xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision 279dd846)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #define CTLFLAG_RWTUN	CTLFLAG_RW
34 
35 /*
36  * Driver for the Atheros Wireless LAN controller.
37  *
38  * This software is derived from work of Atsushi Onoe; his contribution
39  * is greatly appreciated.
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_ath.h"
44 /*
45  * This is needed for register operations which are performed
46  * by the driver - eg, calls to ath_hal_gettsf32().
47  *
48  * It's also required for any AH_DEBUG checks in here, eg the
49  * module dependencies.
50  */
51 #include "opt_ah.h"
52 #include "opt_wlan.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysctl.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/lock.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/errno.h>
65 #include <sys/callout.h>
66 #include <sys/bus.h>
67 #include <sys/endian.h>
68 #include <sys/kthread.h>
69 #include <sys/taskqueue.h>
70 #include <sys/priv.h>
71 #include <sys/module.h>
72 #include <sys/ktr.h>
73 
74 #include <net/if.h>
75 #include <net/if_var.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 #include <net/ifq_var.h>
83 
84 #include <netproto/802_11/ieee80211_var.h>
85 #include <netproto/802_11/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <netproto/802_11/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <netproto/802_11/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/netif/ath/ath/if_athvar.h>
101 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/netif/ath/ath/if_ath_debug.h>
105 #include <dev/netif/ath/ath/if_ath_misc.h>
106 #include <dev/netif/ath/ath/if_ath_tsf.h>
107 #include <dev/netif/ath/ath/if_ath_tx.h>
108 #include <dev/netif/ath/ath/if_ath_sysctl.h>
109 #include <dev/netif/ath/ath/if_ath_led.h>
110 #include <dev/netif/ath/ath/if_ath_keycache.h>
111 #include <dev/netif/ath/ath/if_ath_rx.h>
112 #include <dev/netif/ath/ath/if_ath_rx_edma.h>
113 #include <dev/netif/ath/ath/if_ath_tx_edma.h>
114 #include <dev/netif/ath/ath/if_ath_beacon.h>
115 #include <dev/netif/ath/ath/if_ath_btcoex.h>
116 #include <dev/netif/ath/ath/if_ath_spectral.h>
117 #include <dev/netif/ath/ath/if_ath_lna_div.h>
118 #include <dev/netif/ath/ath/if_athdfs.h>
119 
120 #ifdef ATH_TX99_DIAG
121 #include <dev/netif/ath/ath/ath_tx99/ath_tx99.h>
122 #endif
123 
124 #ifdef	ATH_DEBUG_ALQ
125 #include <dev/netif/ath/ath/if_ath_alq.h>
126 #endif
127 
128 /*
129  * Only enable this if you're working on PS-POLL support.
130  */
131 #define	ATH_SW_PSQ
132 
133 /*
134  * ATH_BCBUF determines the number of vap's that can transmit
135  * beacons and also (currently) the number of vap's that can
136  * have unique mac addresses/bssid.  When staggering beacons
137  * 4 is probably a good max as otherwise the beacons become
138  * very closely spaced and there is limited time for cab q traffic
139  * to go out.  You can burst beacons instead but that is not good
140  * for stations in power save and at some point you really want
141  * another radio (and channel).
142  *
143  * The limit on the number of mac addresses is tied to our use of
144  * the U/L bit and tracking addresses in a byte; it would be
145  * worthwhile to allow more for applications like proxy sta.
146  */
147 CTASSERT(ATH_BCBUF <= 8);
148 
149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	ath_vap_delete(struct ieee80211vap *);
154 static void	ath_init(void *);
155 static void	ath_stop_locked(struct ifnet *);
156 static void	ath_stop(struct ifnet *);
157 static int	ath_reset_vap(struct ieee80211vap *, u_long);
158 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159 #if !defined(__DragonFly__)
160 static void	ath_qflush(struct ifnet *ifp);
161 #endif
162 static int	ath_media_change(struct ifnet *);
163 static void	ath_watchdog(void *);
164 #if defined(__DragonFly__)
165 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred * __unused);
166 #else
167 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
168 #endif
169 static void	ath_fatal_proc(void *, int);
170 static void	ath_bmiss_vap(struct ieee80211vap *);
171 static void	ath_bmiss_proc(void *, int);
172 static void	ath_key_update_begin(struct ieee80211vap *);
173 static void	ath_key_update_end(struct ieee80211vap *);
174 static void	ath_update_mcast_hw(struct ath_softc *);
175 static void	ath_update_mcast(struct ifnet *);
176 static void	ath_update_promisc(struct ifnet *);
177 static void	ath_updateslot(struct ifnet *);
178 static void	ath_bstuck_proc(void *, int);
179 static void	ath_reset_proc(void *, int);
180 static int	ath_desc_alloc(struct ath_softc *);
181 static void	ath_desc_free(struct ath_softc *);
182 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
183 			const uint8_t [IEEE80211_ADDR_LEN]);
184 static void	ath_node_cleanup(struct ieee80211_node *);
185 static void	ath_node_free(struct ieee80211_node *);
186 static void	ath_node_getsignal(const struct ieee80211_node *,
187 			int8_t *, int8_t *);
188 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
189 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
190 static int	ath_tx_setup(struct ath_softc *, int, int);
191 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
192 static void	ath_tx_cleanup(struct ath_softc *);
193 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
194 		    int dosched);
195 static void	ath_tx_proc_q0(void *, int);
196 static void	ath_tx_proc_q0123(void *, int);
197 static void	ath_tx_proc(void *, int);
198 static void	ath_txq_sched_tasklet(void *, int);
199 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
200 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
201 static void	ath_scan_start(struct ieee80211com *);
202 static void	ath_scan_end(struct ieee80211com *);
203 static void	ath_set_channel(struct ieee80211com *);
204 #ifdef	ATH_ENABLE_11N
205 static void	ath_update_chw(struct ieee80211com *);
206 #endif	/* ATH_ENABLE_11N */
207 static void	ath_calibrate(void *);
208 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
209 static void	ath_setup_stationkey(struct ieee80211_node *);
210 static void	ath_newassoc(struct ieee80211_node *, int);
211 static int	ath_setregdomain(struct ieee80211com *,
212 		    struct ieee80211_regdomain *, int,
213 		    struct ieee80211_channel []);
214 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
215 		    struct ieee80211_channel []);
216 static int	ath_getchannels(struct ath_softc *);
217 
218 static int	ath_rate_setup(struct ath_softc *, u_int mode);
219 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
220 
221 static void	ath_announce(struct ath_softc *);
222 
223 static void	ath_dfs_tasklet(void *, int);
224 static void	ath_node_powersave(struct ieee80211_node *, int);
225 static int	ath_node_set_tim(struct ieee80211_node *, int);
226 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
227 
228 #if defined(__DragonFly__)
229 static void	ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq);
230 #endif
231 
232 #ifdef IEEE80211_SUPPORT_TDMA
233 #include <dev/netif/ath/ath/if_ath_tdma.h>
234 #endif
235 
236 extern	const char* ath_hal_ether_sprintf(const u_int8_t *mac);
237 
238 SYSCTL_DECL(_hw_ath);
239 
240 /* XXX validate sysctl values */
241 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
242 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
243 	    0, "long chip calibration interval (secs)");
244 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
245 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
246 	    0, "short chip calibration interval (msecs)");
247 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
248 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
249 	    0, "reset chip calibration results (secs)");
250 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
251 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
252 	    0, "ANI calibration (msecs)");
253 
254 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
255 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
256 	    0, "rx buffers allocated");
257 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
258 
259 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
260 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
261 	    0, "tx buffers allocated");
262 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
263 
264 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
265 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
266 	    0, "tx (mgmt) buffers allocated");
267 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
268 
269 int ath_bstuck_threshold = 4;		/* max missed beacons */
270 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
271 	    0, "max missed beacon xmits before chip reset");
272 
273 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
274 
275 void
276 ath_legacy_attach_comp_func(struct ath_softc *sc)
277 {
278 
279 	/*
280 	 * Special case certain configurations.  Note the
281 	 * CAB queue is handled by these specially so don't
282 	 * include them when checking the txq setup mask.
283 	 */
284 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
285 	case 0x01:
286 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
287 		break;
288 	case 0x0f:
289 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
290 		break;
291 	default:
292 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
293 		break;
294 	}
295 }
296 
297 /*
298  * Set the target power mode.
299  *
300  * If this is called during a point in time where
301  * the hardware is being programmed elsewhere, it will
302  * simply store it away and update it when all current
303  * uses of the hardware are completed.
304  */
305 void
306 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
307 {
308 	ATH_LOCK_ASSERT(sc);
309 
310 	sc->sc_target_powerstate = power_state;
311 
312 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
313 	    __func__,
314 	    file,
315 	    line,
316 	    power_state,
317 	    sc->sc_powersave_refcnt);
318 
319 	if (sc->sc_powersave_refcnt == 0 &&
320 	    power_state != sc->sc_cur_powerstate) {
321 		sc->sc_cur_powerstate = power_state;
322 		ath_hal_setpower(sc->sc_ah, power_state);
323 
324 		/*
325 		 * If the NIC is force-awake, then set the
326 		 * self-gen frame state appropriately.
327 		 *
328 		 * If the nic is in network sleep or full-sleep,
329 		 * we let the above call leave the self-gen
330 		 * state as "sleep".
331 		 */
332 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
333 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
334 			ath_hal_setselfgenpower(sc->sc_ah,
335 			    sc->sc_target_selfgen_state);
336 		}
337 	}
338 }
339 
340 /*
341  * Set the current self-generated frames state.
342  *
343  * This is separate from the target power mode.  The chip may be
344  * awake but the desired state is "sleep", so frames sent to the
345  * destination has PWRMGT=1 in the 802.11 header.  The NIC also
346  * needs to know to set PWRMGT=1 in self-generated frames.
347  */
348 void
349 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
350 {
351 
352 	ATH_LOCK_ASSERT(sc);
353 
354 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
355 	    __func__,
356 	    file,
357 	    line,
358 	    power_state,
359 	    sc->sc_target_selfgen_state);
360 
361 	sc->sc_target_selfgen_state = power_state;
362 
363 	/*
364 	 * If the NIC is force-awake, then set the power state.
365 	 * Network-state and full-sleep will already transition it to
366 	 * mark self-gen frames as sleeping - and we can't
367 	 * guarantee the NIC is awake to program the self-gen frame
368 	 * setting anyway.
369 	 */
370 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
371 		ath_hal_setselfgenpower(sc->sc_ah, power_state);
372 	}
373 }
374 
375 /*
376  * Set the hardware power mode and take a reference.
377  *
378  * This doesn't update the target power mode in the driver;
379  * it just updates the hardware power state.
380  *
381  * XXX it should only ever force the hardware awake; it should
382  * never be called to set it asleep.
383  */
384 void
385 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
386 {
387 	ATH_LOCK_ASSERT(sc);
388 
389 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
390 	    __func__,
391 	    file,
392 	    line,
393 	    power_state,
394 	    sc->sc_powersave_refcnt);
395 
396 	sc->sc_powersave_refcnt++;
397 
398 	if (power_state != sc->sc_cur_powerstate) {
399 		ath_hal_setpower(sc->sc_ah, power_state);
400 		sc->sc_cur_powerstate = power_state;
401 
402 		/*
403 		 * Adjust the self-gen powerstate if appropriate.
404 		 */
405 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
406 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
407 			ath_hal_setselfgenpower(sc->sc_ah,
408 			    sc->sc_target_selfgen_state);
409 		}
410 
411 	}
412 }
413 
414 /*
415  * Restore the power save mode to what it once was.
416  *
417  * This will decrement the reference counter and once it hits
418  * zero, it'll restore the powersave state.
419  */
420 void
421 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
422 {
423 
424 	ATH_LOCK_ASSERT(sc);
425 
426 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
427 	    __func__,
428 	    file,
429 	    line,
430 	    sc->sc_powersave_refcnt,
431 	    sc->sc_target_powerstate);
432 
433 	if (sc->sc_powersave_refcnt == 0)
434 		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
435 	else
436 		sc->sc_powersave_refcnt--;
437 
438 	if (sc->sc_powersave_refcnt == 0 &&
439 	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
440 		sc->sc_cur_powerstate = sc->sc_target_powerstate;
441 		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
442 	}
443 
444 	/*
445 	 * Adjust the self-gen powerstate if appropriate.
446 	 */
447 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
448 	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
449 		ath_hal_setselfgenpower(sc->sc_ah,
450 		    sc->sc_target_selfgen_state);
451 	}
452 
453 }
454 
455 /*
456  * Configure the initial HAL configuration values based on bus
457  * specific parameters.
458  *
459  * Some PCI IDs and other information may need tweaking.
460  *
461  * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
462  * if BT antenna diversity isn't enabled.
463  *
464  * So, let's also figure out how to enable BT diversity for AR9485.
465  */
466 static void
467 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
468 {
469 	/* XXX TODO: only for PCI devices? */
470 
471 	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
472 		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
473 		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
474 		ah_config->ath_hal_min_gainidx = AH_TRUE;
475 		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
476 		/* XXX low_rssi_thresh */
477 		/* XXX fast_div_bias */
478 		device_printf(sc->sc_dev, "configuring for %s\n",
479 		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
480 		    "CUS198" : "CUS230");
481 	}
482 
483 	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
484 		device_printf(sc->sc_dev, "CUS217 card detected\n");
485 
486 	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
487 		device_printf(sc->sc_dev, "CUS252 card detected\n");
488 
489 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
490 		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
491 
492 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
493 		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
494 
495 	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
496 		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
497 
498 #if 0
499         /*
500          * Some WB335 cards do not support antenna diversity. Since
501          * we use a hardcoded value for AR9565 instead of using the
502          * EEPROM/OTP data, remove the combining feature from
503          * the HW capabilities bitmap.
504          */
505         if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
506                 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
507                         pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
508         }
509 
510         if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
511                 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
512                 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
513         }
514 #endif
515 
516         if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
517                 ah_config->ath_hal_pcie_waen = 0x0040473b;
518                 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
519         }
520 
521 #if 0
522         if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
523                 ah->config.no_pll_pwrsave = true;
524                 device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
525         }
526 #endif
527 
528 }
529 
530 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
531 #define	HAL_MODE_HT40 \
532 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
533 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
534 int
535 ath_attach(u_int16_t devid, struct ath_softc *sc)
536 {
537 	struct ifnet *ifp;
538 	struct ieee80211com *ic;
539 	struct ath_hal *ah = NULL;
540 	HAL_STATUS status;
541 	int error = 0, i;
542 	u_int wmodes;
543 	uint8_t macaddr[IEEE80211_ADDR_LEN];
544 	int rx_chainmask, tx_chainmask;
545 	HAL_OPS_CONFIG ah_config;
546 
547 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
548 
549 	wlan_serialize_enter();
550 	CURVNET_SET(vnet0);
551 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
552 	if (ifp == NULL) {
553 		device_printf(sc->sc_dev, "can not if_alloc()\n");
554 		error = ENOSPC;
555 		CURVNET_RESTORE();
556 		goto bad;
557 	}
558 	ic = ifp->if_l2com;
559 
560 	/* set these up early for if_printf use */
561 	if_initname(ifp, device_get_name(sc->sc_dev),
562 		device_get_unit(sc->sc_dev));
563 	CURVNET_RESTORE();
564 
565 	/*
566 	 * Configure the initial configuration data.
567 	 *
568 	 * This is stuff that may be needed early during attach
569 	 * rather than done via configuration calls later.
570 	 */
571 	bzero(&ah_config, sizeof(ah_config));
572 	ath_setup_hal_config(sc, &ah_config);
573 
574 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
575 	    sc->sc_eepromdata, &ah_config, &status);
576 	if (ah == NULL) {
577 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
578 			status);
579 		error = ENXIO;
580 		goto bad;
581 	}
582 	sc->sc_ah = ah;
583 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
584 #ifdef	ATH_DEBUG
585 	sc->sc_debug = ath_debug;
586 #endif
587 
588 	/*
589 	 * Setup the DMA/EDMA functions based on the current
590 	 * hardware support.
591 	 *
592 	 * This is required before the descriptors are allocated.
593 	 */
594 	if (ath_hal_hasedma(sc->sc_ah)) {
595 		sc->sc_isedma = 1;
596 		ath_recv_setup_edma(sc);
597 		ath_xmit_setup_edma(sc);
598 	} else {
599 		ath_recv_setup_legacy(sc);
600 		ath_xmit_setup_legacy(sc);
601 	}
602 
603 	if (ath_hal_hasmybeacon(sc->sc_ah)) {
604 		sc->sc_do_mybeacon = 1;
605 	}
606 
607 	/*
608 	 * Check if the MAC has multi-rate retry support.
609 	 * We do this by trying to setup a fake extended
610 	 * descriptor.  MAC's that don't have support will
611 	 * return false w/o doing anything.  MAC's that do
612 	 * support it will return true w/o doing anything.
613 	 */
614 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
615 
616 	/*
617 	 * Check if the device has hardware counters for PHY
618 	 * errors.  If so we need to enable the MIB interrupt
619 	 * so we can act on stat triggers.
620 	 */
621 	if (ath_hal_hwphycounters(ah))
622 		sc->sc_needmib = 1;
623 
624 	/*
625 	 * Get the hardware key cache size.
626 	 */
627 	sc->sc_keymax = ath_hal_keycachesize(ah);
628 	if (sc->sc_keymax > ATH_KEYMAX) {
629 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
630 			ATH_KEYMAX, sc->sc_keymax);
631 		sc->sc_keymax = ATH_KEYMAX;
632 	}
633 	/*
634 	 * Reset the key cache since some parts do not
635 	 * reset the contents on initial power up.
636 	 */
637 	for (i = 0; i < sc->sc_keymax; i++)
638 		ath_hal_keyreset(ah, i);
639 
640 	/*
641 	 * Collect the default channel list.
642 	 */
643 	error = ath_getchannels(sc);
644 	if (error != 0)
645 		goto bad;
646 
647 	/*
648 	 * Setup rate tables for all potential media types.
649 	 */
650 	ath_rate_setup(sc, IEEE80211_MODE_11A);
651 	ath_rate_setup(sc, IEEE80211_MODE_11B);
652 	ath_rate_setup(sc, IEEE80211_MODE_11G);
653 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
654 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
655 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
656 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
657 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
658 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
659 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
660 
661 	/* NB: setup here so ath_rate_update is happy */
662 	ath_setcurmode(sc, IEEE80211_MODE_11A);
663 
664 	/*
665 	 * Allocate TX descriptors and populate the lists.
666 	 */
667 	error = ath_desc_alloc(sc);
668 	if (error != 0) {
669 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
670 		    error);
671 		goto bad;
672 	}
673 	error = ath_txdma_setup(sc);
674 	if (error != 0) {
675 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
676 		    error);
677 		goto bad;
678 	}
679 
680 	/*
681 	 * Allocate RX descriptors and populate the lists.
682 	 */
683 	error = ath_rxdma_setup(sc);
684 	if (error != 0) {
685 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
686 		    error);
687 		goto bad;
688 	}
689 
690 	callout_init_lk(&sc->sc_cal_ch, &sc->sc_mtx);
691 	callout_init_lk(&sc->sc_wd_ch, &sc->sc_mtx);
692 
693 	ATH_TXBUF_LOCK_INIT(sc);
694 
695 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
696 		taskqueue_thread_enqueue, &sc->sc_tq);
697 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
698 		"%s taskq", ifp->if_xname);
699 
700 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
701 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
702 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
703 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
704 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
705 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
706 
707 	/*
708 	 * Allocate hardware transmit queues: one queue for
709 	 * beacon frames and one data queue for each QoS
710 	 * priority.  Note that the hal handles resetting
711 	 * these queues at the needed time.
712 	 *
713 	 * XXX PS-Poll
714 	 */
715 	sc->sc_bhalq = ath_beaconq_setup(sc);
716 	if (sc->sc_bhalq == (u_int) -1) {
717 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
718 		error = EIO;
719 		goto bad2;
720 	}
721 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
722 	if (sc->sc_cabq == NULL) {
723 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
724 		error = EIO;
725 		goto bad2;
726 	}
727 	/* NB: insure BK queue is the lowest priority h/w queue */
728 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
729 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
730 			ieee80211_wme_acnames[WME_AC_BK]);
731 		error = EIO;
732 		goto bad2;
733 	}
734 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
735 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
736 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
737 		/*
738 		 * Not enough hardware tx queues to properly do WME;
739 		 * just punt and assign them all to the same h/w queue.
740 		 * We could do a better job of this if, for example,
741 		 * we allocate queues when we switch from station to
742 		 * AP mode.
743 		 */
744 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
745 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
746 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
747 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
748 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
749 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
750 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
751 	}
752 
753 	/*
754 	 * Attach the TX completion function.
755 	 *
756 	 * The non-EDMA chips may have some special case optimisations;
757 	 * this method gives everyone a chance to attach cleanly.
758 	 */
759 	sc->sc_tx.xmit_attach_comp_func(sc);
760 
761 	/*
762 	 * Setup rate control.  Some rate control modules
763 	 * call back to change the anntena state so expose
764 	 * the necessary entry points.
765 	 * XXX maybe belongs in struct ath_ratectrl?
