGS, &nsegs, BUS_DMA_NOWAIT);
1919 	if (error) {
1920 		m_freem(*m_head);
1921 		*m_head = NULL;
1922 		return (error);
1923 	}
1924 	if (nsegs == 0) {
1925 		m_freem(*m_head);
1926 		*m_head = NULL;
1927 		return (EIO);
1928 	}
1929 
1930 	/* Check descriptor overrun. */
1931 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1932 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
1933 		return (ENOBUFS);
1934 	}
1935 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
1936 
1937 	m = *m_head;
1938 	cflags = TD_ETHERNET;
1939 	vtag = 0;
1940 	desc = NULL;
1941 	idx = 0;
1942 	/* Configure VLAN hardware tag insertion. */
1943 	if ((m->m_flags & M_VLANTAG) != 0) {
1944 		vtag = htons(m->m_pkthdr.ether_vlantag);
1945 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1946 		cflags |= TD_INS_VLAN_TAG;
1947 	}
1948 	/* Configure Tx checksum offload. */
1949 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1950 #ifdef ALC_USE_CUSTOM_CSUM
1951 		cflags |= TD_CUSTOM_CSUM;
1952 		/* Set checksum start offset. */
1953 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1954 		    TD_PLOAD_OFFSET_MASK;
1955 		/* Set checksum insertion position of TCP/UDP. */
1956 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
1957 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
1958 #else
1959 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1960 			cflags |= TD_IPCSUM;
1961 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1962 			cflags |= TD_TCPCSUM;
1963 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1964 			cflags |= TD_UDPCSUM;
1965 		/* Set TCP/UDP header offset. */
1966 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
1967 		    TD_L4HDR_OFFSET_MASK;
1968 #endif
1969 	} else if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1970 		/* Request TSO and set MSS. */
1971 		cflags |= TD_TSO | TD_TSO_DESCV1;
1972 #if 0
1973 /* XXX: TSO */
1974 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
1975 		    TD_MSS_MASK;
1976 		/* Set TCP header offset. */
1977 #endif
1978 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
1979 		    TD_TCPHDR_OFFSET_MASK;
1980 		/*
1981 		 * AR8131/AR8132 requires the first buffer should
1982 		 * only hold IP/TCP header data. Payload should
1983 		 * be handled in other descriptors.
1984 		 */
1985 		hdrlen = poff + (tcp->th_off << 2);
1986 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1987 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
1988 		desc->flags = htole32(cflags);
1989 		desc->addr = htole64(txsegs[0].ds_addr);
1990 		sc->alc_cdata.alc_tx_cnt++;
1991 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1992 		if (m->m_len - hdrlen > 0) {
1993 			/* Handle remaining payload of the first fragment. */
1994 			desc = &sc->alc_rdata.alc_tx_ring[prod];
1995 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
1996 			    vtag));
1997 			desc->flags = htole32(cflags);
1998 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1999 			sc->alc_cdata.alc_tx_cnt++;
2000 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2001 		}
2002 		/* Handle remaining fragments. */
2003 		idx = 1;
2004 	}
2005 	for (; idx < nsegs; idx++) {
2006 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2007 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2008 		desc->flags = htole32(cflags);
2009 		desc->addr = htole64(txsegs[idx].ds_addr);
2010 		sc->alc_cdata.alc_tx_cnt++;
2011 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2012 	}
2013 	/* Update producer index. */
2014 	sc->alc_cdata.alc_tx_prod = prod;
2015 
2016 	/* Finally set EOP on the last descriptor. */
2017 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2018 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2019 	desc->flags |= htole32(TD_EOP);
2020 
2021 	/* Swap dmamap of the first and the last. */
2022 	txd = &sc->alc_cdata.alc_txdesc[prod];
2023 	map = txd_last->tx_dmamap;
2024 	txd_last->tx_dmamap = txd->tx_dmamap;
2025 	txd->tx_dmamap = map;
2026 	txd->tx_m = m;
2027 
2028 	return (0);
2029 }
2030 
2031 static void
2032 alc_tx_task(void *arg, int pending)
2033 {
2034 	struct ifnet *ifp;
2035 
2036 	ifp = (struct ifnet *)arg;
2037 	alc_start(ifp);
2038 }
2039 
2040 static void
2041 alc_start(struct ifnet *ifp)
2042 {
2043 	struct alc_softc *sc;
2044 	struct mbuf *m_head;
2045 	int enq;
2046 
2047 	sc = ifp->if_softc;
2048 
2049 	ALC_LOCK(sc);
2050 
2051 	/* Reclaim transmitted frames. */
2052 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2053 		alc_txeof(sc);
2054 
2055 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
2056 		ALC_UNLOCK(sc);
2057 		return;
2058 	}
2059 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2060 		ifq_purge(&ifp->if_snd);
2061 		ALC_UNLOCK(sc);
2062 		return;
2063 	}
2064 
2065 	for (enq = 0; !ifq_is_empty(&ifp->if_snd); ) {
2066 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2067 		if (m_head == NULL)
2068 			break;
2069 		/*
2070 		 * Pack the data into the transmit ring. If we
2071 		 * don't have room, set the OACTIVE flag and wait
2072 		 * for the NIC to drain the ring.
2073 		 */
2074 		if (alc_encap(sc, &m_head)) {
2075 			if (m_head == NULL)
2076 				break;
2077 			ifq_prepend(&ifp->if_snd, m_head);
2078 			ifp->if_flags |= IFF_OACTIVE;
2079 			break;
2080 		}
2081 
2082 		enq++;
2083 		/*
2084 		 * If there's a BPF listener, bounce a copy of this frame
2085 		 * to him.
