xref: /dragonfly/sys/dev/netif/alc/if_alc.c (revision e96fb831)
1 /*-
2  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/alc/if_alc.c,v 1.6 2009/09/29 23:03:16 yongari Exp $
28  * $DragonFly$
29  */
30 
31 /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/spinlock.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/ifq_var.h>
59 #include <net/vlan/if_vlan_var.h>
60 #include <net/vlan/if_vlan_ether.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 
67 #include <dev/netif/mii_layer/mii.h>
68 #include <dev/netif/mii_layer/miivar.h>
69 
70 #include <bus/pci/pcireg.h>
71 #include <bus/pci/pcivar.h>
72 
73 #include <machine/atomic.h>
74 /*
75 XXX
76 #include <machine/bus.h>
77 #include <machine/in_cksum.h>
78 */
79 
80 #include "if_alcreg.h"
81 #include "if_alcvar.h"
82 
83 /* "device miibus" required.  See GENERIC if you get errors here. */
84 #include "miibus_if.h"
85 #undef ALC_USE_CUSTOM_CSUM
86 
87 #ifdef ALC_USE_CUSTOM_CSUM
88 #define	ALC_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
89 #else
90 #define	ALC_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
91 #endif
92 #ifndef	IFCAP_VLAN_HWTSO
93 #define	IFCAP_VLAN_HWTSO	0
94 #endif
95 
96 MODULE_DEPEND(alc, pci, 1, 1, 1);
97 MODULE_DEPEND(alc, ether, 1, 1, 1);
98 MODULE_DEPEND(alc, miibus, 1, 1, 1);
99 
100 /* Tunables. */
101 static int msi_disable = 0;
102 static int msix_disable = 0;
103 TUNABLE_INT("hw.alc.msi_disable", &msi_disable);
104 TUNABLE_INT("hw.alc.msix_disable", &msix_disable);
105 
106 /*
107  * Devices supported by this driver.
108  */
109 
110 static struct alc_ident alc_ident_table[] = {
111 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8131, 9 * 1024,
112 		"Atheros AR8131 PCIe Gigabit Ethernet" },
113 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8132, 9 * 1024,
114 		"Atheros AR8132 PCIe Fast Ethernet" },
115 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151, 6 * 1024,
116 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
117 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8151_V2, 6 * 1024,
118 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
119 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B, 6 * 1024,
120 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
121 	{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR8152_B2, 6 * 1024,
122 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
123 	{ 0, 0, 0, NULL}
124 };
125 
126 static void	alc_aspm(struct alc_softc *, int);
127 static int	alc_attach(device_t);
128 static int	alc_check_boundary(struct alc_softc *);
129 static int	alc_detach(device_t);
130 static void	alc_disable_l0s_l1(struct alc_softc *);
131 static int	alc_dma_alloc(struct alc_softc *);
132 static void	alc_dma_free(struct alc_softc *);
133 static void	alc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
134 static int	alc_encap(struct alc_softc *, struct mbuf **);
135 static struct alc_ident *alc_find_ident(device_t);
136 #ifndef __NO_STRICT_ALIGNMENT
137 static struct mbuf *
138 		alc_fixup_rx(struct ifnet *, struct mbuf *);
139 #endif
140 static void	alc_get_macaddr(struct alc_softc *);
141 static void	alc_init(void *);
142 static void	alc_init_cmb(struct alc_softc *);
143 static void	alc_init_locked(struct alc_softc *);
144 static void	alc_init_rr_ring(struct alc_softc *);
145 static int	alc_init_rx_ring(struct alc_softc *);
146 static void	alc_init_smb(struct alc_softc *);
147 static void	alc_init_tx_ring(struct alc_softc *);
148 static void	alc_int_task(void *, int);
149 static void	alc_intr(void *);
150 static int	alc_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
151 static void	alc_mac_config(struct alc_softc *);
152 static int	alc_miibus_readreg(device_t, int, int);
153 static void	alc_miibus_statchg(device_t);
154 static int	alc_miibus_writereg(device_t, int, int, int);
155 static int	alc_mediachange(struct ifnet *);
156 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
157 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *);
158 static void	alc_phy_down(struct alc_softc *);
159 static void	alc_phy_reset(struct alc_softc *);
160 static int	alc_probe(device_t);
161 static void	alc_reset(struct alc_softc *);
162 static int	alc_resume(device_t);
163 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
164 static int	alc_rxintr(struct alc_softc *, int);
165 static void	alc_rxfilter(struct alc_softc *);
166 static void	alc_rxvlan(struct alc_softc *);
167 #if 0
168 static void	alc_setlinkspeed(struct alc_softc *);
169 /* XXX: WOL */
170 static void	alc_setwol(struct alc_softc *);
171 #endif
172 static int	alc_shutdown(device_t);
173 static void	alc_start(struct ifnet *);
174 static void	alc_start_queue(struct alc_softc *);
175 static void	alc_stats_clear(struct alc_softc *);
176 static void	alc_stats_update(struct alc_softc *);
177 static void	alc_stop(struct alc_softc *);
178 static void	alc_stop_mac(struct alc_softc *);
179 static void	alc_stop_queue(struct alc_softc *);
180 static int	alc_suspend(device_t);
181 static void	alc_sysctl_node(struct alc_softc *);
182 static void	alc_tick(void *);
183 static void	alc_tx_task(void *, int);
184 static void	alc_txeof(struct alc_softc *);
185 static void	alc_watchdog(struct alc_softc *);
186 static int	sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS);
187 static int	sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS);
188 
189 static device_method_t alc_methods[] = {
190 	/* Device interface. */
191 	DEVMETHOD(device_probe,		alc_probe),
192 	DEVMETHOD(device_attach,	alc_attach),
193 	DEVMETHOD(device_detach,	alc_detach),
194 	DEVMETHOD(device_shutdown,	alc_shutdown),
195 	DEVMETHOD(device_suspend,	alc_suspend),
196 	DEVMETHOD(device_resume,	alc_resume),
197 
198 	/* MII interface. */
199 	DEVMETHOD(miibus_readreg,	alc_miibus_readreg),
200 	DEVMETHOD(miibus_writereg,	alc_miibus_writereg),
201 	DEVMETHOD(miibus_statchg,	alc_miibus_statchg),
202 
203 	{ NULL, NULL }
204 };
205 
206 static driver_t alc_driver = {
207 	"alc",
208 	alc_methods,
209 	sizeof(struct alc_softc)
210 };
211 
212 static devclass_t alc_devclass;
213 
214 DRIVER_MODULE(alc, pci, alc_driver, alc_devclass, NULL, NULL);
215 DRIVER_MODULE(miibus, alc, miibus_driver, miibus_devclass, NULL, NULL);
216 
217 static struct resource_spec alc_res_spec_mem[] = {
218 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
219 	{ -1,			0,		0 }
220 };
221 
222 static struct resource_spec alc_irq_spec_legacy[] = {
223 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
224 	{ -1,			0,		0 }
225 };
226 
227 #ifdef OLD_MSI
228 static struct resource_spec alc_irq_spec_msi[] = {
229 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
230 	{ -1,			0,		0 }
231 };
232 
233 static struct resource_spec alc_irq_spec_msix[] = {
234 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
235 	{ -1,			0,		0 }
236 };
237 #endif
238 
239 static uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
240 
241 static int
242 alc_miibus_readreg(device_t dev, int phy, int reg)
243 {
244 	struct alc_softc *sc;
245 	uint32_t v;
246 	int i;
247 
248 	sc = device_get_softc(dev);
249 
250 	if (phy != sc->alc_phyaddr)
251 		return (0);
252 
253 	/*
254 	 * For AR8132 fast ethernet controller, do not report 1000baseT
255 	 * capability to mii(4). Even though AR8132 uses the same
256 	 * model/revision number of F1 gigabit PHY, the PHY has no
257 	 * ability to establish 1000baseT link.
258 	 */
259 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
260 	    reg == MII_EXTSR)
261 		return (0);
262 
263 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
264 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
265 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
266 		DELAY(5);
267 		v = CSR_READ_4(sc, ALC_MDIO);
268 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
269 			break;
270 	}
271 
272 	if (i == 0) {
273 		device_printf(sc->alc_dev, "phy read timeout : %d\n", reg);
274 		return (0);
275 	}
276 
277 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
278 }
279 
280 static int
281 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
282 {
283 	struct alc_softc *sc;
284 	uint32_t v;
285 	int i;
286 
287 	sc = device_get_softc(dev);
288 
289 	if (phy != sc->alc_phyaddr)
290 		return (0);
291 
292 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
293 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
294 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
295 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
296 		DELAY(5);
297 		v = CSR_READ_4(sc, ALC_MDIO);
298 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
299 			break;
300 	}
301 
302 	if (i == 0)
303 		device_printf(sc->alc_dev, "phy write timeout : %d\n", reg);
304 
305 	return (0);
306 }
307 
308 static void
309 alc_miibus_statchg(device_t dev)
310 {
311 	struct alc_softc *sc;
312 	struct mii_data *mii;
313 	struct ifnet *ifp;
314 	uint32_t reg;
315 
316 	sc = device_get_softc(dev);
317 
318 	mii = device_get_softc(sc->alc_miibus);
319 	ifp = sc->alc_ifp;
320 	if (mii == NULL || ifp == NULL ||
321 	    (ifp->if_flags & IFF_RUNNING) == 0)
322 		return;
323 
324 	sc->alc_flags &= ~ALC_FLAG_LINK;
325 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
326 	    (IFM_ACTIVE | IFM_AVALID)) {
327 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
328 		case IFM_10_T:
329 		case IFM_100_TX:
330 			sc->alc_flags |= ALC_FLAG_LINK;
331 			break;
332 		case IFM_1000_T:
333 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
334 				sc->alc_flags |= ALC_FLAG_LINK;
335 			break;
336 		default:
337 			break;
338 		}
339 	}
340 	alc_stop_queue(sc);
341 	/* Stop Rx/Tx MACs. */
342 	alc_stop_mac(sc);
343 
344 	/* Program MACs with resolved speed/duplex/flow-control. */
345 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
346 		alc_start_queue(sc);
347 		alc_mac_config(sc);
348 		/* Re-enable Tx/Rx MACs. */
349 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
350 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
351 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
352 	}
353 	alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
354 }
355 
356 static void
357 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
358 {
359 	struct alc_softc *sc;
360 	struct mii_data *mii;
361 
362 	sc = ifp->if_softc;
363 	ALC_LOCK(sc);
364 	if ((ifp->if_flags & IFF_UP) == 0) {
365 		ALC_UNLOCK(sc);
366 		return;
367 	}
368 	mii = device_get_softc(sc->alc_miibus);
369 
370 	mii_pollstat(mii);
371 	ALC_UNLOCK(sc);
372 	ifmr->ifm_status = mii->mii_media_status;
373 	ifmr->ifm_active = mii->mii_media_active;
374 }
375 
376 static int
377 alc_mediachange(struct ifnet *ifp)
378 {
379 	struct alc_softc *sc;
380 	struct mii_data *mii;
381 	struct mii_softc *miisc;
382 	int error;
383 
384 	sc = ifp->if_softc;
385 	ALC_LOCK(sc);
386 	mii = device_get_softc(sc->alc_miibus);
387 	if (mii->mii_instance != 0) {
388 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
389 			mii_phy_reset(miisc);
390 	}
391 	error = mii_mediachg(mii);
392 	ALC_UNLOCK(sc);
393 
394 	return (error);
395 }
396 
397 static struct alc_ident *
398 alc_find_ident(device_t dev)
399 {
400 	struct alc_ident *ident;
401 	uint16_t vendor, devid;
402 
403 	vendor = pci_get_vendor(dev);
404 	devid = pci_get_device(dev);
405 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
406 		if (vendor == ident->vendorid && devid == ident->deviceid)
407 			return (ident);
408 	}
409 	return (NULL);
410 }
411 
412 static int
413 alc_probe(device_t dev)
414 {
415 	struct alc_ident *ident;
416 
417 	ident = alc_find_ident(dev);
418 	if (ident != NULL) {
419 		device_set_desc(dev, ident->name);
420 		return (BUS_PROBE_DEFAULT);
421 	}
422 	return (ENXIO);
423 }
424 
425 static void
426 alc_get_macaddr(struct alc_softc *sc)
427 {
428 	uint32_t ea[2], opt;
429 	uint16_t val;
430 	int eeprom, i;
431 
432 	eeprom = 0;
433 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
434 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
435 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
436 		/*
437 		 * EEPROM found, let TWSI reload EEPROM configuration.
438 		 * This will set ethernet address of controller.
439 		 */
440 		eeprom++;
441 		switch (sc->alc_ident->deviceid) {
442 		case DEVICEID_ATHEROS_AR8131:
443 		case DEVICEID_ATHEROS_AR8132:
444 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
445 				opt |= OPT_CFG_CLK_ENB;
446 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
447 				CSR_READ_4(sc, ALC_OPT_CFG);
448 				DELAY(1000);
449 			}
450 			break;
451 		case DEVICEID_ATHEROS_AR8151:
452 		case DEVICEID_ATHEROS_AR8151_V2:
453 		case DEVICEID_ATHEROS_AR8152_B:
454 		case DEVICEID_ATHEROS_AR8152_B2:
455 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
456 					    ALC_MII_DBG_ADDR, 0x00);
457 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
458 						 ALC_MII_DBG_DATA);
459 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
460 					    ALC_MII_DBG_DATA, val & 0xFF7F);
461 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
462 					    ALC_MII_DBG_ADDR, 0x3B);
463 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
464 						 ALC_MII_DBG_DATA);
465 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
466 					    ALC_MII_DBG_DATA, val | 0x0008);
467 			DELAY(20);
468 			break;
469 		}
470 
471 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
472 			CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
473 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
474 		CSR_READ_4(sc, ALC_WOL_CFG);
475 
476 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
477 			    TWSI_CFG_SW_LD_START);
478 
479 		for (i = 100; i > 0; i--) {
480 			DELAY(1000);
481 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
482 			    TWSI_CFG_SW_LD_START) == 0)
483 				break;
484 		}
485 		if (i == 0)
486 			device_printf(sc->alc_dev,
487 			    "reloading EEPROM timeout!\n");
488 	} else {
489 		if (bootverbose)
490 			device_printf(sc->alc_dev, "EEPROM not found!\n");
491 	}
492 
493 	if (eeprom != 0) {
494 		switch (sc->alc_ident->deviceid) {
495 		case DEVICEID_ATHEROS_AR8131:
496 		case DEVICEID_ATHEROS_AR8132:
497 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
498 				opt &= ~OPT_CFG_CLK_ENB;
499 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
500 				CSR_READ_4(sc, ALC_OPT_CFG);
501 				DELAY(1000);
502 			}
503 			break;
504 		case DEVICEID_ATHEROS_AR8151:
505 		case DEVICEID_ATHEROS_AR8151_V2:
506 		case DEVICEID_ATHEROS_AR8152_B:
507 		case DEVICEID_ATHEROS_AR8152_B2:
508 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
509 					    ALC_MII_DBG_ADDR, 0x00);
510 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
511 						 ALC_MII_DBG_DATA);
512 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
513 					    ALC_MII_DBG_DATA, val | 0x0080);
514 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
515 					    ALC_MII_DBG_ADDR, 0x3B);
516 			val = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
517 						 ALC_MII_DBG_DATA);
518 			alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
519 					    ALC_MII_DBG_DATA, val & 0xFFF7);
520 			DELAY(20);
521 			break;
522 		}
523 	}
524 
525 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
526 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
527 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
528 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
529 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
530 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
531 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
532 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
533 }
534 
535 static void
536 alc_disable_l0s_l1(struct alc_softc *sc)
537 {
538 	uint32_t pmcfg;
539 
540 	/* Another magic from vendor. */
541 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
542 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
543 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
544 	    PM_CFG_SERDES_PD_EX_L1);
545 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
546 	    PM_CFG_SERDES_L1_ENB;
547 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
548 }
549 
550 static void
551 alc_phy_reset(struct alc_softc *sc)
552 {
553 	uint16_t data;
554 
555 	/* Reset magic from Linux. */
556 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
557 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
558 	CSR_READ_2(sc, ALC_GPHY_CFG);
559 	DELAY(10 * 1000);
560 
561 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
562 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
563 	    GPHY_CFG_SEL_ANA_RESET);
564 	CSR_READ_2(sc, ALC_GPHY_CFG);
565 	DELAY(10 * 1000);
566 
567 	/* DSP fixup, Vendor magic. */
568 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
569 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
570 				    ALC_MII_DBG_ADDR, 0x000A);
571 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
572 					 ALC_MII_DBG_DATA);
573 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
574 				    ALC_MII_DBG_DATA, data & 0xDFFF);
575 	}
576 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
577 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
578 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
579 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
580 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
581 				    ALC_MII_DBG_ADDR, 0x003B);
582 		data = alc_miibus_readreg(sc->alc_dev, sc->alc_phyaddr,
583 					  ALC_MII_DBG_DATA);
584 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
585 				    ALC_MII_DBG_DATA, data & 0xFFF7);
586 		DELAY(20 * 1000);
587 	}
588 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151) {
589 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
590 				    ALC_MII_DBG_ADDR, 0x0029);
591 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
592 				    ALC_MII_DBG_DATA, 0x929D);
593 	}
594 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
595 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132 ||
596 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
597 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
598 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
599 				    ALC_MII_DBG_ADDR, 0x0029);
600 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
601 				    ALC_MII_DBG_DATA, 0xB6DD);
602 	}
603 
604 	/* Load DSP codes, vendor magic. */
605 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
606 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
607 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
608 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
609 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
610 	    ALC_MII_DBG_DATA, data);
611 
612 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
613 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
614 	    ANA_SERDES_EN_LCKDT;
615 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
616 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
617 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
618 	    ALC_MII_DBG_DATA, data);
619 
620 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
621 	    ANA_LONG_CABLE_TH_100_MASK) |
622 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
623 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
624 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
625 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
626 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
627 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
628 	    ALC_MII_DBG_DATA, data);
629 
630 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
631 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
632 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
633 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
634 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
635 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
636 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
637 	    ALC_MII_DBG_DATA, data);
638 
639 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
640 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
641 	    ANA_OEN_125M;
642 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
643 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
644 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
645 	    ALC_MII_DBG_DATA, data);
646 	DELAY(1000);
647 }
648 
649 static void
650 alc_phy_down(struct alc_softc *sc)
651 {
652 	switch (sc->alc_ident->deviceid) {
653 	case DEVICEID_ATHEROS_AR8151:
654 	case DEVICEID_ATHEROS_AR8151_V2:
655 		/*
656 		 * GPHY power down caused more problems on AR8151 v2.0.