766 	 */
767 	sc->sc_setdefantenna = ath_setdefantenna;
768 	sc->sc_rc = ath_rate_attach(sc);
769 	if (sc->sc_rc == NULL) {
770 		error = EIO;
771 		goto bad2;
772 	}
773 
774 	/* Attach DFS module */
775 	if (! ath_dfs_attach(sc)) {
776 		device_printf(sc->sc_dev,
777 		    "%s: unable to attach DFS\n", __func__);
778 		error = EIO;
779 		goto bad2;
780 	}
781 
782 	/* Attach spectral module */
783 	if (ath_spectral_attach(sc) < 0) {
784 		device_printf(sc->sc_dev,
785 		    "%s: unable to attach spectral\n", __func__);
786 		error = EIO;
787 		goto bad2;
788 	}
789 
790 	/* Attach bluetooth coexistence module */
791 	if (ath_btcoex_attach(sc) < 0) {
792 		device_printf(sc->sc_dev,
793 		    "%s: unable to attach bluetooth coexistence\n", __func__);
794 		error = EIO;
795 		goto bad2;
796 	}
797 
798 	/* Attach LNA diversity module */
799 	if (ath_lna_div_attach(sc) < 0) {
800 		device_printf(sc->sc_dev,
801 		    "%s: unable to attach LNA diversity\n", __func__);
802 		error = EIO;
803 		goto bad2;
804 	}
805 
806 	/* Start DFS processing tasklet */
807 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
808 
809 	/* Configure LED state */
810 	sc->sc_blinking = 0;
811 	sc->sc_ledstate = 1;
812 	sc->sc_ledon = 0;			/* low true */
813 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
814 	callout_init_mp(&sc->sc_ledtimer);
815 
816 	/*
817 	 * Don't setup hardware-based blinking.
818 	 *
819 	 * Although some NICs may have this configured in the
820 	 * default reset register values, the user may wish
821 	 * to alter which pins have which function.
822 	 *
823 	 * The reference driver attaches the MAC network LED to GPIO1 and
824 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
825 	 * NIC has these reversed.
826 	 */
827 	sc->sc_hardled = (1 == 0);
828 	sc->sc_led_net_pin = -1;
829 	sc->sc_led_pwr_pin = -1;
830 	/*
831 	 * Auto-enable soft led processing for IBM cards and for
832 	 * 5211 minipci cards.  Users can also manually enable/disable
833 	 * support with a sysctl.
834 	 */
835 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
836 	ath_led_config(sc);
837 	ath_hal_setledstate(ah, HAL_LED_INIT);
838 
839 	ifp->if_softc = sc;
840 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
841 #if defined(__DragonFly__)
842 	ifp->if_start = ath_start;
843 #else
844 	ifp->if_transmit = ath_transmit;
845 	ifp->if_qflush = ath_qflush;
846 #endif
847 	ifp->if_ioctl = ath_ioctl;
848 	ifp->if_init = ath_init;
849 #if defined(__DragonFly__)
850 	if (sc->sc_isedma)
851 		ifp->if_nmbjclusters = ath_rxbuf;
852 	else
853 		ifp->if_nmbclusters = ath_rxbuf;
854 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
855 #else
856 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
857 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
858 	IFQ_SET_READY(&ifp->if_snd);
859 #endif
860 
861 	ic->ic_ifp = ifp;
862 	/* XXX not right but it's not used anywhere important */
863 	ic->ic_phytype = IEEE80211_T_OFDM;
864 	ic->ic_opmode = IEEE80211_M_STA;
865 	ic->ic_caps =
866 		  IEEE80211_C_STA		/* station mode */
867 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
868 		| IEEE80211_C_HOSTAP		/* hostap mode */
869 		| IEEE80211_C_MONITOR		/* monitor mode */
870 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
871 		| IEEE80211_C_WDS		/* 4-address traffic works */
872 		| IEEE80211_C_MBSS		/* mesh point link mode */
873 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
874 		| IEEE80211_C_SHSLOT		/* short slot time supported */
875 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
876 #ifndef	ATH_ENABLE_11N
877 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
878 #endif
879 		| IEEE80211_C_TXFRAG		/* handle tx frags */
880 #ifdef	ATH_ENABLE_DFS
881 		| IEEE80211_C_DFS		/* Enable radar detection */
882 #endif
883 		| IEEE80211_C_PMGT		/* Station side power mgmt */
884 		| IEEE80211_C_SWSLEEP
885 		;
886 	/*
887 	 * Query the hal to figure out h/w crypto support.
888 	 */
889 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
890 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
891 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
892 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
893 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
894 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
895 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
896 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
897 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
898 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
899 		/*
900 		 * Check if h/w does the MIC and/or whether the
901 		 * separate key cache entries are required to
902 		 * handle both tx+rx MIC keys.
903 		 */
904 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
905 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
906 		/*
907 		 * If the h/w supports storing tx+rx MIC keys
908 		 * in one cache slot automatically enable use.
909 		 */
910 		if (ath_hal_hastkipsplit(ah) ||
911 		    !ath_hal_settkipsplit(ah, AH_FALSE))
912 			sc->sc_splitmic = 1;
913 		/*
914 		 * If the h/w can do TKIP MIC together with WME then
915 		 * we use it; otherwise we force the MIC to be done
916 		 * in software by the net80211 layer.
917 		 */
918 		if (ath_hal_haswmetkipmic(ah))
919 			sc->sc_wmetkipmic = 1;
920 	}
921 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
922 	/*
923 	 * Check for multicast key search support.
924 	 */
925 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
926 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
927 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
928 	}
929 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
930 	/*
931 	 * Mark key cache slots associated with global keys
932 	 * as in use.  If we knew TKIP was not to be used we
933 	 * could leave the +32, +64, and +32+64 slots free.
934 	 */
935 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
936 		setbit(sc->sc_keymap, i);
937 		setbit(sc->sc_keymap, i+64);
938 		if (sc->sc_splitmic) {
939 			setbit(sc->sc_keymap, i+32);
940 			setbit(sc->sc_keymap, i+32+64);
941 		}
942 	}
943 	/*
944 	 * TPC support can be done either with a global cap or
945 	 * per-packet support.  The latter is not available on
946 	 * all parts.  We're a bit pedantic here as all parts
947 	 * support a global cap.
948 	 */
949 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
950 		ic->ic_caps |= IEEE80211_C_TXPMGT;
951 
952 	/*
953 	 * Mark WME capability only if we have sufficient
954 	 * hardware queues to do proper priority scheduling.
955 	 */
956 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
957 		ic->ic_caps |= IEEE80211_C_WME;
958 	/*
959 	 * Check for misc other capabilities.
960 	 */
961 	if (ath_hal_hasbursting(ah))
962 		ic->ic_caps |= IEEE80211_C_BURST;
963 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
964 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
965 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
966 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
967 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
968 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
969 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
970 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
971 
972 	if (ath_hal_hasfastframes(ah))
973 		ic->ic_caps |= IEEE80211_C_FF;
974 	wmodes = ath_hal_getwirelessmodes(ah);
975 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
976 		ic->ic_caps |= IEEE80211_C_TURBOP;
977 #ifdef IEEE80211_SUPPORT_TDMA
978 	if (ath_hal_macversion(ah) > 0x78) {
979 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
980 		ic->ic_tdma_update = ath_tdma_update;
981 	}
982 #endif
983 
984 	/*
985 	 * TODO: enforce that at least this many frames are available
986 	 * in the txbuf list before allowing data frames (raw or
987 	 * otherwise) to be transmitted.
988 	 */
989 	sc->sc_txq_data_minfree = 10;
990 	/*
991 	 * Leave this as default to maintain legacy behaviour.
992 	 * Shortening the cabq/mcastq may end up causing some
993 	 * undesirable behaviour.
994 	 */
995 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
996 
997 	/*
998 	 * How deep can the node software TX queue get whilst it's asleep.
999 	 */
1000 	sc->sc_txq_node_psq_maxdepth = 16;
1001 
1002 	/*
1003 	 * Default the maximum queue depth for a given node
1004 	 * to 1/4'th the TX buffers, or 64, whichever
1005 	 * is larger.
1006 	 */
1007 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
1008 
1009 	/* Enable CABQ by default */
1010 	sc->sc_cabq_enable = 1;
1011 
1012 	/*
1013 	 * Allow the TX and RX chainmasks to be overridden by
1014 	 * environment variables and/or device.hints.
1015 	 *
1016 	 * This must be done early - before the hardware is
1017 	 * calibrated or before the 802.11n stream calculation
1018 	 * is done.
1019 	 */
1020 	if (resource_int_value(device_get_name(sc->sc_dev),
1021 	    device_get_unit(sc->sc_dev), "rx_chainmask",
1022 	    &rx_chainmask) == 0) {
1023 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1024 		    rx_chainmask);
1025 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1026 	}
1027 	if (resource_int_value(device_get_name(sc->sc_dev),
1028 	    device_get_unit(sc->sc_dev), "tx_chainmask",
1029 	    &tx_chainmask) == 0) {
1030 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1031 		    tx_chainmask);
1032 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1033 	}
1034 
1035 	/*
1036 	 * Query the TX/RX chainmask configuration.
1037 	 *
1038 	 * This is only relevant for 11n devices.
1039 	 */
1040 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1041 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1042 
1043 	/*
1044 	 * Disable MRR with protected frames by default.
1045 	 * Only 802.11n series NICs can handle this.
1046 	 */
1047 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1048 
1049 	/*
1050 	 * Query the enterprise mode information the HAL.
1051 	 */
1052 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1053 	    &sc->sc_ent_cfg) == HAL_OK)
1054 		sc->sc_use_ent = 1;
1055 
1056 #ifdef	ATH_ENABLE_11N
1057 	/*
1058 	 * Query HT capabilities
1059 	 */
1060 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1061 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1062 		uint32_t rxs, txs;
1063 
1064 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1065 
1066 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1067 
1068 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1069 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1070 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1071 			    | IEEE80211_HTCAP_MAXAMSDU_3839
1072 			    				/* max A-MSDU length */
1073 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1074 			;
1075 
1076 		/*
1077 		 * Enable short-GI for HT20 only if the hardware
1078 		 * advertises support.
1079 		 * Notably, anything earlier than the AR9287 doesn't.
1080 		 */
1081 		if ((ath_hal_getcapability(ah,
1082 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1083 		    (wmodes & HAL_MODE_HT20)) {
1084 			device_printf(sc->sc_dev,
1085 			    "[HT] enabling short-GI in 20MHz mode\n");
1086 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1087 		}
1088 
1089 		if (wmodes & HAL_MODE_HT40)
1090 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1091 			    |  IEEE80211_HTCAP_SHORTGI40;
1092 
1093 		/*
1094 		 * TX/RX streams need to be taken into account when
1095 		 * negotiating which MCS rates it'll receive and
1096 		 * what MCS rates are available for TX.
1097 		 */
1098 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1099 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1100 		ic->ic_txstream = txs;
1101 		ic->ic_rxstream = rxs;
1102 
1103 		/*
1104 		 * Setup TX and RX STBC based on what the HAL allows and
1105 		 * the currently configured chainmask set.
1106 		 * Ie - don't enable STBC TX if only one chain is enabled.
1107 		 * STBC RX is fine on a single RX chain; it just won't
1108 		 * provide any real benefit.
1109 		 */
1110 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1111 		    NULL) == HAL_OK) {
1112 			sc->sc_rx_stbc = 1;
1113 			device_printf(sc->sc_dev,
1114 			    "[HT] 1 stream STBC receive enabled\n");
1115 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1116 		}
1117 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1118 		    NULL) == HAL_OK) {
1119 			sc->sc_tx_stbc = 1;
1120 			device_printf(sc->sc_dev,
1121 			    "[HT] 1 stream STBC transmit enabled\n");
1122 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1123 		}
1124 
1125 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1126 		    &sc->sc_rts_aggr_limit);
1127 		if (sc->sc_rts_aggr_limit != (64 * 1024))
1128 			device_printf(sc->sc_dev,
1129 			    "[HT] RTS aggregates limited to %d KiB\n",
1130 			    sc->sc_rts_aggr_limit / 1024);
1131 
1132 		device_printf(sc->sc_dev,
1133 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1134 	}
1135 #endif
1136 
1137 	/*
1138 	 * Initial aggregation settings.
1139 	 */
1140 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1141 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1142 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1143 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1144 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1145 	sc->sc_delim_min_pad = 0;
1146 
1147 	/*
1148 	 * Check if the hardware requires PCI register serialisation.
1149 	 * Some of the Owl based MACs require this.
1150 	 */
1151 	if (ncpus > 1 &&
1152 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1153 	     0, NULL) == HAL_OK) {
1154 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1155 		device_printf(sc->sc_dev,
1156 		    "Enabling register serialisation\n");
1157 	}
1158 
1159 	/*
1160 	 * Initialise the deferred completed RX buffer list.
1161 	 */
1162 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1163 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1164 
1165 	/*
1166 	 * Indicate we need the 802.11 header padded to a
1167 	 * 32-bit boundary for 4-address and QoS frames.
1168 	 */
1169 	ic->ic_flags |= IEEE80211_F_DATAPAD;
1170 
1171 	/*
1172 	 * Query the hal about antenna support.
1173 	 */
1174 	sc->sc_defant = ath_hal_getdefantenna(ah);
1175 
1176 	/*
1177 	 * Not all chips have the VEOL support we want to
1178 	 * use with IBSS beacons; check here for it.
1179 	 */
1180 	sc->sc_hasveol = ath_hal_hasveol(ah);
1181 
1182 	/* get mac address from hardware */
1183 	ath_hal_getmac(ah, macaddr);
1184 	if (sc->sc_hasbmask)
1185 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1186 
1187 	/* NB: used to size node table key mapping array */
1188 	ic->ic_max_keyix = sc->sc_keymax;
1189 	/* Call MI attach routine. */
1190 	ieee80211_ifattach(ic, macaddr);
1191 	ic->ic_setregdomain = ath_setregdomain;
1192 	ic->ic_getradiocaps = ath_getradiocaps;
1193 	sc->sc_opmode = HAL_M_STA;
1194 
1195 	/* override default methods */
1196 	ic->ic_newassoc = ath_newassoc;
1197 	ic->ic_updateslot = ath_updateslot;
1198 	ic->ic_wme.wme_update = ath_wme_update;
1199 	ic->ic_vap_create = ath_vap_create;
1200 	ic->ic_vap_delete = ath_vap_delete;
1201 	ic->ic_raw_xmit = ath_raw_xmit;
1202 	ic->ic_update_mcast = ath_update_mcast;
1203 	ic->ic_update_promisc = ath_update_promisc;
1204 	ic->ic_node_alloc = ath_node_alloc;
1205 	sc->sc_node_free = ic->ic_node_free;
1206 	ic->ic_node_free = ath_node_free;
1207 	sc->sc_node_cleanup = ic->ic_node_cleanup;
1208 	ic->ic_node_cleanup = ath_node_cleanup;
1209 	ic->ic_node_getsignal = ath_node_getsignal;
1210 	ic->ic_scan_start = ath_scan_start;
1211 	ic->ic_scan_end = ath_scan_end;
1212 	ic->ic_set_channel = ath_set_channel;
1213 #ifdef	ATH_ENABLE_11N
1214 	/* 802.11n specific - but just override anyway */
1215 	sc->sc_addba_request = ic->ic_addba_request;
1216 	sc->sc_addba_response = ic->ic_addba_response;
1217 	sc->sc_addba_stop = ic->ic_addba_stop;
1218 	sc->sc_bar_response = ic->ic_bar_response;
1219 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1220 
1221 	ic->ic_addba_request = ath_addba_request;
1222 	ic->ic_addba_response = ath_addba_response;
1223 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1224 	ic->ic_addba_stop = ath_addba_stop;
1225 	ic->ic_bar_response = ath_bar_response;
1226 
1227 	ic->ic_update_chw = ath_update_chw;
1228 #endif	/* ATH_ENABLE_11N */
1229 
1230 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1231 	/*
1232 	 * There's one vendor bitmap entry in the RX radiotap
1233 	 * header; make sure that's taken into account.
1234 	 */
1235 	ieee80211_radiotap_attachv(ic,
1236 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1237 		ATH_TX_RADIOTAP_PRESENT,
1238 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1239 		ATH_RX_RADIOTAP_PRESENT);
1240 #else
1241 	/*
1242 	 * No vendor bitmap/extensions are present.
1243 	 */
1244 	ieee80211_radiotap_attach(ic,
1245 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1246 		ATH_TX_RADIOTAP_PRESENT,
1247 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1248 		ATH_RX_RADIOTAP_PRESENT);
1249 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1250 
1251 	/*
1252 	 * Setup the ALQ logging if required
1253 	 */
1254 #ifdef	ATH_DEBUG_ALQ
1255 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1256 	if_ath_alq_setcfg(&sc->sc_alq,
1257 	    sc->sc_ah->ah_macVersion,
1258 	    sc->sc_ah->ah_macRev,
1259 	    sc->sc_ah->ah_phyRev,
1260 	    sc->sc_ah->ah_magic);
1261 #endif
1262 
1263 	/*
1264 	 * Setup dynamic sysctl's now that country code and
1265 	 * regdomain are available from the hal.
1266 	 */
1267 	ath_sysctlattach(sc);
1268 	ath_sysctl_stats_attach(sc);
1269 	ath_sysctl_hal_attach(sc);
1270 
1271 	if (bootverbose)
1272 		ieee80211_announce(ic);
1273 	ath_announce(sc);
1274 
1275 	/*
1276 	 * Put it to sleep for now.
1277 	 */
1278 	ATH_LOCK(sc);
1279 	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1280 	ATH_UNLOCK(sc);
1281 
1282 	wlan_serialize_exit();
1283 
1284 	return 0;
1285 bad2:
1286 	ath_tx_cleanup(sc);
1287 	ath_desc_free(sc);
1288 	ath_txdma_teardown(sc);
1289 	ath_rxdma_teardown(sc);
1290 bad:
1291 	if (ah)
1292 		ath_hal_detach(ah);
1293 
1294 	/*
1295 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1296 	 */
1297 #if !defined(__DragonFly__)
1298 	if (ifp != NULL && ifp->if_vnet) {
1299 		CURVNET_SET(ifp->if_vnet);
1300 		if_free(ifp);
1301 		CURVNET_RESTORE();
1302 	} else
1303 #endif
1304 	if (ifp != NULL)
1305 		if_free(ifp);
1306 	sc->sc_invalid = 1;
1307 	wlan_serialize_exit();
1308 
1309 	return error;
1310 }
1311 
1312 int
1313 ath_detach(struct ath_softc *sc)
1314 {
1315 	struct ifnet *ifp = sc->sc_ifp;
1316 
1317 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1318 		__func__, ifp->if_flags);
1319 
1320 	/*
1321 	 * NB: the order of these is important:
1322 	 * o stop the chip so no more interrupts will fire
1323 	 * o call the 802.11 layer before detaching the hal to
1324 	 *   insure callbacks into the driver to delete global
1325 	 *   key cache entries can be handled
1326 	 * o free the taskqueue which drains any pending tasks
1327 	 * o reclaim the tx queue data structures after calling
1328 	 *   the 802.11 layer as we'll get called back to reclaim
1329 	 *   node state and potentially want to use them
1330 	 * o to cleanup the tx queues the hal is called, so detach
1331 	 *   it last
1332 	 * Other than that, it's straightforward...
1333 	 */
1334 
1335 	/*
1336 	 * XXX Wake the hardware up first.  ath_stop() will still
1337 	 * wake it up first, but I'd rather do it here just to
1338 	 * ensure it's awake.
1339 	 */
1340 	ATH_LOCK(sc);
1341 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1342 	ath_power_setpower(sc, HAL_PM_AWAKE);
1343 	ATH_UNLOCK(sc);
1344 
1345 	/*
1346 	 * Stop things cleanly.
1347 	 */
1348 	ath_stop(ifp);
1349 
1350 	wlan_serialize_enter();
1351 	ieee80211_ifdetach(ifp->if_l2com);
1352 	wlan_serialize_exit();
1353 	taskqueue_free(sc->sc_tq);
1354 #ifdef ATH_TX99_DIAG
1355 	if (sc->sc_tx99 != NULL)
1356 		sc->sc_tx99->detach(sc->sc_tx99);
1357 #endif
1358 	ath_rate_detach(sc->sc_rc);
1359 #ifdef	ATH_DEBUG_ALQ
1360 	if_ath_alq_tidyup(&sc->sc_alq);
1361 #endif
1362 	ath_lna_div_detach(sc);
1363 	ath_btcoex_detach(sc);
1364 	ath_spectral_detach(sc);
1365 	ath_dfs_detach(sc);
1366 	ath_desc_free(sc);
1367 	ath_txdma_teardown(sc);
1368 	ath_rxdma_teardown(sc);
1369 	ath_tx_cleanup(sc);
1370 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1371 
1372 	CURVNET_SET(ifp->if_vnet);
1373 	if_free(ifp);
1374 	CURVNET_RESTORE();
1375 
1376 	return 0;
1377 }
1378 
1379 /*
1380  * MAC address handling for multiple BSS on the same radio.
1381  * The first vap uses the MAC address from the EEPROM.  For
1382  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1383  * address and use the next six bits as an index.
1384  */
1385 static void
1386 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1387 {
1388 	int i;
1389 
1390 	if (clone && sc->sc_hasbmask) {
1391 		/* NB: we only do this if h/w supports multiple bssid */
1392 		for (i = 0; i < 8; i++)
1393 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1394 				break;
1395 		if (i != 0)
1396 			mac[0] |= (i << 2)|0x2;
1397 	} else
1398 		i = 0;
1399 	sc->sc_bssidmask |= 1<<i;
1400 	sc->sc_hwbssidmask[0] &= ~mac[0];
1401 	if (i == 0)
1402 		sc->sc_nbssid0++;
1403 }
1404 
1405 static void
1406 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1407 {
1408 	int i = mac[0] >> 2;
1409 	uint8_t mask;
1410 
1411 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1412 		sc->sc_bssidmask &= ~(1<<i);
1413 		/* recalculate bssid mask from remaining addresses */
1414 		mask = 0xff;
1415 		for (i = 1; i < 8; i++)
1416 			if (sc->sc_bssidmask & (1<<i))
1417 				mask &= ~((i<<2)|0x2);
1418 		sc->sc_hwbssidmask[0] |= mask;
1419 	}
1420 }
1421 
1422 /*
1423  * Assign a beacon xmit slot.  We try to space out
1424  * assignments so when beacons are staggered the
1425  * traffic coming out of the cab q has maximal time
1426  * to go out before the next beacon is scheduled.