2086 		 */
2087 		ETHER_BPF_MTAP(ifp, m_head);
2088 	}
2089 
2090 	if (enq > 0) {
2091 		/* Sync descriptors. */
2092 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2093 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2094 		/* Kick. Assume we're using normal Tx priority queue. */
2095 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2096 		    (sc->alc_cdata.alc_tx_prod <<
2097 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2098 		    MBOX_TD_PROD_LO_IDX_MASK);
2099 		/* Set a timeout in case the chip goes out to lunch. */
2100 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2101 	}
2102 
2103 	ALC_UNLOCK(sc);
2104 }
2105 
2106 static void
2107 alc_watchdog(struct alc_softc *sc)
2108 {
2109 	struct ifnet *ifp;
2110 
2111 	ALC_LOCK_ASSERT(sc);
2112 
2113 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2114 		return;
2115 
2116 	ifp = sc->alc_ifp;
2117 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2118 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2119 		ifp->if_oerrors++;
2120 		ifp->if_flags &= ~IFF_RUNNING;
2121 		alc_init_locked(sc);
2122 		return;
2123 	}
2124 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2125 	ifp->if_oerrors++;
2126 	ifp->if_flags &= ~IFF_RUNNING;
2127 	alc_init_locked(sc);
2128 	if (!ifq_is_empty(&ifp->if_snd))
2129 		taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2130 }
2131 
2132 static int
2133 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2134 {
2135 	struct alc_softc *sc;
2136 	struct ifreq *ifr;
2137 	struct mii_data *mii;
2138 	int error, mask;
2139 
2140 	(void)cr;
2141 	sc = ifp->if_softc;
2142 	ifr = (struct ifreq *)data;
2143 	error = 0;
2144 	switch (cmd) {
2145 	case SIOCSIFMTU:
2146 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALC_JUMBO_MTU ||
2147 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2148 		    ifr->ifr_mtu > ETHERMTU))
2149 			error = EINVAL;
2150 		else if (ifp->if_mtu != ifr->ifr_mtu) {
2151 			ALC_LOCK(sc);
2152 			ifp->if_mtu = ifr->ifr_mtu;
2153 			/* AR8131/AR8132 has 13 bits MSS field. */
2154 			if (ifp->if_mtu > ALC_TSO_MTU &&
2155 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2156 				ifp->if_capenable &= ~IFCAP_TSO4;
2157 				ifp->if_hwassist &= ~CSUM_TSO;
2158 			}
2159 			ALC_UNLOCK(sc);
2160 		}
2161 		break;
2162 	case SIOCSIFFLAGS:
2163 		ALC_LOCK(sc);
2164 		if ((ifp->if_flags & IFF_UP) != 0) {
2165 			if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2166 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2167 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2168 				alc_rxfilter(sc);
2169 			else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2170 				alc_init_locked(sc);
2171 		} else if ((ifp->if_flags & IFF_RUNNING) != 0)
2172 			alc_stop(sc);
2173 		sc->alc_if_flags = ifp->if_flags;
2174 		ALC_UNLOCK(sc);
2175 		break;
2176 	case SIOCADDMULTI:
2177 	case SIOCDELMULTI:
2178 		ALC_LOCK(sc);
2179 		if ((ifp->if_flags & IFF_RUNNING) != 0)
2180 			alc_rxfilter(sc);
2181 		ALC_UNLOCK(sc);
2182 		break;
2183 	case SIOCSIFMEDIA:
2184 	case SIOCGIFMEDIA:
2185 		mii = device_get_softc(sc->alc_miibus);
2186 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2187 		break;
2188 	case SIOCSIFCAP:
2189 		ALC_LOCK(sc);
2190 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2191 		if ((mask & IFCAP_TXCSUM) != 0 &&
2192 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2193 			ifp->if_capenable ^= IFCAP_TXCSUM;
2194 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2195 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2196 			else
2197 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2198 		}
2199 		if ((mask & IFCAP_TSO4) != 0 &&
2200 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2201 			ifp->if_capenable ^= IFCAP_TSO4;
2202 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2203 				/* AR8131/AR8132 has 13 bits MSS field. */
2204 				if (ifp->if_mtu > ALC_TSO_MTU) {
2205 					ifp->if_capenable &= ~IFCAP_TSO4;
2206 					ifp->if_hwassist &= ~CSUM_TSO;
2207 				} else
2208 					ifp->if_hwassist |= CSUM_TSO;
2209 			} else
2210 				ifp->if_hwassist &= ~CSUM_TSO;
2211 		}
2212 #if 0
2213 /* XXX: WOL */
2214 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2215 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2216 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2217 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2218 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2219 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2220 #endif
2221 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2222 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2223 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2224 			alc_rxvlan(sc);
2225 		}
2226 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2227 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2228 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2229 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2230 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2231 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2232 		/*
2233 		 * VLAN hardware tagging is required to do checksum
2234 		 * offload or TSO on VLAN interface. Checksum offload
2235 		 * on VLAN interface also requires hardware checksum
2236 		 * offload of parent interface.
2237 		 */
2238 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2239 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2240 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2241 			ifp->if_capenable &=
2242 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2243 		ALC_UNLOCK(sc);
2244 // XXX		VLAN_CAPABILITIES(ifp);
2245 		break;
2246 	default:
2247 		error = ether_ioctl(ifp, cmd, data);
2248 		break;
2249 	}
2250 
2251 	return (error);
2252 }
2253 
2254 static void
2255 alc_mac_config(struct alc_softc *sc)
2256 {
2257 	struct mii_data *mii;
2258 	uint32_t reg;
2259 
2260 	ALC_LOCK_ASSERT(sc);
2261 
2262 	mii = device_get_softc(sc->alc_miibus);
2263 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2264 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2265 	    MAC_CFG_SPEED_MASK);
2266 	/* Reprogram MAC with resolved speed/duplex. */
2267 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2268 	case IFM_10_T:
2269 	case IFM_100_TX:
2270 		reg |= MAC_CFG_SPEED_10_100;
2271 		break;
2272 	case IFM_1000_T:
2273 		reg |= MAC_CFG_SPEED_1000;
2274 		break;
2275 	}
2276 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2277 		reg |= MAC_CFG_FULL_DUPLEX;
2278 #ifdef notyet
2279 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2280 			reg |= MAC_CFG_TX_FC;
2281 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2282 			reg |= MAC_CFG_RX_FC;
2283 #endif
2284 	}
2285 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2286 }
2287 
2288 static void
2289 alc_stats_clear(struct alc_softc *sc)
2290 {
2291 	struct smb sb, *smb;
2292 	uint32_t *reg;
2293 	int i;
2294 
2295 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2296 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2297 		    sc->alc_cdata.alc_smb_map,
2298 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2299 		smb = sc->alc_rdata.alc_smb;
2300 		/* Update done, clear. */
2301 		smb->updated = 0;
2302 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2303 		    sc->alc_cdata.alc_smb_map,
2304 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2305 	} else {
2306 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2307 		    reg++) {
2308 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2309 			i += sizeof(uint32_t);
2310 		}
2311 		/* Read Tx statistics. */
2312 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2313 		    reg++) {
2314 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2315 			i += sizeof(uint32_t);
2316 		}
2317 	}
2318 }
2319 
2320 static void
2321 alc_stats_update(struct alc_softc *sc)
2322 {
2323 	struct alc_hw_stats *stat;
2324 	struct smb sb, *smb;
2325 	struct ifnet *ifp;
2326 	uint32_t *reg;
2327 	int i;
2328 
2329 	ALC_LOCK_ASSERT(sc);
2330 
2331 	ifp = sc->alc_ifp;
2332 	stat = &sc->alc_stats;
2333 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2334 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2335 		    sc->alc_cdata.alc_smb_map,