657 		 * When driver is reloaded after GPHY power down,
658 		 * accesses to PHY/MAC registers hung the system. Only
659 		 * cold boot recovered from it.  I'm not sure whether
660 		 * AR8151 v1.0 also requires this one though.  I don't
661 		 * have AR8151 v1.0 controller in hand.
662 		 * The only option left is to isolate the PHY and
663 		 * initiates power down the PHY which in turn saves
664 		 * more power when driver is unloaded.
665 		 */
666 		alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
667 				    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
668 		break;
669 	default:
670 		/* Force PHY down. */
671 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
672 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
673 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
674 		    GPHY_CFG_PWDOWN_HW);
675 		DELAY(1000);
676 		break;
677 	}
678 
679 }
680 
681 static void
682 alc_aspm(struct alc_softc *sc, int media)
683 {
684 	uint32_t pmcfg;
685 	uint16_t linkcfg;
686 
687 	ALC_LOCK_ASSERT(sc);
688 
689 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
690 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
691 	    (ALC_FLAG_APS | ALC_FLAG_PCIE)) {
692 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
693 					 PCIR_EXPRESS_LINK_CTL);
694 	} else {
695 		linkcfg = 0;
696 	}
697 
698 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
699 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
700 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
701 	pmcfg |= PM_CFG_SERDES_ENB | PM_CFG_RBER_ENB;
702 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
703 
704 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
705 		/* Disable extended sync except AR8152 B v1.0 */
706 		linkcfg &= ~0x80;
707 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
708 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
709 			linkcfg |= 0x80;
710 		CSR_WRITE_2(sc, sc->alc_expcap + PCIR_EXPRESS_LINK_CTL,
711 			    linkcfg);
712 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
713 			   PM_CFG_HOTRST);
714 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
715 			  PM_CFG_L1_ENTRY_TIMER_SHIFT);
716 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
717 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
718 			  PM_CFG_PM_REQ_TIMER_SHIFT);
719 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
720 	}
721 
722 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
723 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
724 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
725 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
726 			pmcfg |= PM_CFG_ASPM_L1_ENB;
727 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
728 			if (sc->alc_ident->deviceid ==
729 			    DEVICEID_ATHEROS_AR8152_B) {
730 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
731 			}
732 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
733 				   PM_CFG_SERDES_PLL_L1_ENB |
734 				   PM_CFG_SERDES_BUDS_RX_L1_ENB);
735 			pmcfg |= PM_CFG_CLK_SWH_L1;
736 			if (media == IFM_100_TX || media == IFM_1000_T) {
737 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
738 				switch (sc->alc_ident->deviceid) {
739 				case DEVICEID_ATHEROS_AR8152_B:
740 					pmcfg |= (7 <<
741 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
742 					break;
743 				case DEVICEID_ATHEROS_AR8152_B2:
744 				case DEVICEID_ATHEROS_AR8151_V2:
745 					pmcfg |= (4 <<
746 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
747 					break;
748 				default:
749 					pmcfg |= (15 <<
750 						PM_CFG_L1_ENTRY_TIMER_SHIFT);
751 					break;
752 				}
753 			}
754 		} else {
755 			pmcfg |= PM_CFG_SERDES_L1_ENB |
756 				PM_CFG_SERDES_PLL_L1_ENB |
757 				PM_CFG_SERDES_BUDS_RX_L1_ENB;
758 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
759 				PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
760 		}
761 	} else {
762 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
763 			   PM_CFG_SERDES_PLL_L1_ENB);
764 		pmcfg |= PM_CFG_CLK_SWH_L1;
765 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
766 			pmcfg |= PM_CFG_ASPM_L1_ENB;
767 	}
768 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
769 }
770 
771 static int
772 alc_attach(device_t dev)
773 {
774 	struct alc_softc *sc;
775 	struct ifnet *ifp;
776 	char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
777 	uint16_t burst;
778 	int base, error, i, msic, msixc, state;
779 	uint32_t cap, ctl, val;
780 
781 	error = 0;
782 	sc = device_get_softc(dev);
783 	sc->alc_dev = dev;
784 
785 	lockinit(&sc->alc_lock, "alc_lock", 0, LK_CANRECURSE);
786 	callout_init_mp(&sc->alc_tick_ch);
787 	TASK_INIT(&sc->alc_int_task, 0, alc_int_task, sc);
788 	sc->alc_ident = alc_find_ident(dev);
789 
790 	/* Map the device. */
791 	pci_enable_busmaster(dev);
792 	sc->alc_res_spec = alc_res_spec_mem;
793 	sc->alc_irq_spec = alc_irq_spec_legacy;
794 	error = bus_alloc_resources(dev, sc->alc_res_spec, sc->alc_res);
795 	if (error != 0) {
796 		device_printf(dev, "cannot allocate memory resources.\n");
797 		goto fail;
798 	}
799 
800 	/* Set PHY address. */
801 	sc->alc_phyaddr = ALC_PHY_ADDR;
802 
803 	/* Initialize DMA parameters. */
804 	sc->alc_dma_rd_burst = 0;
805 	sc->alc_dma_wr_burst = 0;
806 	sc->alc_rcb = DMA_CFG_RCB_64;
807 	if (pci_find_extcap(dev, PCIY_EXPRESS, &base) == 0) {
808 		sc->alc_flags |= ALC_FLAG_PCIE;
809 		sc->alc_expcap = base;
810 		burst = CSR_READ_2(sc, base + PCIR_EXPRESS_DEVICE_CTL);
811 		sc->alc_dma_rd_burst =
812 		    (burst & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12;
813 		sc->alc_dma_wr_burst = (burst & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5;
814 		if (bootverbose) {
815 			device_printf(dev, "Read request size : %u bytes.\n",
816 			    alc_dma_burst[sc->alc_dma_rd_burst]);
817 			device_printf(dev, "TLP payload size : %u bytes.\n",
818 			    alc_dma_burst[sc->alc_dma_wr_burst]);
819 		}
820 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
821 			sc->alc_dma_rd_burst = 3;
822 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
823 			sc->alc_dma_wr_burst = 3;
824 		/* Clear data link and flow-control protocol error. */
825 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
826 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
827 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
828 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
829 			CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
830 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
831 			CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
832 			PCIE_PHYMISC_FORCE_RCV_DET);
833 		if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B &&
834 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
835 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
836 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
837 				 PCIE_PHYMISC2_SERDES_TH_MASK);
838 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
839 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
840 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
841 		}
842 
843 		/* Disable ASPM L0S and L1. */
844 		cap = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CAP);
845 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
846 			ctl = CSR_READ_2(sc, base + PCIR_EXPRESS_LINK_CTL);
847 			if ((ctl & 0x08) != 0)
848 				sc->alc_rcb = DMA_CFG_RCB_128;
849 			if (bootverbose)
850 				device_printf(dev, "RCB %u bytes\n",
851 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
852 			state = ctl & 0x03;
853 			if (state & 0x01)
854 				sc->alc_flags |= ALC_FLAG_L0S;
855 			if (state & 0x02)
856 				sc->alc_flags |= ALC_FLAG_L1S;
857 			if (bootverbose)
858 				device_printf(sc->alc_dev, "ASPM %s %s\n",
859 				    aspm_state[state],
860 				    state == 0 ? "disabled" : "enabled");
861 			alc_disable_l0s_l1(sc);
862 		} else {
863 			if (bootverbose)
864 				device_printf(sc->alc_dev, "no ASPM support\n");
865 		}
866 	}
867 
868 	/* Reset PHY. */
869 	alc_phy_reset(sc);
870 
871 	/* Reset the ethernet controller. */
872 	alc_reset(sc);
873 
874 	/*
875 	 * One odd thing is AR8132 uses the same PHY hardware(F1
876 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
877 	 * the PHY supports 1000Mbps but that's not true. The PHY
878 	 * used in AR8132 can't establish gigabit link even if it
879 	 * shows the same PHY model/revision number of AR8131.
880 	 */
881 	switch (sc->alc_ident->deviceid) {
882 	case DEVICEID_ATHEROS_AR8152_B:
883 	case DEVICEID_ATHEROS_AR8152_B2:
884 		sc->alc_flags |= ALC_FLAG_APS;
885 		/* FALLTHROUGH */
886 	case DEVICEID_ATHEROS_AR8132:
887 		sc->alc_flags |= ALC_FLAG_FASTETHER;
888 		break;
889 	case DEVICEID_ATHEROS_AR8151:
890 	case DEVICEID_ATHEROS_AR8151_V2:
891 		sc->alc_flags |= ALC_FLAG_APS;
892 		/* FALLTHROUGH */
893 	default:
894 		break;
895 	}
896 	sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO;
897 
898 	/*
899 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
900 	 * addition, Atheros said that enabling SMB wouldn't improve
901 	 * performance. However I think it's bad to access lots of
902 	 * registers to extract MAC statistics.
903 	 */
904 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
905 
906 	/*
907 	 * Don't use Tx CMB. It is known to have silicon bug.
908 	 */
909 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
910 	sc->alc_rev = pci_get_revid(dev);
911 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
912 	    MASTER_CHIP_REV_SHIFT;
913 	if (bootverbose) {
914 		device_printf(dev, "PCI device revision : 0x%04x\n",
915 		    sc->alc_rev);
916 		device_printf(dev, "Chip id/revision : 0x%04x\n",
917 		    sc->alc_chip_rev);
918 	}
919 	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n",
920 	    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
921 	    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
922 
923 	/* Allocate IRQ resources. */
924 	msixc = pci_msix_count(dev);
925 	msic = pci_msi_count(dev);
926 	if (bootverbose) {
927 		device_printf(dev, "MSIX count : %d\n", msixc);
928 		device_printf(dev, "MSI count : %d\n", msic);
929 	}
930 
931 #ifdef OLD_MSI
932 	/* Prefer MSIX over MSI. */
933 	if (msix_disable == 0 || msi_disable == 0) {
934 		if (msix_disable == 0 && msixc == ALC_MSIX_MESSAGES &&
935 		    pci_alloc_msix(dev, &msixc) == 0) {
936 			if (msic == ALC_MSIX_MESSAGES) {
937 				device_printf(dev,
938 				    "Using %d MSIX message(s).\n", msixc);
939 				sc->alc_flags |= ALC_FLAG_MSIX;
940 				sc->alc_irq_spec = alc_irq_spec_msix;
941 			} else
942 				pci_release_msi(dev);
943 		}
944 		if (msi_disable == 0 && (sc->alc_flags & ALC_FLAG_MSIX) == 0 &&
945 		    msic == ALC_MSI_MESSAGES &&
946 		    pci_alloc_msi(dev, &msic) == 0) {
947 			if (msic == ALC_MSI_MESSAGES) {
948 				device_printf(dev,
949 				    "Using %d MSI message(s).\n", msic);
950 				sc->alc_flags |= ALC_FLAG_MSI;
951 				sc->alc_irq_spec = alc_irq_spec_msi;
952 			} else
953 				pci_release_msi(dev);
954 		}
955 	}
956 #endif
957 
958 	error = bus_alloc_resources(dev, sc->alc_irq_spec, sc->alc_irq);
959 	if (error != 0) {
960 		device_printf(dev, "cannot allocate IRQ resources.\n");
961 		goto fail;
962 	}
963 
964 	/* Create device sysctl node. */
965 	alc_sysctl_node(sc);
966 
967 	if ((error = alc_dma_alloc(sc) != 0))
968 		goto fail;
969 
970 	/* Load station address. */
971 	alc_get_macaddr(sc);
972 
973 	ifp = sc->alc_ifp = &sc->arpcom.ac_if;
974 	ifp->if_softc = sc;
975 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
976 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
977 	ifp->if_ioctl = alc_ioctl;
978 	ifp->if_start = alc_start;
979 	ifp->if_init = alc_init;
980 	ifp->if_snd.ifq_maxlen = ALC_TX_RING_CNT - 1;
981 	ifq_set_maxlen(&ifp->if_snd, ifp->if_snd.ifq_maxlen);
982 	ifq_set_ready(&ifp->if_snd);
983 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
984 	ifp->if_hwassist = ALC_CSUM_FEATURES | CSUM_TSO;
985 #if 0
986 /* XXX: WOL */
987 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
988 		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
989 		sc->alc_flags |= ALC_FLAG_PM;
990 		sc->alc_pmcap = base;
991 	}
992 #endif
993 	ifp->if_capenable = ifp->if_capabilities;
994 
995 	/* Set up MII bus. */
996 	if ((error = mii_phy_probe(dev, &sc->alc_miibus, alc_mediachange,
997 	    alc_mediastatus)) != 0) {
998 		device_printf(dev, "no PHY found!\n");
999 		goto fail;
1000 	}
1001 
1002 	ether_ifattach(ifp, sc->alc_eaddr, NULL);
1003 
1004 	/* VLAN capability setup. */
1005 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1006 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1007 	ifp->if_capenable = ifp->if_capabilities;
1008 	/*
1009 	 * XXX
1010 	 * It seems enabling Tx checksum offloading makes more trouble.
1011 	 * Sometimes the controller does not receive any frames when
1012 	 * Tx checksum offloading is enabled. I'm not sure whether this
1013 	 * is a bug in Tx checksum offloading logic or I got broken
1014 	 * sample boards. To safety, don't enable Tx checksum offloading
1015 	 * by default but give chance to users to toggle it if they know
1016 	 * their controllers work without problems.