1427  */
1428 static int
1429 assign_bslot(struct ath_softc *sc)
1430 {
1431 	u_int slot, free;
1432 
1433 	free = 0;
1434 	for (slot = 0; slot < ATH_BCBUF; slot++)
1435 		if (sc->sc_bslot[slot] == NULL) {
1436 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1437 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1438 				return slot;
1439 			free = slot;
1440 			/* NB: keep looking for a double slot */
1441 		}
1442 	return free;
1443 }
1444 
1445 static struct ieee80211vap *
1446 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1447     enum ieee80211_opmode opmode, int flags,
1448     const uint8_t bssid[IEEE80211_ADDR_LEN],
1449     const uint8_t mac0[IEEE80211_ADDR_LEN])
1450 {
1451 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1452 	struct ath_vap *avp;
1453 	struct ieee80211vap *vap;
1454 	uint8_t mac[IEEE80211_ADDR_LEN];
1455 	int needbeacon, error;
1456 	enum ieee80211_opmode ic_opmode;
1457 
1458 	avp = kmalloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1459 	needbeacon = 0;
1460 	IEEE80211_ADDR_COPY(mac, mac0);
1461 
1462 	ATH_LOCK(sc);
1463 	ic_opmode = opmode;		/* default to opmode of new vap */
1464 	switch (opmode) {
1465 	case IEEE80211_M_STA:
1466 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1467 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1468 			goto bad;
1469 		}
1470 		if (sc->sc_nvaps) {
1471 			/*
1472 			 * With multiple vaps we must fall back
1473 			 * to s/w beacon miss handling.
1474 			 */
1475 			flags |= IEEE80211_CLONE_NOBEACONS;
1476 		}
1477 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1478 			/*
1479 			 * Station mode w/o beacons are implemented w/ AP mode.
1480 			 */
1481 			ic_opmode = IEEE80211_M_HOSTAP;
1482 		}
1483 		break;
1484 	case IEEE80211_M_IBSS:
1485 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1486 			device_printf(sc->sc_dev,
1487 			    "only 1 ibss vap supported\n");
1488 			goto bad;
1489 		}
1490 		needbeacon = 1;
1491 		break;
1492 	case IEEE80211_M_AHDEMO:
1493 #ifdef IEEE80211_SUPPORT_TDMA
1494 		if (flags & IEEE80211_CLONE_TDMA) {
1495 			if (sc->sc_nvaps != 0) {
1496 				device_printf(sc->sc_dev,
1497 				    "only 1 tdma vap supported\n");
1498 				goto bad;
1499 			}
1500 			needbeacon = 1;
1501 			flags |= IEEE80211_CLONE_NOBEACONS;
1502 		}
1503 		/* fall thru... */
1504 #endif
1505 	case IEEE80211_M_MONITOR:
1506 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1507 			/*
1508 			 * Adopt existing mode.  Adding a monitor or ahdemo
1509 			 * vap to an existing configuration is of dubious
1510 			 * value but should be ok.
1511 			 */
1512 			/* XXX not right for monitor mode */
1513 			ic_opmode = ic->ic_opmode;
1514 		}
1515 		break;
1516 	case IEEE80211_M_HOSTAP:
1517 	case IEEE80211_M_MBSS:
1518 		needbeacon = 1;
1519 		break;
1520 	case IEEE80211_M_WDS:
1521 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1522 			device_printf(sc->sc_dev,
1523 			    "wds not supported in sta mode\n");
1524 			goto bad;
1525 		}
1526 		/*
1527 		 * Silently remove any request for a unique
1528 		 * bssid; WDS vap's always share the local
1529 		 * mac address.
1530 		 */
1531 		flags &= ~IEEE80211_CLONE_BSSID;
1532 		if (sc->sc_nvaps == 0)
1533 			ic_opmode = IEEE80211_M_HOSTAP;
1534 		else
1535 			ic_opmode = ic->ic_opmode;
1536 		break;
1537 	default:
1538 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1539 		goto bad;
1540 	}
1541 	/*
1542 	 * Check that a beacon buffer is available; the code below assumes it.
1543 	 */
1544 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1545 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1546 		goto bad;
1547 	}
1548 
1549 	/* STA, AHDEMO? */
1550 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1551 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1552 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1553 	}
1554 
1555 	vap = &avp->av_vap;
1556 	/* XXX can't hold mutex across if_alloc */
1557 	ATH_UNLOCK(sc);
1558 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1559 	    bssid, mac);
1560 	ATH_LOCK(sc);
1561 	if (error != 0) {
1562 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1563 		    __func__, error);
1564 		goto bad2;
1565 	}
1566 
1567 	/* h/w crypto support */
1568 	vap->iv_key_alloc = ath_key_alloc;
1569 	vap->iv_key_delete = ath_key_delete;
1570 	vap->iv_key_set = ath_key_set;
1571 	vap->iv_key_update_begin = ath_key_update_begin;
1572 	vap->iv_key_update_end = ath_key_update_end;
1573 
1574 	/* override various methods */
1575 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1576 	vap->iv_recv_mgmt = ath_recv_mgmt;
1577 	vap->iv_reset = ath_reset_vap;
1578 	vap->iv_update_beacon = ath_beacon_update;
1579 	avp->av_newstate = vap->iv_newstate;
1580 	vap->iv_newstate = ath_newstate;
1581 	avp->av_bmiss = vap->iv_bmiss;
1582 	vap->iv_bmiss = ath_bmiss_vap;
1583 
1584 	avp->av_node_ps = vap->iv_node_ps;
1585 	vap->iv_node_ps = ath_node_powersave;
1586 
1587 	avp->av_set_tim = vap->iv_set_tim;
1588 	vap->iv_set_tim = ath_node_set_tim;
1589 
1590 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1591 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1592 
1593 	/* Set default parameters */
1594 
1595 	/*
1596 	 * Anything earlier than some AR9300 series MACs don't
1597 	 * support a smaller MPDU density.
1598 	 */
1599 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1600 	/*
1601 	 * All NICs can handle the maximum size, however
1602 	 * AR5416 based MACs can only TX aggregates w/ RTS
1603 	 * protection when the total aggregate size is <= 8k.
1604 	 * However, for now that's enforced by the TX path.
1605 	 */
1606 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1607 
1608 	avp->av_bslot = -1;
1609 	if (needbeacon) {
1610 		/*
1611 		 * Allocate beacon state and setup the q for buffered
1612 		 * multicast frames.  We know a beacon buffer is
1613 		 * available because we checked above.
1614 		 */
1615 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1616 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1617 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1618 			/*
1619 			 * Assign the vap to a beacon xmit slot.  As above
1620 			 * this cannot fail to find a free one.
1621 			 */
1622 			avp->av_bslot = assign_bslot(sc);
1623 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1624 			    ("beacon slot %u not empty", avp->av_bslot));
1625 			sc->sc_bslot[avp->av_bslot] = vap;
1626 			sc->sc_nbcnvaps++;
1627 		}
1628 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1629 			/*
1630 			 * Multple vaps are to transmit beacons and we
1631 			 * have h/w support for TSF adjusting; enable
1632 			 * use of staggered beacons.
1633 			 */
1634 			sc->sc_stagbeacons = 1;
1635 		}
1636 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1637 	}
1638 
1639 	ic->ic_opmode = ic_opmode;
1640 	if (opmode != IEEE80211_M_WDS) {
1641 		sc->sc_nvaps++;
1642 		if (opmode == IEEE80211_M_STA)
1643 			sc->sc_nstavaps++;
1644 		if (opmode == IEEE80211_M_MBSS)
1645 			sc->sc_nmeshvaps++;
1646 	}
1647 	switch (ic_opmode) {
1648 	case IEEE80211_M_IBSS:
1649 		sc->sc_opmode = HAL_M_IBSS;
1650 		break;
1651 	case IEEE80211_M_STA:
1652 		sc->sc_opmode = HAL_M_STA;
1653 		break;
1654 	case IEEE80211_M_AHDEMO:
1655 #ifdef IEEE80211_SUPPORT_TDMA
1656 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1657 			sc->sc_tdma = 1;
1658 			/* NB: disable tsf adjust */
1659 			sc->sc_stagbeacons = 0;
1660 		}
1661 		/*
1662 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1663 		 * just ap mode.
1664 		 */
1665 		/* fall thru... */
1666 #endif
1667 	case IEEE80211_M_HOSTAP:
1668 	case IEEE80211_M_MBSS:
1669 		sc->sc_opmode = HAL_M_HOSTAP;
1670 		break;
1671 	case IEEE80211_M_MONITOR:
1672 		sc->sc_opmode = HAL_M_MONITOR;
1673 		break;
1674 	default:
1675 		/* XXX should not happen */
1676 		break;
1677 	}
1678 	if (sc->sc_hastsfadd) {
1679 		/*
1680 		 * Configure whether or not TSF adjust should be done.
1681 		 */
1682 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1683 	}
1684 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1685 		/*
1686 		 * Enable s/w beacon miss handling.
1687 		 */
1688 		sc->sc_swbmiss = 1;
1689 	}
1690 	ATH_UNLOCK(sc);
1691 
1692 	/* complete setup */
1693 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1694 	return vap;
1695 bad2:
1696 	reclaim_address(sc, mac);
1697 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1698 bad:
1699 	kfree(avp, M_80211_VAP);
1700 	ATH_UNLOCK(sc);
1701 	return NULL;
1702 }
1703 
1704 static void
1705 ath_vap_delete(struct ieee80211vap *vap)
1706 {
1707 	struct ieee80211com *ic = vap->iv_ic;
1708 	struct ifnet *ifp = ic->ic_ifp;
1709 	struct ath_softc *sc = ifp->if_softc;
1710 	struct ath_hal *ah = sc->sc_ah;
1711 	struct ath_vap *avp = ATH_VAP(vap);
1712 
1713 	ATH_LOCK(sc);
1714 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1715 	ATH_UNLOCK(sc);
1716 
1717 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1718 	if (ifp->if_flags & IFF_RUNNING) {
1719 		/*
1720 		 * Quiesce the hardware while we remove the vap.  In
1721 		 * particular we need to reclaim all references to
1722 		 * the vap state by any frames pending on the tx queues.
1723 		 */
1724 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1725 		/* XXX Do all frames from all vaps/nodes need draining here? */
1726 		ath_stoprecv(sc, 1);		/* stop recv side */
1727 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1728 	}
1729 
1730 	/* .. leave the hardware awake for now. */
1731 
1732 	ieee80211_vap_detach(vap);
1733 
1734 	/*
1735 	 * XXX Danger Will Robinson! Danger!
1736 	 *
1737 	 * Because ieee80211_vap_detach() can queue a frame (the station
1738 	 * diassociate message?) after we've drained the TXQ and
1739 	 * flushed the software TXQ, we will end up with a frame queued
1740 	 * to a node whose vap is about to be freed.
1741 	 *
1742 	 * To work around this, flush the hardware/software again.
1743 	 * This may be racy - the ath task may be running and the packet
1744 	 * may be being scheduled between sw->hw txq. Tsk.
1745 	 *
1746 	 * TODO: figure out why a new node gets allocated somewhere around
1747 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1748 	 * call!)
1749 	 */
1750 
1751 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1752 
1753 	ATH_LOCK(sc);
1754 	/*
1755 	 * Reclaim beacon state.  Note this must be done before
1756 	 * the vap instance is reclaimed as we may have a reference
1757 	 * to it in the buffer for the beacon frame.
1758 	 */
1759 	if (avp->av_bcbuf != NULL) {
1760 		if (avp->av_bslot != -1) {
1761 			sc->sc_bslot[avp->av_bslot] = NULL;
1762 			sc->sc_nbcnvaps--;
1763 		}
1764 		ath_beacon_return(sc, avp->av_bcbuf);
1765 		avp->av_bcbuf = NULL;
1766 		if (sc->sc_nbcnvaps == 0) {
1767 			sc->sc_stagbeacons = 0;
1768 			if (sc->sc_hastsfadd)
1769 				ath_hal_settsfadjust(sc->sc_ah, 0);
1770 		}
1771 		/*
1772 		 * Reclaim any pending mcast frames for the vap.
1773 		 */
1774 		ath_tx_draintxq(sc, &avp->av_mcastq);
1775 	}
1776 	/*
1777 	 * Update bookkeeping.
1778 	 */
1779 	if (vap->iv_opmode == IEEE80211_M_STA) {
1780 		sc->sc_nstavaps--;
1781 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1782 			sc->sc_swbmiss = 0;
1783 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1784 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1785 		reclaim_address(sc, vap->iv_myaddr);
1786 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1787 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1788 			sc->sc_nmeshvaps--;
1789 	}
1790 	if (vap->iv_opmode != IEEE80211_M_WDS)
1791 		sc->sc_nvaps--;
1792 #ifdef IEEE80211_SUPPORT_TDMA
1793 	/* TDMA operation ceases when the last vap is destroyed */
1794 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1795 		sc->sc_tdma = 0;
1796 		sc->sc_swbmiss = 0;
1797 	}
1798 #endif
1799 	kfree(avp, M_80211_VAP);
1800 
1801 	if (ifp->if_flags & IFF_RUNNING) {
1802 		/*
1803 		 * Restart rx+tx machines if still running (RUNNING will
1804 		 * be reset if we just destroyed the last vap).
1805 		 */
1806 		if (ath_startrecv(sc) != 0)
1807 			if_printf(ifp, "%s: unable to restart recv logic\n",
1808 			    __func__);
1809 		if (sc->sc_beacons) {		/* restart beacons */
1810 #ifdef IEEE80211_SUPPORT_TDMA
1811 			if (sc->sc_tdma)
1812 				ath_tdma_config(sc, NULL);
1813 			else
1814 #endif
1815 				ath_beacon_config(sc, NULL);
1816 		}
1817 		ath_hal_intrset(ah, sc->sc_imask);
1818 	}
1819 
1820 	/* Ok, let the hardware asleep. */
1821 	ath_power_restore_power_state(sc);
1822 	ATH_UNLOCK(sc);
1823 }
1824 
1825 void
1826 ath_suspend(struct ath_softc *sc)
1827 {
1828 	struct ifnet *ifp = sc->sc_ifp;
1829 	struct ieee80211com *ic = ifp->if_l2com;
1830 
1831 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1832 		__func__, ifp->if_flags);
1833 
1834 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1835 
1836 	ieee80211_suspend_all(ic);
1837 	/*
1838 	 * NB: don't worry about putting the chip in low power
1839 	 * mode; pci will power off our socket on suspend and
1840 	 * CardBus detaches the device.
1841 	 *
1842 	 * XXX TODO: well, that's great, except for non-cardbus
1843 	 * devices!
1844 	 */
1845 
1846 	/*
1847 	 * XXX This doesn't wait until all pending taskqueue
1848 	 * items and parallel transmit/receive/other threads
1849 	 * are running!
1850 	 */
1851 	ath_hal_intrset(sc->sc_ah, 0);
1852 	taskqueue_block(sc->sc_tq);
1853 
1854 	ATH_LOCK(sc);
1855 	callout_stop_sync(&sc->sc_cal_ch);
1856 	ATH_UNLOCK(sc);
1857 
1858 	/*
1859 	 * XXX ensure sc_invalid is 1
1860 	 */
1861 
1862 	/* Disable the PCIe PHY, complete with workarounds */
1863 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1864 }
1865 
1866 /*
1867  * Reset the key cache since some parts do not reset the
1868  * contents on resume.  First we clear all entries, then
1869  * re-load keys that the 802.11 layer assumes are setup
1870  * in h/w.
1871  */
1872 static void
1873 ath_reset_keycache(struct ath_softc *sc)
1874 {
1875 	struct ifnet *ifp = sc->sc_ifp;
1876 	struct ieee80211com *ic = ifp->if_l2com;
1877 	struct ath_hal *ah = sc->sc_ah;
1878 	int i;
1879 
1880 	ATH_LOCK(sc);
1881 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1882 	for (i = 0; i < sc->sc_keymax; i++)
1883 		ath_hal_keyreset(ah, i);
1884 	ath_power_restore_power_state(sc);
1885 	ATH_UNLOCK(sc);
1886 	ieee80211_crypto_reload_keys(ic);
1887 }
1888 
1889 /*
1890  * Fetch the current chainmask configuration based on the current
1891  * operating channel and options.
1892  */
1893 static void
1894 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1895 {
1896 
1897 	/*
1898 	 * Set TX chainmask to the currently configured chainmask;
1899 	 * the TX chainmask depends upon the current operating mode.
1900 	 */
1901 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1902 	if (IEEE80211_IS_CHAN_HT(chan)) {
1903 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1904 	} else {
1905 		sc->sc_cur_txchainmask = 1;
1906 	}
1907 
1908 	DPRINTF(sc, ATH_DEBUG_RESET,
1909 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1910 	    __func__,
1911 	    sc->sc_cur_txchainmask,
1912 	    sc->sc_cur_rxchainmask);
1913 }
1914 
1915 void
1916 ath_resume(struct ath_softc *sc)
1917 {
1918 	struct ifnet *ifp = sc->sc_ifp;
1919 	struct ieee80211com *ic = ifp->if_l2com;
1920 	struct ath_hal *ah = sc->sc_ah;
1921 	HAL_STATUS status;
1922 
1923 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1924 		__func__, ifp->if_flags);
1925 
1926 	/* Re-enable PCIe, re-enable the PCIe bus */
1927 	ath_hal_enablepcie(ah, 0, 0);
1928 
1929 	/*
1930 	 * Must reset the chip before we reload the
1931 	 * keycache as we were powered down on suspend.
1932 	 */
1933 	ath_update_chainmasks(sc,
1934 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1935 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1936 	    sc->sc_cur_rxchainmask);
1937 
1938 	/* Ensure we set the current power state to on */
1939 	ATH_LOCK(sc);
1940 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1941 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1942 	ath_power_setpower(sc, HAL_PM_AWAKE);
1943 	ATH_UNLOCK(sc);
1944 
1945 	ath_hal_reset(ah, sc->sc_opmode,
1946 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1947 	    AH_FALSE, &status);
1948 	ath_reset_keycache(sc);
1949 
1950 	ATH_RX_LOCK(sc);
1951 	sc->sc_rx_stopped = 1;
1952 	sc->sc_rx_resetted = 1;
1953 	ATH_RX_UNLOCK(sc);
1954 
1955 	/* Let DFS at it in case it's a DFS channel */
1956 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1957 
1958 	/* Let spectral at in case spectral is enabled */
1959 	ath_spectral_enable(sc, ic->ic_curchan);
1960 
1961 	/*
1962 	 * Let bluetooth coexistence at in case it's needed for this channel
1963 	 */
1964 	ath_btcoex_enable(sc, ic->ic_curchan);
1965 
1966 	/*
1967 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1968 	 * support it.
1969 	 */
1970 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1971 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1972 	else
1973 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1974 
1975 	/* Restore the LED configuration */
1976 	ath_led_config(sc);
1977 	ath_hal_setledstate(ah, HAL_LED_INIT);
1978 
1979 	if (sc->sc_resume_up)
1980 		ieee80211_resume_all(ic);
1981 
1982 	ATH_LOCK(sc);
1983 	ath_power_restore_power_state(sc);
1984 	ATH_UNLOCK(sc);
1985 
1986 	/* XXX beacons ? */
1987 }
1988 
1989 void
1990 ath_shutdown(struct ath_softc *sc)
1991 {
1992 	struct ifnet *ifp = sc->sc_ifp;
1993 
1994 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1995 		__func__, ifp->if_flags);
1996 
1997 	ath_stop(ifp);
1998 	/* NB: no point powering down chip as we're about to reboot */
1999 }
2000 
2001 /*
2002  * Interrupt handler.  Most of the actual processing is deferred.
2003  */
2004 void
2005 ath_intr(void *arg)
2006 {
2007 	struct ath_softc *sc = arg;
2008 	struct ifnet *ifp = sc->sc_ifp;
2009 	struct ath_hal *ah = sc->sc_ah;
2010 	HAL_INT status = 0;
2011 	uint32_t txqs;
2012 
2013 	/*
2014 	 * If we're inside a reset path, just print a warning and
2015 	 * clear the ISR. The reset routine will finish it for us.
2016 	 */
2017 	ATH_PCU_LOCK(sc);
2018 	if (sc->sc_inreset_cnt) {
2019 		HAL_INT status;
2020 		ath_hal_getisr(ah, &status);	/* clear ISR */
2021 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2022 		DPRINTF(sc, ATH_DEBUG_ANY,
2023 		    "%s: in reset, ignoring: status=0x%x\n",
2024 		    __func__, status);
2025 		ATH_PCU_UNLOCK(sc);
2026 		return;
2027 	}
2028 
2029 	if (sc->sc_invalid) {
2030 		/*
2031 		 * The hardware is not ready/present, don't touch anything.
2032 		 * Note this can happen early on if the IRQ is shared.
2033 		 */
2034 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2035 		ATH_PCU_UNLOCK(sc);
2036 		return;
2037 	}
2038 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2039 		ATH_PCU_UNLOCK(sc);
2040 		return;
2041 	}
2042 
2043 	ATH_LOCK(sc);
2044 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2045 	ATH_UNLOCK(sc);
2046 
2047 	if ((ifp->if_flags & IFF_UP) == 0 ||
2048 	    (ifp->if_flags & IFF_RUNNING) == 0) {
2049 		HAL_INT status;
2050 
2051 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2052 			__func__, ifp->if_flags);
2053 		ath_hal_getisr(ah, &status);	/* clear ISR */
2054 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2055 		ATH_PCU_UNLOCK(sc);
2056 
2057 		ATH_LOCK(sc);
2058 		ath_power_restore_power_state(sc);
2059 		ATH_UNLOCK(sc);
2060 		return;
2061 	}
2062 
2063 	/*
2064 	 * Figure out the reason(s) for the interrupt.  Note
2065 	 * that the hal returns a pseudo-ISR that may include
2066 	 * bits we haven't explicitly enabled so we mask the
2067 	 * value to insure we only process bits we requested.