2336 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2337 		smb = sc->alc_rdata.alc_smb;
2338 		if (smb->updated == 0)
2339 			return;
2340 	} else {
2341 		smb = &sb;
2342 		/* Read Rx statistics. */
2343 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2344 		    reg++) {
2345 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2346 			i += sizeof(uint32_t);
2347 		}
2348 		/* Read Tx statistics. */
2349 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2350 		    reg++) {
2351 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2352 			i += sizeof(uint32_t);
2353 		}
2354 	}
2355 
2356 	/* Rx stats. */
2357 	stat->rx_frames += smb->rx_frames;
2358 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2359 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2360 	stat->rx_pause_frames += smb->rx_pause_frames;
2361 	stat->rx_control_frames += smb->rx_control_frames;
2362 	stat->rx_crcerrs += smb->rx_crcerrs;
2363 	stat->rx_lenerrs += smb->rx_lenerrs;
2364 	stat->rx_bytes += smb->rx_bytes;
2365 	stat->rx_runts += smb->rx_runts;
2366 	stat->rx_fragments += smb->rx_fragments;
2367 	stat->rx_pkts_64 += smb->rx_pkts_64;
2368 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2369 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2370 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2371 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2372 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2373 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2374 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2375 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2376 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2377 	stat->rx_alignerrs += smb->rx_alignerrs;
2378 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2379 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2380 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2381 
2382 	/* Tx stats. */
2383 	stat->tx_frames += smb->tx_frames;
2384 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2385 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2386 	stat->tx_pause_frames += smb->tx_pause_frames;
2387 	stat->tx_excess_defer += smb->tx_excess_defer;
2388 	stat->tx_control_frames += smb->tx_control_frames;
2389 	stat->tx_deferred += smb->tx_deferred;
2390 	stat->tx_bytes += smb->tx_bytes;
2391 	stat->tx_pkts_64 += smb->tx_pkts_64;
2392 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2393 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2394 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2395 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2396 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2397 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2398 	stat->tx_single_colls += smb->tx_single_colls;
2399 	stat->tx_multi_colls += smb->tx_multi_colls;
2400 	stat->tx_late_colls += smb->tx_late_colls;
2401 	stat->tx_excess_colls += smb->tx_excess_colls;
2402 	stat->tx_abort += smb->tx_abort;
2403 	stat->tx_underrun += smb->tx_underrun;
2404 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2405 	stat->tx_lenerrs += smb->tx_lenerrs;
2406 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2407 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2408 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2409 
2410 	/* Update counters in ifnet. */
2411 	ifp->if_opackets += smb->tx_frames;
2412 
2413 	ifp->if_collisions += smb->tx_single_colls +
2414 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2415 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2416 
2417 	/*
2418 	 * XXX
2419 	 * tx_pkts_truncated counter looks suspicious. It constantly
2420 	 * increments with no sign of Tx errors. This may indicate
2421 	 * the counter name is not correct one so I've removed the
2422 	 * counter in output errors.
2423 	 */
2424 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2425 	    smb->tx_underrun;
2426 
2427 	ifp->if_ipackets += smb->rx_frames;
2428 
2429 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2430 	    smb->rx_runts + smb->rx_pkts_truncated +
2431 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2432 	    smb->rx_alignerrs;
2433 
2434 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2435 		/* Update done, clear. */
2436 		smb->updated = 0;
2437 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2438 		    sc->alc_cdata.alc_smb_map,
2439 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2440 	}
2441 }
2442 
2443 static void
2444 alc_intr(void *arg)
2445 {
2446 	struct alc_softc *sc;
2447 	uint32_t status;
2448 
2449 	sc = (struct alc_softc *)arg;
2450 
2451 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2452 	if ((status & ALC_INTRS) == 0) {
2453 		return;
2454 	}
2455 	/* Disable interrupts. */
2456 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2457 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2458 
2459 	return;
2460 }
2461 
2462 static void
2463 alc_int_task(void *arg, int pending)
2464 {
2465 	struct alc_softc *sc;
2466 	struct ifnet *ifp;
2467 	uint32_t status;
2468 	int more;
2469 
2470 	sc = (struct alc_softc *)arg;
2471 	ifp = sc->alc_ifp;
2472 
2473 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2474 	more = atomic_readandclear_32(&sc->alc_morework);
2475 	if (more != 0)
2476 		status |= INTR_RX_PKT;
2477 	if ((status & ALC_INTRS) == 0)
2478 		goto done;
2479 
2480 	/* Acknowledge interrupts but still disable interrupts. */
2481 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2482 
2483 	more = 0;
2484 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
2485 		if ((status & INTR_RX_PKT) != 0) {
2486 			more = alc_rxintr(sc, sc->alc_process_limit);
2487 			if (more == EAGAIN)
2488 				atomic_set_int(&sc->alc_morework, 1);
2489 			else if (more == EIO) {
2490 				ALC_LOCK(sc);
2491 				ifp->if_flags &= ~IFF_RUNNING;
2492 				alc_init_locked(sc);
2493 				ALC_UNLOCK(sc);
2494 				return;
2495 			}
2496 		}
2497 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2498 		    INTR_TXQ_TO_RST)) != 0) {
2499 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2500 				device_printf(sc->alc_dev,
2501 				    "DMA read error! -- resetting\n");
2502 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2503 				device_printf(sc->alc_dev,
2504 				    "DMA write error! -- resetting\n");
2505 			if ((status & INTR_TXQ_TO_RST) != 0)
2506 				device_printf(sc->alc_dev,
2507 				    "TxQ reset! -- resetting\n");
2508 			ALC_LOCK(sc);
2509 			ifp->if_flags &= ~IFF_RUNNING;
2510 			alc_init_locked(sc);
2511 			ALC_UNLOCK(sc);
2512 			return;
2513 		}
2514 		if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2515 		    !ifq_is_empty(&ifp->if_snd))
2516 			taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2517 	}
2518 
2519 	if (more == EAGAIN ||
2520 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2521 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2522 		return;
2523 	}
2524 
2525 done:
2526 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
2527 		/* Re-enable interrupts if we're running. */
2528 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2529 	}
2530 }
2531 
2532 static void
2533 alc_txeof(struct alc_softc *sc)
2534 {
2535 	struct ifnet *ifp;
2536 	struct alc_txdesc *txd;
2537 	uint32_t cons, prod;
2538 	int prog;
2539 
2540 	ALC_LOCK_ASSERT(sc);
2541 
2542 	ifp = sc->alc_ifp;
2543 
2544 	if (sc->alc_cdata.alc_tx_cnt == 0)
2545 		return;
2546 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2547 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2548 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2549 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2550 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2551 		prod = sc->alc_rdata.alc_cmb->cons;
2552 	} else
2553 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2554 	/* Assume we're using normal Tx priority queue. */
2555 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2556 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2557 	cons = sc->alc_cdata.alc_tx_cons;
2558 	/*
2559 	 * Go through our Tx list and free mbufs for those
2560 	 * frames which have been transmitted.