1017 	 */
1018 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1019 	ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
1020 
1021 	/* Tell the upper layer(s) we support long frames. */
1022 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1023 
1024 	/* Create local taskq. */
1025 	TASK_INIT(&sc->alc_tx_task, 1, alc_tx_task, ifp);
1026 	sc->alc_tq = taskqueue_create("alc_taskq", M_WAITOK,
1027 				      taskqueue_thread_enqueue, &sc->alc_tq);
1028 	if (sc->alc_tq == NULL) {
1029 		device_printf(dev, "could not create taskqueue.\n");
1030 		ether_ifdetach(ifp);
1031 		error = ENXIO;
1032 		goto fail;
1033 	}
1034 	taskqueue_start_threads(&sc->alc_tq, 1, TDPRI_KERN_DAEMON, -1, "%s taskq",
1035 	    device_get_nameunit(sc->alc_dev));
1036 
1037 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1038 		msic = ALC_MSIX_MESSAGES;
1039 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1040 		msic = ALC_MSI_MESSAGES;
1041 	else
1042 		msic = 1;
1043 	for (i = 0; i < msic; i++) {
1044 		error = bus_setup_intr(dev, sc->alc_irq[i], INTR_MPSAFE,
1045 				       alc_intr, sc,
1046 				       &sc->alc_intrhand[i], NULL);
1047 		if (error != 0)
1048 			break;
1049 	}
1050 	if (error != 0) {
1051 		device_printf(dev, "could not set up interrupt handler.\n");
1052 		taskqueue_free(sc->alc_tq);
1053 		sc->alc_tq = NULL;
1054 		ether_ifdetach(ifp);
1055 		goto fail;
1056 	}
1057 
1058 fail:
1059 	if (error != 0)
1060 		alc_detach(dev);
1061 
1062 	return (error);
1063 }
1064 
1065 static int
1066 alc_detach(device_t dev)
1067 {
1068 	struct alc_softc *sc;
1069 	struct ifnet *ifp;
1070 	int i, msic;
1071 
1072 	sc = device_get_softc(dev);
1073 
1074 	ifp = sc->alc_ifp;
1075 	if (device_is_attached(dev)) {
1076 		ALC_LOCK(sc);
1077 		sc->alc_flags |= ALC_FLAG_DETACH;
1078 		alc_stop(sc);
1079 		ALC_UNLOCK(sc);
1080 #if 0
1081 		/* XXX */
1082 		callout_drain(&sc->alc_tick_ch);
1083 #endif
1084 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1085 		taskqueue_drain(sc->alc_tq, &sc->alc_tx_task);
1086 		ether_ifdetach(ifp);
1087 	}
1088 
1089 	if (sc->alc_tq != NULL) {
1090 		taskqueue_drain(sc->alc_tq, &sc->alc_int_task);
1091 		taskqueue_free(sc->alc_tq);
1092 		sc->alc_tq = NULL;
1093 	}
1094 
1095 	if (sc->alc_miibus != NULL) {
1096 		device_delete_child(dev, sc->alc_miibus);
1097 		sc->alc_miibus = NULL;
1098 	}
1099 	bus_generic_detach(dev);
1100 	alc_dma_free(sc);
1101 
1102 	if (ifp != NULL) {
1103 // XXX?		if_free(ifp);
1104 		sc->alc_ifp = NULL;
1105 	}
1106 
1107 	if ((sc->alc_flags & ALC_FLAG_MSIX) != 0)
1108 		msic = ALC_MSIX_MESSAGES;
1109 	else if ((sc->alc_flags & ALC_FLAG_MSI) != 0)
1110 		msic = ALC_MSI_MESSAGES;
1111 	else
1112 		msic = 1;
1113 	for (i = 0; i < msic; i++) {
1114 		if (sc->alc_intrhand[i] != NULL) {
1115 			bus_teardown_intr(dev, sc->alc_irq[i],
1116 					  sc->alc_intrhand[i]);
1117 			sc->alc_intrhand[i] = NULL;
1118 		}
1119 	}
1120 	if (sc->alc_res[0] != NULL)
1121 		alc_phy_down(sc);
1122 	bus_release_resources(dev, sc->alc_irq_spec, sc->alc_irq);
1123 	if ((sc->alc_flags & (ALC_FLAG_MSI | ALC_FLAG_MSIX)) != 0)
1124 		pci_release_msi(dev);
1125 	bus_release_resources(dev, sc->alc_res_spec, sc->alc_res);
1126 	lockuninit(&sc->alc_lock);
1127 
1128 	return (0);
1129 }
1130 
1131 #define	ALC_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
1132 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1133 #define	ALC_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
1134 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
1135 
1136 static void
1137 alc_sysctl_node(struct alc_softc *sc)
1138 {
1139 	struct sysctl_ctx_list *ctx;
1140 	struct sysctl_oid *tree;
1141 	struct sysctl_oid_list *child, *parent;
1142 	struct alc_hw_stats *stats;
1143 	int error;
1144 
1145 	stats = &sc->alc_stats;
1146 	ctx = &sc->alc_sysctl_ctx;
1147 	sysctl_ctx_init(ctx);
1148 
1149 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
1150 			       OID_AUTO,
1151 			       device_get_nameunit(sc->alc_dev),
1152 			       CTLFLAG_RD, 0, "");
1153 	if (tree == NULL) {
1154 		device_printf(sc->alc_dev, "can't add sysctl node\n");
1155 		return;
1156 	}
1157 	child = SYSCTL_CHILDREN(tree);
1158 
1159 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
1160 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_rx_mod, 0,
1161 	    sysctl_hw_alc_int_mod, "I", "alc Rx interrupt moderation");
1162 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
1163 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_int_tx_mod, 0,
1164 	    sysctl_hw_alc_int_mod, "I", "alc Tx interrupt moderation");
1165 	/* Pull in device tunables. */
1166 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1167 	error = resource_int_value(device_get_name(sc->alc_dev),
1168 	    device_get_unit(sc->alc_dev), "int_rx_mod", &sc->alc_int_rx_mod);
1169 	if (error == 0) {
1170 		if (sc->alc_int_rx_mod < ALC_IM_TIMER_MIN ||
1171 		    sc->alc_int_rx_mod > ALC_IM_TIMER_MAX) {
1172 			device_printf(sc->alc_dev, "int_rx_mod value out of "
1173 			    "range; using default: %d\n",
1174 			    ALC_IM_RX_TIMER_DEFAULT);
1175 			sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
1176 		}
1177 	}
1178 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1179 	error = resource_int_value(device_get_name(sc->alc_dev),
1180 	    device_get_unit(sc->alc_dev), "int_tx_mod", &sc->alc_int_tx_mod);
1181 	if (error == 0) {
1182 		if (sc->alc_int_tx_mod < ALC_IM_TIMER_MIN ||
1183 		    sc->alc_int_tx_mod > ALC_IM_TIMER_MAX) {
1184 			device_printf(sc->alc_dev, "int_tx_mod value out of "
1185 			    "range; using default: %d\n",
1186 			    ALC_IM_TX_TIMER_DEFAULT);
1187 			sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
1188 		}
1189 	}
1190 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1191 	    CTLTYPE_INT | CTLFLAG_RW, &sc->alc_process_limit, 0,
1192 	    sysctl_hw_alc_proc_limit, "I",
1193 	    "max number of Rx events to process");
1194 	/* Pull in device tunables. */
1195 	sc->alc_process_limit = ALC_PROC_DEFAULT;
1196 	error = resource_int_value(device_get_name(sc->alc_dev),
1197 	    device_get_unit(sc->alc_dev), "process_limit",
1198 	    &sc->alc_process_limit);
1199 	if (error == 0) {
1200 		if (sc->alc_process_limit < ALC_PROC_MIN ||
1201 		    sc->alc_process_limit > ALC_PROC_MAX) {
1202 			device_printf(sc->alc_dev,
1203 			    "process_limit value out of range; "
1204 			    "using default: %d\n", ALC_PROC_DEFAULT);
1205 			sc->alc_process_limit = ALC_PROC_DEFAULT;
1206 		}
1207 	}
1208 
1209 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1210 	    NULL, "ALC statistics");
1211 	parent = SYSCTL_CHILDREN(tree);
1212 
1213 	/* Rx statistics. */
1214 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1215 	    NULL, "Rx MAC statistics");
1216 	child = SYSCTL_CHILDREN(tree);
1217 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1218 	    &stats->rx_frames, "Good frames");
1219 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1220 	    &stats->rx_bcast_frames, "Good broadcast frames");
1221 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1222 	    &stats->rx_mcast_frames, "Good multicast frames");
1223 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1224 	    &stats->rx_pause_frames, "Pause control frames");
1225 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1226 	    &stats->rx_control_frames, "Control frames");
1227 	ALC_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1228 	    &stats->rx_crcerrs, "CRC errors");
1229 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1230 	    &stats->rx_lenerrs, "Frames with length mismatched");
1231 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1232 	    &stats->rx_bytes, "Good octets");
1233 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1234 	    &stats->rx_bcast_bytes, "Good broadcast octets");
1235 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1236 	    &stats->rx_mcast_bytes, "Good multicast octets");
1237 	ALC_SYSCTL_STAT_ADD32(ctx, child, "runts",
1238 	    &stats->rx_runts, "Too short frames");
1239 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fragments",
1240 	    &stats->rx_fragments, "Fragmented frames");
1241 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1242 	    &stats->rx_pkts_64, "64 bytes frames");
1243 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1244 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
1245 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1246 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
1247 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1248 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
1249 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1250 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
1251 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1252 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
1253 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1254 	    &stats->rx_pkts_1519_max, "1519 to max frames");
1255 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1256 	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
1257 	ALC_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1258 	    &stats->rx_fifo_oflows, "FIFO overflows");
1259 	ALC_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
1260 	    &stats->rx_rrs_errs, "Return status write-back errors");
1261 	ALC_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
1262 	    &stats->rx_alignerrs, "Alignment errors");
1263 	ALC_SYSCTL_STAT_ADD32(ctx, child, "filtered",
1264 	    &stats->rx_pkts_filtered,
1265 	    "Frames dropped due to address filtering");
1266 
1267 	/* Tx statistics. */
1268 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1269 	    NULL, "Tx MAC statistics");
1270 	child = SYSCTL_CHILDREN(tree);
1271 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1272 	    &stats->tx_frames, "Good frames");
1273 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
1274 	    &stats->tx_bcast_frames, "Good broadcast frames");
1275 	ALC_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
1276 	    &stats->tx_mcast_frames, "Good multicast frames");
1277 	ALC_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
1278 	    &stats->tx_pause_frames, "Pause control frames");
1279 	ALC_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
1280 	    &stats->tx_control_frames, "Control frames");
1281 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
1282 	    &stats->tx_excess_defer, "Frames with excessive derferrals");
1283 	ALC_SYSCTL_STAT_ADD32(ctx, child, "defers",
1284 	    &stats->tx_excess_defer, "Frames with derferrals");
1285 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
1286 	    &stats->tx_bytes, "Good octets");
1287 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
1288 	    &stats->tx_bcast_bytes, "Good broadcast octets");
1289 	ALC_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
1290 	    &stats->tx_mcast_bytes, "Good multicast octets");
1291 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
1292 	    &stats->tx_pkts_64, "64 bytes frames");
1293 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
1294 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
1295 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
1296 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
1297 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
1298 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
1299 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
1300 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
1301 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
1302 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
1303 	ALC_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
1304 	    &stats->tx_pkts_1519_max, "1519 to max frames");
1305 	ALC_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
1306 	    &stats->tx_single_colls, "Single collisions");
1307 	ALC_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
1308 	    &stats->tx_multi_colls, "Multiple collisions");
1309 	ALC_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
1310 	    &stats->tx_late_colls, "Late collisions");
1311 	ALC_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
1312 	    &stats->tx_excess_colls, "Excessive collisions");
1313 	ALC_SYSCTL_STAT_ADD32(ctx, child, "abort",
1314 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
1315 	ALC_SYSCTL_STAT_ADD32(ctx, child, "underruns",
1316 	    &stats->tx_underrun, "FIFO underruns");
1317 	ALC_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
1318 	    &stats->tx_desc_underrun, "Descriptor write-back errors");
1319 	ALC_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
1320 	    &stats->tx_lenerrs, "Frames with length mismatched");
1321 	ALC_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
1322 	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
1323 }
1324 
1325 #undef ALC_SYSCTL_STAT_ADD32
1326 #undef ALC_SYSCTL_STAT_ADD64
1327 
1328 struct alc_dmamap_arg {
1329 	bus_addr_t	alc_busaddr;
1330 };
1331 
1332 static void
1333 alc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1334 {
1335 	struct alc_dmamap_arg *ctx;
1336 
1337 	if (error != 0)
1338 		return;
1339 
1340 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1341 
1342 	ctx = (struct alc_dmamap_arg *)arg;
1343 	ctx->alc_busaddr = segs[0].ds_addr;
1344 }
1345 
1346 /*
1347  * Normal and high Tx descriptors shares single Tx high address.
1348  * Four Rx descriptor/return rings and CMB shares the same Rx
1349  * high address.
1350  */
1351 static int
1352 alc_check_boundary(struct alc_softc *sc)
1353 {
1354 	bus_addr_t cmb_end, rx_ring_end, rr_ring_end, tx_ring_end;
1355 
1356 	rx_ring_end = sc->alc_rdata.alc_rx_ring_paddr + ALC_RX_RING_SZ;
1357 	rr_ring_end = sc->alc_rdata.alc_rr_ring_paddr + ALC_RR_RING_SZ;
1358 	cmb_end = sc->alc_rdata.alc_cmb_paddr + ALC_CMB_SZ;
1359 	tx_ring_end = sc->alc_rdata.alc_tx_ring_paddr + ALC_TX_RING_SZ;
1360 
1361 	/* 4GB boundary crossing is not allowed. */
1362 	if ((ALC_ADDR_HI(rx_ring_end) !=
1363 	    ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr)) ||
1364 	    (ALC_ADDR_HI(rr_ring_end) !=
1365 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) ||
1366 	    (ALC_ADDR_HI(cmb_end) !=
1367 	    ALC_ADDR_HI(sc->alc_rdata.alc_cmb_paddr)) ||
1368 	    (ALC_ADDR_HI(tx_ring_end) !=
1369 	    ALC_ADDR_HI(sc->alc_rdata.alc_tx_ring_paddr)))
1370 		return (EFBIG);
1371 	/*
1372 	 * Make sure Rx return descriptor/Rx descriptor/CMB use
1373 	 * the same high address.