2068 	 */
2069 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2070 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2071 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2072 #ifdef	ATH_DEBUG_ALQ
2073 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2074 	    ah->ah_syncstate);
2075 #endif	/* ATH_DEBUG_ALQ */
2076 #ifdef	ATH_KTR_INTR_DEBUG
2077 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2078 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2079 	    ah->ah_intrstate[0],
2080 	    ah->ah_intrstate[1],
2081 	    ah->ah_intrstate[2],
2082 	    ah->ah_intrstate[3],
2083 	    ah->ah_intrstate[6]);
2084 #endif
2085 
2086 	/* Squirrel away SYNC interrupt debugging */
2087 	if (ah->ah_syncstate != 0) {
2088 		int i;
2089 		for (i = 0; i < 32; i++)
2090 			if (ah->ah_syncstate & (i << i))
2091 				sc->sc_intr_stats.sync_intr[i]++;
2092 	}
2093 
2094 	status &= sc->sc_imask;			/* discard unasked for bits */
2095 
2096 	/* Short-circuit un-handled interrupts */
2097 	if (status == 0x0) {
2098 		ATH_PCU_UNLOCK(sc);
2099 
2100 		ATH_LOCK(sc);
2101 		ath_power_restore_power_state(sc);
2102 		ATH_UNLOCK(sc);
2103 
2104 		return;
2105 	}
2106 
2107 	/*
2108 	 * Take a note that we're inside the interrupt handler, so
2109 	 * the reset routines know to wait.
2110 	 */
2111 	sc->sc_intr_cnt++;
2112 	ATH_PCU_UNLOCK(sc);
2113 
2114 	/*
2115 	 * Handle the interrupt. We won't run concurrent with the reset
2116 	 * or channel change routines as they'll wait for sc_intr_cnt
2117 	 * to be 0 before continuing.
2118 	 */
2119 	if (status & HAL_INT_FATAL) {
2120 		sc->sc_stats.ast_hardware++;
2121 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2122 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2123 	} else {
2124 		if (status & HAL_INT_SWBA) {
2125 			/*
2126 			 * Software beacon alert--time to send a beacon.
2127 			 * Handle beacon transmission directly; deferring
2128 			 * this is too slow to meet timing constraints
2129 			 * under load.
2130 			 */
2131 #ifdef IEEE80211_SUPPORT_TDMA
2132 			if (sc->sc_tdma) {
2133 				if (sc->sc_tdmaswba == 0) {
2134 					struct ieee80211com *ic = ifp->if_l2com;
2135 					struct ieee80211vap *vap =
2136 					    TAILQ_FIRST(&ic->ic_vaps);
2137 					ath_tdma_beacon_send(sc, vap);
2138 					sc->sc_tdmaswba =
2139 					    vap->iv_tdma->tdma_bintval;
2140 				} else
2141 					sc->sc_tdmaswba--;
2142 			} else
2143 #endif
2144 			{
2145 				ath_beacon_proc(sc, 0);
2146 #ifdef IEEE80211_SUPPORT_SUPERG
2147 				/*
2148 				 * Schedule the rx taskq in case there's no
2149 				 * traffic so any frames held on the staging
2150 				 * queue are aged and potentially flushed.
2151 				 */
2152 				sc->sc_rx.recv_sched(sc, 1);
2153 #endif
2154 			}
2155 		}
2156 		if (status & HAL_INT_RXEOL) {
2157 			int imask;
2158 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2159 			if (! sc->sc_isedma) {
2160 				ATH_PCU_LOCK(sc);
2161 				/*
2162 				 * NB: the hardware should re-read the link when
2163 				 *     RXE bit is written, but it doesn't work at
2164 				 *     least on older hardware revs.
2165 				 */
2166 				sc->sc_stats.ast_rxeol++;
2167 				/*
2168 				 * Disable RXEOL/RXORN - prevent an interrupt
2169 				 * storm until the PCU logic can be reset.
2170 				 * In case the interface is reset some other
2171 				 * way before "sc_kickpcu" is called, don't
2172 				 * modify sc_imask - that way if it is reset
2173 				 * by a call to ath_reset() somehow, the
2174 				 * interrupt mask will be correctly reprogrammed.
2175 				 */
2176 				imask = sc->sc_imask;
2177 				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2178 				ath_hal_intrset(ah, imask);
2179 				/*
2180 				 * Only blank sc_rxlink if we've not yet kicked
2181 				 * the PCU.
2182 				 *
2183 				 * This isn't entirely correct - the correct solution
2184 				 * would be to have a PCU lock and engage that for
2185 				 * the duration of the PCU fiddling; which would include
2186 				 * running the RX process. Otherwise we could end up
2187 				 * messing up the RX descriptor chain and making the
2188 				 * RX desc list much shorter.
2189 				 */
2190 				if (! sc->sc_kickpcu)
2191 					sc->sc_rxlink = NULL;
2192 				sc->sc_kickpcu = 1;
2193 				ATH_PCU_UNLOCK(sc);
2194 			}
2195 			/*
2196 			 * Enqueue an RX proc to handle whatever
2197 			 * is in the RX queue.
2198 			 * This will then kick the PCU if required.
2199 			 */
2200 			sc->sc_rx.recv_sched(sc, 1);
2201 		}
2202 		if (status & HAL_INT_TXURN) {
2203 			sc->sc_stats.ast_txurn++;
2204 			/* bump tx trigger level */
2205 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2206 		}
2207 		/*
2208 		 * Handle both the legacy and RX EDMA interrupt bits.
2209 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2210 		 */
2211 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2212 			sc->sc_stats.ast_rx_intr++;
2213 			sc->sc_rx.recv_sched(sc, 1);
2214 		}
2215 		if (status & HAL_INT_TX) {
2216 			sc->sc_stats.ast_tx_intr++;
2217 			/*
2218 			 * Grab all the currently set bits in the HAL txq bitmap
2219 			 * and blank them. This is the only place we should be
2220 			 * doing this.
2221 			 */
2222 			if (! sc->sc_isedma) {
2223 				ATH_PCU_LOCK(sc);
2224 				txqs = 0xffffffff;
2225 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2226 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2227 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2228 				    txqs,
2229 				    sc->sc_txq_active,
2230 				    sc->sc_txq_active | txqs);
2231 				sc->sc_txq_active |= txqs;
2232 				ATH_PCU_UNLOCK(sc);
2233 			}
2234 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2235 		}
2236 		if (status & HAL_INT_BMISS) {
2237 			sc->sc_stats.ast_bmiss++;
2238 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2239 		}
2240 		if (status & HAL_INT_GTT)
2241 			sc->sc_stats.ast_tx_timeout++;
2242 		if (status & HAL_INT_CST)
2243 			sc->sc_stats.ast_tx_cst++;
2244 		if (status & HAL_INT_MIB) {
2245 			sc->sc_stats.ast_mib++;
2246 			ATH_PCU_LOCK(sc);
2247 			/*
2248 			 * Disable interrupts until we service the MIB
2249 			 * interrupt; otherwise it will continue to fire.
2250 			 */
2251 			ath_hal_intrset(ah, 0);
2252 			/*
2253 			 * Let the hal handle the event.  We assume it will
2254 			 * clear whatever condition caused the interrupt.
2255 			 */
2256 			ath_hal_mibevent(ah, &sc->sc_halstats);
2257 			/*
2258 			 * Don't reset the interrupt if we've just
2259 			 * kicked the PCU, or we may get a nested
2260 			 * RXEOL before the rxproc has had a chance
2261 			 * to run.
2262 			 */
2263 			if (sc->sc_kickpcu == 0)
2264 				ath_hal_intrset(ah, sc->sc_imask);
2265 			ATH_PCU_UNLOCK(sc);
2266 		}
2267 		if (status & HAL_INT_RXORN) {
2268 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2269 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2270 			sc->sc_stats.ast_rxorn++;
2271 		}
2272 		if (status & HAL_INT_TSFOOR) {
2273 			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2274 			sc->sc_syncbeacon = 1;
2275 		}
2276 	}
2277 	ATH_PCU_LOCK(sc);
2278 	sc->sc_intr_cnt--;
2279 	ATH_PCU_UNLOCK(sc);
2280 
2281 	ATH_LOCK(sc);
2282 	ath_power_restore_power_state(sc);
2283 	ATH_UNLOCK(sc);
2284 }
2285 
2286 static void
2287 ath_fatal_proc(void *arg, int pending)
2288 {
2289 	struct ath_softc *sc = arg;
2290 	struct ifnet *ifp = sc->sc_ifp;
2291 	u_int32_t *state;
2292 	u_int32_t len;
2293 	void *sp;
2294 
2295 	if_printf(ifp, "hardware error; resetting\n");
2296 	/*
2297 	 * Fatal errors are unrecoverable.  Typically these
2298 	 * are caused by DMA errors.  Collect h/w state from
2299 	 * the hal so we can diagnose what's going on.
2300 	 */
2301 	wlan_serialize_enter();
2302 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2303 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2304 		state = sp;
2305 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2306 		    state[0], state[1] , state[2], state[3],
2307 		    state[4], state[5]);
2308 	}
2309 	ath_reset(ifp, ATH_RESET_NOLOSS);
2310 	wlan_serialize_exit();
2311 }
2312 
2313 static void
2314 ath_bmiss_vap(struct ieee80211vap *vap)
2315 {
2316 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2317 
2318 	/*
2319 	 * Workaround phantom bmiss interrupts by sanity-checking
2320 	 * the time of our last rx'd frame.  If it is within the
2321 	 * beacon miss interval then ignore the interrupt.  If it's
2322 	 * truly a bmiss we'll get another interrupt soon and that'll
2323 	 * be dispatched up for processing.  Note this applies only
2324 	 * for h/w beacon miss events.
2325 	 */
2326 
2327 	/*
2328 	 * XXX TODO: Just read the TSF during the interrupt path;
2329 	 * that way we don't have to wake up again just to read it
2330 	 * again.
2331 	 */
2332 	ATH_LOCK(sc);
2333 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2334 	ATH_UNLOCK(sc);
2335 
2336 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2337 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
2338 		struct ath_softc *sc = ifp->if_softc;
2339 		u_int64_t lastrx = sc->sc_lastrx;
2340 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2341 		/* XXX should take a locked ref to iv_bss */
2342 		u_int bmisstimeout =
2343 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2344 
2345 		DPRINTF(sc, ATH_DEBUG_BEACON,
2346 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2347 		    __func__, (unsigned long long) tsf,
2348 		    (unsigned long long)(tsf - lastrx),
2349 		    (unsigned long long) lastrx, bmisstimeout);
2350 
2351 		if (tsf - lastrx <= bmisstimeout) {
2352 			sc->sc_stats.ast_bmiss_phantom++;
2353 
2354 			ATH_LOCK(sc);
2355 			ath_power_restore_power_state(sc);
2356 			ATH_UNLOCK(sc);
2357 
2358 			return;
2359 		}
2360 	}
2361 
2362 	/*
2363 	 * There's no need to keep the hardware awake during the call
2364 	 * to av_bmiss().
2365 	 */
2366 	ATH_LOCK(sc);
2367 	ath_power_restore_power_state(sc);
2368 	ATH_UNLOCK(sc);
2369 
2370 	/*
2371 	 * Attempt to force a beacon resync.
2372 	 */
2373 	sc->sc_syncbeacon = 1;
2374 
2375 	ATH_VAP(vap)->av_bmiss(vap);
2376 }
2377 
2378 /* XXX this needs a force wakeup! */
2379 int
2380 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2381 {
2382 	uint32_t rsize;
2383 	void *sp;
2384 
2385 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2386 		return 0;
2387 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2388 	*hangs = *(uint32_t *)sp;
2389 	return 1;
2390 }
2391 
2392 static void
2393 ath_bmiss_proc(void *arg, int pending)
2394 {
2395 	struct ath_softc *sc = arg;
2396 	struct ifnet *ifp = sc->sc_ifp;
2397 	uint32_t hangs;
2398 
2399 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2400 
2401 	ATH_LOCK(sc);
2402 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2403 	ATH_UNLOCK(sc);
2404 
2405 	ath_beacon_miss(sc);
2406 
2407 	/*
2408 	 * Do a reset upon any becaon miss event.
2409 	 *
2410 	 * It may be a non-recognised RX clear hang which needs a reset
2411 	 * to clear.
2412 	 */
2413 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2414 		ath_reset(ifp, ATH_RESET_NOLOSS);
2415 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2416 	} else {
2417 		ath_reset(ifp, ATH_RESET_NOLOSS);
2418 		ieee80211_beacon_miss(ifp->if_l2com);
2419 	}
2420 
2421 	/* Force a beacon resync, in case they've drifted */
2422 	sc->sc_syncbeacon = 1;
2423 
2424 	ATH_LOCK(sc);
2425 	ath_power_restore_power_state(sc);
2426 	ATH_UNLOCK(sc);
2427 }
2428 
2429 /*
2430  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2431  * calcs together with WME.  If necessary disable the crypto
2432  * hardware and mark the 802.11 state so keys will be setup
2433  * with the MIC work done in software.
2434  */
2435 static void
2436 ath_settkipmic(struct ath_softc *sc)
2437 {
2438 	struct ifnet *ifp = sc->sc_ifp;
2439 	struct ieee80211com *ic = ifp->if_l2com;
2440 
2441 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2442 		if (ic->ic_flags & IEEE80211_F_WME) {
2443 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2444 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2445 		} else {
2446 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2447 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2448 		}
2449 	}
2450 }
2451 
2452 static void
2453 ath_init(void *arg)
2454 {
2455 	struct ath_softc *sc = (struct ath_softc *) arg;
2456 	struct ifnet *ifp = sc->sc_ifp;
2457 	struct ieee80211com *ic = ifp->if_l2com;
2458 	struct ath_hal *ah = sc->sc_ah;
2459 	HAL_STATUS status;
2460 
2461 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2462 		__func__, ifp->if_flags);
2463 
2464 	ATH_LOCK(sc);
2465 	/*
2466 	 * Force the sleep state awake.
2467 	 */
2468 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2469 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2470 	ath_power_setpower(sc, HAL_PM_AWAKE);
2471 
2472 	/*
2473 	 * Stop anything previously setup.  This is safe
2474 	 * whether this is the first time through or not.
2475 	 */
2476 	ath_stop_locked(ifp);
2477 
2478 	/*
2479 	 * The basic interface to setting the hardware in a good
2480 	 * state is ``reset''.  On return the hardware is known to
2481 	 * be powered up and with interrupts disabled.  This must
2482 	 * be followed by initialization of the appropriate bits
2483 	 * and then setup of the interrupt mask.
2484 	 */
2485 	ath_settkipmic(sc);
2486 	ath_update_chainmasks(sc, ic->ic_curchan);
2487 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2488 	    sc->sc_cur_rxchainmask);
2489 
2490 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2491 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2492 			status);
2493 		ATH_UNLOCK(sc);
2494 		return;
2495 	}
2496 
2497 	ATH_RX_LOCK(sc);
2498 	sc->sc_rx_stopped = 1;
2499 	sc->sc_rx_resetted = 1;
2500 	ATH_RX_UNLOCK(sc);
2501 
2502 	ath_chan_change(sc, ic->ic_curchan);
2503 
2504 	/* Let DFS at it in case it's a DFS channel */
2505 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2506 
2507 	/* Let spectral at in case spectral is enabled */
2508 	ath_spectral_enable(sc, ic->ic_curchan);
2509 
2510 	/*
2511 	 * Let bluetooth coexistence at in case it's needed for this channel
2512 	 */
2513 	ath_btcoex_enable(sc, ic->ic_curchan);
2514 
2515 	/*
2516 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2517 	 * support it.
2518 	 */
2519 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2520 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2521 	else
2522 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2523 
2524 	/*
2525 	 * Likewise this is set during reset so update
2526 	 * state cached in the driver.
2527 	 */
2528 	sc->sc_diversity = ath_hal_getdiversity(ah);
2529 	sc->sc_lastlongcal = 0;
2530 	sc->sc_resetcal = 1;
2531 	sc->sc_lastcalreset = 0;
2532 	sc->sc_lastani = 0;
2533 	sc->sc_lastshortcal = 0;
2534 	sc->sc_doresetcal = AH_FALSE;
2535 	/*
2536 	 * Beacon timers were cleared here; give ath_newstate()
2537 	 * a hint that the beacon timers should be poked when
2538 	 * things transition to the RUN state.
2539 	 */
2540 	sc->sc_beacons = 0;
2541 
2542 	/*
2543 	 * Setup the hardware after reset: the key cache
2544 	 * is filled as needed and the receive engine is
2545 	 * set going.  Frame transmit is handled entirely
2546 	 * in the frame output path; there's nothing to do
2547 	 * here except setup the interrupt mask.
2548 	 */
2549 	if (ath_startrecv(sc) != 0) {
2550 		if_printf(ifp, "unable to start recv logic\n");
2551 		ath_power_restore_power_state(sc);
2552 		ATH_UNLOCK(sc);
2553 		return;
2554 	}
2555 
2556 	/*
2557 	 * Enable interrupts.
2558 	 */
2559 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2560 		  | HAL_INT_RXORN | HAL_INT_TXURN
2561 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2562 
2563 	/*
2564 	 * Enable RX EDMA bits.  Note these overlap with
2565 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2566 	 */
2567 	if (sc->sc_isedma)
2568 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2569 
2570 	/*
2571 	 * If we're an EDMA NIC, we don't care about RXEOL.
2572 	 * Writing a new descriptor in will simply restart
2573 	 * RX DMA.
2574 	 */
2575 	if (! sc->sc_isedma)
2576 		sc->sc_imask |= HAL_INT_RXEOL;
2577 
2578 	/*
2579 	 * Enable MIB interrupts when there are hardware phy counters.
2580 	 * Note we only do this (at the moment) for station mode.
2581 	 */
2582 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2583 		sc->sc_imask |= HAL_INT_MIB;
2584 
2585 	/*
2586 	 * XXX add capability for this.
2587 	 *
2588 	 * If we're in STA mode (and maybe IBSS?) then register for
2589 	 * TSFOOR interrupts.
2590 	 */
2591 	if (ic->ic_opmode == IEEE80211_M_STA)
2592 		sc->sc_imask |= HAL_INT_TSFOOR;
2593 
2594 	/* Enable global TX timeout and carrier sense timeout if available */
2595 	if (ath_hal_gtxto_supported(ah))
2596 		sc->sc_imask |= HAL_INT_GTT;
2597 
2598 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2599 		__func__, sc->sc_imask);
2600 
2601 	ifp->if_flags |= IFF_RUNNING;
2602 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2603 	ath_hal_intrset(ah, sc->sc_imask);
2604 
2605 	ath_power_restore_power_state(sc);
2606 	ATH_UNLOCK(sc);
2607 
2608 #ifdef ATH_TX99_DIAG
2609 	if (sc->sc_tx99 != NULL)
2610 		sc->sc_tx99->start(sc->sc_tx99);
2611 	else
2612 #endif
2613 	ieee80211_start_all(ic);		/* start all vap's */
2614 }
2615 
2616 static void
2617 ath_stop_locked(struct ifnet *ifp)
2618 {
2619 	struct ath_softc *sc = ifp->if_softc;
2620 	struct ath_hal *ah = sc->sc_ah;
2621 
2622 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2623 		__func__, sc->sc_invalid, ifp->if_flags);
2624 
2625 	ATH_LOCK_ASSERT(sc);
2626 
2627 	/*
2628 	 * Wake the hardware up before fiddling with it.
2629 	 */
2630 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2631 
2632 	if (ifp->if_flags & IFF_RUNNING) {
2633 		/*
2634 		 * Shutdown the hardware and driver:
2635 		 *    reset 802.11 state machine
2636 		 *    turn off timers
2637 		 *    disable interrupts
2638 		 *    turn off the radio
2639 		 *    clear transmit machinery
2640 		 *    clear receive machinery
2641 		 *    drain and release tx queues
2642 		 *    reclaim beacon resources
2643 		 *    power down hardware
2644 		 *
2645 		 * Note that some of this work is not possible if the
2646 		 * hardware is gone (invalid).
2647 		 */
2648 #ifdef ATH_TX99_DIAG
2649 		if (sc->sc_tx99 != NULL)
2650 			sc->sc_tx99->stop(sc->sc_tx99);
2651 #endif
2652 		callout_stop_sync(&sc->sc_wd_ch);
2653 		sc->sc_wd_timer = 0;
2654 		ifp->if_flags &= ~IFF_RUNNING;
2655 		if (!sc->sc_invalid) {
2656 			if (sc->sc_softled) {
2657 				callout_stop_sync(&sc->sc_ledtimer);
2658 				ath_hal_gpioset(ah, sc->sc_ledpin,
2659 					!sc->sc_ledon);
2660 				sc->sc_blinking = 0;
2661 			}
2662 			ath_hal_intrset(ah, 0);
2663 		}
2664 		/* XXX we should stop RX regardless of whether it's valid */
2665 		if (!sc->sc_invalid) {
2666 			ath_stoprecv(sc, 1);
2667 			ath_hal_phydisable(ah);
2668 		} else
2669 			sc->sc_rxlink = NULL;
2670 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2671 		ath_beacon_free(sc);	/* XXX not needed */
2672 	}
2673 
2674 	/* And now, restore the current power state */
2675 	ath_power_restore_power_state(sc);
2676 }
2677 
2678 /*
2679  * Wait until all pending TX/RX has completed.
2680  *
2681  * This waits until all existing transmit, receive and interrupts
2682  * have completed.  It's assumed that the caller has first
2683  * grabbed the reset lock so it doesn't try to do overlapping
2684  * chip resets.
2685  */
2686 #define	MAX_TXRX_ITERATIONS	100
2687 static void
2688 ath_txrx_stop_locked(struct ath_softc *sc)
2689 {
2690 	int i = MAX_TXRX_ITERATIONS;
2691 
2692 	ATH_UNLOCK_ASSERT(sc);
2693 	ATH_PCU_LOCK_ASSERT(sc);
2694 
2695 	/*
2696 	 * Sleep until all the pending operations have completed.