2561 	 */
2562 	for (prog = 0; cons != prod; prog++,
2563 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2564 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2565 			break;
2566 		prog++;
2567 		ifp->if_flags &= ~IFF_OACTIVE;
2568 		sc->alc_cdata.alc_tx_cnt--;
2569 		txd = &sc->alc_cdata.alc_txdesc[cons];
2570 		if (txd->tx_m != NULL) {
2571 			/* Reclaim transmitted mbufs. */
2572 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2573 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2574 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2575 			    txd->tx_dmamap);
2576 			m_freem(txd->tx_m);
2577 			txd->tx_m = NULL;
2578 		}
2579 	}
2580 
2581 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2582 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2583 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2584 	sc->alc_cdata.alc_tx_cons = cons;
2585 	/*
2586 	 * Unarm watchdog timer only when there is no pending
2587 	 * frames in Tx queue.
2588 	 */
2589 	if (sc->alc_cdata.alc_tx_cnt == 0)
2590 		sc->alc_watchdog_timer = 0;
2591 }
2592 
2593 static int
2594 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2595 {
2596 	struct mbuf *m;
2597 	bus_dma_segment_t segs[1];
2598 	bus_dmamap_t map;
2599 	int nsegs;
2600 	int error;
2601 
2602 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2603 	if (m == NULL)
2604 		return (ENOBUFS);
2605 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2606 #ifndef __NO_STRICT_ALIGNMENT
2607 	m_adj(m, sizeof(uint64_t));
2608 #endif
2609 
2610 	error = bus_dmamap_load_mbuf_segment(
2611 			sc->alc_cdata.alc_rx_tag,
2612 			sc->alc_cdata.alc_rx_sparemap,
2613 			m, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2614 	if (error) {
2615 		m_freem(m);
2616 		return (ENOBUFS);
2617 	}
2618 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2619 
2620 	if (rxd->rx_m != NULL) {
2621 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2622 		    BUS_DMASYNC_POSTREAD);
2623 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2624 	}
2625 	map = rxd->rx_dmamap;
2626 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2627 	sc->alc_cdata.alc_rx_sparemap = map;
2628 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2629 	    BUS_DMASYNC_PREREAD);
2630 	rxd->rx_m = m;
2631 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2632 	return (0);
2633 }
2634 
2635 static int
2636 alc_rxintr(struct alc_softc *sc, int count)
2637 {
2638 	struct ifnet *ifp;
2639 	struct rx_rdesc *rrd;
2640 	uint32_t nsegs, status;
2641 	int rr_cons, prog;
2642 
2643 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2644 	    sc->alc_cdata.alc_rr_ring_map,
2645 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2646 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2647 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2648 	rr_cons = sc->alc_cdata.alc_rr_cons;
2649 	ifp = sc->alc_ifp;
2650 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2651 		if (count-- <= 0)
2652 			break;
2653 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2654 		status = le32toh(rrd->status);
2655 		if ((status & RRD_VALID) == 0)
2656 			break;
2657 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2658 		if (nsegs == 0) {
2659 			/* This should not happen! */
2660 			device_printf(sc->alc_dev,
2661 			    "unexpected segment count -- resetting\n");
2662 			return (EIO);
2663 		}
2664 		alc_rxeof(sc, rrd);
2665 		/* Clear Rx return status. */
2666 		rrd->status = 0;
2667 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2668 		sc->alc_cdata.alc_rx_cons += nsegs;
2669 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2670 		prog += nsegs;
2671 	}
2672 
2673 	if (prog > 0) {
2674 		/* Update the consumer index. */
2675 		sc->alc_cdata.alc_rr_cons = rr_cons;
2676 		/* Sync Rx return descriptors. */
2677 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2678 		    sc->alc_cdata.alc_rr_ring_map,
2679 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2680 		/*
2681 		 * Sync updated Rx descriptors such that controller see
2682 		 * modified buffer addresses.
2683 		 */
2684 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2685 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2686 		/*
2687 		 * Let controller know availability of new Rx buffers.
2688 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2689 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2690 		 * only when Rx buffer pre-fetching is required. In
2691 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2692 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2693 		 * it still seems that pre-fetching needs more
2694 		 * experimentation.
2695 		 */
2696 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2697 		    sc->alc_cdata.alc_rx_cons);
2698 	}
2699 
2700 	return (count > 0 ? 0 : EAGAIN);
2701 }
2702 
2703 #ifndef __NO_STRICT_ALIGNMENT
2704 static struct mbuf *
2705 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2706 {
2707 	struct mbuf *n;
2708         int i;
2709         uint16_t *src, *dst;
2710 
2711 	src = mtod(m, uint16_t *);
2712 	dst = src - 3;
2713 
2714 	if (m->m_next == NULL) {
2715 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2716 			*dst++ = *src++;
2717 		m->m_data -= 6;
2718 		return (m);
2719 	}
2720 	/*
2721 	 * Append a new mbuf to received mbuf chain and copy ethernet
2722 	 * header from the mbuf chain. This can save lots of CPU
2723 	 * cycles for jumbo frame.