1374 	 */
1375 	if ((ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(rr_ring_end)) ||
1376 	    (ALC_ADDR_HI(rx_ring_end) != ALC_ADDR_HI(cmb_end)))
1377 		return (EFBIG);
1378 
1379 	return (0);
1380 }
1381 
1382 static int
1383 alc_dma_alloc(struct alc_softc *sc)
1384 {
1385 	struct alc_txdesc *txd;
1386 	struct alc_rxdesc *rxd;
1387 	bus_addr_t lowaddr;
1388 	struct alc_dmamap_arg ctx;
1389 	int error, i;
1390 
1391 	lowaddr = BUS_SPACE_MAXADDR;
1392 again:
1393 	/* Create parent DMA tag. */
1394 	error = bus_dma_tag_create(
1395 	    sc->alc_cdata.alc_parent_tag, /* parent */
1396 	    1, 0,			/* alignment, boundary */
1397 	    lowaddr,			/* lowaddr */
1398 	    BUS_SPACE_MAXADDR,		/* highaddr */
1399 	    NULL, NULL,			/* filter, filterarg */
1400 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1401 	    0,				/* nsegments */
1402 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1403 	    0,				/* flags */
1404 	    &sc->alc_cdata.alc_parent_tag);
1405 	if (error != 0) {
1406 		device_printf(sc->alc_dev,
1407 		    "could not create parent DMA tag.\n");
1408 		goto fail;
1409 	}
1410 
1411 	/* Create DMA tag for Tx descriptor ring. */
1412 	error = bus_dma_tag_create(
1413 	    sc->alc_cdata.alc_parent_tag, /* parent */
1414 	    ALC_TX_RING_ALIGN, 0,	/* alignment, boundary */
1415 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1416 	    BUS_SPACE_MAXADDR,		/* highaddr */
1417 	    NULL, NULL,			/* filter, filterarg */
1418 	    ALC_TX_RING_SZ,		/* maxsize */
1419 	    1,				/* nsegments */
1420 	    ALC_TX_RING_SZ,		/* maxsegsize */
1421 	    0,				/* flags */
1422 	    &sc->alc_cdata.alc_tx_ring_tag);
1423 	if (error != 0) {
1424 		device_printf(sc->alc_dev,
1425 		    "could not create Tx ring DMA tag.\n");
1426 		goto fail;
1427 	}
1428 
1429 	/* Create DMA tag for Rx free descriptor ring. */
1430 	error = bus_dma_tag_create(
1431 	    sc->alc_cdata.alc_parent_tag, /* parent */
1432 	    ALC_RX_RING_ALIGN, 0,	/* alignment, boundary */
1433 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1434 	    BUS_SPACE_MAXADDR,		/* highaddr */
1435 	    NULL, NULL,			/* filter, filterarg */
1436 	    ALC_RX_RING_SZ,		/* maxsize */
1437 	    1,				/* nsegments */
1438 	    ALC_RX_RING_SZ,		/* maxsegsize */
1439 	    0,				/* flags */
1440 	    &sc->alc_cdata.alc_rx_ring_tag);
1441 	if (error != 0) {
1442 		device_printf(sc->alc_dev,
1443 		    "could not create Rx ring DMA tag.\n");
1444 		goto fail;
1445 	}
1446 	/* Create DMA tag for Rx return descriptor ring. */
1447 	error = bus_dma_tag_create(
1448 	    sc->alc_cdata.alc_parent_tag, /* parent */
1449 	    ALC_RR_RING_ALIGN, 0,	/* alignment, boundary */
1450 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1451 	    BUS_SPACE_MAXADDR,		/* highaddr */
1452 	    NULL, NULL,			/* filter, filterarg */
1453 	    ALC_RR_RING_SZ,		/* maxsize */
1454 	    1,				/* nsegments */
1455 	    ALC_RR_RING_SZ,		/* maxsegsize */
1456 	    0,				/* flags */
1457 	    &sc->alc_cdata.alc_rr_ring_tag);
1458 	if (error != 0) {
1459 		device_printf(sc->alc_dev,
1460 		    "could not create Rx return ring DMA tag.\n");
1461 		goto fail;
1462 	}
1463 
1464 	/* Create DMA tag for coalescing message block. */
1465 	error = bus_dma_tag_create(
1466 	    sc->alc_cdata.alc_parent_tag, /* parent */
1467 	    ALC_CMB_ALIGN, 0,		/* alignment, boundary */
1468 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1469 	    BUS_SPACE_MAXADDR,		/* highaddr */
1470 	    NULL, NULL,			/* filter, filterarg */
1471 	    ALC_CMB_SZ,			/* maxsize */
1472 	    1,				/* nsegments */
1473 	    ALC_CMB_SZ,			/* maxsegsize */
1474 	    0,				/* flags */
1475 	    &sc->alc_cdata.alc_cmb_tag);
1476 	if (error != 0) {
1477 		device_printf(sc->alc_dev,
1478 		    "could not create CMB DMA tag.\n");
1479 		goto fail;
1480 	}
1481 	/* Create DMA tag for status message block. */
1482 	error = bus_dma_tag_create(
1483 	    sc->alc_cdata.alc_parent_tag, /* parent */
1484 	    ALC_SMB_ALIGN, 0,		/* alignment, boundary */
1485 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1486 	    BUS_SPACE_MAXADDR,		/* highaddr */
1487 	    NULL, NULL,			/* filter, filterarg */
1488 	    ALC_SMB_SZ,			/* maxsize */
1489 	    1,				/* nsegments */
1490 	    ALC_SMB_SZ,			/* maxsegsize */
1491 	    0,				/* flags */
1492 	    &sc->alc_cdata.alc_smb_tag);
1493 	if (error != 0) {
1494 		device_printf(sc->alc_dev,
1495 		    "could not create SMB DMA tag.\n");
1496 		goto fail;
1497 	}
1498 
1499 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1500 	error = bus_dmamem_alloc(sc->alc_cdata.alc_tx_ring_tag,
1501 	    (void **)&sc->alc_rdata.alc_tx_ring,
1502 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1503 	    &sc->alc_cdata.alc_tx_ring_map);
1504 	if (error != 0) {
1505 		device_printf(sc->alc_dev,
1506 		    "could not allocate DMA'able memory for Tx ring.\n");
1507 		goto fail;
1508 	}
1509 	ctx.alc_busaddr = 0;
1510 	error = bus_dmamap_load(sc->alc_cdata.alc_tx_ring_tag,
1511 	    sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring,
1512 	    ALC_TX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1513 	if (error != 0 || ctx.alc_busaddr == 0) {
1514 		device_printf(sc->alc_dev,
1515 		    "could not load DMA'able memory for Tx ring.\n");
1516 		goto fail;
1517 	}
1518 	sc->alc_rdata.alc_tx_ring_paddr = ctx.alc_busaddr;
1519 
1520 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1521 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rx_ring_tag,
1522 	    (void **)&sc->alc_rdata.alc_rx_ring,
1523 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1524 	    &sc->alc_cdata.alc_rx_ring_map);
1525 	if (error != 0) {
1526 		device_printf(sc->alc_dev,
1527 		    "could not allocate DMA'able memory for Rx ring.\n");
1528 		goto fail;
1529 	}
1530 	ctx.alc_busaddr = 0;
1531 	error = bus_dmamap_load(sc->alc_cdata.alc_rx_ring_tag,
1532 	    sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring,
1533 	    ALC_RX_RING_SZ, alc_dmamap_cb, &ctx, 0);
1534 	if (error != 0 || ctx.alc_busaddr == 0) {
1535 		device_printf(sc->alc_dev,
1536 		    "could not load DMA'able memory for Rx ring.\n");
1537 		goto fail;
1538 	}
1539 	sc->alc_rdata.alc_rx_ring_paddr = ctx.alc_busaddr;
1540 
1541 	/* Allocate DMA'able memory and load the DMA map for Rx return ring. */
1542 	error = bus_dmamem_alloc(sc->alc_cdata.alc_rr_ring_tag,
1543 	    (void **)&sc->alc_rdata.alc_rr_ring,
1544 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1545 	    &sc->alc_cdata.alc_rr_ring_map);
1546 	if (error != 0) {
1547 		device_printf(sc->alc_dev,
1548 		    "could not allocate DMA'able memory for Rx return ring.\n");
1549 		goto fail;
1550 	}
1551 	ctx.alc_busaddr = 0;
1552 	error = bus_dmamap_load(sc->alc_cdata.alc_rr_ring_tag,
1553 	    sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring,
1554 	    ALC_RR_RING_SZ, alc_dmamap_cb, &ctx, 0);
1555 	if (error != 0 || ctx.alc_busaddr == 0) {
1556 		device_printf(sc->alc_dev,
1557 		    "could not load DMA'able memory for Tx ring.\n");
1558 		goto fail;
1559 	}
1560 	sc->alc_rdata.alc_rr_ring_paddr = ctx.alc_busaddr;
1561 
1562 	/* Allocate DMA'able memory and load the DMA map for CMB. */
1563 	error = bus_dmamem_alloc(sc->alc_cdata.alc_cmb_tag,
1564 	    (void **)&sc->alc_rdata.alc_cmb,
1565 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1566 	    &sc->alc_cdata.alc_cmb_map);
1567 	if (error != 0) {
1568 		device_printf(sc->alc_dev,
1569 		    "could not allocate DMA'able memory for CMB.\n");
1570 		goto fail;
1571 	}
1572 	ctx.alc_busaddr = 0;
1573 	error = bus_dmamap_load(sc->alc_cdata.alc_cmb_tag,
1574 	    sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb,
1575 	    ALC_CMB_SZ, alc_dmamap_cb, &ctx, 0);
1576 	if (error != 0 || ctx.alc_busaddr == 0) {
1577 		device_printf(sc->alc_dev,
1578 		    "could not load DMA'able memory for CMB.\n");
1579 		goto fail;
1580 	}
1581 	sc->alc_rdata.alc_cmb_paddr = ctx.alc_busaddr;
1582 
1583 	/* Allocate DMA'able memory and load the DMA map for SMB. */
1584 	error = bus_dmamem_alloc(sc->alc_cdata.alc_smb_tag,
1585 	    (void **)&sc->alc_rdata.alc_smb,
1586 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1587 	    &sc->alc_cdata.alc_smb_map);
1588 	if (error != 0) {
1589 		device_printf(sc->alc_dev,
1590 		    "could not allocate DMA'able memory for SMB.\n");
1591 		goto fail;
1592 	}
1593 	ctx.alc_busaddr = 0;
1594 	error = bus_dmamap_load(sc->alc_cdata.alc_smb_tag,
1595 	    sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb,
1596 	    ALC_SMB_SZ, alc_dmamap_cb, &ctx, 0);
1597 	if (error != 0 || ctx.alc_busaddr == 0) {
1598 		device_printf(sc->alc_dev,
1599 		    "could not load DMA'able memory for CMB.\n");
1600 		goto fail;
1601 	}
1602 	sc->alc_rdata.alc_smb_paddr = ctx.alc_busaddr;
1603 
1604 	/* Make sure we've not crossed 4GB boundary. */
1605 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1606 	    (error = alc_check_boundary(sc)) != 0) {
1607 		device_printf(sc->alc_dev, "4GB boundary crossed, "
1608 		    "switching to 32bit DMA addressing mode.\n");
1609 		alc_dma_free(sc);
1610 		/*
1611 		 * Limit max allowable DMA address space to 32bit
1612 		 * and try again.
1613 		 */
1614 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1615 		goto again;
1616 	}
1617 
1618 	/*
1619 	 * Create Tx buffer parent tag.
1620 	 * AR813x/AR815x allows 64bit DMA addressing of Tx/Rx buffers
1621 	 * so it needs separate parent DMA tag as parent DMA address
1622 	 * space could be restricted to be within 32bit address space
1623 	 * by 4GB boundary crossing.
1624 	 */
1625 	error = bus_dma_tag_create(
1626 	    sc->alc_cdata.alc_parent_tag, /* parent */
1627 	    1, 0,			/* alignment, boundary */
1628 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1629 	    BUS_SPACE_MAXADDR,		/* highaddr */
1630 	    NULL, NULL,			/* filter, filterarg */
1631 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1632 	    0,				/* nsegments */
1633 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1634 	    0,				/* flags */
1635 	    &sc->alc_cdata.alc_buffer_tag);
1636 	if (error != 0) {
1637 		device_printf(sc->alc_dev,
1638 		    "could not create parent buffer DMA tag.\n");
1639 		goto fail;
1640 	}
1641 
1642 	/* Create DMA tag for Tx buffers. */
1643 	error = bus_dma_tag_create(
1644 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1645 	    1, 0,			/* alignment, boundary */
1646 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1647 	    BUS_SPACE_MAXADDR,		/* highaddr */
1648 	    NULL, NULL,			/* filter, filterarg */
1649 	    ALC_TSO_MAXSIZE,		/* maxsize */
1650 	    ALC_MAXTXSEGS,		/* nsegments */
1651 	    ALC_TSO_MAXSEGSIZE,		/* maxsegsize */
1652 	    0,				/* flags */
1653 	    &sc->alc_cdata.alc_tx_tag);
1654 	if (error != 0) {
1655 		device_printf(sc->alc_dev, "could not create Tx DMA tag.\n");
1656 		goto fail;
1657 	}
1658 
1659 	/* Create DMA tag for Rx buffers. */
1660 	error = bus_dma_tag_create(
1661 	    sc->alc_cdata.alc_buffer_tag, /* parent */
1662 	    ALC_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1663 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1664 	    BUS_SPACE_MAXADDR,		/* highaddr */
1665 	    NULL, NULL,			/* filter, filterarg */
1666 	    MCLBYTES,			/* maxsize */
1667 	    1,				/* nsegments */
1668 	    MCLBYTES,			/* maxsegsize */
1669 	    0,				/* flags */
1670 	    &sc->alc_cdata.alc_rx_tag);
1671 	if (error != 0) {
1672 		device_printf(sc->alc_dev, "could not create Rx DMA tag.\n");
1673 		goto fail;
1674 	}
1675 	/* Create DMA maps for Tx buffers. */
1676 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1677 		txd = &sc->alc_cdata.alc_txdesc[i];
1678 		txd->tx_m = NULL;
1679 		txd->tx_dmamap = NULL;
1680 		error = bus_dmamap_create(sc->alc_cdata.alc_tx_tag,
1681 					  BUS_DMA_WAITOK, &txd->tx_dmamap);
1682 		if (error != 0) {
1683 			device_printf(sc->alc_dev,
1684 			    "could not create Tx dmamap.\n");
1685 			goto fail;
1686 		}
1687 	}
1688 	/* Create DMA maps for Rx buffers. */
1689 	error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1690 				  BUS_DMA_WAITOK,
1691 				  &sc->alc_cdata.alc_rx_sparemap);
1692 	if (error) {
1693 		device_printf(sc->alc_dev,
1694 		    "could not create spare Rx dmamap.\n");
1695 		goto fail;
1696 	}
1697 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1698 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1699 		rxd->rx_m = NULL;
1700 		rxd->rx_dmamap = NULL;
1701 		error = bus_dmamap_create(sc->alc_cdata.alc_rx_tag,
1702 					  BUS_DMA_WAITOK,
1703 					  &rxd->rx_dmamap);
1704 		if (error != 0) {
1705 			device_printf(sc->alc_dev,
1706 			    "could not create Rx dmamap.\n");
1707 			goto fail;
1708 		}
1709 	}
1710 
1711 fail:
1712 	return (error);
1713 }
1714 
1715 static void
1716 alc_dma_free(struct alc_softc *sc)
1717 {
1718 	struct alc_txdesc *txd;
1719 	struct alc_rxdesc *rxd;
1720 	int i;
1721 
1722 	/* Tx buffers. */
1723 	if (sc->alc_cdata.alc_tx_tag != NULL) {
1724 		for (i = 0; i < ALC_TX_RING_CNT; i++) {
1725 			txd = &sc->alc_cdata.alc_txdesc[i];
1726 			if (txd->tx_dmamap != NULL) {
1727 				bus_dmamap_destroy(sc->alc_cdata.alc_tx_tag,
1728 				    txd->tx_dmamap);
1729 				txd->tx_dmamap = NULL;
1730 			}
1731 		}
1732 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_tag);
1733 		sc->alc_cdata.alc_tx_tag = NULL;
1734 	}
1735 	/* Rx buffers */
1736 	if (sc->alc_cdata.alc_rx_tag != NULL) {
1737 		for (i = 0; i < ALC_RX_RING_CNT; i++) {
1738 			rxd = &sc->alc_cdata.alc_rxdesc[i];
1739 			if (rxd->rx_dmamap != NULL) {
1740 				bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1741 				    rxd->rx_dmamap);
1742 				rxd->rx_dmamap = NULL;
1743 			}
1744 		}
1745 		if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1746 			bus_dmamap_destroy(sc->alc_cdata.alc_rx_tag,
1747 			    sc->alc_cdata.alc_rx_sparemap);
1748 			sc->alc_cdata.alc_rx_sparemap = NULL;
1749 		}
1750 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_tag);
1751 		sc->alc_cdata.alc_rx_tag = NULL;
1752 	}
1753 	/* Tx descriptor ring. */
1754 	if (sc->alc_cdata.alc_tx_ring_tag != NULL) {
1755 		if (sc->alc_cdata.alc_tx_ring_map != NULL)
1756 			bus_dmamap_unload(sc->alc_cdata.alc_tx_ring_tag,
1757 			    sc->alc_cdata.alc_tx_ring_map);
1758 		if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1759 		    sc->alc_rdata.alc_tx_ring != NULL)
1760 			bus_dmamem_free(sc->alc_cdata.alc_tx_ring_tag,
1761 			    sc->alc_rdata.alc_tx_ring,
1762 			    sc->alc_cdata.alc_tx_ring_map);
1763 		sc->alc_rdata.alc_tx_ring = NULL;
1764 		sc->alc_cdata.alc_tx_ring_map = NULL;
1765 		bus_dma_tag_destroy(sc->alc_cdata.alc_tx_ring_tag);
1766 		sc->alc_cdata.alc_tx_ring_tag = NULL;
1767 	}
1768 	/* Rx ring. */
1769 	if (sc->alc_cdata.alc_rx_ring_tag != NULL) {
1770 		if (sc->alc_cdata.alc_rx_ring_map != NULL)
1771 			bus_dmamap_unload(sc->alc_cdata.alc_rx_ring_tag,
1772 			    sc->alc_cdata.alc_rx_ring_map);
1773 		if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1774 		    sc->alc_rdata.alc_rx_ring != NULL)
1775 			bus_dmamem_free(sc->alc_cdata.alc_rx_ring_tag,
1776 			    sc->alc_rdata.alc_rx_ring,
1777 			    sc->alc_cdata.alc_rx_ring_map);
1778 		sc->alc_rdata.alc_rx_ring = NULL;
1779 		sc->alc_cdata.alc_rx_ring_map = NULL;
1780 		bus_dma_tag_destroy(sc->alc_cdata.alc_rx_ring_tag);
1781 		sc->alc_cdata.alc_rx_ring_tag = NULL;
1782 	}
1783 	/* Rx return ring. */
1784 	if (sc->alc_cdata.alc_rr_ring_tag != NULL) {
1785 		if (sc->alc_cdata.alc_rr_ring_map != NULL)
1786 			bus_dmamap_unload(sc->alc_cdata.alc_rr_ring_tag,
1787 			    sc->alc_cdata.alc_rr_ring_map);
1788 		if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1789 		    sc->alc_rdata.alc_rr_ring != NULL)
1790 			bus_dmamem_free(sc->alc_cdata.alc_rr_ring_tag,
1791 			    sc->alc_rdata.alc_rr_ring,
1792 			    sc->alc_cdata.alc_rr_ring_map);
1793 		sc->alc_rdata.alc_rr_ring = NULL;
1794 		sc->alc_cdata.alc_rr_ring_map = NULL;
1795 		bus_dma_tag_destroy(sc->alc_cdata.alc_rr_ring_tag);
1796 		sc->alc_cdata.alc_rr_ring_tag = NULL;
1797 	}
1798 	/* CMB block */
1799 	if (sc->alc_cdata.alc_cmb_tag != NULL) {
1800 		if (sc->alc_cdata.alc_cmb_map != NULL)
1801 			bus_dmamap_unload(sc->alc_cdata.alc_cmb_tag,
1802 			    sc->alc_cdata.alc_cmb_map);
1803 		if (sc->alc_cdata.alc_cmb_map != NULL &&
1804 		    sc->alc_rdata.alc_cmb != NULL)
1805 			bus_dmamem_free(sc->alc_cdata.alc_cmb_tag,
1806 			    sc->alc_rdata.alc_cmb,
1807 			    sc->alc_cdata.alc_cmb_map);
1808 		sc->alc_rdata.alc_cmb = NULL;
1809 		sc->alc_cdata.alc_cmb_map = NULL;
1810 		bus_dma_tag_destroy(sc->alc_cdata.alc_cmb_tag);
1811 		sc->alc_cdata.alc_cmb_tag = NULL;
1812 	}
1813 	/* SMB block */
1814 	if (sc->alc_cdata.alc_smb_tag != NULL) {
1815 		if (sc->alc_cdata.alc_smb_map != NULL)
1816 			bus_dmamap_unload(sc->alc_cdata.alc_smb_tag,
1817 			    sc->alc_cdata.alc_smb_map);
1818 		if (sc->alc_cdata.alc_smb_map != NULL &&
1819 		    sc->alc_rdata.alc_smb != NULL)
1820 			bus_dmamem_free(sc->alc_cdata.alc_smb_tag,
1821 			    sc->alc_rdata.alc_smb,
1822 			    sc->alc_cdata.alc_smb_map);
1823 		sc->alc_rdata.alc_smb = NULL;
1824 		sc->alc_cdata.alc_smb_map = NULL;
1825 		bus_dma_tag_destroy(sc->alc_cdata.alc_smb_tag);
1826 		sc->alc_cdata.alc_smb_tag = NULL;
1827 	}
1828 	if (sc->alc_cdata.alc_buffer_tag != NULL) {
1829 		bus_dma_tag_destroy(sc->alc_cdata.alc_buffer_tag);
1830 		sc->alc_cdata.alc_buffer_tag = NULL;
1831 	}
1832 	if (sc->alc_cdata.alc_parent_tag != NULL) {
1833 		bus_dma_tag_destroy(sc->alc_cdata.alc_parent_tag);
1834 		sc->alc_cdata.alc_parent_tag = NULL;
1835 	}
1836 }
1837 
1838 static int
1839 alc_shutdown(device_t dev)
1840 {
1841 
1842 	return (alc_suspend(dev));
1843 }
1844 
1845 #if 0
1846 /* XXX: LINK SPEED */
1847 /*
1848  * Note, this driver resets the link speed to 10/100Mbps by
1849  * restarting auto-negotiation in suspend/shutdown phase but we
1850  * don't know whether that auto-negotiation would succeed or not
1851  * as driver has no control after powering off/suspend operation.