2697 	 *
2698 	 * The caller must ensure that reset has been incremented
2699 	 * or the pending operations may continue being queued.
2700 	 */
2701 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2702 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2703 		if (i <= 0)
2704 			break;
2705 		if (wlan_is_serialized()) {
2706 			wlan_serialize_exit();
2707 			lksleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2708 				msecs_to_ticks(10));
2709 			wlan_serialize_enter();
2710 		} else {
2711 			lksleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2712 				msecs_to_ticks(10));
2713 		}
2714 		i--;
2715 	}
2716 
2717 	if (i <= 0)
2718 		device_printf(sc->sc_dev,
2719 		    "%s: didn't finish after %d iterations\n",
2720 		    __func__, MAX_TXRX_ITERATIONS);
2721 }
2722 #undef	MAX_TXRX_ITERATIONS
2723 
2724 #if 0
2725 static void
2726 ath_txrx_stop(struct ath_softc *sc)
2727 {
2728 	ATH_UNLOCK_ASSERT(sc);
2729 	ATH_PCU_UNLOCK_ASSERT(sc);
2730 
2731 	ATH_PCU_LOCK(sc);
2732 	ath_txrx_stop_locked(sc);
2733 	ATH_PCU_UNLOCK(sc);
2734 }
2735 #endif
2736 
2737 static void
2738 ath_txrx_start(struct ath_softc *sc)
2739 {
2740 
2741 	taskqueue_unblock(sc->sc_tq);
2742 }
2743 
2744 /*
2745  * Grab the reset lock, and wait around until noone else
2746  * is trying to do anything with it.
2747  *
2748  * This is totally horrible but we can't hold this lock for
2749  * long enough to do TX/RX or we end up with net80211/ip stack
2750  * LORs and eventual deadlock.
2751  *
2752  * "dowait" signals whether to spin, waiting for the reset
2753  * lock count to reach 0. This should (for now) only be used
2754  * during the reset path, as the rest of the code may not
2755  * be locking-reentrant enough to behave correctly.
2756  *
2757  * Another, cleaner way should be found to serialise all of
2758  * these operations.
2759  */
2760 #define	MAX_RESET_ITERATIONS	25
2761 static int
2762 ath_reset_grablock(struct ath_softc *sc, int dowait)
2763 {
2764 	int w = 0;
2765 	int i = MAX_RESET_ITERATIONS;
2766 
2767 	ATH_PCU_LOCK_ASSERT(sc);
2768 	do {
2769 		if (sc->sc_inreset_cnt == 0) {
2770 			w = 1;
2771 			break;
2772 		}
2773 		if (dowait == 0) {
2774 			w = 0;
2775 			break;
2776 		}
2777 		ATH_PCU_UNLOCK(sc);
2778 
2779 		/*
2780 		 * 1 tick is likely not enough time for long calibrations
2781 		 * to complete.  So we should wait quite a while.
2782 		 */
2783 #if defined(__DragonFly__)
2784 		tsleep(&sc->sc_inreset_cnt, 0,
2785 		       "ath_reset_grablock", (hz + 99) / 100);
2786 #else
2787 		pause("ath_reset_grablock", msecs_to_ticks(100));
2788 #endif
2789 		i--;
2790 		ATH_PCU_LOCK(sc);
2791 	} while (i > 0);
2792 
2793 	/*
2794 	 * We always increment the refcounter, regardless
2795 	 * of whether we succeeded to get it in an exclusive
2796 	 * way.
2797 	 */
2798 	sc->sc_inreset_cnt++;
2799 
2800 	if (i <= 0)
2801 		device_printf(sc->sc_dev,
2802 		    "%s: didn't finish after %d iterations\n",
2803 		    __func__, MAX_RESET_ITERATIONS);
2804 
2805 	if (w == 0)
2806 		device_printf(sc->sc_dev,
2807 		    "%s: warning, recursive reset path!\n",
2808 		    __func__);
2809 
2810 	return w;
2811 }
2812 #undef MAX_RESET_ITERATIONS
2813 
2814 /*
2815  * XXX TODO: write ath_reset_releaselock
2816  */
2817 
2818 static void
2819 ath_stop(struct ifnet *ifp)
2820 {
2821 	struct ath_softc *sc = ifp->if_softc;
2822 
2823 	ATH_LOCK(sc);
2824 	ath_stop_locked(ifp);
2825 	ATH_UNLOCK(sc);
2826 }
2827 
2828 /*
2829  * Reset the hardware w/o losing operational state.  This is
2830  * basically a more efficient way of doing ath_stop, ath_init,
2831  * followed by state transitions to the current 802.11
2832  * operational state.  Used to recover from various errors and
2833  * to reset or reload hardware state.
2834  */
2835 int
2836 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2837 {
2838 	struct ath_softc *sc = ifp->if_softc;
2839 	struct ieee80211com *ic = ifp->if_l2com;
2840 	struct ath_hal *ah = sc->sc_ah;
2841 	HAL_STATUS status;
2842 	int i;
2843 
2844 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2845 
2846 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2847 	ATH_PCU_UNLOCK_ASSERT(sc);
2848 	ATH_UNLOCK_ASSERT(sc);
2849 
2850 	/* Try to (stop any further TX/RX from occuring */
2851 	taskqueue_block(sc->sc_tq);
2852 
2853 	/*
2854 	 * Wake the hardware up.
2855 	 */
2856 	ATH_LOCK(sc);
2857 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2858 	ATH_UNLOCK(sc);
2859 
2860 	ATH_PCU_LOCK(sc);
2861 
2862 	/*
2863 	 * Grab the reset lock before TX/RX is stopped.
2864 	 *
2865 	 * This is needed to ensure that when the TX/RX actually does finish,
2866 	 * no further TX/RX/reset runs in parallel with this.
2867 	 */
2868 	if (ath_reset_grablock(sc, 1) == 0) {
2869 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2870 		    __func__);
2871 	}
2872 
2873 	/* disable interrupts */
2874 	ath_hal_intrset(ah, 0);
2875 
2876 	/*
2877 	 * Now, ensure that any in progress TX/RX completes before we
2878 	 * continue.
2879 	 */
2880 	ath_txrx_stop_locked(sc);
2881 
2882 	ATH_PCU_UNLOCK(sc);
2883 
2884 	/*
2885 	 * Regardless of whether we're doing a no-loss flush or
2886 	 * not, stop the PCU and handle what's in the RX queue.
2887 	 * That way frames aren't dropped which shouldn't be.
2888 	 */
2889 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2890 	ath_rx_flush(sc);
2891 
2892 	/*
2893 	 * Should now wait for pending TX/RX to complete
2894 	 * and block future ones from occuring. This needs to be
2895 	 * done before the TX queue is drained.
2896 	 */
2897 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2898 
2899 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2900 	/* NB: indicate channel change so we do a full reset */
2901 	ath_update_chainmasks(sc, ic->ic_curchan);
2902 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2903 	    sc->sc_cur_rxchainmask);
2904 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2905 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2906 			__func__, status);
2907 	sc->sc_diversity = ath_hal_getdiversity(ah);
2908 
2909 	ATH_RX_LOCK(sc);
2910 	sc->sc_rx_stopped = 1;
2911 	sc->sc_rx_resetted = 1;
2912 	ATH_RX_UNLOCK(sc);
2913 
2914 	/* Let DFS at it in case it's a DFS channel */
2915 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2916 
2917 	/* Let spectral at in case spectral is enabled */
2918 	ath_spectral_enable(sc, ic->ic_curchan);
2919 
2920 	/*
2921 	 * Let bluetooth coexistence at in case it's needed for this channel
2922 	 */
2923 	ath_btcoex_enable(sc, ic->ic_curchan);
2924 
2925 	/*
2926 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2927 	 * support it.
2928 	 */
2929 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2930 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2931 	else
2932 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2933 
2934 	if (ath_startrecv(sc) != 0)	/* restart recv */
2935 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2936 	/*
2937 	 * We may be doing a reset in response to an ioctl
2938 	 * that changes the channel so update any state that
2939 	 * might change as a result.
2940 	 */
2941 	ath_chan_change(sc, ic->ic_curchan);
2942 	if (sc->sc_beacons) {		/* restart beacons */
2943 #ifdef IEEE80211_SUPPORT_TDMA
2944 		if (sc->sc_tdma)
2945 			ath_tdma_config(sc, NULL);
2946 		else
2947 #endif
2948 			ath_beacon_config(sc, NULL);
2949 	}
2950 
2951 	/*
2952 	 * Release the reset lock and re-enable interrupts here.
2953 	 * If an interrupt was being processed in ath_intr(),
2954 	 * it would disable interrupts at this point. So we have
2955 	 * to atomically enable interrupts and decrement the
2956 	 * reset counter - this way ath_intr() doesn't end up
2957 	 * disabling interrupts without a corresponding enable
2958 	 * in the rest or channel change path.
2959 	 *
2960 	 * Grab the TX reference in case we need to transmit.
2961 	 * That way a parallel transmit doesn't.
2962 	 */
2963 	ATH_PCU_LOCK(sc);
2964 	sc->sc_inreset_cnt--;
2965 	sc->sc_txstart_cnt++;
2966 	/* XXX only do this if sc_inreset_cnt == 0? */
2967 	ath_hal_intrset(ah, sc->sc_imask);
2968 	ATH_PCU_UNLOCK(sc);
2969 
2970 	/*
2971 	 * TX and RX can be started here. If it were started with
2972 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2973 	 * Thus if this is a nested call through the reset or
2974 	 * channel change code, TX completion will occur but
2975 	 * RX completion and ath_start / ath_tx_start will not
2976 	 * run.
2977 	 */
2978 
2979 	/* Restart TX/RX as needed */
2980 	ath_txrx_start(sc);
2981 
2982 	/* XXX TODO: we need to hold the tx refcount here! */
2983 
2984 	/* Restart TX completion and pending TX */
2985 	if (reset_type == ATH_RESET_NOLOSS) {
2986 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2987 			if (ATH_TXQ_SETUP(sc, i)) {
2988 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2989 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2990 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2991 
2992 				ATH_TX_LOCK(sc);
2993 				ath_txq_sched(sc, &sc->sc_txq[i]);
2994 				ATH_TX_UNLOCK(sc);
2995 			}
2996 		}
2997 	}
2998 
2999 	/*
3000 	 * This may have been set during an ath_start() call which
3001 	 * set this once it detected a concurrent TX was going on.
3002 	 * So, clear it.
3003 	 */
3004 	IF_LOCK(&ifp->if_snd);
3005 #if defined(__DragonFly__)
3006 	ifq_clr_oactive(&ifp->if_snd);
3007 #else
3008 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3009 #endif
3010 	IF_UNLOCK(&ifp->if_snd);
3011 
3012 	ATH_LOCK(sc);
3013 	ath_power_restore_power_state(sc);
3014 	ATH_UNLOCK(sc);
3015 
3016 	ATH_PCU_LOCK(sc);
3017 	sc->sc_txstart_cnt--;
3018 	ATH_PCU_UNLOCK(sc);
3019 
3020 	/* Handle any frames in the TX queue */
3021 	/*
3022 	 * XXX should this be done by the caller, rather than
3023 	 * ath_reset() ?
3024 	 */
3025 	ath_tx_kick(sc);		/* restart xmit */
3026 	return 0;
3027 }
3028 
3029 static int
3030 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3031 {
3032 	struct ieee80211com *ic = vap->iv_ic;
3033 	struct ifnet *ifp = ic->ic_ifp;
3034 	struct ath_softc *sc = ifp->if_softc;
3035 	struct ath_hal *ah = sc->sc_ah;
3036 
3037 	switch (cmd) {
3038 	case IEEE80211_IOC_TXPOWER:
3039 		/*
3040 		 * If per-packet TPC is enabled, then we have nothing
3041 		 * to do; otherwise we need to force the global limit.
3042 		 * All this can happen directly; no need to reset.
3043 		 */
3044 		if (!ath_hal_gettpc(ah))
3045 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3046 		return 0;
3047 	}
3048 	/* XXX? Full or NOLOSS? */
3049 	return ath_reset(ifp, ATH_RESET_FULL);
3050 }
3051 
3052 struct ath_buf *
3053 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3054 {
3055 	struct ath_buf *bf;
3056 
3057 	ATH_TXBUF_LOCK_ASSERT(sc);
3058 
3059 	if (btype == ATH_BUFTYPE_MGMT)
3060 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3061 	else
3062 		bf = TAILQ_FIRST(&sc->sc_txbuf);
3063 
3064 	if (bf == NULL) {
3065 		sc->sc_stats.ast_tx_getnobuf++;
3066 	} else {
3067 		if (bf->bf_flags & ATH_BUF_BUSY) {
3068 			sc->sc_stats.ast_tx_getbusybuf++;
3069 			bf = NULL;
3070 		}
3071 	}
3072 
3073 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3074 		if (btype == ATH_BUFTYPE_MGMT)
3075 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3076 		else {
3077 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3078 			sc->sc_txbuf_cnt--;
3079 
3080 			/*
3081 			 * This shuldn't happen; however just to be
3082 			 * safe print a warning and fudge the txbuf
3083 			 * count.
3084 			 */
3085 			if (sc->sc_txbuf_cnt < 0) {
3086 				device_printf(sc->sc_dev,
3087 				    "%s: sc_txbuf_cnt < 0?\n",
3088 				    __func__);
3089 				sc->sc_txbuf_cnt = 0;
3090 			}
3091 		}
3092 	} else
3093 		bf = NULL;
3094 
3095 	if (bf == NULL) {
3096 		/* XXX should check which list, mgmt or otherwise */
3097 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3098 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3099 			"out of xmit buffers" : "xmit buffer busy");
3100 		return NULL;
3101 	}
3102 
3103 	/* XXX TODO: should do this at buffer list initialisation */
3104 	/* XXX (then, ensure the buffer has the right flag set) */
3105 	bf->bf_flags = 0;
3106 	if (btype == ATH_BUFTYPE_MGMT)
3107 		bf->bf_flags |= ATH_BUF_MGMT;
3108 	else
3109 		bf->bf_flags &= (~ATH_BUF_MGMT);
3110 
3111 	/* Valid bf here; clear some basic fields */
3112 	bf->bf_next = NULL;	/* XXX just to be sure */
3113 	bf->bf_last = NULL;	/* XXX again, just to be sure */
3114 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3115 	bzero(&bf->bf_state, sizeof(bf->bf_state));
3116 
3117 	/*
3118 	 * Track the descriptor ID only if doing EDMA
3119 	 */
3120 	if (sc->sc_isedma) {
3121 		bf->bf_descid = sc->sc_txbuf_descid;
3122 		sc->sc_txbuf_descid++;
3123 	}
3124 
3125 	return bf;
3126 }
3127 
3128 /*
3129  * When retrying a software frame, buffers marked ATH_BUF_BUSY
3130  * can't be thrown back on the queue as they could still be
3131  * in use by the hardware.
3132  *
3133  * This duplicates the buffer, or returns NULL.
3134  *
3135  * The descriptor is also copied but the link pointers and
3136  * the DMA segments aren't copied; this frame should thus
3137  * be again passed through the descriptor setup/chain routines
3138  * so the link is correct.
3139  *
3140  * The caller must free the buffer using ath_freebuf().
3141  */
3142 struct ath_buf *
3143 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3144 {
3145 	struct ath_buf *tbf;
3146 
3147 	tbf = ath_getbuf(sc,
3148 	    (bf->bf_flags & ATH_BUF_MGMT) ?
3149 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3150 	if (tbf == NULL)
3151 		return NULL;	/* XXX failure? Why? */
3152 
3153 	/* Copy basics */
3154 	tbf->bf_next = NULL;
3155 	tbf->bf_nseg = bf->bf_nseg;
3156 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3157 	tbf->bf_status = bf->bf_status;
3158 	tbf->bf_m = bf->bf_m;
3159 	tbf->bf_node = bf->bf_node;
3160 	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3161 	/* will be setup by the chain/setup function */
3162 	tbf->bf_lastds = NULL;
3163 	/* for now, last == self */
3164 	tbf->bf_last = tbf;
3165 	tbf->bf_comp = bf->bf_comp;
3166 
3167 	/* NOTE: DMA segments will be setup by the setup/chain functions */
3168 
3169 	/* The caller has to re-init the descriptor + links */
3170 
3171 	/*
3172 	 * Free the DMA mapping here, before we NULL the mbuf.
3173 	 * We must only call bus_dmamap_unload() once per mbuf chain
3174 	 * or behaviour is undefined.
3175 	 */
3176 	if (bf->bf_m != NULL) {
3177 		/*
3178 		 * XXX is this POSTWRITE call required?
3179 		 */
3180 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3181 		    BUS_DMASYNC_POSTWRITE);
3182 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3183 	}
3184 
3185 	bf->bf_m = NULL;
3186 	bf->bf_node = NULL;
3187 
3188 	/* Copy state */
3189 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3190 
3191 	return tbf;
3192 }
3193 
3194 struct ath_buf *
3195 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3196 {
3197 	struct ath_buf *bf;
3198 
3199 	ATH_TXBUF_LOCK(sc);
3200 	bf = _ath_getbuf_locked(sc, btype);
3201 	/*
3202 	 * If a mgmt buffer was requested but we're out of those,
3203 	 * try requesting a normal one.
3204 	 */
3205 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3206 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3207 	ATH_TXBUF_UNLOCK(sc);
3208 	if (bf == NULL) {
3209 		struct ifnet *ifp = sc->sc_ifp;
3210 
3211 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3212 		sc->sc_stats.ast_tx_qstop++;
3213 		IF_LOCK(&ifp->if_snd);
3214 #if defined(__DragonFly__)
3215 		ifq_set_oactive(&ifp->if_snd);
3216 #else
3217 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3218 #endif
3219 		IF_UNLOCK(&ifp->if_snd);
3220 	}
3221 	return bf;
3222 }
3223 
3224 #if !defined(__DragonFly__)
3225 
3226 static void
3227 ath_qflush(struct ifnet *ifp)
3228 {
3229 
3230 	/* XXX TODO */
3231 }
3232 
3233 #endif
3234 
3235 /*
3236  * Transmit a single frame.
3237  *
3238  * net80211 will free the node reference if the transmit
3239  * fails, so don't free the node reference here.
3240  */
3241 static int
3242 ath_transmit(struct ifnet *ifp, struct mbuf *m)
3243 {
3244 	struct ieee80211com *ic = ifp->if_l2com;
3245 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3246 	struct ieee80211_node *ni;
3247 	struct mbuf *next;
3248 	struct ath_buf *bf;
3249 	ath_bufhead frags;
3250 	int retval = 0;
3251 
3252 	/*
3253 	 * Tell the reset path that we're currently transmitting.
3254 	 */
3255 	ATH_PCU_LOCK(sc);
3256 	if (sc->sc_inreset_cnt > 0) {
3257 		DPRINTF(sc, ATH_DEBUG_XMIT,
3258 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3259 		ATH_PCU_UNLOCK(sc);
3260 		IF_LOCK(&ifp->if_snd);
3261 		sc->sc_stats.ast_tx_qstop++;
3262 #if defined(__DragonFly__)
3263 		/* removed, DragonFly uses OACTIVE to control if_start calls */
3264 		/*ifq_set_oactive(&ifp->if_snd);*/
3265 #else
3266 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3267 #endif
3268 		IF_UNLOCK(&ifp->if_snd);
3269 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3270 #if defined(__DragonFly__)
3271 		m_freem(m);
3272 		m = NULL;
3273 #endif
3274 		return (ENOBUFS);	/* XXX should be EINVAL or? */
3275 	}
3276 	sc->sc_txstart_cnt++;
3277 	ATH_PCU_UNLOCK(sc);
3278 
3279 	/* Wake the hardware up already */
3280 	ATH_LOCK(sc);
3281 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3282 	ATH_UNLOCK(sc);
3283 
3284 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3285 	/*
3286 	 * Grab the TX lock - it's ok to do this here; we haven't
3287 	 * yet started transmitting.
3288 	 */
3289 	ATH_TX_LOCK(sc);
3290 
3291 	/*
3292 	 * Node reference, if there's one.
3293 	 */
3294 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3295 
3296 	/*
3297 	 * Enforce how deep a node queue can get.
3298 	 *
3299 	 * XXX it would be nicer if we kept an mbuf queue per
3300 	 * node and only whacked them into ath_bufs when we
3301 	 * are ready to schedule some traffic from them.
3302 	 * .. that may come later.
3303 	 *
3304 	 * XXX we should also track the per-node hardware queue
3305 	 * depth so it is easy to limit the _SUM_ of the swq and
3306 	 * hwq frames.  Since we only schedule two HWQ frames
3307 	 * at a time, this should be OK for now.
3308 	 */
3309 	if ((!(m->m_flags & M_EAPOL)) &&
3310 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3311 		sc->sc_stats.ast_tx_nodeq_overflow++;
3312 		m_freem(m);
3313 		m = NULL;
3314 		retval = ENOBUFS;
3315 		goto finish;
3316 	}
3317 
3318 	/*
3319 	 * Check how many TX buffers are available.
3320 	 *
3321 	 * If this is for non-EAPOL traffic, just leave some
3322 	 * space free in order for buffer cloning and raw
3323 	 * frame transmission to occur.
3324 	 *
3325 	 * If it's for EAPOL traffic, ignore this for now.
3326 	 * Management traffic will be sent via the raw transmit
3327 	 * method which bypasses this check.
3328 	 *
3329 	 * This is needed to ensure that EAPOL frames during
3330 	 * (re) keying have a chance to go out.
3331 	 *
3332 	 * See kern/138379 for more information.
3333 	 */
3334 	if ((!(m->m_flags & M_EAPOL)) &&
3335 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3336 		sc->sc_stats.ast_tx_nobuf++;
3337 		m_freem(m);
3338 		m = NULL;
3339 		retval = ENOBUFS;
3340 		goto finish;
3341 	}
3342 
3343 	/*
3344 	 * Grab a TX buffer and associated resources.