2724 	 */
2725 	MGETHDR(n, MB_DONTWAIT, MT_DATA);
2726 	if (n == NULL) {
2727 		ifp->if_iqdrops++;
2728 		m_freem(m);
2729 		return (NULL);
2730 	}
2731 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2732 	m->m_data += ETHER_HDR_LEN;
2733 	m->m_len -= ETHER_HDR_LEN;
2734 	n->m_len = ETHER_HDR_LEN;
2735 	M_MOVE_PKTHDR(n, m);
2736 	n->m_next = m;
2737 	return (n);
2738 }
2739 #endif
2740 
2741 /* Receive a frame. */
2742 static void
2743 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2744 {
2745 	struct alc_rxdesc *rxd;
2746 	struct ifnet *ifp;
2747 	struct mbuf *mp, *m;
2748 	uint32_t rdinfo, status, vtag;
2749 	int count, nsegs, rx_cons;
2750 
2751 	ifp = sc->alc_ifp;
2752 	status = le32toh(rrd->status);
2753 	rdinfo = le32toh(rrd->rdinfo);
2754 	rx_cons = RRD_RD_IDX(rdinfo);
2755 	nsegs = RRD_RD_CNT(rdinfo);
2756 
2757 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2758 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
2759 		/*
2760 		 * We want to pass the following frames to upper
2761 		 * layer regardless of error status of Rx return
2762 		 * ring.
2763 		 *
2764 		 *  o IP/TCP/UDP checksum is bad.
2765 		 *  o frame length and protocol specific length
2766 		 *     does not match.
2767 		 *
2768 		 *  Force network stack compute checksum for
2769 		 *  errored frames.
2770 		 */
2771 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2772 		if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
2773 		    RRD_ERR_RUNT) != 0)
2774 			return;
2775 	}
2776 
2777 	for (count = 0; count < nsegs; count++,
2778 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2779 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2780 		mp = rxd->rx_m;
2781 		/* Add a new receive buffer to the ring. */
2782 		if (alc_newbuf(sc, rxd) != 0) {
2783 			ifp->if_iqdrops++;
2784 			/* Reuse Rx buffers. */
2785 			if (sc->alc_cdata.alc_rxhead != NULL)
2786 				m_freem(sc->alc_cdata.alc_rxhead);
2787 			break;
2788 		}
2789 
2790 		/*
2791 		 * Assume we've received a full sized frame.
2792 		 * Actual size is fixed when we encounter the end of
2793 		 * multi-segmented frame.
2794 		 */
2795 		mp->m_len = sc->alc_buf_size;
2796 
2797 		/* Chain received mbufs. */
2798 		if (sc->alc_cdata.alc_rxhead == NULL) {
2799 			sc->alc_cdata.alc_rxhead = mp;
2800 			sc->alc_cdata.alc_rxtail = mp;
2801 		} else {
2802 			mp->m_flags &= ~M_PKTHDR;
2803 			sc->alc_cdata.alc_rxprev_tail =
2804 			    sc->alc_cdata.alc_rxtail;
2805 			sc->alc_cdata.alc_rxtail->m_next = mp;
2806 			sc->alc_cdata.alc_rxtail = mp;
2807 		}
2808 
2809 		if (count == nsegs - 1) {
2810 			/* Last desc. for this frame. */
2811 			m = sc->alc_cdata.alc_rxhead;
2812 			m->m_flags |= M_PKTHDR;
2813 			/*
2814 			 * It seems that L1C/L2C controller has no way
2815 			 * to tell hardware to strip CRC bytes.
2816 			 */
2817 			m->m_pkthdr.len =
2818 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2819 			if (nsegs > 1) {
2820 				/* Set last mbuf size. */
2821 				mp->m_len = sc->alc_cdata.alc_rxlen -
2822 				    (nsegs - 1) * sc->alc_buf_size;
2823 				/* Remove the CRC bytes in chained mbufs. */
2824 				if (mp->m_len <= ETHER_CRC_LEN) {
2825 					sc->alc_cdata.alc_rxtail =
2826 					    sc->alc_cdata.alc_rxprev_tail;
2827 					sc->alc_cdata.alc_rxtail->m_len -=
2828 					    (ETHER_CRC_LEN - mp->m_len);
2829 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2830 					m_freem(mp);
2831 				} else {
2832 					mp->m_len -= ETHER_CRC_LEN;
2833 				}
2834 			} else
2835 				m->m_len = m->m_pkthdr.len;
2836 			m->m_pkthdr.rcvif = ifp;
2837 			/*
2838 			 * Due to hardware bugs, Rx checksum offloading
2839 			 * was intentionally disabled.
2840 			 */
2841 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2842 			    (status & RRD_VLAN_TAG) != 0) {
2843 				vtag = RRD_VLAN(le32toh(rrd->vtag));
2844 				m->m_pkthdr.ether_vlantag = ntohs(vtag);
2845 				m->m_flags |= M_VLANTAG;
2846 			}
2847 #ifndef __NO_STRICT_ALIGNMENT
2848 			m = alc_fixup_rx(ifp, m);
2849 			if (m != NULL)
2850 #endif
2851 			{
2852 			/* Pass it on. */
2853 			(*ifp->if_input)(ifp, m);
2854 			}
2855 		}
2856 	}
2857 	/* Reset mbuf chains. */
2858 	ALC_RXCHAIN_RESET(sc);
2859 }
2860 
2861 static void
2862 alc_tick(void *arg)
2863 {
2864 	struct alc_softc *sc;
2865 	struct mii_data *mii;
2866 
2867 	sc = (struct alc_softc *)arg;
2868 
2869 	ALC_LOCK(sc);
2870 
2871 	mii = device_get_softc(sc->alc_miibus);
2872 	mii_tick(mii);
2873 	alc_stats_update(sc);
2874 	/*
2875 	 * alc(4) does not rely on Tx completion interrupts to reclaim
2876 	 * transferred buffers. Instead Tx completion interrupts are
2877 	 * used to hint for scheduling Tx task. So it's necessary to
2878 	 * release transmitted buffers by kicking Tx completion
2879 	 * handler. This limits the maximum reclamation delay to a hz.