1852  * If the renegotiation fail WOL may not work. Running at 1Gbps
1853  * will draw more power than 375mA at 3.3V which is specified in
1854  * PCI specification and that would result in complete
1855  * shutdowning power to ethernet controller.
1856  *
1857  * TODO
1858  * Save current negotiated media speed/duplex/flow-control to
1859  * softc and restore the same link again after resuming. PHY
1860  * handling such as power down/resetting to 100Mbps may be better
1861  * handled in suspend method in phy driver.
1862  */
1863 static void
1864 alc_setlinkspeed(struct alc_softc *sc)
1865 {
1866 	struct mii_data *mii;
1867 	int aneg, i;
1868 
1869 	mii = device_get_softc(sc->alc_miibus);
1870 	mii_pollstat(mii);
1871 	aneg = 0;
1872 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1873 	    (IFM_ACTIVE | IFM_AVALID)) {
1874 		switch IFM_SUBTYPE(mii->mii_media_active) {
1875 		case IFM_10_T:
1876 		case IFM_100_TX:
1877 			return;
1878 		case IFM_1000_T:
1879 			aneg++;
1880 			break;
1881 		default:
1882 			break;
1883 		}
1884 	}
1885 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr, MII_100T2CR, 0);
1886 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1887 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1888 	alc_miibus_writereg(sc->alc_dev, sc->alc_phyaddr,
1889 	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1890 	DELAY(1000);
1891 	if (aneg != 0) {
1892 		/*
1893 		 * Poll link state until alc(4) get a 10/100Mbps link.
1894 		 */
1895 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1896 			mii_pollstat(mii);
1897 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1898 			    == (IFM_ACTIVE | IFM_AVALID)) {
1899 				switch (IFM_SUBTYPE(
1900 				    mii->mii_media_active)) {
1901 				case IFM_10_T:
1902 				case IFM_100_TX:
1903 					alc_mac_config(sc);
1904 					return;
1905 				default:
1906 					break;
1907 				}
1908 			}
1909 			ALC_UNLOCK(sc);
1910 			pause("alclnk", hz);
1911 			ALC_LOCK(sc);
1912 		}
1913 		if (i == MII_ANEGTICKS_GIGE)
1914 			device_printf(sc->alc_dev,
1915 			    "establishing a link failed, WOL may not work!");
1916 	}
1917 	/*
1918 	 * No link, force MAC to have 100Mbps, full-duplex link.
1919 	 * This is the last resort and may/may not work.
1920 	 */
1921 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1922 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1923 	alc_mac_config(sc);
1924 }
1925 #endif
1926 
1927 #if 0
1928 /* XXX: WOL */
1929 static void
1930 alc_setwol(struct alc_softc *sc)
1931 {
1932 	struct ifnet *ifp;
1933 	uint32_t reg, pmcs;
1934 	uint16_t pmstat;
1935 
1936 	ALC_LOCK_ASSERT(sc);
1937 
1938 	alc_disable_l0s_l1(sc);
1939 	ifp = sc->alc_ifp;
1940 	if ((sc->alc_flags & ALC_FLAG_PM) == 0) {
1941 		/* Disable WOL. */
1942 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
1943 		reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1944 		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1945 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1946 		/* Force PHY power down. */
1947 		alc_phy_down(sc);
1948 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1949 			CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1950 		return;
1951 	}
1952 
1953 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1954 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
1955 			alc_setlinkspeed(sc);
1956 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1957 			CSR_READ_4(sc, ALC_MASTER_CFG) & ~MASTER_CLK_SEL_DIS);
1958 	}
1959 
1960 	pmcs = 0;
1961 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1962 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1963 	CSR_WRITE_4(sc, ALC_WOL_CFG, pmcs);
1964 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1965 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1966 	    MAC_CFG_BCAST);
1967 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1968 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1969 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1970 		reg |= MAC_CFG_RX_ENB;
1971 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1972 
1973 	reg = CSR_READ_4(sc, ALC_PCIE_PHYMISC);
1974 	reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1975 	CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, reg);
1976 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1977 		/* WOL disabled, PHY power down. */
1978 		alc_phy_down(sc);
1979 		CSR_WRITE_4(sc, ALC_MASTER_CFG,
1980 			CSR_READ_4(sc, ALC_MASTER_CFG) | MASTER_CLK_SEL_DIS);
1981 
1982 	}
1983 	/* Request PME. */
1984 	pmstat = pci_read_config(sc->alc_dev,
1985 				 sc->alc_pmcap + PCIR_POWER_STATUS, 2);
1986 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1987 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1988 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1989 	pci_write_config(sc->alc_dev,
1990 			 sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
1991 }
1992 #endif
1993 
1994 static int
1995 alc_suspend(device_t dev)
1996 {
1997 	struct alc_softc *sc;
1998 
1999 	sc = device_get_softc(dev);
2000 
2001 	ALC_LOCK(sc);
2002 	alc_stop(sc);
2003 #if 0
2004 /* XXX: WOL */
2005 	alc_setwol(sc);
2006 #endif
2007 	ALC_UNLOCK(sc);
2008 
2009 	return (0);
2010 }
2011 
2012 static int
2013 alc_resume(device_t dev)
2014 {
2015 	struct alc_softc *sc;
2016 	struct ifnet *ifp;
2017 	uint16_t pmstat;
2018 
2019 	sc = device_get_softc(dev);
2020 
2021 	ALC_LOCK(sc);
2022 	if ((sc->alc_flags & ALC_FLAG_PM) != 0) {
2023 		/* Disable PME and clear PME status. */
2024 		pmstat = pci_read_config(sc->alc_dev,
2025 		    sc->alc_pmcap + PCIR_POWER_STATUS, 2);
2026 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2027 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2028 			pci_write_config(sc->alc_dev,
2029 			    sc->alc_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2030 		}
2031 	}
2032 	/* Reset PHY. */
2033 	alc_phy_reset(sc);
2034 	ifp = sc->alc_ifp;
2035 	if ((ifp->if_flags & IFF_UP) != 0) {
2036 		ifp->if_flags &= ~IFF_RUNNING;
2037 		alc_init_locked(sc);
2038 	}
2039 	ALC_UNLOCK(sc);
2040 
2041 	return (0);
2042 }
2043 
2044 static int
2045 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
2046 {
2047 	struct alc_txdesc *txd, *txd_last;
2048 	struct tx_desc *desc;
2049 	struct mbuf *m;
2050 	struct ip *ip;
2051 	struct tcphdr *tcp;
2052 	bus_dma_segment_t txsegs[ALC_MAXTXSEGS];
2053 	bus_dmamap_t map;
2054 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
2055 	int error, idx, nsegs, prod;
2056 
2057 	ALC_LOCK_ASSERT(sc);
2058 
2059 	M_ASSERTPKTHDR((*m_head));
2060 
2061 	m = *m_head;
2062 	ip = NULL;
2063 	tcp = NULL;
2064 	ip_off = poff = 0;
2065 #if 0
2066 /* XXX: TSO */
2067 	if ((m->m_pkthdr.csum_flags & (ALC_CSUM_FEATURES | CSUM_TSO)) != 0) {
2068 		/*
2069 		 * AR813x/AR815x requires offset of TCP/UDP header in its
2070 		 * Tx descriptor to perform Tx checksum offloading. TSO
2071 		 * also requires TCP header offset and modification of
2072 		 * IP/TCP header. This kind of operation takes many CPU
2073 		 * cycles on FreeBSD so fast host CPU is required to get
2074 		 * smooth TSO performance.
2075 		 */
2076 		struct ether_header *eh;
2077 
2078 		if (M_WRITABLE(m) == 0) {
2079 			/* Get a writable copy. */
2080 			m = m_dup(*m_head, MB_DONTWAIT);
2081 			/* Release original mbufs. */
2082 			m_freem(*m_head);
2083 			if (m == NULL) {
2084 				*m_head = NULL;
2085 				return (ENOBUFS);
2086 			}
2087 			*m_head = m;
2088 		}
2089 
2090 		ip_off = sizeof(struct ether_header);
2091 		m = m_pullup(m, ip_off + sizeof(struct ip));
2092 		if (m == NULL) {
2093 			*m_head = NULL;
2094 			return (ENOBUFS);
2095 		}
2096 		eh = mtod(m, struct ether_header *);
2097 		/*
2098 		 * Check if hardware VLAN insertion is off.
2099 		 * Additional check for LLC/SNAP frame?
2100 		 */
2101 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2102 			ip_off = sizeof(struct ether_vlan_header);
2103 			m = m_pullup(m, ip_off);
2104 			if (m == NULL) {
2105 				*m_head = NULL;
2106 				return (ENOBUFS);
2107 			}
2108 		}
2109 		m = m_pullup(m, ip_off + sizeof(struct ip));
2110 		if (m == NULL) {
2111 			*m_head = NULL;
2112 			return (ENOBUFS);
2113 		}
2114 		ip = (struct ip *)(mtod(m, char *) + ip_off);
2115 		poff = ip_off + (ip->ip_hl << 2);
2116 
2117 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2118 			m = m_pullup(m, poff + sizeof(struct tcphdr));
2119 			if (m == NULL) {
2120 				*m_head = NULL;
2121 				return (ENOBUFS);
2122 			}
2123 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
2124 			m = m_pullup(m, poff + (tcp->th_off << 2));
2125 			if (m == NULL) {
2126 				*m_head = NULL;
2127 				return (ENOBUFS);
2128 			}
2129 			/*
2130 			 * Due to strict adherence of Microsoft NDIS
2131 			 * Large Send specification, hardware expects
2132 			 * a pseudo TCP checksum inserted by upper
2133 			 * stack. Unfortunately the pseudo TCP
2134 			 * checksum that NDIS refers to does not include
2135 			 * TCP payload length so driver should recompute
2136 			 * the pseudo checksum here. Hopefully this
2137 			 * wouldn't be much burden on modern CPUs.
2138 			 *
2139 			 * Reset IP checksum and recompute TCP pseudo
2140 			 * checksum as NDIS specification said.
2141 			 */
2142 			ip->ip_sum = 0;
2143 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
2144 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
2145 		}
2146 		*m_head = m;
2147 	}
2148 #endif /* TSO */
2149 
2150 	prod = sc->alc_cdata.alc_tx_prod;
2151 	txd = &sc->alc_cdata.alc_txdesc[prod];
2152 	txd_last = txd;
2153 	map = txd->tx_dmamap;
2154 
2155 	error = bus_dmamap_load_mbuf_defrag(
2156 			sc->alc_cdata.alc_tx_tag, map, m_head,
2157 			txsegs, ALC_MAXTXSEGS, &nsegs, BUS_DMA_NOWAIT);
2158 	if (error) {
2159 		m_freem(*m_head);
2160 		*m_head = NULL;
2161 		return (error);
2162 	}
2163 	if (nsegs == 0) {
2164 		m_freem(*m_head);
2165 		*m_head = NULL;
2166 		return (EIO);
2167 	}
2168 
2169 	/* Check descriptor overrun. */
2170 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
2171 		bus_dmamap_unload(sc->alc_cdata.alc_tx_tag, map);
2172 		return (ENOBUFS);
2173 	}
2174 	bus_dmamap_sync(sc->alc_cdata.alc_tx_tag, map, BUS_DMASYNC_PREWRITE);
2175 
2176 	m = *m_head;
2177 	cflags = TD_ETHERNET;
2178 	vtag = 0;
2179 	desc = NULL;
2180 	idx = 0;
2181 	/* Configure VLAN hardware tag insertion. */
2182 	if ((m->m_flags & M_VLANTAG) != 0) {
2183 		vtag = htons(m->m_pkthdr.ether_vlantag);
2184 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
2185 		cflags |= TD_INS_VLAN_TAG;
2186 	}
2187 	/* Configure Tx checksum offload. */
2188 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
2189 #ifdef ALC_USE_CUSTOM_CSUM
2190 		cflags |= TD_CUSTOM_CSUM;
2191 		/* Set checksum start offset. */
2192 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
2193 		    TD_PLOAD_OFFSET_MASK;
2194 		/* Set checksum insertion position of TCP/UDP. */
2195 		cflags |= (((poff + m->m_pkthdr.csum_data) >> 1) <<
2196 		    TD_CUSTOM_CSUM_OFFSET_SHIFT) & TD_CUSTOM_CSUM_OFFSET_MASK;
2197 #else
2198 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2199 			cflags |= TD_IPCSUM;
2200 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2201 			cflags |= TD_TCPCSUM;
2202 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2203 			cflags |= TD_UDPCSUM;
2204 		/* Set TCP/UDP header offset. */
2205 		cflags |= (poff << TD_L4HDR_OFFSET_SHIFT) &
2206 		    TD_L4HDR_OFFSET_MASK;
2207 #endif
2208 	} else if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2209 		/* Request TSO and set MSS. */
2210 		cflags |= TD_TSO | TD_TSO_DESCV1;
2211 #if 0
2212 /* XXX: TSO */
2213 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << TD_MSS_SHIFT) &
2214 		    TD_MSS_MASK;
2215 		/* Set TCP header offset. */
2216 #endif
2217 		cflags |= (poff << TD_TCPHDR_OFFSET_SHIFT) &
2218 		    TD_TCPHDR_OFFSET_MASK;
2219 		/*
2220 		 * AR813x/AR815x requires the first buffer should
2221 		 * only hold IP/TCP header data. Payload should
2222 		 * be handled in other descriptors.
2223 		 */
2224 		hdrlen = poff + (tcp->th_off << 2);
2225 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2226 		desc->len = htole32(TX_BYTES(hdrlen | vtag));
2227 		desc->flags = htole32(cflags);
2228 		desc->addr = htole64(txsegs[0].ds_addr);
2229 		sc->alc_cdata.alc_tx_cnt++;
2230 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2231 		if (m->m_len - hdrlen > 0) {
2232 			/* Handle remaining payload of the first fragment. */
2233 			desc = &sc->alc_rdata.alc_tx_ring[prod];
2234 			desc->len = htole32(TX_BYTES((m->m_len - hdrlen) |
2235 			    vtag));
2236 			desc->flags = htole32(cflags);
2237 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
2238 			sc->alc_cdata.alc_tx_cnt++;
2239 			ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2240 		}
2241 		/* Handle remaining fragments. */
2242 		idx = 1;
2243 	}
2244 	for (; idx < nsegs; idx++) {
2245 		desc = &sc->alc_rdata.alc_tx_ring[prod];
2246 		desc->len = htole32(TX_BYTES(txsegs[idx].ds_len) | vtag);
2247 		desc->flags = htole32(cflags);
2248 		desc->addr = htole64(txsegs[idx].ds_addr);
2249 		sc->alc_cdata.alc_tx_cnt++;
2250 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
2251 	}
2252 	/* Update producer index. */
2253 	sc->alc_cdata.alc_tx_prod = prod;
2254 
2255 	/* Finally set EOP on the last descriptor. */
2256 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2257 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2258 	desc->flags |= htole32(TD_EOP);
2259 
2260 	/* Swap dmamap of the first and the last. */
2261 	txd = &sc->alc_cdata.alc_txdesc[prod];
2262 	map = txd_last->tx_dmamap;
2263 	txd_last->tx_dmamap = txd->tx_dmamap;
2264 	txd->tx_dmamap = map;
2265 	txd->tx_m = m;
2266 
2267 	return (0);
2268 }
2269 
2270 static void
2271 alc_tx_task(void *arg, int pending)
2272 {
2273 	struct ifnet *ifp;
2274 
2275 	ifp = (struct ifnet *)arg;
2276 	alc_start(ifp);
2277 }
2278 
2279 static void
2280 alc_start(struct ifnet *ifp)
2281 {
2282 	struct alc_softc *sc;
2283 	struct mbuf *m_head;
2284 	int enq;
2285 
2286 	sc = ifp->if_softc;
2287 
2288 	ALC_LOCK(sc);
2289 
2290 	/* Reclaim transmitted frames. */
2291 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2292 		alc_txeof(sc);
2293 
2294 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
2295 		ALC_UNLOCK(sc);
2296 		return;
2297 	}
2298 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2299 		ifq_purge(&ifp->if_snd);
2300 		ALC_UNLOCK(sc);
2301 		return;
2302 	}
2303 
2304 	for (enq = 0; !ifq_is_empty(&ifp->if_snd); ) {
2305 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2306 		if (m_head == NULL)
2307 			break;
2308 		/*
2309 		 * Pack the data into the transmit ring. If we
2310 		 * don't have room, set the OACTIVE flag and wait
2311 		 * for the NIC to drain the ring.