3345 	 *
3346 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3347 	 * That way even with temporary buffer exhaustion due to
3348 	 * the data path doesn't leave us without the ability
3349 	 * to transmit management frames.
3350 	 *
3351 	 * Otherwise allocate a normal buffer.
3352 	 */
3353 	if (m->m_flags & M_EAPOL)
3354 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3355 	else
3356 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3357 
3358 	if (bf == NULL) {
3359 		/*
3360 		 * If we failed to allocate a buffer, fail.
3361 		 *
3362 		 * We shouldn't fail normally, due to the check
3363 		 * above.
3364 		 */
3365 		sc->sc_stats.ast_tx_nobuf++;
3366 		IF_LOCK(&ifp->if_snd);
3367 #if defined(__DragonFly__)
3368 		/* removed, DragonFly uses OACTIVE to control if_start calls */
3369 		/*ifq_set_oactive(&ifp->if_snd);*/
3370 #else
3371 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3372 #endif
3373 		IF_UNLOCK(&ifp->if_snd);
3374 		m_freem(m);
3375 		m = NULL;
3376 		retval = ENOBUFS;
3377 		goto finish;
3378 	}
3379 
3380 	/*
3381 	 * At this point we have a buffer; so we need to free it
3382 	 * if we hit any error conditions.
3383 	 */
3384 
3385 	/*
3386 	 * Check for fragmentation.  If this frame
3387 	 * has been broken up verify we have enough
3388 	 * buffers to send all the fragments so all
3389 	 * go out or none...
3390 	 */
3391 	TAILQ_INIT(&frags);
3392 	if ((m->m_flags & M_FRAG) &&
3393 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3394 		DPRINTF(sc, ATH_DEBUG_XMIT,
3395 		    "%s: out of txfrag buffers\n", __func__);
3396 		sc->sc_stats.ast_tx_nofrag++;
3397 #if defined(__DragonFly__)
3398 		++ifp->if_oerrors;
3399 #else
3400 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3401 #endif
3402 		ath_freetx(m);
3403 		goto bad;
3404 	}
3405 
3406 	/*
3407 	 * At this point if we have any TX fragments, then we will
3408 	 * have bumped the node reference once for each of those.
3409 	 */
3410 
3411 	/*
3412 	 * XXX Is there anything actually _enforcing_ that the
3413 	 * fragments are being transmitted in one hit, rather than
3414 	 * being interleaved with other transmissions on that
3415 	 * hardware queue?
3416 	 *
3417 	 * The ATH TX output lock is the only thing serialising this
3418 	 * right now.
3419 	 */
3420 
3421 	/*
3422 	 * Calculate the "next fragment" length field in ath_buf
3423 	 * in order to let the transmit path know enough about
3424 	 * what to next write to the hardware.
3425 	 */
3426 	if (m->m_flags & M_FRAG) {
3427 		struct ath_buf *fbf = bf;
3428 		struct ath_buf *n_fbf = NULL;
3429 		struct mbuf *fm = m->m_nextpkt;
3430 
3431 		/*
3432 		 * We need to walk the list of fragments and set
3433 		 * the next size to the following buffer.
3434 		 * However, the first buffer isn't in the frag
3435 		 * list, so we have to do some gymnastics here.
3436 		 */
3437 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3438 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3439 			fbf = n_fbf;
3440 			fm = fm->m_nextpkt;
3441 		}
3442 	}
3443 
3444 	/*
3445 	 * Bump the ifp output counter.
3446 	 *
3447 	 * XXX should use atomics?
3448 	 */
3449 #if defined(__DragonFly__)
3450 	++ifp->if_opackets;
3451 #else
3452 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3453 #endif
3454 nextfrag:
3455 	/*
3456 	 * Pass the frame to the h/w for transmission.
3457 	 * Fragmented frames have each frag chained together
3458 	 * with m_nextpkt.  We know there are sufficient ath_buf's
3459 	 * to send all the frags because of work done by
3460 	 * ath_txfrag_setup.  We leave m_nextpkt set while
3461 	 * calling ath_tx_start so it can use it to extend the
3462 	 * the tx duration to cover the subsequent frag and
3463 	 * so it can reclaim all the mbufs in case of an error;
3464 	 * ath_tx_start clears m_nextpkt once it commits to
3465 	 * handing the frame to the hardware.
3466 	 *
3467 	 * Note: if this fails, then the mbufs are freed but
3468 	 * not the node reference.
3469 	 */
3470 	next = m->m_nextpkt;
3471 	if (ath_tx_start(sc, ni, bf, m)) {
3472 bad:
3473 #if defined(__DragonFly__)
3474 		++ifp->if_oerrors;
3475 #else
3476 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3477 #endif
3478 reclaim:
3479 		bf->bf_m = NULL;
3480 		bf->bf_node = NULL;
3481 		ATH_TXBUF_LOCK(sc);
3482 		ath_returnbuf_head(sc, bf);
3483 		/*
3484 		 * Free the rest of the node references and
3485 		 * buffers for the fragment list.
3486 		 */
3487 		ath_txfrag_cleanup(sc, &frags, ni);
3488 		ATH_TXBUF_UNLOCK(sc);
3489 		retval = ENOBUFS;
3490 		goto finish;
3491 	}
3492 
3493 	/*
3494 	 * Check here if the node is in power save state.
3495 	 */
3496 	ath_tx_update_tim(sc, ni, 1);
3497 
3498 	if (next != NULL) {
3499 		/*
3500 		 * Beware of state changing between frags.
3501 		 * XXX check sta power-save state?
3502 		 */
3503 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3504 			DPRINTF(sc, ATH_DEBUG_XMIT,
3505 			    "%s: flush fragmented packet, state %s\n",
3506 			    __func__,
3507 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3508 			/* XXX dmamap */
3509 			ath_freetx(next);
3510 			goto reclaim;
3511 		}
3512 		m = next;
3513 		bf = TAILQ_FIRST(&frags);
3514 		KASSERT(bf != NULL, ("no buf for txfrag"));
3515 		TAILQ_REMOVE(&frags, bf, bf_list);
3516 		goto nextfrag;
3517 	}
3518 
3519 	/*
3520 	 * Bump watchdog timer.
3521 	 */
3522 	sc->sc_wd_timer = 5;
3523 
3524 finish:
3525 	ATH_TX_UNLOCK(sc);
3526 
3527 	/*
3528 	 * Finished transmitting!
3529 	 */
3530 	ATH_PCU_LOCK(sc);
3531 	sc->sc_txstart_cnt--;
3532 	ATH_PCU_UNLOCK(sc);
3533 
3534 	/* Sleep the hardware if required */
3535 	ATH_LOCK(sc);
3536 	ath_power_restore_power_state(sc);
3537 	ATH_UNLOCK(sc);
3538 
3539 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3540 
3541 	return (retval);
3542 }
3543 
3544 static int
3545 ath_media_change(struct ifnet *ifp)
3546 {
3547 	int error = ieee80211_media_change(ifp);
3548 	/* NB: only the fixed rate can change and that doesn't need a reset */
3549 	return (error == ENETRESET ? 0 : error);
3550 }
3551 
3552 /*
3553  * Block/unblock tx+rx processing while a key change is done.
3554  * We assume the caller serializes key management operations
3555  * so we only need to worry about synchronization with other
3556  * uses that originate in the driver.
3557  */
3558 static void
3559 ath_key_update_begin(struct ieee80211vap *vap)
3560 {
3561 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3562 	struct ath_softc *sc = ifp->if_softc;
3563 
3564 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3565 	taskqueue_block(sc->sc_tq);
3566 }
3567 
3568 static void
3569 ath_key_update_end(struct ieee80211vap *vap)
3570 {
3571 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3572 	struct ath_softc *sc = ifp->if_softc;
3573 
3574 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3575 	taskqueue_unblock(sc->sc_tq);
3576 }
3577 
3578 static void
3579 ath_update_promisc(struct ifnet *ifp)
3580 {
3581 	struct ath_softc *sc = ifp->if_softc;
3582 	u_int32_t rfilt;
3583 
3584 	/* configure rx filter */
3585 	ATH_LOCK(sc);
3586 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3587 	rfilt = ath_calcrxfilter(sc);
3588 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3589 	ath_power_restore_power_state(sc);
3590 	ATH_UNLOCK(sc);
3591 
3592 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3593 }
3594 
3595 /*
3596  * Driver-internal mcast update call.
3597  *
3598  * Assumes the hardware is already awake.
3599  */
3600 static void
3601 ath_update_mcast_hw(struct ath_softc *sc)
3602 {
3603 	struct ifnet *ifp = sc->sc_ifp;
3604 	u_int32_t mfilt[2];
3605 
3606 	/* calculate and install multicast filter */
3607 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3608 		struct ifmultiaddr *ifma;
3609 		/*
3610 		 * Merge multicast addresses to form the hardware filter.
3611 		 */
3612 		mfilt[0] = mfilt[1] = 0;
3613 #if defined(__DragonFly__)
3614 		/* nothing */
3615 #else
3616 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3617 #endif
3618 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3619 			caddr_t dl;
3620 			u_int32_t val;
3621 			u_int8_t pos;
3622 
3623 			/* calculate XOR of eight 6bit values */
3624 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3625 			val = LE_READ_4(dl + 0);
3626 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3627 			val = LE_READ_4(dl + 3);
3628 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3629 			pos &= 0x3f;
3630 			mfilt[pos / 32] |= (1 << (pos % 32));
3631 		}
3632 #if defined(__DragonFly__)
3633 		/* nothing */
3634 #else
3635 		if_maddr_runlock(ifp);
3636 #endif
3637 	} else
3638 		mfilt[0] = mfilt[1] = ~0;
3639 
3640 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3641 
3642 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3643 		__func__, mfilt[0], mfilt[1]);
3644 }
3645 
3646 /*
3647  * Called from the net80211 layer - force the hardware
3648  * awake before operating.
3649  */
3650 static void
3651 ath_update_mcast(struct ifnet *ifp)
3652 {
3653 	struct ath_softc *sc = ifp->if_softc;
3654 
3655 	ATH_LOCK(sc);
3656 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3657 	ATH_UNLOCK(sc);
3658 
3659 	ath_update_mcast_hw(sc);
3660 
3661 	ATH_LOCK(sc);
3662 	ath_power_restore_power_state(sc);
3663 	ATH_UNLOCK(sc);
3664 }
3665 
3666 void
3667 ath_mode_init(struct ath_softc *sc)
3668 {
3669 	struct ifnet *ifp = sc->sc_ifp;
3670 	struct ath_hal *ah = sc->sc_ah;
3671 	u_int32_t rfilt;
3672 
3673 	/* configure rx filter */
3674 	rfilt = ath_calcrxfilter(sc);
3675 	ath_hal_setrxfilter(ah, rfilt);
3676 
3677 	/* configure operational mode */
3678 	ath_hal_setopmode(ah);
3679 
3680 #if !defined(__DragonFly__)
3681 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3682 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3683 	    __func__,
3684 	    ah,
3685 	    ifp,
3686 	    (ifp == NULL) ? NULL : ifp->if_addr);
3687 #endif
3688 
3689 	/* handle any link-level address change */
3690 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3691 
3692 	/* calculate and install multicast filter */
3693 	ath_update_mcast_hw(sc);
3694 }
3695 
3696 /*
3697  * Set the slot time based on the current setting.
3698  */
3699 void
3700 ath_setslottime(struct ath_softc *sc)
3701 {
3702 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3703 	struct ath_hal *ah = sc->sc_ah;
3704 	u_int usec;
3705 
3706 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3707 		usec = 13;
3708 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3709 		usec = 21;
3710 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3711 		/* honor short/long slot time only in 11g */
3712 		/* XXX shouldn't honor on pure g or turbo g channel */
3713 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3714 			usec = HAL_SLOT_TIME_9;
3715 		else
3716 			usec = HAL_SLOT_TIME_20;
3717 	} else
3718 		usec = HAL_SLOT_TIME_9;
3719 
3720 	DPRINTF(sc, ATH_DEBUG_RESET,
3721 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3722 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3723 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3724 
3725 	/* Wake up the hardware first before updating the slot time */
3726 	ATH_LOCK(sc);
3727 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3728 	ath_hal_setslottime(ah, usec);
3729 	ath_power_restore_power_state(sc);
3730 	sc->sc_updateslot = OK;
3731 	ATH_UNLOCK(sc);
3732 }
3733 
3734 /*
3735  * Callback from the 802.11 layer to update the
3736  * slot time based on the current setting.
3737  */
3738 static void
3739 ath_updateslot(struct ifnet *ifp)
3740 {
3741 	struct ath_softc *sc = ifp->if_softc;
3742 	struct ieee80211com *ic = ifp->if_l2com;
3743 
3744 	/*
3745 	 * When not coordinating the BSS, change the hardware
3746 	 * immediately.  For other operation we defer the change
3747 	 * until beacon updates have propagated to the stations.
3748 	 *
3749 	 * XXX sc_updateslot isn't changed behind a lock?
3750 	 */
3751 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3752 	    ic->ic_opmode == IEEE80211_M_MBSS)
3753 		sc->sc_updateslot = UPDATE;
3754 	else
3755 		ath_setslottime(sc);
3756 }
3757 
3758 /*
3759  * Append the contents of src to dst; both queues
3760  * are assumed to be locked.
3761  */
3762 void
3763 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3764 {
3765 
3766 	ATH_TXQ_LOCK_ASSERT(src);
3767 	ATH_TXQ_LOCK_ASSERT(dst);
3768 
3769 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3770 	dst->axq_link = src->axq_link;
3771 	src->axq_link = NULL;
3772 	dst->axq_depth += src->axq_depth;
3773 	dst->axq_aggr_depth += src->axq_aggr_depth;
3774 	src->axq_depth = 0;
3775 	src->axq_aggr_depth = 0;
3776 }
3777 
3778 /*
3779  * Reset the hardware, with no loss.
3780  *
3781  * This can't be used for a general case reset.
3782  */
3783 static void
3784 ath_reset_proc(void *arg, int pending)
3785 {
3786 	struct ath_softc *sc = arg;
3787 	struct ifnet *ifp = sc->sc_ifp;
3788 
3789 #if 0
3790 	if_printf(ifp, "%s: resetting\n", __func__);
3791 #endif
3792 	wlan_serialize_enter();
3793 	ath_reset(ifp, ATH_RESET_NOLOSS);
3794 	wlan_serialize_exit();
3795 }
3796 
3797 /*
3798  * Reset the hardware after detecting beacons have stopped.
3799  */
3800 static void
3801 ath_bstuck_proc(void *arg, int pending)
3802 {
3803 	struct ath_softc *sc = arg;
3804 	struct ifnet *ifp = sc->sc_ifp;
3805 	uint32_t hangs = 0;
3806 
3807 	wlan_serialize_enter();
3808 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3809 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3810 
3811 #ifdef	ATH_DEBUG_ALQ
3812 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3813 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3814 #endif
3815 
3816 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3817 		sc->sc_bmisscount);
3818 	sc->sc_stats.ast_bstuck++;
3819 	/*
3820 	 * This assumes that there's no simultaneous channel mode change
3821 	 * occuring.
3822 	 */
3823 	ath_reset(ifp, ATH_RESET_NOLOSS);
3824 	wlan_serialize_exit();
3825 }
3826 
3827 static void
3828 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3829 {
3830 	bus_addr_t *paddr = (bus_addr_t*) arg;
3831 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3832 	*paddr = segs->ds_addr;
3833 }
3834 
3835 /*
3836  * Allocate the descriptors and appropriate DMA tag/setup.
3837  *
3838  * For some situations (eg EDMA TX completion), there isn't a requirement
3839  * for the ath_buf entries to be allocated.
3840  */
3841 int
3842 ath_descdma_alloc_desc(struct ath_softc *sc,
3843 	struct ath_descdma *dd, ath_bufhead *head,
3844 	const char *name, int ds_size, int ndesc)
3845 {
3846 #define	DS2PHYS(_dd, _ds) \
3847 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3848 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3849 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3850 	struct ifnet *ifp = sc->sc_ifp;
3851 	int error;
3852 
3853 	dd->dd_descsize = ds_size;
3854 
3855 	DPRINTF(sc, ATH_DEBUG_RESET,
3856 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3857 	    __func__, name, ndesc, dd->dd_descsize);
3858 
3859 	dd->dd_name = name;
3860 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3861 
3862 	/*
3863 	 * Merlin work-around:
3864 	 * Descriptors that cross the 4KB boundary can't be used.
3865 	 * Assume one skipped descriptor per 4KB page.
3866 	 */
3867 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3868 		int numpages = dd->dd_desc_len / 4096;
3869 		dd->dd_desc_len += ds_size * numpages;
3870 	}
3871 
3872 	/*
3873 	 * Setup DMA descriptor area.
3874 	 *
3875 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3876 	 * buffers for the descriptors themselves.
3877 	 */
3878 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3879 		       PAGE_SIZE, 0,		/* alignment, bounds */
3880 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3881 		       BUS_SPACE_MAXADDR,	/* highaddr */
3882 		       NULL, NULL,		/* filter, filterarg */
3883 		       dd->dd_desc_len,		/* maxsize */
3884 		       1,			/* nsegments */
3885 		       dd->dd_desc_len,		/* maxsegsize */
3886 		       0,			/* flags */
3887 #if !defined(__DragonFly__)
3888 		       NULL,			/* lockfunc */
3889 		       NULL,			/* lockarg */
3890 #endif
3891 		       &dd->dd_dmat);
3892 	if (error != 0) {
3893 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3894 		return error;
3895 	}
3896 
3897 	/* allocate descriptors */
3898 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3899 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3900 				 &dd->dd_dmamap);
3901 	if (error != 0) {
3902 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3903 			"error %u\n", ndesc, dd->dd_name, error);
3904 		goto fail1;
3905 	}
3906 
3907 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3908 				dd->dd_desc, dd->dd_desc_len,
3909 				ath_load_cb, &dd->dd_desc_paddr,
3910 				BUS_DMA_NOWAIT);
3911 	if (error != 0) {
3912 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3913 			dd->dd_name, error);
3914 		goto fail2;
3915 	}
3916 
3917 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3918 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3919 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3920 	    /*XXX*/ (u_long) dd->dd_desc_len);
3921 
3922 	return (0);
3923 
3924 fail2:
3925 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3926 fail1:
3927 	bus_dma_tag_destroy(dd->dd_dmat);
3928 	memset(dd, 0, sizeof(*dd));
3929 	return error;
3930 #undef DS2PHYS
3931 #undef ATH_DESC_4KB_BOUND_CHECK
3932 }
3933 
3934 int
3935 ath_descdma_setup(struct ath_softc *sc,
3936 	struct ath_descdma *dd, ath_bufhead *head,
3937 	const char *name, int ds_size, int nbuf, int ndesc)
3938 {
3939 #define	DS2PHYS(_dd, _ds) \
3940 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3941 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3942 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3943 	struct ifnet *ifp = sc->sc_ifp;
3944 	uint8_t *ds;
3945 	struct ath_buf *bf;
3946 	int i, bsize, error;
3947 
3948 	/* Allocate descriptors */
3949 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3950 	    nbuf * ndesc);
3951 
3952 	/* Assume any errors during allocation were dealt with */
3953 	if (error != 0) {
3954 		return (error);
3955 	}
3956 
3957 	ds = (uint8_t *) dd->dd_desc;
3958 
3959 	/* allocate rx buffers */
3960 	bsize = sizeof(struct ath_buf) * nbuf;
3961 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3962 	if (bf == NULL) {
3963 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3964 			dd->dd_name, bsize);
3965 		goto fail3;
3966 	}
3967 	dd->dd_bufptr = bf;
3968 
3969 	TAILQ_INIT(head);
3970 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3971 		bf->bf_desc = (struct ath_desc *) ds;
3972 		bf->bf_daddr = DS2PHYS(dd, ds);
3973 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3974 			/*
3975 			 * Merlin WAR: Skip descriptor addresses which
3976 			 * cause 4KB boundary crossing along any point
3977 			 * in the descriptor.
3978 			 */
3979 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3980 			     dd->dd_descsize)) {
3981 				/* Start at the next page */
3982 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3983 				bf->bf_desc = (struct ath_desc *) ds;
3984 				bf->bf_daddr = DS2PHYS(dd, ds);
3985 			}
3986 		}
3987 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3988 				&bf->bf_dmamap);
3989 		if (error != 0) {
3990 			if_printf(ifp, "unable to create dmamap for %s "
3991 				"buffer %u, error %u\n", dd->dd_name, i, error);
3992 			ath_descdma_cleanup(sc, dd, head);
3993 			return error;
3994 		}
3995 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3996 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3997 	}
3998 
3999 	/*
4000 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
4001 	 * allocation otherwise weird stuff will occur and crash your
4002 	 * machine.
4003 	 */
4004 	return 0;
4005 	/* XXX this should likely just call ath_descdma_cleanup() */
4006 fail3:
4007 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
4008 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
4009 	bus_dma_tag_destroy(dd->dd_dmat);
4010 	memset(dd, 0, sizeof(*dd));
4011 	return error;
4012 #undef DS2PHYS
4013 #undef ATH_DESC_4KB_BOUND_CHECK
4014 }
4015 
4016 /*
4017  * Allocate ath_buf entries but no descriptor contents.
4018  *
4019  * This is for RX EDMA where the descriptors are the header part of
4020  * the RX buffer.
4021  */
4022 int
4023 ath_descdma_setup_rx_edma(struct ath_softc *sc,
4024 	struct ath_descdma *dd, ath_bufhead *head,
4025 	const char *name, int nbuf, int rx_status_len)
4026 {
4027 	struct ifnet *ifp = sc->sc_ifp;
4028 	struct ath_buf *bf;
4029 	int i, bsize, error;
4030 
4031 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
4032 	    __func__, name, nbuf);
4033 
4034 	dd->dd_name = name;
4035 	/*
4036 	 * This is (mostly) purely for show.  We're not allocating any actual
4037 	 * descriptors here as EDMA RX has the descriptor be part
4038 	 * of the RX buffer.