2880 	 */
2881 	alc_txeof(sc);
2882 	alc_watchdog(sc);
2883 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
2884 	ALC_UNLOCK(sc);
2885 }
2886 
2887 static void
2888 alc_reset(struct alc_softc *sc)
2889 {
2890 	uint32_t reg;
2891 	int i;
2892 
2893 	CSR_WRITE_4(sc, ALC_MASTER_CFG, MASTER_RESET);
2894 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2895 		DELAY(10);
2896 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2897 			break;
2898 	}
2899 	if (i == 0)
2900 		device_printf(sc->alc_dev, "master reset timeout!\n");
2901 
2902 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2903 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2904 			break;
2905 		DELAY(10);
2906 	}
2907 
2908 	if (i == 0)
2909 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
2910 }
2911 
2912 static void
2913 alc_init(void *xsc)
2914 {
2915 	struct alc_softc *sc;
2916 
2917 	sc = (struct alc_softc *)xsc;
2918 	ALC_LOCK(sc);
2919 	alc_init_locked(sc);
2920 	ALC_UNLOCK(sc);
2921 }
2922 
2923 static void
2924 alc_init_locked(struct alc_softc *sc)
2925 {
2926 	struct ifnet *ifp;
2927 	struct mii_data *mii;
2928 	uint8_t eaddr[ETHER_ADDR_LEN];
2929 	bus_addr_t paddr;
2930 	uint32_t reg, rxf_hi, rxf_lo;
2931 
2932 	ALC_LOCK_ASSERT(sc);
2933 
2934 	ifp = sc->alc_ifp;
2935 	mii = device_get_softc(sc->alc_miibus);
2936 
2937 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2938 		return;
2939 	/*
2940 	 * Cancel any pending I/O.
2941 	 */
2942 	alc_stop(sc);
2943 	/*
2944 	 * Reset the chip to a known state.
2945 	 */
2946 	alc_reset(sc);
2947 
2948 	/* Initialize Rx descriptors. */
2949 	if (alc_init_rx_ring(sc) != 0) {
2950 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
2951 		alc_stop(sc);
2952 		return;
2953 	}
2954 	alc_init_rr_ring(sc);
2955 	alc_init_tx_ring(sc);
2956 	alc_init_cmb(sc);
2957 	alc_init_smb(sc);
2958 
2959 	/* Reprogram the station address. */
2960 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2961 	CSR_WRITE_4(sc, ALC_PAR0,
2962 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2963 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2964 	/*
2965 	 * Clear WOL status and disable all WOL feature as WOL
2966 	 * would interfere Rx operation under normal environments.
2967 	 */
2968 	CSR_READ_4(sc, ALC_WOL_CFG);
2969 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2970 	/* Set Tx descriptor base addresses. */
2971 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2972 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2973 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2974 	/* We don't use high priority ring. */
2975 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2976 	/* Set Tx descriptor counter. */
2977 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2978 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2979 	/* Set Rx descriptor base addresses. */
2980 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2981 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2982 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2983 	/* We use one Rx ring. */
2984 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2985 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2986 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2987 	/* Set Rx descriptor counter. */
2988 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2989 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2990 
2991 	/*
2992 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2993 	 * if it do not fit the buffer size. Rx return descriptor holds
2994 	 * a counter that indicates how many fragments were made by the
2995 	 * hardware. The buffer size should be multiple of 8 bytes.
2996 	 * Since hardware has limit on the size of buffer size, always
2997 	 * use the maximum value.
2998 	 * For strict-alignment architectures make sure to reduce buffer
2999 	 * size by 8 bytes to make room for alignment fixup.
3000 	 */
3001 #ifndef __NO_STRICT_ALIGNMENT
3002 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3003 #else
3004 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3005 #endif
3006 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3007 
3008 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3009 	/* Set Rx return descriptor base addresses. */
3010 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3011 	/* We use one Rx return ring. */
3012 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3013 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3014 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3015 	/* Set Rx return descriptor counter. */
3016 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3017 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3018 	paddr = sc->alc_rdata.alc_cmb_paddr;
3019 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3020 	paddr = sc->alc_rdata.alc_smb_paddr;
3021 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3022 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3023 
3024 	/* Tell hardware that we're ready to load DMA blocks. */
3025 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3026 
3027 	/* Configure interrupt moderation timer. */
3028 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3029 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3030 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3031 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
3032 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
3033 	/*
3034 	 * We don't want to automatic interrupt clear as task queue
3035 	 * for the interrupt should know interrupt status.
3036 	 */
3037 	reg &= ~MASTER_INTR_RD_CLR;
3038 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
3039 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3040 		reg |= MASTER_IM_RX_TIMER_ENB;
3041 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3042 		reg |= MASTER_IM_TX_TIMER_ENB;
3043 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3044 	/*
3045 	 * Disable interrupt re-trigger timer. We don't want automatic
3046 	 * re-triggering of un-ACKed interrupts.
3047 	 */
3048 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3049 	/* Configure CMB. */
3050 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3051 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3052 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3053 	else
3054 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3055 	/*
3056 	 * Hardware can be configured to issue SMB interrupt based
3057 	 * on programmed interval. Since there is a callout that is
3058 	 * invoked for every hz in driver we use that instead of
3059 	 * relying on periodic SMB interrupt.
3060 	 */
3061 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3062 	/* Clear MAC statistics. */
3063 	alc_stats_clear(sc);
3064 
3065 	/*
3066 	 * Always use maximum frame size that controller can support.
3067 	 * Otherwise received frames that has larger frame length
3068 	 * than alc(4) MTU would be silently dropped in hardware. This
3069 	 * would make path-MTU discovery hard as sender wouldn't get
3070 	 * any responses from receiver. alc(4) supports
3071 	 * multi-fragmented frames on Rx path so it has no issue on
3072 	 * assembling fragmented frames. Using maximum frame size also
3073 	 * removes the need to reinitialize hardware when interface
3074 	 * MTU configuration was changed.
3075 	 *
3076 	 * Be conservative in what you do, be liberal in what you
3077 	 * accept from others - RFC 793.
3078 	 */
3079 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, ALC_JUMBO_FRAMELEN);
3080 
3081 	/* Disable header split(?) */
3082 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3083 
3084 	/* Configure IPG/IFG parameters. */
3085 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3086 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3087 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3088 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3089 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3090 	/* Set parameters for half-duplex media. */
3091 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3092 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3093 	    HDPX_CFG_LCOL_MASK) |
3094 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3095 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3096 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3097 	    HDPX_CFG_ABEBT_MASK) |
3098 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3099 	    HDPX_CFG_JAMIPG_MASK));
3100 	/*
3101 	 * Set TSO/checksum offload threshold. For frames that is
3102 	 * larger than this threshold, hardware wouldn't do
3103 	 * TSO/checksum offloading.
3104 	 */
3105 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3106 	    (ALC_JUMBO_FRAMELEN >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3107 	    TSO_OFFLOAD_THRESH_MASK);
3108 	/* Configure TxQ. */
3109 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3110 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3111 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3112 	    TXQ_CFG_TD_BURST_MASK;
3113 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3114 
3115 	/* Configure Rx free descriptor pre-fetching. */
3116 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3117 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3118 	    RX_RD_FREE_THRESH_HI_MASK) |
3119 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3120 	    RX_RD_FREE_THRESH_LO_MASK));
3121 
3122 	/*
3123 	 * Configure flow control parameters.