2312 		 */
2313 		if (alc_encap(sc, &m_head)) {
2314 			if (m_head == NULL)
2315 				break;
2316 			ifq_prepend(&ifp->if_snd, m_head);
2317 			ifp->if_flags |= IFF_OACTIVE;
2318 			break;
2319 		}
2320 
2321 		enq++;
2322 		/*
2323 		 * If there's a BPF listener, bounce a copy of this frame
2324 		 * to him.
2325 		 */
2326 		ETHER_BPF_MTAP(ifp, m_head);
2327 	}
2328 
2329 	if (enq > 0) {
2330 		/* Sync descriptors. */
2331 		bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2332 		    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
2333 		/* Kick. Assume we're using normal Tx priority queue. */
2334 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2335 		    (sc->alc_cdata.alc_tx_prod <<
2336 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2337 		    MBOX_TD_PROD_LO_IDX_MASK);
2338 		/* Set a timeout in case the chip goes out to lunch. */
2339 		sc->alc_watchdog_timer = ALC_TX_TIMEOUT;
2340 	}
2341 
2342 	ALC_UNLOCK(sc);
2343 }
2344 
2345 static void
2346 alc_watchdog(struct alc_softc *sc)
2347 {
2348 	struct ifnet *ifp;
2349 
2350 	ALC_LOCK_ASSERT(sc);
2351 
2352 	if (sc->alc_watchdog_timer == 0 || --sc->alc_watchdog_timer)
2353 		return;
2354 
2355 	ifp = sc->alc_ifp;
2356 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2357 		if_printf(sc->alc_ifp, "watchdog timeout (lost link)\n");
2358 		ifp->if_oerrors++;
2359 		ifp->if_flags &= ~IFF_RUNNING;
2360 		alc_init_locked(sc);
2361 		return;
2362 	}
2363 	if_printf(sc->alc_ifp, "watchdog timeout -- resetting\n");
2364 	ifp->if_oerrors++;
2365 	ifp->if_flags &= ~IFF_RUNNING;
2366 	alc_init_locked(sc);
2367 	if (!ifq_is_empty(&ifp->if_snd))
2368 		taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2369 }
2370 
2371 static int
2372 alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2373 {
2374 	struct alc_softc *sc;
2375 	struct ifreq *ifr;
2376 	struct mii_data *mii;
2377 	int error, mask;
2378 
2379 	(void)cr;
2380 	sc = ifp->if_softc;
2381 	ifr = (struct ifreq *)data;
2382 	error = 0;
2383 	switch (cmd) {
2384 	case SIOCSIFMTU:
2385 		if (ifr->ifr_mtu < ETHERMIN ||
2386 		    ifr->ifr_mtu > (sc->alc_ident->max_framelen -
2387 			    sizeof(struct ether_vlan_header) - ETHER_CRC_LEN) ||
2388 		    ((sc->alc_flags & ALC_FLAG_JUMBO) == 0 &&
2389 		    ifr->ifr_mtu > ETHERMTU)) {
2390 			error = EINVAL;
2391 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2392 			ALC_LOCK(sc);
2393 			ifp->if_mtu = ifr->ifr_mtu;
2394 			/* AR813x/AR815x has 13 bits MSS field. */
2395 			if (ifp->if_mtu > ALC_TSO_MTU &&
2396 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2397 				ifp->if_capenable &= ~IFCAP_TSO4;
2398 				ifp->if_hwassist &= ~CSUM_TSO;
2399 			}
2400 			ALC_UNLOCK(sc);
2401 		}
2402 		break;
2403 	case SIOCSIFFLAGS:
2404 		ALC_LOCK(sc);
2405 		if ((ifp->if_flags & IFF_UP) != 0) {
2406 			if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2407 			    ((ifp->if_flags ^ sc->alc_if_flags) &
2408 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2409 				alc_rxfilter(sc);
2410 			else if ((sc->alc_flags & ALC_FLAG_DETACH) == 0)
2411 				alc_init_locked(sc);
2412 		} else if ((ifp->if_flags & IFF_RUNNING) != 0)
2413 			alc_stop(sc);
2414 		sc->alc_if_flags = ifp->if_flags;
2415 		ALC_UNLOCK(sc);
2416 		break;
2417 	case SIOCADDMULTI:
2418 	case SIOCDELMULTI:
2419 		ALC_LOCK(sc);
2420 		if ((ifp->if_flags & IFF_RUNNING) != 0)
2421 			alc_rxfilter(sc);
2422 		ALC_UNLOCK(sc);
2423 		break;
2424 	case SIOCSIFMEDIA:
2425 	case SIOCGIFMEDIA:
2426 		mii = device_get_softc(sc->alc_miibus);
2427 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2428 		break;
2429 	case SIOCSIFCAP:
2430 		ALC_LOCK(sc);
2431 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2432 		if ((mask & IFCAP_TXCSUM) != 0 &&
2433 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2434 			ifp->if_capenable ^= IFCAP_TXCSUM;
2435 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2436 				ifp->if_hwassist |= ALC_CSUM_FEATURES;
2437 			else
2438 				ifp->if_hwassist &= ~ALC_CSUM_FEATURES;
2439 		}
2440 		if ((mask & IFCAP_TSO4) != 0 &&
2441 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2442 			ifp->if_capenable ^= IFCAP_TSO4;
2443 			if ((ifp->if_capenable & IFCAP_TSO4) != 0) {
2444 				/* AR813x/AR815x has 13 bits MSS field. */
2445 				if (ifp->if_mtu > ALC_TSO_MTU) {
2446 					ifp->if_capenable &= ~IFCAP_TSO4;
2447 					ifp->if_hwassist &= ~CSUM_TSO;
2448 				} else
2449 					ifp->if_hwassist |= CSUM_TSO;
2450 			} else
2451 				ifp->if_hwassist &= ~CSUM_TSO;
2452 		}
2453 #if 0
2454 /* XXX: WOL */
2455 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2456 		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2457 			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2458 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2459 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2460 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2461 #endif
2462 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2463 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2464 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2465 			alc_rxvlan(sc);
2466 		}
2467 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2468 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2469 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2470 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2471 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2472 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2473 		/*
2474 		 * VLAN hardware tagging is required to do checksum
2475 		 * offload or TSO on VLAN interface. Checksum offload
2476 		 * on VLAN interface also requires hardware checksum
2477 		 * offload of parent interface.
2478 		 */
2479 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2480 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2481 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2482 			ifp->if_capenable &=
2483 			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2484 		ALC_UNLOCK(sc);
2485 // XXX		VLAN_CAPABILITIES(ifp);
2486 		break;
2487 	default:
2488 		error = ether_ioctl(ifp, cmd, data);
2489 		break;
2490 	}
2491 
2492 	return (error);
2493 }
2494 
2495 static void
2496 alc_mac_config(struct alc_softc *sc)
2497 {
2498 	struct mii_data *mii;
2499 	uint32_t reg;
2500 
2501 	ALC_LOCK_ASSERT(sc);
2502 
2503 	mii = device_get_softc(sc->alc_miibus);
2504 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2505 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2506 	    MAC_CFG_SPEED_MASK);
2507 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
2508 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
2509 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
2510 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2511 	}
2512 	/* Reprogram MAC with resolved speed/duplex. */
2513 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2514 	case IFM_10_T:
2515 	case IFM_100_TX:
2516 		reg |= MAC_CFG_SPEED_10_100;
2517 		break;
2518 	case IFM_1000_T:
2519 		reg |= MAC_CFG_SPEED_1000;
2520 		break;
2521 	}
2522 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2523 		reg |= MAC_CFG_FULL_DUPLEX;
2524 #ifdef notyet
2525 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2526 			reg |= MAC_CFG_TX_FC;
2527 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2528 			reg |= MAC_CFG_RX_FC;
2529 #endif
2530 	}
2531 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2532 }
2533 
2534 static void
2535 alc_stats_clear(struct alc_softc *sc)
2536 {
2537 	struct smb sb, *smb;
2538 	uint32_t *reg;
2539 	int i;
2540 
2541 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2542 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2543 		    sc->alc_cdata.alc_smb_map,
2544 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2545 		smb = sc->alc_rdata.alc_smb;
2546 		/* Update done, clear. */
2547 		smb->updated = 0;
2548 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2549 		    sc->alc_cdata.alc_smb_map,
2550 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2551 	} else {
2552 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2553 		    reg++) {
2554 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2555 			i += sizeof(uint32_t);
2556 		}
2557 		/* Read Tx statistics. */
2558 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2559 		    reg++) {
2560 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2561 			i += sizeof(uint32_t);
2562 		}
2563 	}
2564 }
2565 
2566 static void
2567 alc_stats_update(struct alc_softc *sc)
2568 {
2569 	struct alc_hw_stats *stat;
2570 	struct smb sb, *smb;
2571 	struct ifnet *ifp;
2572 	uint32_t *reg;
2573 	int i;
2574 
2575 	ALC_LOCK_ASSERT(sc);
2576 
2577 	ifp = sc->alc_ifp;
2578 	stat = &sc->alc_stats;
2579 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2580 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2581 		    sc->alc_cdata.alc_smb_map,
2582 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2583 		smb = sc->alc_rdata.alc_smb;
2584 		if (smb->updated == 0)
2585 			return;
2586 	} else {
2587 		smb = &sb;
2588 		/* Read Rx statistics. */
2589 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2590 		    reg++) {
2591 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2592 			i += sizeof(uint32_t);
2593 		}
2594 		/* Read Tx statistics. */
2595 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2596 		    reg++) {
2597 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2598 			i += sizeof(uint32_t);
2599 		}
2600 	}
2601 
2602 	/* Rx stats. */
2603 	stat->rx_frames += smb->rx_frames;
2604 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2605 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2606 	stat->rx_pause_frames += smb->rx_pause_frames;
2607 	stat->rx_control_frames += smb->rx_control_frames;
2608 	stat->rx_crcerrs += smb->rx_crcerrs;
2609 	stat->rx_lenerrs += smb->rx_lenerrs;
2610 	stat->rx_bytes += smb->rx_bytes;
2611 	stat->rx_runts += smb->rx_runts;
2612 	stat->rx_fragments += smb->rx_fragments;
2613 	stat->rx_pkts_64 += smb->rx_pkts_64;
2614 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2615 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2616 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2617 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2618 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2619 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2620 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2621 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2622 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2623 	stat->rx_alignerrs += smb->rx_alignerrs;
2624 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2625 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2626 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2627 
2628 	/* Tx stats. */
2629 	stat->tx_frames += smb->tx_frames;
2630 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2631 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2632 	stat->tx_pause_frames += smb->tx_pause_frames;
2633 	stat->tx_excess_defer += smb->tx_excess_defer;
2634 	stat->tx_control_frames += smb->tx_control_frames;
2635 	stat->tx_deferred += smb->tx_deferred;
2636 	stat->tx_bytes += smb->tx_bytes;
2637 	stat->tx_pkts_64 += smb->tx_pkts_64;
2638 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2639 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2640 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2641 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2642 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2643 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2644 	stat->tx_single_colls += smb->tx_single_colls;
2645 	stat->tx_multi_colls += smb->tx_multi_colls;
2646 	stat->tx_late_colls += smb->tx_late_colls;
2647 	stat->tx_excess_colls += smb->tx_excess_colls;
2648 	stat->tx_abort += smb->tx_abort;
2649 	stat->tx_underrun += smb->tx_underrun;
2650 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2651 	stat->tx_lenerrs += smb->tx_lenerrs;
2652 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2653 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2654 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2655 
2656 	/* Update counters in ifnet. */
2657 	ifp->if_opackets += smb->tx_frames;
2658 
2659 	ifp->if_collisions += smb->tx_single_colls +
2660 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2661 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2662 
2663 	/*
2664 	 * XXX
2665 	 * tx_pkts_truncated counter looks suspicious. It constantly
2666 	 * increments with no sign of Tx errors. This may indicate
2667 	 * the counter name is not correct one so I've removed the
2668 	 * counter in output errors.
2669 	 */
2670 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2671 	    smb->tx_underrun;
2672 
2673 	ifp->if_ipackets += smb->rx_frames;
2674 
2675 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2676 	    smb->rx_runts + smb->rx_pkts_truncated +
2677 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2678 	    smb->rx_alignerrs;
2679 
2680 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2681 		/* Update done, clear. */
2682 		smb->updated = 0;
2683 		bus_dmamap_sync(sc->alc_cdata.alc_smb_tag,
2684 		    sc->alc_cdata.alc_smb_map,
2685 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2686 	}
2687 }
2688 
2689 static void
2690 alc_intr(void *arg)
2691 {
2692 	struct alc_softc *sc;
2693 	uint32_t status;
2694 
2695 	sc = (struct alc_softc *)arg;
2696 
2697 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2698 	if ((status & ALC_INTRS) == 0) {
2699 		return;
2700 	}
2701 	/* Disable interrupts. */
2702 	CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT);
2703 	taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2704 
2705 	return;
2706 }
2707 
2708 static void
2709 alc_int_task(void *arg, int pending)
2710 {
2711 	struct alc_softc *sc;
2712 	struct ifnet *ifp;
2713 	uint32_t status;
2714 	int more;
2715 
2716 	sc = (struct alc_softc *)arg;
2717 	ifp = sc->alc_ifp;
2718 
2719 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2720 	more = atomic_readandclear_32(&sc->alc_morework);
2721 	if (more != 0)
2722 		status |= INTR_RX_PKT;
2723 	if ((status & ALC_INTRS) == 0)
2724 		goto done;
2725 
2726 	/* Acknowledge interrupts but still disable interrupts. */
2727 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2728 
2729 	more = 0;
2730 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
2731 		if ((status & INTR_RX_PKT) != 0) {
2732 			more = alc_rxintr(sc, sc->alc_process_limit);
2733 			if (more == EAGAIN)
2734 				atomic_set_int(&sc->alc_morework, 1);
2735 			else if (more == EIO) {
2736 				ALC_LOCK(sc);
2737 				ifp->if_flags &= ~IFF_RUNNING;
2738 				alc_init_locked(sc);
2739 				ALC_UNLOCK(sc);
2740 				return;
2741 			}
2742 		}
2743 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2744 		    INTR_TXQ_TO_RST)) != 0) {
2745 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2746 				device_printf(sc->alc_dev,
2747 				    "DMA read error! -- resetting\n");
2748 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2749 				device_printf(sc->alc_dev,
2750 				    "DMA write error! -- resetting\n");
2751 			if ((status & INTR_TXQ_TO_RST) != 0)
2752 				device_printf(sc->alc_dev,
2753 				    "TxQ reset! -- resetting\n");
2754 			ALC_LOCK(sc);
2755 			ifp->if_flags &= ~IFF_RUNNING;
2756 			alc_init_locked(sc);
2757 			ALC_UNLOCK(sc);
2758 			return;
2759 		}
2760 		if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2761 		    !ifq_is_empty(&ifp->if_snd))
2762 			taskqueue_enqueue(sc->alc_tq, &sc->alc_tx_task);
2763 	}
2764 
2765 	if (more == EAGAIN ||
2766 	    (CSR_READ_4(sc, ALC_INTR_STATUS) & ALC_INTRS) != 0) {
2767 		taskqueue_enqueue(sc->alc_tq, &sc->alc_int_task);
2768 		return;
2769 	}
2770 
2771 done:
2772 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
2773 		/* Re-enable interrupts if we're running. */
2774 		CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2775 	}
2776 }
2777 
2778 static void
2779 alc_txeof(struct alc_softc *sc)
2780 {
2781 	struct ifnet *ifp;
2782 	struct alc_txdesc *txd;
2783 	uint32_t cons, prod;
2784 	int prog;
2785 
2786 	ALC_LOCK_ASSERT(sc);
2787 
2788 	ifp = sc->alc_ifp;
2789 
2790 	if (sc->alc_cdata.alc_tx_cnt == 0)
2791 		return;
2792 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
2793 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2794 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2795 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2796 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_POSTREAD);
2797 		prod = sc->alc_rdata.alc_cmb->cons;
2798 	} else
2799 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2800 	/* Assume we're using normal Tx priority queue. */
2801 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2802 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2803 	cons = sc->alc_cdata.alc_tx_cons;
2804 	/*
2805 	 * Go through our Tx list and free mbufs for those
2806 	 * frames which have been transmitted.