4039 	 *
4040 	 * However, dd_desc_len is used by ath_descdma_free() to determine
4041 	 * whether we have already freed this DMA mapping.
4042 	 */
4043 	dd->dd_desc_len = rx_status_len * nbuf;
4044 	dd->dd_descsize = rx_status_len;
4045 
4046 	/* allocate rx buffers */
4047 	bsize = sizeof(struct ath_buf) * nbuf;
4048 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
4049 	if (bf == NULL) {
4050 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
4051 			dd->dd_name, bsize);
4052 		error = ENOMEM;
4053 		goto fail3;
4054 	}
4055 	dd->dd_bufptr = bf;
4056 
4057 	TAILQ_INIT(head);
4058 	for (i = 0; i < nbuf; i++, bf++) {
4059 		bf->bf_desc = NULL;
4060 		bf->bf_daddr = 0;
4061 		bf->bf_lastds = NULL;	/* Just an initial value */
4062 
4063 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
4064 				&bf->bf_dmamap);
4065 		if (error != 0) {
4066 			if_printf(ifp, "unable to create dmamap for %s "
4067 				"buffer %u, error %u\n", dd->dd_name, i, error);
4068 			ath_descdma_cleanup(sc, dd, head);
4069 			return error;
4070 		}
4071 		TAILQ_INSERT_TAIL(head, bf, bf_list);
4072 	}
4073 	return 0;
4074 fail3:
4075 	memset(dd, 0, sizeof(*dd));
4076 	return error;
4077 }
4078 
4079 void
4080 ath_descdma_cleanup(struct ath_softc *sc,
4081 	struct ath_descdma *dd, ath_bufhead *head)
4082 {
4083 	struct ath_buf *bf;
4084 	struct ieee80211_node *ni;
4085 	int do_warning = 0;
4086 
4087 	if (dd->dd_dmamap != 0) {
4088 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
4089 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
4090 		bus_dma_tag_destroy(dd->dd_dmat);
4091 	}
4092 
4093 	if (head != NULL) {
4094 		TAILQ_FOREACH(bf, head, bf_list) {
4095 			if (bf->bf_m) {
4096 				/*
4097 				 * XXX warn if there's buffers here.
4098 				 * XXX it should have been freed by the
4099 				 * owner!
4100 				 */
4101 
4102 				if (do_warning == 0) {
4103 					do_warning = 1;
4104 					device_printf(sc->sc_dev,
4105 					    "%s: %s: mbuf should've been"
4106 					    " unmapped/freed!\n",
4107 					    __func__,
4108 					    dd->dd_name);
4109 				}
4110 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4111 				    BUS_DMASYNC_POSTREAD);
4112 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4113 				m_freem(bf->bf_m);
4114 				bf->bf_m = NULL;
4115 			}
4116 			if (bf->bf_dmamap != NULL) {
4117 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
4118 				bf->bf_dmamap = NULL;
4119 			}
4120 			ni = bf->bf_node;
4121 			bf->bf_node = NULL;
4122 			if (ni != NULL) {
4123 				/*
4124 				 * Reclaim node reference.
4125 				 */
4126 				ieee80211_free_node(ni);
4127 			}
4128 		}
4129 	}
4130 
4131 	if (head != NULL)
4132 		TAILQ_INIT(head);
4133 
4134 	if (dd->dd_bufptr != NULL)
4135 		kfree(dd->dd_bufptr, M_ATHDEV);
4136 	memset(dd, 0, sizeof(*dd));
4137 }
4138 
4139 static int
4140 ath_desc_alloc(struct ath_softc *sc)
4141 {
4142 	int error;
4143 
4144 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
4145 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
4146 	if (error != 0) {
4147 		return error;
4148 	}
4149 	sc->sc_txbuf_cnt = ath_txbuf;
4150 
4151 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
4152 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
4153 		    ATH_TXDESC);
4154 	if (error != 0) {
4155 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4156 		return error;
4157 	}
4158 
4159 	/*
4160 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
4161 	 * flag doesn't have to be set in ath_getbuf_locked().
4162 	 */
4163 
4164 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
4165 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
4166 	if (error != 0) {
4167 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4168 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4169 		    &sc->sc_txbuf_mgmt);
4170 		return error;
4171 	}
4172 	return 0;
4173 }
4174 
4175 static void
4176 ath_desc_free(struct ath_softc *sc)
4177 {
4178 
4179 	if (sc->sc_bdma.dd_desc_len != 0)
4180 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
4181 	if (sc->sc_txdma.dd_desc_len != 0)
4182 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4183 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
4184 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4185 		    &sc->sc_txbuf_mgmt);
4186 }
4187 
4188 static struct ieee80211_node *
4189 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4190 {
4191 	struct ieee80211com *ic = vap->iv_ic;
4192 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4193 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
4194 	struct ath_node *an;
4195 
4196 	an = kmalloc(space, M_80211_NODE, M_INTWAIT | M_ZERO);
4197 	if (an == NULL) {
4198 		/* XXX stat+msg */
4199 		return NULL;
4200 	}
4201 	ath_rate_node_init(sc, an);
4202 
4203 	/* Setup the mutex - there's no associd yet so set the name to NULL */
4204 	ksnprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
4205 	    device_get_nameunit(sc->sc_dev), an);
4206 	lockinit(&an->an_mtx, an->an_name, 0, 0);
4207 
4208 	/* XXX setup ath_tid */
4209 	ath_tx_tid_init(sc, an);
4210 
4211 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4212 	    ath_hal_ether_sprintf(mac), an);
4213 	return &an->an_node;
4214 }
4215 
4216 static void
4217 ath_node_cleanup(struct ieee80211_node *ni)
4218 {
4219 	struct ieee80211com *ic = ni->ni_ic;
4220 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4221 
4222 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4223 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
4224 
4225 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
4226 	ath_tx_node_flush(sc, ATH_NODE(ni));
4227 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
4228 	sc->sc_node_cleanup(ni);
4229 }
4230 
4231 static void
4232 ath_node_free(struct ieee80211_node *ni)
4233 {
4234 	struct ieee80211com *ic = ni->ni_ic;
4235 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4236 
4237 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4238 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
4239 	lockuninit(&ATH_NODE(ni)->an_mtx);
4240 	sc->sc_node_free(ni);
4241 }
4242 
4243 static void
4244 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4245 {
4246 	struct ieee80211com *ic = ni->ni_ic;
4247 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4248 	struct ath_hal *ah = sc->sc_ah;
4249 
4250 	*rssi = ic->ic_node_getrssi(ni);
4251 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4252 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4253 	else
4254 		*noise = -95;		/* nominally correct */
4255 }
4256 
4257 /*
4258  * Set the default antenna.
4259  */
4260 void
4261 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4262 {
4263 	struct ath_hal *ah = sc->sc_ah;
4264 
4265 	/* XXX block beacon interrupts */
4266 	ath_hal_setdefantenna(ah, antenna);
4267 	if (sc->sc_defant != antenna)
4268 		sc->sc_stats.ast_ant_defswitch++;
4269 	sc->sc_defant = antenna;
4270 	sc->sc_rxotherant = 0;
4271 }
4272 
4273 static void
4274 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4275 {
4276 	txq->axq_qnum = qnum;
4277 	txq->axq_ac = 0;
4278 	txq->axq_depth = 0;
4279 	txq->axq_aggr_depth = 0;
4280 	txq->axq_intrcnt = 0;
4281 	txq->axq_link = NULL;
4282 	txq->axq_softc = sc;
4283 	TAILQ_INIT(&txq->axq_q);
4284 	TAILQ_INIT(&txq->axq_tidq);
4285 	TAILQ_INIT(&txq->fifo.axq_q);
4286 	ATH_TXQ_LOCK_INIT(sc, txq);
4287 }
4288 
4289 /*
4290  * Setup a h/w transmit queue.
4291  */
4292 static struct ath_txq *
4293 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4294 {
4295 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4296 	struct ath_hal *ah = sc->sc_ah;
4297 	HAL_TXQ_INFO qi;
4298 	int qnum;
4299 
4300 	memset(&qi, 0, sizeof(qi));
4301 	qi.tqi_subtype = subtype;
4302 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4303 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4304 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4305 	/*
4306 	 * Enable interrupts only for EOL and DESC conditions.
4307 	 * We mark tx descriptors to receive a DESC interrupt
4308 	 * when a tx queue gets deep; otherwise waiting for the
4309 	 * EOL to reap descriptors.  Note that this is done to
4310 	 * reduce interrupt load and this only defers reaping
4311 	 * descriptors, never transmitting frames.  Aside from
4312 	 * reducing interrupts this also permits more concurrency.
4313 	 * The only potential downside is if the tx queue backs
4314 	 * up in which case the top half of the kernel may backup
4315 	 * due to a lack of tx descriptors.
4316 	 */
4317 	if (sc->sc_isedma)
4318 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4319 		    HAL_TXQ_TXOKINT_ENABLE;
4320 	else
4321 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4322 		    HAL_TXQ_TXDESCINT_ENABLE;
4323 
4324 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4325 	if (qnum == -1) {
4326 		/*
4327 		 * NB: don't print a message, this happens
4328 		 * normally on parts with too few tx queues
4329 		 */
4330 		return NULL;
4331 	}
4332 	if (qnum >= N(sc->sc_txq)) {
4333 		device_printf(sc->sc_dev,
4334 			"hal qnum %u out of range, max %zu!\n",
4335 			qnum, N(sc->sc_txq));
4336 		ath_hal_releasetxqueue(ah, qnum);
4337 		return NULL;
4338 	}
4339 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4340 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4341 		sc->sc_txqsetup |= 1<<qnum;
4342 	}
4343 	return &sc->sc_txq[qnum];
4344 #undef N
4345 }
4346 
4347 /*
4348  * Setup a hardware data transmit queue for the specified
4349  * access control.  The hal may not support all requested
4350  * queues in which case it will return a reference to a
4351  * previously setup queue.  We record the mapping from ac's
4352  * to h/w queues for use by ath_tx_start and also track
4353  * the set of h/w queues being used to optimize work in the
4354  * transmit interrupt handler and related routines.
4355  */
4356 static int
4357 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4358 {
4359 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4360 	struct ath_txq *txq;
4361 
4362 	if (ac >= N(sc->sc_ac2q)) {
4363 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4364 			ac, N(sc->sc_ac2q));
4365 		return 0;
4366 	}
4367 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4368 	if (txq != NULL) {
4369 		txq->axq_ac = ac;
4370 		sc->sc_ac2q[ac] = txq;
4371 		return 1;
4372 	} else
4373 		return 0;
4374 #undef N
4375 }
4376 
4377 /*
4378  * Update WME parameters for a transmit queue.
4379  */
4380 static int
4381 ath_txq_update(struct ath_softc *sc, int ac)
4382 {
4383 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4384 #define	ATH_TXOP_TO_US(v)		(v<<5)
4385 	struct ifnet *ifp = sc->sc_ifp;
4386 	struct ieee80211com *ic = ifp->if_l2com;
4387 	struct ath_txq *txq = sc->sc_ac2q[ac];
4388 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4389 	struct ath_hal *ah = sc->sc_ah;
4390 	HAL_TXQ_INFO qi;
4391 
4392 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4393 #ifdef IEEE80211_SUPPORT_TDMA
4394 	if (sc->sc_tdma) {
4395 		/*
4396 		 * AIFS is zero so there's no pre-transmit wait.  The
4397 		 * burst time defines the slot duration and is configured
4398 		 * through net80211.  The QCU is setup to not do post-xmit
4399 		 * back off, lockout all lower-priority QCU's, and fire
4400 		 * off the DMA beacon alert timer which is setup based
4401 		 * on the slot configuration.
4402 		 */
4403 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4404 			      | HAL_TXQ_TXERRINT_ENABLE
4405 			      | HAL_TXQ_TXURNINT_ENABLE
4406 			      | HAL_TXQ_TXEOLINT_ENABLE
4407 			      | HAL_TXQ_DBA_GATED
4408 			      | HAL_TXQ_BACKOFF_DISABLE
4409 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4410 			      ;
4411 		qi.tqi_aifs = 0;
4412 		/* XXX +dbaprep? */
4413 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4414 		qi.tqi_burstTime = qi.tqi_readyTime;
4415 	} else {
4416 #endif
4417 		/*
4418 		 * XXX shouldn't this just use the default flags
4419 		 * used in the previous queue setup?
4420 		 */
4421 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4422 			      | HAL_TXQ_TXERRINT_ENABLE
4423 			      | HAL_TXQ_TXDESCINT_ENABLE
4424 			      | HAL_TXQ_TXURNINT_ENABLE
4425 			      | HAL_TXQ_TXEOLINT_ENABLE
4426 			      ;
4427 		qi.tqi_aifs = wmep->wmep_aifsn;
4428 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4429 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4430 		qi.tqi_readyTime = 0;
4431 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4432 #ifdef IEEE80211_SUPPORT_TDMA
4433 	}
4434 #endif
4435 
4436 	DPRINTF(sc, ATH_DEBUG_RESET,
4437 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4438 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4439 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4440 
4441 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4442 		if_printf(ifp, "unable to update hardware queue "
4443 			"parameters for %s traffic!\n",
4444 			ieee80211_wme_acnames[ac]);
4445 		return 0;
4446 	} else {
4447 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4448 		return 1;
4449 	}
4450 #undef ATH_TXOP_TO_US
4451 #undef ATH_EXPONENT_TO_VALUE
4452 }
4453 
4454 /*
4455  * Callback from the 802.11 layer to update WME parameters.
4456  */
4457 int
4458 ath_wme_update(struct ieee80211com *ic)
4459 {
4460 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4461 
4462 	return !ath_txq_update(sc, WME_AC_BE) ||
4463 	    !ath_txq_update(sc, WME_AC_BK) ||
4464 	    !ath_txq_update(sc, WME_AC_VI) ||
4465 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4466 }
4467 
4468 /*
4469  * Reclaim resources for a setup queue.
4470  */
4471 static void
4472 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4473 {
4474 
4475 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4476 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4477 	ATH_TXQ_LOCK_DESTROY(txq);
4478 }
4479 
4480 /*
4481  * Reclaim all tx queue resources.
4482  */
4483 static void
4484 ath_tx_cleanup(struct ath_softc *sc)
4485 {
4486 	int i;
4487 
4488 	ATH_TXBUF_LOCK_DESTROY(sc);
4489 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4490 		if (ATH_TXQ_SETUP(sc, i))
4491 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4492 }
4493 
4494 /*
4495  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4496  * using the current rates in sc_rixmap.
4497  */
4498 int
4499 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4500 {
4501 	int rix = sc->sc_rixmap[rate];
4502 	/* NB: return lowest rix for invalid rate */
4503 	return (rix == 0xff ? 0 : rix);
4504 }
4505 
4506 static void
4507 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4508     struct ath_buf *bf)
4509 {
4510 	struct ieee80211_node *ni = bf->bf_node;
4511 	struct ifnet *ifp = sc->sc_ifp;
4512 	struct ieee80211com *ic = ifp->if_l2com;
4513 	int sr, lr, pri;
4514 
4515 	if (ts->ts_status == 0) {
4516 		u_int8_t txant = ts->ts_antenna;
4517 		sc->sc_stats.ast_ant_tx[txant]++;
4518 		sc->sc_ant_tx[txant]++;
4519 		if (ts->ts_finaltsi != 0)
4520 			sc->sc_stats.ast_tx_altrate++;
4521 		pri = M_WME_GETAC(bf->bf_m);
4522 		if (pri >= WME_AC_VO)
4523 			ic->ic_wme.wme_hipri_traffic++;
4524 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4525 			ni->ni_inact = ni->ni_inact_reload;
4526 	} else {
4527 		if (ts->ts_status & HAL_TXERR_XRETRY)
4528 			sc->sc_stats.ast_tx_xretries++;
4529 		if (ts->ts_status & HAL_TXERR_FIFO)
4530 			sc->sc_stats.ast_tx_fifoerr++;
4531 		if (ts->ts_status & HAL_TXERR_FILT)
4532 			sc->sc_stats.ast_tx_filtered++;
4533 		if (ts->ts_status & HAL_TXERR_XTXOP)
4534 			sc->sc_stats.ast_tx_xtxop++;
4535 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4536 			sc->sc_stats.ast_tx_timerexpired++;
4537 
4538 		if (bf->bf_m->m_flags & M_FF)
4539 			sc->sc_stats.ast_ff_txerr++;
4540 	}
4541 	/* XXX when is this valid? */
4542 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4543 		sc->sc_stats.ast_tx_desccfgerr++;
4544 	/*
4545 	 * This can be valid for successful frame transmission!
4546 	 * If there's a TX FIFO underrun during aggregate transmission,
4547 	 * the MAC will pad the rest of the aggregate with delimiters.
4548 	 * If a BA is returned, the frame is marked as "OK" and it's up
4549 	 * to the TX completion code to notice which frames weren't
4550 	 * successfully transmitted.
4551 	 */
4552 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4553 		sc->sc_stats.ast_tx_data_underrun++;
4554 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4555 		sc->sc_stats.ast_tx_delim_underrun++;
4556 
4557 	sr = ts->ts_shortretry;
4558 	lr = ts->ts_longretry;
4559 	sc->sc_stats.ast_tx_shortretry += sr;
4560 	sc->sc_stats.ast_tx_longretry += lr;
4561 
4562 }
4563 
4564 /*
4565  * The default completion. If fail is 1, this means
4566  * "please don't retry the frame, and just return -1 status
4567  * to the net80211 stack.
4568  */
4569 void
4570 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4571 {
4572 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4573 	int st;
4574 
4575 	if (fail == 1)
4576 		st = -1;
4577 	else
4578 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4579 		    ts->ts_status : HAL_TXERR_XRETRY;
4580 
4581 #if 0
4582 	if (bf->bf_state.bfs_dobaw)
4583 		device_printf(sc->sc_dev,
4584 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4585 		    __func__,
4586 		    bf,
4587 		    SEQNO(bf->bf_state.bfs_seqno));
4588 #endif
4589 	if (bf->bf_next != NULL)
4590 		device_printf(sc->sc_dev,
4591 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4592 		    __func__,
4593 		    bf,
4594 		    SEQNO(bf->bf_state.bfs_seqno));
4595 
4596 	/*
4597 	 * Check if the node software queue is empty; if so
4598 	 * then clear the TIM.
4599 	 *
4600 	 * This needs to be done before the buffer is freed as
4601 	 * otherwise the node reference will have been released
4602 	 * and the node may not actually exist any longer.
4603 	 *
4604 	 * XXX I don't like this belonging here, but it's cleaner
4605 	 * to do it here right now then all the other places
4606 	 * where ath_tx_default_comp() is called.
4607 	 *
4608 	 * XXX TODO: during drain, ensure that the callback is
4609 	 * being called so we get a chance to update the TIM.
4610 	 */
4611 	if (bf->bf_node) {
4612 		ATH_TX_LOCK(sc);
4613 		ath_tx_update_tim(sc, bf->bf_node, 0);
4614 		ATH_TX_UNLOCK(sc);
4615 	}
4616 
4617 	/*
4618 	 * Do any tx complete callback.  Note this must
4619 	 * be done before releasing the node reference.
4620 	 * This will free the mbuf, release the net80211
4621 	 * node and recycle the ath_buf.
4622 	 */
4623 	ath_tx_freebuf(sc, bf, st);
4624 }
4625 
4626 /*
4627  * Update rate control with the given completion status.
4628  */
4629 void
4630 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4631     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4632     int nframes, int nbad)
4633 {
4634 	struct ath_node *an;
4635 
4636 	/* Only for unicast frames */
4637 	if (ni == NULL)
4638 		return;
4639 
4640 	an = ATH_NODE(ni);
4641 	ATH_NODE_UNLOCK_ASSERT(an);
4642 
4643 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4644 		ATH_NODE_LOCK(an);
4645 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4646 		ATH_NODE_UNLOCK(an);
4647 	}
4648 }
4649 
4650 /*
4651  * Process the completion of the given buffer.
4652  *
4653  * This calls the rate control update and then the buffer completion.
4654  * This will either free the buffer or requeue it.  In any case, the
4655  * bf pointer should be treated as invalid after this function is called.
4656  */
4657 void
4658 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4659     struct ath_tx_status *ts, struct ath_buf *bf)
4660 {
4661 	struct ieee80211_node *ni = bf->bf_node;
4662 
4663 	ATH_TX_UNLOCK_ASSERT(sc);
4664 	ATH_TXQ_UNLOCK_ASSERT(txq);
4665 
4666 	/* If unicast frame, update general statistics */
4667 	if (ni != NULL) {
4668 		/* update statistics */
4669 		ath_tx_update_stats(sc, ts, bf);
4670 	}
4671 
4672 	/*
4673 	 * Call the completion handler.
4674 	 * The completion handler is responsible for
4675 	 * calling the rate control code.
4676 	 *
4677 	 * Frames with no completion handler get the
4678 	 * rate control code called here.
4679 	 */
4680 	if (bf->bf_comp == NULL) {
4681 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4682 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4683 			/*
4684 			 * XXX assume this isn't an aggregate
4685 			 * frame.
4686 			 */
4687 			ath_tx_update_ratectrl(sc, ni,
4688 			     bf->bf_state.bfs_rc, ts,
4689 			    bf->bf_state.bfs_pktlen, 1,
4690 			    (ts->ts_status == 0 ? 0 : 1));
4691 		}
4692 		ath_tx_default_comp(sc, bf, 0);
4693 	} else
4694 		bf->bf_comp(sc, bf, 0);
4695 }
4696 
4697 
4698 
4699 /*
4700  * Process completed xmit descriptors from the specified queue.
4701  * Kick the packet scheduler if needed. This can occur from this
4702  * particular task.