3124 	 * XON  : 80% of Rx FIFO
3125 	 * XOFF : 30% of Rx FIFO
3126 	 */
3127 	reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3128 	rxf_hi = (reg * 8) / 10;
3129 	rxf_lo = (reg * 3)/ 10;
3130 	CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3131 	    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3132 	    RX_FIFO_PAUSE_THRESH_LO_MASK) |
3133 	    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3134 	     RX_FIFO_PAUSE_THRESH_HI_MASK));
3135 
3136 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3137 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3138 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3139 
3140 	/* Configure RxQ. */
3141 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3142 	    RXQ_CFG_RD_BURST_MASK;
3143 	reg |= RXQ_CFG_RSS_MODE_DIS;
3144 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3145 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3146 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3147 
3148 	/* Configure Rx DMAW request thresold. */
3149 	CSR_WRITE_4(sc, ALC_RD_DMA_CFG,
3150 	    ((RD_DMA_CFG_THRESH_DEFAULT << RD_DMA_CFG_THRESH_SHIFT) &
3151 	    RD_DMA_CFG_THRESH_MASK) |
3152 	    ((ALC_RD_DMA_CFG_USECS(0) << RD_DMA_CFG_TIMER_SHIFT) &
3153 	    RD_DMA_CFG_TIMER_MASK));
3154 	/* Configure DMA parameters. */
3155 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3156 	reg |= sc->alc_rcb;
3157 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3158 		reg |= DMA_CFG_CMB_ENB;
3159 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3160 		reg |= DMA_CFG_SMB_ENB;
3161 	else
3162 		reg |= DMA_CFG_SMB_DIS;
3163 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3164 	    DMA_CFG_RD_BURST_SHIFT;
3165 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3166 	    DMA_CFG_WR_BURST_SHIFT;
3167 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3168 	    DMA_CFG_RD_DELAY_CNT_MASK;
3169 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3170 	    DMA_CFG_WR_DELAY_CNT_MASK;
3171 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3172 
3173 	/*
3174 	 * Configure Tx/Rx MACs.
3175 	 *  - Auto-padding for short frames.
3176 	 *  - Enable CRC generation.
3177 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3178 	 *  is followed after detection of link establishment.
3179 	 *  AR8131/AR8132 always does checksum computation regardless
3180 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3181 	 *  have bug in protocol field in Rx return structure so
3182 	 *  these controllers can't handle fragmented frames. Disable
3183 	 *  Rx checksum offloading until there is a newer controller
3184 	 *  that has sane implementation.
3185 	 */
3186 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3187 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3188 	    MAC_CFG_PREAMBLE_MASK);
3189 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3190 		reg |= MAC_CFG_SPEED_10_100;
3191 	else
3192 		reg |= MAC_CFG_SPEED_1000;
3193 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3194 
3195 	/* Set up the receive filter. */
3196 	alc_rxfilter(sc);
3197 	alc_rxvlan(sc);
3198 
3199 	/* Acknowledge all pending interrupts and clear it. */
3200 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3201 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3202 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3203 
3204 	sc->alc_flags &= ~ALC_FLAG_LINK;
3205 	/* Switch to the current media. */
3206 	mii_mediachg(mii);
3207 
3208 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3209 
3210 	ifp->if_flags |= IFF_RUNNING;
3211 	ifp->if_flags &= ~IFF_OACTIVE;
3212 }
3213 
3214 static void
3215 alc_stop(struct alc_softc *sc)
3216 {
3217 	struct ifnet *ifp;
3218 	struct alc_txdesc *txd;
3219 	struct alc_rxdesc *rxd;
3220 	uint32_t reg;
3221 	int i;
3222 
3223 	ALC_LOCK_ASSERT(sc);
3224 	/*
3225 	 * Mark the interface down and cancel the watchdog timer.
3226 	 */
3227 	ifp = sc->alc_ifp;
3228 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3229 	sc->alc_flags &= ~ALC_FLAG_LINK;
3230 	callout_stop(&sc->alc_tick_ch);
3231 	sc->alc_watchdog_timer = 0;
3232 	alc_stats_update(sc);
3233 	/* Disable interrupts. */
3234 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3235 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3236 	alc_stop_queue(sc);
3237 	/* Disable DMA. */
3238 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3239 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3240 	reg |= DMA_CFG_SMB_DIS;
3241 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3242 	DELAY(1000);
3243 	/* Stop Rx/Tx MACs. */
3244 	alc_stop_mac(sc);
3245 	/* Disable interrupts which might be touched in taskq handler. */
3246 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3247 
3248 	/* Reclaim Rx buffers that have been processed. */
3249 	if (sc->alc_cdata.alc_rxhead != NULL)
3250 		m_freem(sc->alc_cdata.alc_rxhead);
3251 	ALC_RXCHAIN_RESET(sc);
3252 	/*
3253 	 * Free Tx/Rx mbufs still in the queues.