2807 	 */
2808 	for (prog = 0; cons != prod; prog++,
2809 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2810 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2811 			break;
2812 		prog++;
2813 		ifp->if_flags &= ~IFF_OACTIVE;
2814 		sc->alc_cdata.alc_tx_cnt--;
2815 		txd = &sc->alc_cdata.alc_txdesc[cons];
2816 		if (txd->tx_m != NULL) {
2817 			/* Reclaim transmitted mbufs. */
2818 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
2819 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2820 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
2821 			    txd->tx_dmamap);
2822 			m_freem(txd->tx_m);
2823 			txd->tx_m = NULL;
2824 		}
2825 	}
2826 
2827 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2828 		bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag,
2829 		    sc->alc_cdata.alc_cmb_map, BUS_DMASYNC_PREREAD);
2830 	sc->alc_cdata.alc_tx_cons = cons;
2831 	/*
2832 	 * Unarm watchdog timer only when there is no pending
2833 	 * frames in Tx queue.
2834 	 */
2835 	if (sc->alc_cdata.alc_tx_cnt == 0)
2836 		sc->alc_watchdog_timer = 0;
2837 }
2838 
2839 static int
2840 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd)
2841 {
2842 	struct mbuf *m;
2843 	bus_dma_segment_t segs[1];
2844 	bus_dmamap_t map;
2845 	int nsegs;
2846 	int error;
2847 
2848 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2849 	if (m == NULL)
2850 		return (ENOBUFS);
2851 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2852 #ifndef __NO_STRICT_ALIGNMENT
2853 	m_adj(m, sizeof(uint64_t));
2854 #endif
2855 
2856 	error = bus_dmamap_load_mbuf_segment(
2857 			sc->alc_cdata.alc_rx_tag,
2858 			sc->alc_cdata.alc_rx_sparemap,
2859 			m, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2860 	if (error) {
2861 		m_freem(m);
2862 		return (ENOBUFS);
2863 	}
2864 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2865 
2866 	if (rxd->rx_m != NULL) {
2867 		bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2868 		    BUS_DMASYNC_POSTREAD);
2869 		bus_dmamap_unload(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap);
2870 	}
2871 	map = rxd->rx_dmamap;
2872 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2873 	sc->alc_cdata.alc_rx_sparemap = map;
2874 	bus_dmamap_sync(sc->alc_cdata.alc_rx_tag, rxd->rx_dmamap,
2875 	    BUS_DMASYNC_PREREAD);
2876 	rxd->rx_m = m;
2877 	rxd->rx_desc->addr = htole64(segs[0].ds_addr);
2878 	return (0);
2879 }
2880 
2881 static int
2882 alc_rxintr(struct alc_softc *sc, int count)
2883 {
2884 	struct ifnet *ifp;
2885 	struct rx_rdesc *rrd;
2886 	uint32_t nsegs, status;
2887 	int rr_cons, prog;
2888 
2889 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2890 	    sc->alc_cdata.alc_rr_ring_map,
2891 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2892 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2893 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2894 	rr_cons = sc->alc_cdata.alc_rr_cons;
2895 	ifp = sc->alc_ifp;
2896 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2897 		if (count-- <= 0)
2898 			break;
2899 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2900 		status = le32toh(rrd->status);
2901 		if ((status & RRD_VALID) == 0)
2902 			break;
2903 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2904 		if (nsegs == 0) {
2905 			/* This should not happen! */
2906 			device_printf(sc->alc_dev,
2907 			    "unexpected segment count -- resetting\n");
2908 			return (EIO);
2909 		}
2910 		alc_rxeof(sc, rrd);
2911 		/* Clear Rx return status. */
2912 		rrd->status = 0;
2913 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2914 		sc->alc_cdata.alc_rx_cons += nsegs;
2915 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2916 		prog += nsegs;
2917 	}
2918 
2919 	if (prog > 0) {
2920 		/* Update the consumer index. */
2921 		sc->alc_cdata.alc_rr_cons = rr_cons;
2922 		/* Sync Rx return descriptors. */
2923 		bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
2924 		    sc->alc_cdata.alc_rr_ring_map,
2925 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2926 		/*
2927 		 * Sync updated Rx descriptors such that controller see
2928 		 * modified buffer addresses.
2929 		 */
2930 		bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
2931 		    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
2932 		/*
2933 		 * Let controller know availability of new Rx buffers.
2934 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2935 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2936 		 * only when Rx buffer pre-fetching is required. In
2937 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2938 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2939 		 * it still seems that pre-fetching needs more
2940 		 * experimentation.
2941 		 */
2942 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2943 		    sc->alc_cdata.alc_rx_cons);
2944 	}
2945 
2946 	return (count > 0 ? 0 : EAGAIN);
2947 }
2948 
2949 #ifndef __NO_STRICT_ALIGNMENT
2950 static struct mbuf *
2951 alc_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2952 {
2953 	struct mbuf *n;
2954         int i;
2955         uint16_t *src, *dst;
2956 
2957 	src = mtod(m, uint16_t *);
2958 	dst = src - 3;
2959 
2960 	if (m->m_next == NULL) {
2961 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2962 			*dst++ = *src++;
2963 		m->m_data -= 6;
2964 		return (m);
2965 	}
2966 	/*
2967 	 * Append a new mbuf to received mbuf chain and copy ethernet
2968 	 * header from the mbuf chain. This can save lots of CPU
2969 	 * cycles for jumbo frame.
2970 	 */
2971 	MGETHDR(n, MB_DONTWAIT, MT_DATA);
2972 	if (n == NULL) {
2973 		ifp->if_iqdrops++;
2974 		m_freem(m);
2975 		return (NULL);
2976 	}
2977 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2978 	m->m_data += ETHER_HDR_LEN;
2979 	m->m_len -= ETHER_HDR_LEN;
2980 	n->m_len = ETHER_HDR_LEN;
2981 	M_MOVE_PKTHDR(n, m);
2982 	n->m_next = m;
2983 	return (n);
2984 }
2985 #endif
2986 
2987 /* Receive a frame. */
2988 static void
2989 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2990 {
2991 	struct alc_rxdesc *rxd;
2992 	struct ifnet *ifp;
2993 	struct mbuf *mp, *m;
2994 	uint32_t rdinfo, status, vtag;
2995 	int count, nsegs, rx_cons;
2996 
2997 	ifp = sc->alc_ifp;
2998 	status = le32toh(rrd->status);
2999 	rdinfo = le32toh(rrd->rdinfo);
3000 	rx_cons = RRD_RD_IDX(rdinfo);
3001 	nsegs = RRD_RD_CNT(rdinfo);
3002 
3003 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
3004 	if ((status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) != 0) {
3005 		/*
3006 		 * We want to pass the following frames to upper
3007 		 * layer regardless of error status of Rx return
3008 		 * ring.
3009 		 *
3010 		 *  o IP/TCP/UDP checksum is bad.
3011 		 *  o frame length and protocol specific length
3012 		 *     does not match.
3013 		 *
3014 		 *  Force network stack compute checksum for
3015 		 *  errored frames.
3016 		 */
3017 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
3018 		if ((RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC |
3019 		    RRD_ERR_RUNT) != 0)
3020 			return;
3021 	}
3022 
3023 	for (count = 0; count < nsegs; count++,
3024 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
3025 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
3026 		mp = rxd->rx_m;
3027 		/* Add a new receive buffer to the ring. */
3028 		if (alc_newbuf(sc, rxd) != 0) {
3029 			ifp->if_iqdrops++;
3030 			/* Reuse Rx buffers. */
3031 			if (sc->alc_cdata.alc_rxhead != NULL)
3032 				m_freem(sc->alc_cdata.alc_rxhead);
3033 			break;
3034 		}
3035 
3036 		/*
3037 		 * Assume we've received a full sized frame.
3038 		 * Actual size is fixed when we encounter the end of
3039 		 * multi-segmented frame.
3040 		 */
3041 		mp->m_len = sc->alc_buf_size;
3042 
3043 		/* Chain received mbufs. */
3044 		if (sc->alc_cdata.alc_rxhead == NULL) {
3045 			sc->alc_cdata.alc_rxhead = mp;
3046 			sc->alc_cdata.alc_rxtail = mp;
3047 		} else {
3048 			mp->m_flags &= ~M_PKTHDR;
3049 			sc->alc_cdata.alc_rxprev_tail =
3050 			    sc->alc_cdata.alc_rxtail;
3051 			sc->alc_cdata.alc_rxtail->m_next = mp;
3052 			sc->alc_cdata.alc_rxtail = mp;
3053 		}
3054 
3055 		if (count == nsegs - 1) {
3056 			/* Last desc. for this frame. */
3057 			m = sc->alc_cdata.alc_rxhead;
3058 			m->m_flags |= M_PKTHDR;
3059 			/*
3060 			 * It seems that L1C/L2C controller has no way
3061 			 * to tell hardware to strip CRC bytes.
3062 			 */
3063 			m->m_pkthdr.len =
3064 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
3065 			if (nsegs > 1) {
3066 				/* Set last mbuf size. */
3067 				mp->m_len = sc->alc_cdata.alc_rxlen -
3068 				    (nsegs - 1) * sc->alc_buf_size;
3069 				/* Remove the CRC bytes in chained mbufs. */
3070 				if (mp->m_len <= ETHER_CRC_LEN) {
3071 					sc->alc_cdata.alc_rxtail =
3072 					    sc->alc_cdata.alc_rxprev_tail;
3073 					sc->alc_cdata.alc_rxtail->m_len -=
3074 					    (ETHER_CRC_LEN - mp->m_len);
3075 					sc->alc_cdata.alc_rxtail->m_next = NULL;
3076 					m_freem(mp);
3077 				} else {
3078 					mp->m_len -= ETHER_CRC_LEN;
3079 				}
3080 			} else
3081 				m->m_len = m->m_pkthdr.len;
3082 			m->m_pkthdr.rcvif = ifp;
3083 			/*
3084 			 * Due to hardware bugs, Rx checksum offloading
3085 			 * was intentionally disabled.
3086 			 */
3087 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
3088 			    (status & RRD_VLAN_TAG) != 0) {
3089 				vtag = RRD_VLAN(le32toh(rrd->vtag));
3090 				m->m_pkthdr.ether_vlantag = ntohs(vtag);
3091 				m->m_flags |= M_VLANTAG;
3092 			}
3093 #ifndef __NO_STRICT_ALIGNMENT
3094 			m = alc_fixup_rx(ifp, m);
3095 			if (m != NULL)
3096 #endif
3097 			{
3098 			/* Pass it on. */
3099 			(*ifp->if_input)(ifp, m);
3100 			}
3101 		}
3102 	}
3103 	/* Reset mbuf chains. */
3104 	ALC_RXCHAIN_RESET(sc);
3105 }
3106 
3107 static void
3108 alc_tick(void *arg)
3109 {
3110 	struct alc_softc *sc;
3111 	struct mii_data *mii;
3112 
3113 	sc = (struct alc_softc *)arg;
3114 
3115 	ALC_LOCK(sc);
3116 
3117 	mii = device_get_softc(sc->alc_miibus);
3118 	mii_tick(mii);
3119 	alc_stats_update(sc);
3120 	/*
3121 	 * alc(4) does not rely on Tx completion interrupts to reclaim
3122 	 * transferred buffers. Instead Tx completion interrupts are
3123 	 * used to hint for scheduling Tx task. So it's necessary to
3124 	 * release transmitted buffers by kicking Tx completion
3125 	 * handler. This limits the maximum reclamation delay to a hz.
3126 	 */
3127 	alc_txeof(sc);
3128 	alc_watchdog(sc);
3129 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3130 	ALC_UNLOCK(sc);
3131 }
3132 
3133 static void
3134 alc_reset(struct alc_softc *sc)
3135 {
3136 	uint32_t reg;
3137 	int i;
3138 
3139 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
3140 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
3141 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3142 
3143 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3144 		DELAY(10);
3145 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
3146 			break;
3147 	}
3148 	if (i == 0)
3149 		device_printf(sc->alc_dev, "master reset timeout!\n");
3150 
3151 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
3152 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
3153 			break;
3154 		DELAY(10);
3155 	}
3156 
3157 	if (i == 0)
3158 		device_printf(sc->alc_dev, "reset timeout(0x%08x)!\n", reg);
3159 }
3160 
3161 static void
3162 alc_init(void *xsc)
3163 {
3164 	struct alc_softc *sc;
3165 
3166 	sc = (struct alc_softc *)xsc;
3167 	ALC_LOCK(sc);
3168 	alc_init_locked(sc);
3169 	ALC_UNLOCK(sc);
3170 }
3171 
3172 static void
3173 alc_init_locked(struct alc_softc *sc)
3174 {
3175 	struct ifnet *ifp;
3176 	struct mii_data *mii;
3177 	uint8_t eaddr[ETHER_ADDR_LEN];
3178 	bus_addr_t paddr;
3179 	uint32_t reg, rxf_hi, rxf_lo;
3180 
3181 	ALC_LOCK_ASSERT(sc);
3182 
3183 	ifp = sc->alc_ifp;
3184 	mii = device_get_softc(sc->alc_miibus);
3185 
3186 	if ((ifp->if_flags & IFF_RUNNING) != 0)
3187 		return;
3188 	/*
3189 	 * Cancel any pending I/O.
3190 	 */
3191 	alc_stop(sc);
3192 	/*
3193 	 * Reset the chip to a known state.
3194 	 */
3195 	alc_reset(sc);
3196 
3197 	/* Initialize Rx descriptors. */
3198 	if (alc_init_rx_ring(sc) != 0) {
3199 		device_printf(sc->alc_dev, "no memory for Rx buffers.\n");
3200 		alc_stop(sc);
3201 		return;
3202 	}
3203 	alc_init_rr_ring(sc);
3204 	alc_init_tx_ring(sc);
3205 	alc_init_cmb(sc);
3206 	alc_init_smb(sc);
3207 
3208 	/* Reprogram the station address. */
3209 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3210 	CSR_WRITE_4(sc, ALC_PAR0,
3211 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
3212 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
3213 	/*
3214 	 * Clear WOL status and disable all WOL feature as WOL
3215 	 * would interfere Rx operation under normal environments.
3216 	 */
3217 	CSR_READ_4(sc, ALC_WOL_CFG);
3218 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
3219 	/* Set Tx descriptor base addresses. */
3220 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
3221 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3222 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3223 	/* We don't use high priority ring. */
3224 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
3225 	/* Set Tx descriptor counter. */
3226 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
3227 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
3228 	/* Set Rx descriptor base addresses. */
3229 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
3230 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3231 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3232 	/* We use one Rx ring. */
3233 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
3234 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
3235 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
3236 	/* Set Rx descriptor counter. */
3237 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
3238 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
3239 
3240 	/*
3241 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
3242 	 * if it do not fit the buffer size. Rx return descriptor holds
3243 	 * a counter that indicates how many fragments were made by the
3244 	 * hardware. The buffer size should be multiple of 8 bytes.
3245 	 * Since hardware has limit on the size of buffer size, always
3246 	 * use the maximum value.
3247 	 * For strict-alignment architectures make sure to reduce buffer
3248 	 * size by 8 bytes to make room for alignment fixup.
3249 	 */
3250 #ifndef __NO_STRICT_ALIGNMENT
3251 	sc->alc_buf_size = RX_BUF_SIZE_MAX - sizeof(uint64_t);
3252 #else
3253 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
3254 #endif
3255 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
3256 
3257 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
3258 	/* Set Rx return descriptor base addresses. */
3259 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
3260 	/* We use one Rx return ring. */
3261 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
3262 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
3263 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
3264 	/* Set Rx return descriptor counter. */
3265 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
3266 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
3267 	paddr = sc->alc_rdata.alc_cmb_paddr;
3268 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3269 	paddr = sc->alc_rdata.alc_smb_paddr;
3270 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
3271 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
3272 
3273 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B) {
3274 		/* Reconfigure SRAM - Vendor magic. */
3275 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
3276 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
3277 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
3278 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
3279 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
3280 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
3281 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
3282 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
3283 	}
3284 
3285 	/* Tell hardware that we're ready to load DMA blocks. */
3286 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
3287 
3288 	/* Configure interrupt moderation timer. */
3289 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
3290 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
3291 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
3292 	/*
3293 	 * We don't want to automatic interrupt clear as task queue
3294 	 * for the interrupt should know interrupt status.
3295 	 */
3296 	reg = MASTER_SA_TIMER_ENB;
3297 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
3298 		reg |= MASTER_IM_RX_TIMER_ENB;
3299 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
3300 		reg |= MASTER_IM_TX_TIMER_ENB;
3301 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
3302 	/*
3303 	 * Disable interrupt re-trigger timer. We don't want automatic
3304 	 * re-triggering of un-ACKed interrupts.
3305 	 */
3306 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
3307 	/* Configure CMB. */
3308 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
3309 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
3310 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
3311 	} else {
3312 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
3313 	}
3314 	/*
3315 	 * Hardware can be configured to issue SMB interrupt based
3316 	 * on programmed interval. Since there is a callout that is
3317 	 * invoked for every hz in driver we use that instead of
3318 	 * relying on periodic SMB interrupt.
3319 	 */
3320 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
3321 	/* Clear MAC statistics. */
3322 	alc_stats_clear(sc);
3323 
3324 	/*
3325 	 * Always use maximum frame size that controller can support.
3326 	 * Otherwise received frames that has larger frame length
3327 	 * than alc(4) MTU would be silently dropped in hardware. This
3328 	 * would make path-MTU discovery hard as sender wouldn't get
3329 	 * any responses from receiver. alc(4) supports
3330 	 * multi-fragmented frames on Rx path so it has no issue on
3331 	 * assembling fragmented frames. Using maximum frame size also
3332 	 * removes the need to reinitialize hardware when interface
3333 	 * MTU configuration was changed.
3334 	 *
3335 	 * Be conservative in what you do, be liberal in what you
3336 	 * accept from others - RFC 793.
3337 	 */
3338 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
3339 
3340 	/* Disable header split(?) */
3341 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
3342 
3343 	/* Configure IPG/IFG parameters. */
3344 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
3345 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
3346 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
3347 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
3348 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
3349 	/* Set parameters for half-duplex media. */
3350 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
3351 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3352 	    HDPX_CFG_LCOL_MASK) |
3353 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3354 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3355 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3356 	    HDPX_CFG_ABEBT_MASK) |
3357 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3358 	    HDPX_CFG_JAMIPG_MASK));
3359 	/*
3360 	 * Set TSO/checksum offload threshold. For frames that is
3361 	 * larger than this threshold, hardware wouldn't do
3362 	 * TSO/checksum offloading.
3363 	 */
3364 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
3365 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3366 	    TSO_OFFLOAD_THRESH_MASK);
3367 	/* Configure TxQ. */
3368 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3369 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3370 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3371 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3372 		reg >>= 1;
3373 	}
3374 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3375 	    TXQ_CFG_TD_BURST_MASK;
3376 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3377 
3378 	/* Configure Rx free descriptor pre-fetching. */
3379 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3380 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
3381 	    RX_RD_FREE_THRESH_HI_MASK) |
3382 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
3383 	    RX_RD_FREE_THRESH_LO_MASK));
3384 
3385 	/*
3386 	 * Configure flow control parameters.
3387 	 * XON  : 80% of Rx FIFO
3388 	 * XOFF : 30% of Rx FIFO
3389 	 */
3390 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8131 ||
3391 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8132) {
3392 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3393 		rxf_hi = (reg * 8) / 10;
3394 		rxf_lo = (reg * 3) / 10;
3395 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3396 			((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3397 			 RX_FIFO_PAUSE_THRESH_LO_MASK) |
3398 			((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3399 			 RX_FIFO_PAUSE_THRESH_HI_MASK));
3400 	}
3401 
3402 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B ||
3403 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2) {
3404 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
3405 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
3406 		    SERDES_PHY_CLK_SLOWDOWN);
3407 	}
3408 
3409 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
3410 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3411 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3412 
3413 	/* Configure RxQ. */
3414 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3415 	    RXQ_CFG_RD_BURST_MASK;
3416 	reg |= RXQ_CFG_RSS_MODE_DIS;
3417 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
3418 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3419 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3420 
3421 	/* Configure DMA parameters. */
3422 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3423 	reg |= sc->alc_rcb;
3424 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3425 		reg |= DMA_CFG_CMB_ENB;
3426 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3427 		reg |= DMA_CFG_SMB_ENB;
3428 	else
3429 		reg |= DMA_CFG_SMB_DIS;
3430 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3431 	    DMA_CFG_RD_BURST_SHIFT;
3432 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3433 	    DMA_CFG_WR_BURST_SHIFT;
3434 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3435 	    DMA_CFG_RD_DELAY_CNT_MASK;
3436 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3437 	    DMA_CFG_WR_DELAY_CNT_MASK;
3438 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3439 
3440 	/*
3441 	 * Configure Tx/Rx MACs.
3442 	 *  - Auto-padding for short frames.
3443 	 *  - Enable CRC generation.
3444 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3445 	 *  is followed after detection of link establishment.
3446 	 *  AR813x/AR815x always does checksum computation regardless
3447 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3448 	 *  have bug in protocol field in Rx return structure so
3449 	 *  these controllers can't handle fragmented frames. Disable
3450 	 *  Rx checksum offloading until there is a newer controller
3451 	 *  that has sane implementation.
3452 	 */
3453 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3454 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3455 	    MAC_CFG_PREAMBLE_MASK);
3456 	if (sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151 ||
3457 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8151_V2 ||
3458 	    sc->alc_ident->deviceid == DEVICEID_ATHEROS_AR8152_B2) {
3459 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3460 	}
3461 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3462 		reg |= MAC_CFG_SPEED_10_100;
3463 	else
3464 		reg |= MAC_CFG_SPEED_1000;
3465 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3466 
3467 	/* Set up the receive filter. */
3468 	alc_rxfilter(sc);
3469 	alc_rxvlan(sc);
3470 
3471 	/* Acknowledge all pending interrupts and clear it. */
3472 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3473 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3474 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3475 
3476 	sc->alc_flags &= ~ALC_FLAG_LINK;
3477 	/* Switch to the current media. */
3478 	mii_mediachg(mii);
3479 
3480 	callout_reset(&sc->alc_tick_ch, hz, alc_tick, sc);
3481 
3482 	ifp->if_flags |= IFF_RUNNING;
3483 	ifp->if_flags &= ~IFF_OACTIVE;
3484 }
3485 
3486 static void
3487 alc_stop(struct alc_softc *sc)
3488 {
3489 	struct ifnet *ifp;
3490 	struct alc_txdesc *txd;
3491 	struct alc_rxdesc *rxd;
3492 	uint32_t reg;
3493 	int i;
3494 
3495 	ALC_LOCK_ASSERT(sc);
3496 	/*
3497 	 * Mark the interface down and cancel the watchdog timer.
3498 	 */
3499 	ifp = sc->alc_ifp;
3500 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3501 	sc->alc_flags &= ~ALC_FLAG_LINK;
3502 	callout_stop(&sc->alc_tick_ch);
3503 	sc->alc_watchdog_timer = 0;
3504 	alc_stats_update(sc);
3505 	/* Disable interrupts. */
3506 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3507 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3508 	alc_stop_queue(sc);
3509 	/* Disable DMA. */
3510 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3511 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3512 	reg |= DMA_CFG_SMB_DIS;
3513 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3514 	DELAY(1000);
3515 	/* Stop Rx/Tx MACs. */
3516 	alc_stop_mac(sc);
3517 	/* Disable interrupts which might be touched in taskq handler. */
3518 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3519 
3520 	/* Reclaim Rx buffers that have been processed. */
3521 	if (sc->alc_cdata.alc_rxhead != NULL)
3522 		m_freem(sc->alc_cdata.alc_rxhead);
3523 	ALC_RXCHAIN_RESET(sc);
3524 	/*
3525 	 * Free Tx/Rx mbufs still in the queues.
3526 	 */
3527 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3528 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3529 		if (rxd->rx_m != NULL) {
3530 			bus_dmamap_sync(sc->alc_cdata.alc_rx_tag,
3531 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3532 			bus_dmamap_unload(sc->alc_cdata.alc_rx_tag,
3533 			    rxd->rx_dmamap);
3534 			m_freem(rxd->rx_m);
3535 			rxd->rx_m = NULL;
3536 		}
3537 	}
3538 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3539 		txd = &sc->alc_cdata.alc_txdesc[i];
3540 		if (txd->tx_m != NULL) {
3541 			bus_dmamap_sync(sc->alc_cdata.alc_tx_tag,
3542 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3543 			bus_dmamap_unload(sc->alc_cdata.alc_tx_tag,
3544 			    txd->tx_dmamap);
3545 			m_freem(txd->tx_m);
3546 			txd->tx_m = NULL;
3547 		}
3548 	}
3549 }
3550 
3551 static void
3552 alc_stop_mac(struct alc_softc *sc)
3553 {
3554 	uint32_t reg;
3555 	int i;
3556 
3557 	ALC_LOCK_ASSERT(sc);
3558 
3559 	/* Disable Rx/Tx MAC. */
3560 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3561 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3562 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
3563 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3564 	}
3565 	for (i = ALC_TIMEOUT; i > 0; i--) {
3566 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3567 		if (reg == 0)
3568 			break;
3569 		DELAY(10);
3570 	}
3571 	if (i == 0)
3572 		device_printf(sc->alc_dev,
3573 		    "could not disable Rx/Tx MAC(0x%08x)!\n", reg);
3574 }
3575 
3576 static void
3577 alc_start_queue(struct alc_softc *sc)
3578 {
3579 	uint32_t qcfg[] = {
3580 		0,
3581 		RXQ_CFG_QUEUE0_ENB,
3582 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3583 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3584 		RXQ_CFG_ENB
3585 	};
3586 	uint32_t cfg;
3587 
3588 	ALC_LOCK_ASSERT(sc);
3589 
3590 	/* Enable RxQ. */
3591 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3592 	cfg &= ~RXQ_CFG_ENB;
3593 	cfg |= qcfg[1];
3594 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3595 	/* Enable TxQ. */
3596 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3597 	cfg |= TXQ_CFG_ENB;
3598 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3599 }
3600 
3601 static void
3602 alc_stop_queue(struct alc_softc *sc)
3603 {
3604 	uint32_t reg;
3605 	int i;
3606 
3607 	ALC_LOCK_ASSERT(sc);
3608 
3609 	/* Disable RxQ. */
3610 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3611 	if ((reg & RXQ_CFG_ENB) != 0) {
3612 		reg &= ~RXQ_CFG_ENB;
3613 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3614 	}
3615 	/* Disable TxQ. */
3616 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3617 	if ((reg & TXQ_CFG_ENB) == 0) {
3618 		reg &= ~TXQ_CFG_ENB;
3619 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3620 	}
3621 	for (i = ALC_TIMEOUT; i > 0; i--) {
3622 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3623 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3624 			break;
3625 		DELAY(10);
3626 	}
3627 	if (i == 0)
3628 		device_printf(sc->alc_dev,
3629 		    "could not disable RxQ/TxQ (0x%08x)!\n", reg);
3630 }
3631 
3632 static void
3633 alc_init_tx_ring(struct alc_softc *sc)
3634 {
3635 	struct alc_ring_data *rd;
3636 	struct alc_txdesc *txd;
3637 	int i;
3638 
3639 	ALC_LOCK_ASSERT(sc);
3640 
3641 	sc->alc_cdata.alc_tx_prod = 0;
3642 	sc->alc_cdata.alc_tx_cons = 0;
3643 	sc->alc_cdata.alc_tx_cnt = 0;
3644 
3645 	rd = &sc->alc_rdata;
3646 	bzero(rd->alc_tx_ring, ALC_TX_RING_SZ);
3647 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3648 		txd = &sc->alc_cdata.alc_txdesc[i];
3649 		txd->tx_m = NULL;
3650 	}
3651 
3652 	bus_dmamap_sync(sc->alc_cdata.alc_tx_ring_tag,
3653 	    sc->alc_cdata.alc_tx_ring_map, BUS_DMASYNC_PREWRITE);
3654 }
3655 
3656 static int
3657 alc_init_rx_ring(struct alc_softc *sc)
3658 {
3659 	struct alc_ring_data *rd;
3660 	struct alc_rxdesc *rxd;
3661 	int i;
3662 
3663 	ALC_LOCK_ASSERT(sc);
3664 
3665 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3666 	sc->alc_morework = 0;
3667 	rd = &sc->alc_rdata;
3668 	bzero(rd->alc_rx_ring, ALC_RX_RING_SZ);
3669 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3670 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3671 		rxd->rx_m = NULL;
3672 		rxd->rx_desc = &rd->alc_rx_ring[i];
3673 		if (alc_newbuf(sc, rxd) != 0)
3674 			return (ENOBUFS);
3675 	}
3676 
3677 	/*
3678 	 * Since controller does not update Rx descriptors, driver
3679 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3680 	 * is enough to ensure coherence.
3681 	 */
3682 	bus_dmamap_sync(sc->alc_cdata.alc_rx_ring_tag,
3683 	    sc->alc_cdata.alc_rx_ring_map, BUS_DMASYNC_PREWRITE);
3684 	/* Let controller know availability of new Rx buffers. */
3685 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3686 
3687 	return (0);
3688 }
3689 
3690 static void
3691 alc_init_rr_ring(struct alc_softc *sc)
3692 {
3693 	struct alc_ring_data *rd;
3694 
3695 	ALC_LOCK_ASSERT(sc);
3696 
3697 	sc->alc_cdata.alc_rr_cons = 0;
3698 	ALC_RXCHAIN_RESET(sc);
3699 
3700 	rd = &sc->alc_rdata;
3701 	bzero(rd->alc_rr_ring, ALC_RR_RING_SZ);
3702 	bus_dmamap_sync(sc->alc_cdata.alc_rr_ring_tag,
3703 	    sc->alc_cdata.alc_rr_ring_map,
3704 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3705 }
3706 
3707 static void
3708 alc_init_cmb(struct alc_softc *sc)
3709 {
3710 	struct alc_ring_data *rd;
3711 
3712 	ALC_LOCK_ASSERT(sc);
3713 
3714 	rd = &sc->alc_rdata;
3715 	bzero(rd->alc_cmb, ALC_CMB_SZ);
3716 	bus_dmamap_sync(sc->alc_cdata.alc_cmb_tag, sc->alc_cdata.alc_cmb_map,
3717 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3718 }
3719 
3720 static void
3721 alc_init_smb(struct alc_softc *sc)
3722 {
3723 	struct alc_ring_data *rd;
3724 
3725 	ALC_LOCK_ASSERT(sc);
3726 
3727 	rd = &sc->alc_rdata;
3728 	bzero(rd->alc_smb, ALC_SMB_SZ);
3729 	bus_dmamap_sync(sc->alc_cdata.alc_smb_tag, sc->alc_cdata.alc_smb_map,
3730 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3731 }
3732 
3733 static void
3734 alc_rxvlan(struct alc_softc *sc)
3735 {
3736 	struct ifnet *ifp;
3737 	uint32_t reg;
3738 
3739 	ALC_LOCK_ASSERT(sc);
3740 
3741 	ifp = sc->alc_ifp;
3742 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3743 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3744 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3745 	else
3746 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3747 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3748 }
3749 
3750 static void
3751 alc_rxfilter(struct alc_softc *sc)
3752 {
3753 	struct ifnet *ifp;
3754 	struct ifmultiaddr *ifma;
3755 	uint32_t crc;
3756 	uint32_t mchash[2];
3757 	uint32_t rxcfg;
3758 
3759 	ALC_LOCK_ASSERT(sc);
3760 
3761 	ifp = sc->alc_ifp;
3762 
3763 	bzero(mchash, sizeof(mchash));
3764 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3765 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3766 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3767 		rxcfg |= MAC_CFG_BCAST;
3768 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3769 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3770 			rxcfg |= MAC_CFG_PROMISC;
3771 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3772 			rxcfg |= MAC_CFG_ALLMULTI;
3773 		mchash[0] = 0xFFFFFFFF;
3774 		mchash[1] = 0xFFFFFFFF;
3775 		goto chipit;
3776 	}
3777 
3778 #if 0
3779 	/* XXX */
3780 	if_maddr_rlock(ifp);
3781 #endif
3782 	TAILQ_FOREACH(ifma, &sc->alc_ifp->if_multiaddrs, ifma_link) {
3783 		if (ifma->ifma_addr->sa_family != AF_LINK)
3784 			continue;
3785 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3786 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3787 		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3788 	}
3789 #if 0
3790 	/* XXX */
3791 	if_maddr_runlock(ifp);
3792 #endif
3793 
3794 chipit:
3795 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3796 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3797 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3798 }
3799 
3800 static int
3801 sysctl_hw_alc_proc_limit(SYSCTL_HANDLER_ARGS)
3802 {
3803 	return (sysctl_int_range(oidp, arg1, arg2, req,
3804 	    ALC_PROC_MIN, ALC_PROC_MAX));
3805 }
3806 
3807 static int
3808 sysctl_hw_alc_int_mod(SYSCTL_HANDLER_ARGS)
3809 {
3810 
3811 	return (sysctl_int_range(oidp, arg1, arg2, req,
3812 	    ALC_IM_TIMER_MIN, ALC_IM_TIMER_MAX));
3813 }
3814