3254 	 */
3255 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3256 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3257 		if (rxd->rx_m != NULL) {
3258 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3259 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3260 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3261 			    rxd->rx_dmamap);
3262 			m_freem(rxd->rx_m);
3263 			rxd->rx_m = NULL;
3264 		}
3265 	}
3266 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3267 		txd = &sc->alc_cdata.alc_txdesc[i];
3268 		if (txd->tx_m != NULL) {
3269 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3270 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3271 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3272 			    txd->tx_dmamap);
3273 			m_freem(txd->tx_m);
3274 			txd->tx_m = NULL;
3275 		}
3276 	}
3277 }
3278 
3279 static void
3280 alc_stop_mac(struct alc_softc *sc)
3281 {
3282 	uint32_t reg;
3283 	int i;
3284 
3285 	ALC_LOCK_ASSERT(sc);
3286 
3287 	/* Disable Rx/Tx MAC. */
3288 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3289 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3290 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
3291 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3292 	}
3293 	for (i = ALC_TIMEOUT; i > 0; i--) {
3294 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3295 		if (reg == 0)
3296 			break;
3297 		DELAY(10);
3298 	}
3299 	if (i == 0)
3300 		device_printf(sc->alc_dev,
3301 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3302 }
3303 
3304 static void
3305 alc_start_queue(struct alc_softc *sc)
3306 {
3307 	uint32_t qcfg[] = {
3308 		0,
3309 		RXQ_CFG_QUEUE0_ENB,
3310 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3311 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3312 		RXQ_CFG_ENB
3313 	};
3314 	uint32_t cfg;
3315 
3316 	ALC_LOCK_ASSERT(sc);
3317 
3318 	/* Enable RxQ. */
3319 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3320 	cfg &= ~RXQ_CFG_ENB;
3321 	cfg |= qcfg[1];
3322 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3323 	/* Enable TxQ. */
3324 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3325 	cfg |= TXQ_CFG_ENB;
3326 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3327 }
3328 
3329 static void
3330 alc_stop_queue(struct alc_softc *sc)
3331 {
3332 	uint32_t reg;
3333 	int i;
3334 
3335 	ALC_LOCK_ASSERT(sc);
3336 
3337 	/* Disable RxQ. */
3338 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3339 	if ((reg & RXQ_CFG_ENB) != 0) {
3340 		reg &= ~RXQ_CFG_ENB;
3341 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3342 	}
3343 	/* Disable TxQ. */
3344 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3345 	if ((reg & TXQ_CFG_ENB) == 0) {
3346 		reg &= ~TXQ_CFG_ENB;
3347 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3348 	}
3349 	for (i = ALC_TIMEOUT; i > 0; i--) {
3350 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3351 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3352 			break;
3353 		DELAY(10);
3354 	}
3355 	if (i == 0)
3356 		device_printf(sc->alc_dev,
3357 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3358 }
3359 
3360 static void
3361 alc_init_tx_ring(struct alc_softc *sc)
3362 {
3363 	struct alc_ring_data *rd;
3364 	struct alc_txdesc *txd;
3365 	int i;
3366 
3367 	ALC_LOCK_ASSERT(sc);
3368 
3369 	sc->alc_cdata.alc_tx_prod = 0;
3370 	sc->alc_cdata.alc_tx_cons = 0;
3371 	sc->alc_cdata.alc_tx_cnt = 0;
3372 
3373 	rd = &sc->alc_rdata;
3374 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3375 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3376 		txd = &sc->alc_cdata.alc_txdesc[i];
3377 		txd->tx_m = NULL;
3378 	}
3379 
3380 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3381 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3382 }
3383 
3384 static int
3385 alc_init_rx_ring(struct alc_softc *sc)
3386 {
3387 	struct alc_ring_data *rd;
3388 	struct alc_rxdesc *rxd;
3389 	int i;
3390 
3391 	ALC_LOCK_ASSERT(sc);
3392 
3393 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3394 	sc->alc_morework = 0;
3395 	rd = &sc->alc_rdata;
3396 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3397 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3398 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3399 		rxd->rx_m = NULL;
3400 		rxd->rx_desc = &rd->alc_rx_ring[i];
3401 		if (alc_newbuf(sc, rxd) != 0)
3402 			return (ENOBUFS);
3403 	}
3404 
3405 	/*
3406 	 * Since controller does not update Rx descriptors, driver
3407 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3408 	 * is enough to ensure coherence.
3409 	 */
3410 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3411 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3412 	/* Let controller know availability of new Rx buffers. */
3413 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3414 
3415 	return (0);
3416 }
3417 
3418 static void
3419 alc_init_rr_ring(struct alc_softc *sc)
3420 {
3421 	struct alc_ring_data *rd;
3422 
3423 	ALC_LOCK_ASSERT(sc);
3424 
3425 	sc->alc_cdata.alc_rr_cons = 0;
3426 	ALC_RXCHAIN_RESET(sc);
3427 
3428 	rd = &sc->alc_rdata;
3429 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3430 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3431 	    sc->alc_cdata.alc_rr_ring_map,
3432 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3433 }
3434 
3435 static void
3436 alc_init_cmb(struct alc_softc *sc)
3437 {
3438 	struct alc_ring_data *rd;
3439 
3440 	ALC_LOCK_ASSERT(sc);
3441 
3442 	rd = &sc->alc_rdata;
3443 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3444 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3445 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3446 }
3447 
3448 static void
3449 alc_init_smb(struct alc_softc *sc)
3450 {
3451 	struct alc_ring_data *rd;
3452 
3453 	ALC_LOCK_ASSERT(sc);
3454 
3455 	rd = &sc->alc_rdata;
3456 	bzero(rd->alc_smb, ALC_SMB_SZ);
3457 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3458 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3459 }
3460 
3461 static void
3462 alc_rxvlan(struct alc_softc *sc)
3463 {
3464 	struct ifnet *ifp;
3465 	uint32_t reg;
3466 
3467 	ALC_LOCK_ASSERT(sc);
3468 
3469 	ifp = sc->alc_ifp;
3470 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3471 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3472 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3473 	else
3474 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3475 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3476 }
3477 
3478 static void
3479 alc_rxfilter(struct alc_softc *sc)
3480 {
3481 	struct ifnet *ifp;
3482 	struct ifmultiaddr *ifma;
3483 	uint32_t crc;
3484 	uint32_t mchash[2];
3485 	uint32_t rxcfg;
3486 
3487 	ALC_LOCK_ASSERT(sc);
3488 
3489 	ifp = sc->alc_ifp;
3490 
3491 	bzero(mchash, sizeof(mchash));
3492 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3493 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3494 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3495 		rxcfg |= MAC_CFG_BCAST;
3496 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3497 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3498 			rxcfg |= MAC_CFG_PROMISC;
3499 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3500 			rxcfg |= MAC_CFG_ALLMULTI;
3501 		mchash[0] = 0xFFFFFFFF;
3502 		mchash[1] = 0xFFFFFFFF;
3503 		goto chipit;
3504 	}
3505 
3506 #if 0
3507 	/* XXX */
3508 	if_maddr_rlock(ifp);
3509 #endif
3510 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3511 		if (ifma->ifma_addr->sa_family != AF_LINK)
3512 			continue;
3513 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3514 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3515 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3516 	}
3517 #if 0
3518 	/* XXX */
3519 	if_maddr_runlock(ifp);
3520 #endif
3521 
3522 chipit:
3523 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3524 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3525 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3526 }
3527 
3528 static int
3529 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3530 {
3531 	return (sysctl_int_range(oidp, arg1, arg2, req,
3532 	    ALC_PROC_MIN, ALC_PROC_MAX));
3533 }
3534 
3535 static int
3536 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3537 {
3538 
3539 	return (sysctl_int_range(oidp, arg1, arg2, req,
3540 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3541 }
3542