4703  */
4704 static int
4705 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4706 {
4707 	struct ath_hal *ah = sc->sc_ah;
4708 	struct ath_buf *bf;
4709 	struct ath_desc *ds;
4710 	struct ath_tx_status *ts;
4711 	struct ieee80211_node *ni;
4712 #ifdef	IEEE80211_SUPPORT_SUPERG
4713 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4714 #endif	/* IEEE80211_SUPPORT_SUPERG */
4715 	int nacked;
4716 	HAL_STATUS status;
4717 
4718 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4719 		__func__, txq->axq_qnum,
4720 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4721 		txq->axq_link);
4722 
4723 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4724 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4725 	    txq->axq_qnum,
4726 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4727 	    txq->axq_link,
4728 	    txq->axq_depth);
4729 
4730 	nacked = 0;
4731 	for (;;) {
4732 		ATH_TXQ_LOCK(txq);
4733 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4734 		bf = TAILQ_FIRST(&txq->axq_q);
4735 		if (bf == NULL) {
4736 			ATH_TXQ_UNLOCK(txq);
4737 			break;
4738 		}
4739 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4740 		ts = &bf->bf_status.ds_txstat;
4741 
4742 		status = ath_hal_txprocdesc(ah, ds, ts);
4743 #ifdef ATH_DEBUG
4744 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4745 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4746 			    status == HAL_OK);
4747 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4748 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4749 			    status == HAL_OK);
4750 #endif
4751 #ifdef	ATH_DEBUG_ALQ
4752 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4753 		    ATH_ALQ_EDMA_TXSTATUS)) {
4754 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4755 			sc->sc_tx_statuslen,
4756 			(char *) ds);
4757 		}
4758 #endif
4759 
4760 		if (status == HAL_EINPROGRESS) {
4761 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4762 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4763 			    txq->axq_qnum, bf, ds);
4764 			ATH_TXQ_UNLOCK(txq);
4765 			break;
4766 		}
4767 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4768 
4769 		/*
4770 		 * Sanity check.
4771 		 */
4772 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4773 			device_printf(sc->sc_dev,
4774 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4775 			    __func__,
4776 			    txq->axq_qnum,
4777 			    bf,
4778 			    bf->bf_state.bfs_tx_queue);
4779 		}
4780 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4781 			device_printf(sc->sc_dev,
4782 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4783 			    __func__,
4784 			    txq->axq_qnum,
4785 			    bf->bf_last,
4786 			    bf->bf_last->bf_state.bfs_tx_queue);
4787 		}
4788 
4789 #if 0
4790 		if (txq->axq_depth > 0) {
4791 			/*
4792 			 * More frames follow.  Mark the buffer busy
4793 			 * so it's not re-used while the hardware may
4794 			 * still re-read the link field in the descriptor.
4795 			 *
4796 			 * Use the last buffer in an aggregate as that
4797 			 * is where the hardware may be - intermediate
4798 			 * descriptors won't be "busy".
4799 			 */
4800 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4801 		} else
4802 			txq->axq_link = NULL;
4803 #else
4804 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4805 #endif
4806 		if (bf->bf_state.bfs_aggr)
4807 			txq->axq_aggr_depth--;
4808 
4809 		ni = bf->bf_node;
4810 
4811 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4812 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4813 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4814 		/*
4815 		 * If unicast frame was ack'd update RSSI,
4816 		 * including the last rx time used to
4817 		 * workaround phantom bmiss interrupts.
4818 		 */
4819 		if (ni != NULL && ts->ts_status == 0 &&
4820 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4821 			nacked++;
4822 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4823 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4824 				ts->ts_rssi);
4825 		}
4826 		ATH_TXQ_UNLOCK(txq);
4827 
4828 		/*
4829 		 * Update statistics and call completion
4830 		 */
4831 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4832 
4833 		/* XXX at this point, bf and ni may be totally invalid */
4834 	}
4835 #ifdef IEEE80211_SUPPORT_SUPERG
4836 	/*
4837 	 * Flush fast-frame staging queue when traffic slows.
4838 	 */
4839 	if (txq->axq_depth <= 1)
4840 		ieee80211_ff_flush(ic, txq->axq_ac);
4841 #endif
4842 
4843 	/* Kick the software TXQ scheduler */
4844 	if (dosched) {
4845 		ATH_TX_LOCK(sc);
4846 		ath_txq_sched(sc, txq);
4847 		ATH_TX_UNLOCK(sc);
4848 	}
4849 
4850 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4851 	    "ath_tx_processq: txq=%u: done",
4852 	    txq->axq_qnum);
4853 
4854 	return nacked;
4855 }
4856 
4857 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4858 
4859 /*
4860  * Deferred processing of transmit interrupt; special-cased
4861  * for a single hardware transmit queue (e.g. 5210 and 5211).
4862  */
4863 static void
4864 ath_tx_proc_q0(void *arg, int npending)
4865 {
4866 	struct ath_softc *sc = arg;
4867 	struct ifnet *ifp = sc->sc_ifp;
4868 	uint32_t txqs;
4869 
4870 	ATH_PCU_LOCK(sc);
4871 	sc->sc_txproc_cnt++;
4872 	txqs = sc->sc_txq_active;
4873 	sc->sc_txq_active &= ~txqs;
4874 	ATH_PCU_UNLOCK(sc);
4875 
4876 	ATH_LOCK(sc);
4877 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4878 	ATH_UNLOCK(sc);
4879 
4880 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4881 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4882 
4883 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4884 		/* XXX why is lastrx updated in tx code? */
4885 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4886 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4887 		ath_tx_processq(sc, sc->sc_cabq, 1);
4888 	IF_LOCK(&ifp->if_snd);
4889 #if defined(__DragonFly__)
4890 	ifq_clr_oactive(&ifp->if_snd);
4891 #else
4892 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4893 #endif
4894 	IF_UNLOCK(&ifp->if_snd);
4895 	sc->sc_wd_timer = 0;
4896 
4897 	if (sc->sc_softled)
4898 		ath_led_event(sc, sc->sc_txrix);
4899 
4900 	ATH_PCU_LOCK(sc);
4901 	sc->sc_txproc_cnt--;
4902 	ATH_PCU_UNLOCK(sc);
4903 
4904 	ATH_LOCK(sc);
4905 	ath_power_restore_power_state(sc);
4906 	ATH_UNLOCK(sc);
4907 
4908 	ath_tx_kick(sc);
4909 }
4910 
4911 /*
4912  * Deferred processing of transmit interrupt; special-cased
4913  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4914  */
4915 static void
4916 ath_tx_proc_q0123(void *arg, int npending)
4917 {
4918 	struct ath_softc *sc = arg;
4919 	struct ifnet *ifp = sc->sc_ifp;
4920 	int nacked;
4921 	uint32_t txqs;
4922 
4923 	ATH_PCU_LOCK(sc);
4924 	sc->sc_txproc_cnt++;
4925 	txqs = sc->sc_txq_active;
4926 	sc->sc_txq_active &= ~txqs;
4927 	ATH_PCU_UNLOCK(sc);
4928 
4929 	ATH_LOCK(sc);
4930 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4931 	ATH_UNLOCK(sc);
4932 
4933 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4934 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4935 
4936 	/*
4937 	 * Process each active queue.
4938 	 */
4939 	nacked = 0;
4940 	if (TXQACTIVE(txqs, 0))
4941 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4942 	if (TXQACTIVE(txqs, 1))
4943 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4944 	if (TXQACTIVE(txqs, 2))
4945 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4946 	if (TXQACTIVE(txqs, 3))
4947 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4948 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4949 		ath_tx_processq(sc, sc->sc_cabq, 1);
4950 	if (nacked)
4951 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4952 
4953 	IF_LOCK(&ifp->if_snd);
4954 #if defined(__DragonFly__)
4955 	ifq_clr_oactive(&ifp->if_snd);
4956 #else
4957 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4958 #endif
4959 	IF_UNLOCK(&ifp->if_snd);
4960 	sc->sc_wd_timer = 0;
4961 
4962 	if (sc->sc_softled)
4963 		ath_led_event(sc, sc->sc_txrix);
4964 
4965 	ATH_PCU_LOCK(sc);
4966 	sc->sc_txproc_cnt--;
4967 	ATH_PCU_UNLOCK(sc);
4968 
4969 	ATH_LOCK(sc);
4970 	ath_power_restore_power_state(sc);
4971 	ATH_UNLOCK(sc);
4972 
4973 	ath_tx_kick(sc);
4974 }
4975 
4976 /*
4977  * Deferred processing of transmit interrupt.
4978  */
4979 static void
4980 ath_tx_proc(void *arg, int npending)
4981 {
4982 	struct ath_softc *sc = arg;
4983 	struct ifnet *ifp = sc->sc_ifp;
4984 	int i, nacked;
4985 	uint32_t txqs;
4986 
4987 	ATH_PCU_LOCK(sc);
4988 	sc->sc_txproc_cnt++;
4989 	txqs = sc->sc_txq_active;
4990 	sc->sc_txq_active &= ~txqs;
4991 	ATH_PCU_UNLOCK(sc);
4992 
4993 	ATH_LOCK(sc);
4994 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4995 	ATH_UNLOCK(sc);
4996 
4997 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4998 
4999 	/*
5000 	 * Process each active queue.
5001 	 */
5002 	nacked = 0;
5003 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5004 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
5005 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
5006 	if (nacked)
5007 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5008 
5009 	/* XXX check this inside of IF_LOCK? */
5010 	IF_LOCK(&ifp->if_snd);
5011 #if defined(__DragonFly__)
5012 	ifq_clr_oactive(&ifp->if_snd);
5013 #else
5014 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5015 #endif
5016 	IF_UNLOCK(&ifp->if_snd);
5017 	sc->sc_wd_timer = 0;
5018 
5019 	if (sc->sc_softled)
5020 		ath_led_event(sc, sc->sc_txrix);
5021 
5022 	ATH_PCU_LOCK(sc);
5023 	sc->sc_txproc_cnt--;
5024 	ATH_PCU_UNLOCK(sc);
5025 
5026 	ATH_LOCK(sc);
5027 	ath_power_restore_power_state(sc);
5028 	ATH_UNLOCK(sc);
5029 
5030 	ath_tx_kick(sc);
5031 }
5032 #undef	TXQACTIVE
5033 
5034 /*
5035  * Deferred processing of TXQ rescheduling.
5036  */
5037 static void
5038 ath_txq_sched_tasklet(void *arg, int npending)
5039 {
5040 	struct ath_softc *sc = arg;
5041 	int i;
5042 
5043 	/* XXX is skipping ok? */
5044 	ATH_PCU_LOCK(sc);
5045 #if 0
5046 	if (sc->sc_inreset_cnt > 0) {
5047 		device_printf(sc->sc_dev,
5048 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
5049 		ATH_PCU_UNLOCK(sc);
5050 		return;
5051 	}
5052 #endif
5053 	sc->sc_txproc_cnt++;
5054 	ATH_PCU_UNLOCK(sc);
5055 
5056 	ATH_LOCK(sc);
5057 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5058 	ATH_UNLOCK(sc);
5059 
5060 	ATH_TX_LOCK(sc);
5061 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5062 		if (ATH_TXQ_SETUP(sc, i)) {
5063 			ath_txq_sched(sc, &sc->sc_txq[i]);
5064 		}
5065 	}
5066 	ATH_TX_UNLOCK(sc);
5067 
5068 	ATH_LOCK(sc);
5069 	ath_power_restore_power_state(sc);
5070 	ATH_UNLOCK(sc);
5071 
5072 	ATH_PCU_LOCK(sc);
5073 	sc->sc_txproc_cnt--;
5074 	ATH_PCU_UNLOCK(sc);
5075 }
5076 
5077 void
5078 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
5079 {
5080 
5081 	ATH_TXBUF_LOCK_ASSERT(sc);
5082 
5083 	if (bf->bf_flags & ATH_BUF_MGMT)
5084 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
5085 	else {
5086 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5087 		sc->sc_txbuf_cnt++;
5088 		if (sc->sc_txbuf_cnt > ath_txbuf) {
5089 			device_printf(sc->sc_dev,
5090 			    "%s: sc_txbuf_cnt > %d?\n",
5091 			    __func__,
5092 			    ath_txbuf);
5093 			sc->sc_txbuf_cnt = ath_txbuf;
5094 		}
5095 	}
5096 }
5097 
5098 void
5099 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
5100 {
5101 
5102 	ATH_TXBUF_LOCK_ASSERT(sc);
5103 
5104 	if (bf->bf_flags & ATH_BUF_MGMT)
5105 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
5106 	else {
5107 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
5108 		sc->sc_txbuf_cnt++;
5109 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
5110 			device_printf(sc->sc_dev,
5111 			    "%s: sc_txbuf_cnt > %d?\n",
5112 			    __func__,
5113 			    ATH_TXBUF);
5114 			sc->sc_txbuf_cnt = ATH_TXBUF;
5115 		}
5116 	}
5117 }
5118 
5119 /*
5120  * Free the holding buffer if it exists
5121  */
5122 void
5123 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
5124 {
5125 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5126 	ATH_TXQ_LOCK_ASSERT(txq);
5127 
5128 	if (txq->axq_holdingbf == NULL)
5129 		return;
5130 
5131 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
5132 
5133 	ATH_TXBUF_LOCK(sc);
5134 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
5135 	ATH_TXBUF_UNLOCK(sc);
5136 
5137 	txq->axq_holdingbf = NULL;
5138 }
5139 
5140 /*
5141  * Add this buffer to the holding queue, freeing the previous
5142  * one if it exists.
5143  */
5144 static void
5145 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
5146 {
5147 	struct ath_txq *txq;
5148 
5149 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5150 
5151 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5152 	ATH_TXQ_LOCK_ASSERT(txq);
5153 
5154 	/* XXX assert ATH_BUF_BUSY is set */
5155 
5156 	/* XXX assert the tx queue is under the max number */
5157 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
5158 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
5159 		    __func__,
5160 		    bf,
5161 		    bf->bf_state.bfs_tx_queue);
5162 		bf->bf_flags &= ~ATH_BUF_BUSY;
5163 		ath_returnbuf_tail(sc, bf);
5164 		return;
5165 	}
5166 	ath_txq_freeholdingbuf(sc, txq);
5167 	txq->axq_holdingbf = bf;
5168 }
5169 
5170 /*
5171  * Return a buffer to the pool and update the 'busy' flag on the
5172  * previous 'tail' entry.
5173  *
5174  * This _must_ only be called when the buffer is involved in a completed
5175  * TX. The logic is that if it was part of an active TX, the previous
5176  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5177  * for restart (eg for TDMA.)
5178  *
5179  * The caller must free the mbuf and recycle the node reference.
5180  *
5181  * XXX This method of handling busy / holding buffers is insanely stupid.
5182  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
5183  * be much nicer if buffers in the processq() methods would instead be
5184  * always completed there (pushed onto a txq or ath_bufhead) so we knew
5185  * exactly what hardware queue they came from in the first place.
5186  */
5187 void
5188 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5189 {
5190 	struct ath_txq *txq;
5191 
5192 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5193 
5194 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5195 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5196 
5197 	/*
5198 	 * If this buffer is busy, push it onto the holding queue.
5199 	 */
5200 	if (bf->bf_flags & ATH_BUF_BUSY) {
5201 		ATH_TXQ_LOCK(txq);
5202 		ath_txq_addholdingbuf(sc, bf);
5203 		ATH_TXQ_UNLOCK(txq);
5204 		return;
5205 	}
5206 
5207 	/*
5208 	 * Not a busy buffer, so free normally
5209 	 */
5210 	ATH_TXBUF_LOCK(sc);
5211 	ath_returnbuf_tail(sc, bf);
5212 	ATH_TXBUF_UNLOCK(sc);
5213 }
5214 
5215 /*
5216  * This is currently used by ath_tx_draintxq() and
5217  * ath_tx_tid_free_pkts().
5218  *
5219  * It recycles a single ath_buf.
5220  */
5221 void
5222 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5223 {
5224 	struct ieee80211_node *ni = bf->bf_node;
5225 	struct mbuf *m0 = bf->bf_m;
5226 
5227 	/*
5228 	 * Make sure that we only sync/unload if there's an mbuf.
5229 	 * If not (eg we cloned a buffer), the unload will have already
5230 	 * occured.
5231 	 */
5232 	if (bf->bf_m != NULL) {
5233 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5234 		    BUS_DMASYNC_POSTWRITE);
5235 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5236 	}
5237 
5238 	bf->bf_node = NULL;
5239 	bf->bf_m = NULL;
5240 
5241 	/* Free the buffer, it's not needed any longer */
5242 	ath_freebuf(sc, bf);
5243 
5244 	/* Pass the buffer back to net80211 - completing it */
5245 	ieee80211_tx_complete(ni, m0, status);
5246 }
5247 
5248 static struct ath_buf *
5249 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5250 {
5251 	struct ath_buf *bf;
5252 
5253 	ATH_TXQ_LOCK_ASSERT(txq);
5254 
5255 	/*
5256 	 * Drain the FIFO queue first, then if it's
5257 	 * empty, move to the normal frame queue.
5258 	 */
5259 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5260 	if (bf != NULL) {
5261 		/*
5262 		 * Is it the last buffer in this set?
5263 		 * Decrement the FIFO counter.
5264 		 */
5265 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5266 			if (txq->axq_fifo_depth == 0) {
5267 				device_printf(sc->sc_dev,
5268 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5269 				    __func__,
5270 				    txq->axq_qnum,
5271 				    txq->fifo.axq_depth);
5272 			} else
5273 				txq->axq_fifo_depth--;
5274 		}
5275 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5276 		return (bf);
5277 	}
5278 
5279 	/*
5280 	 * Debugging!
5281 	 */
5282 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5283 		device_printf(sc->sc_dev,
5284 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5285 		    __func__,
5286 		    txq->axq_qnum,
5287 		    txq->axq_fifo_depth,
5288 		    txq->fifo.axq_depth);
5289 	}
5290 
5291 	/*
5292 	 * Now drain the pending queue.
5293 	 */
5294 	bf = TAILQ_FIRST(&txq->axq_q);
5295 	if (bf == NULL) {
5296 		txq->axq_link = NULL;
5297 		return (NULL);
5298 	}
5299 	ATH_TXQ_REMOVE(txq, bf, bf_list);
5300 	return (bf);
5301 }
5302 
5303 void
5304 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5305 {
5306 #ifdef ATH_DEBUG
5307 	struct ath_hal *ah = sc->sc_ah;
5308 #endif
5309 	struct ath_buf *bf;
5310 	u_int ix;
5311 
5312 	/*
5313 	 * NB: this assumes output has been stopped and
5314 	 *     we do not need to block ath_tx_proc
5315 	 */
5316 	for (ix = 0;; ix++) {
5317 		ATH_TXQ_LOCK(txq);
5318 		bf = ath_tx_draintxq_get_one(sc, txq);
5319 		if (bf == NULL) {
5320 			ATH_TXQ_UNLOCK(txq);
5321 			break;
5322 		}
5323 		if (bf->bf_state.bfs_aggr)
5324 			txq->axq_aggr_depth--;
5325 #ifdef ATH_DEBUG
5326 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5327 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5328 			int status = 0;
5329 
5330 			/*
5331 			 * EDMA operation has a TX completion FIFO
5332 			 * separate from the TX descriptor, so this
5333 			 * method of checking the "completion" status
5334 			 * is wrong.
5335 			 */
5336 			if (! sc->sc_isedma) {
5337 				status = (ath_hal_txprocdesc(ah,
5338 				    bf->bf_lastds,
5339 				    &bf->bf_status.ds_txstat) == HAL_OK);
5340 			}
5341 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5342 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5343 			    bf->bf_m->m_len, 0, -1);
5344 		}
5345 #endif /* ATH_DEBUG */
5346 		/*
5347 		 * Since we're now doing magic in the completion
5348 		 * functions, we -must- call it for aggregation
5349 		 * destinations or BAW tracking will get upset.
5350 		 */
5351 		/*
5352 		 * Clear ATH_BUF_BUSY; the completion handler
5353 		 * will free the buffer.
5354 		 */
5355 		ATH_TXQ_UNLOCK(txq);
5356 		bf->bf_flags &= ~ATH_BUF_BUSY;
5357 		if (bf->bf_comp)
5358 			bf->bf_comp(sc, bf, 1);
5359 		else
5360 			ath_tx_default_comp(sc, bf, 1);
5361 	}
5362 
5363 	/*
5364 	 * Free the holding buffer if it exists
5365 	 */
5366 	ATH_TXQ_LOCK(txq);
5367 	ath_txq_freeholdingbuf(sc, txq);
5368 	ATH_TXQ_UNLOCK(txq);
5369 
5370 	/*
5371 	 * Drain software queued frames which are on
5372 	 * active TIDs.
5373 	 */
5374 	ath_tx_txq_drain(sc, txq);
5375 }
5376 
5377 static void
5378 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5379 {
5380 	struct ath_hal *ah = sc->sc_ah;
5381 
5382 	ATH_TXQ_LOCK_ASSERT(txq);
5383 
5384 	DPRINTF(sc, ATH_DEBUG_RESET,
5385 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5386 	    "link %p, holdingbf=%p\n",
5387 	    __func__,
5388 	    txq->axq_qnum,
5389 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5390 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5391 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5392 	    txq->axq_flags,
5393 	    txq->axq_link,
5394 	    txq->axq_holdingbf);
5395 
5396 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5397 	/* We've stopped TX DMA, so mark this as stopped. */
5398 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5399 
5400 #ifdef	ATH_DEBUG
5401 	if ((sc->sc_debug & ATH_DEBUG_RESET)
5402 	    && (txq->axq_holdingbf != NULL)) {
5403 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5404 	}
5405 #endif
5406 }
5407 
5408 int
5409 ath_stoptxdma(struct ath_softc *sc)
5410 {
5411 	struct ath_hal *ah = sc->sc_ah;
5412 	int i;
5413 
5414 	/* XXX return value */
5415 	if (sc->sc_invalid)
5416 		return 0;
5417 
5418 	if (!sc->sc_invalid) {
5419 		/* don't touch the hardware if marked invalid */
5420 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5421 		    __func__, sc->sc_bhalq,
5422 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5423 		    NULL);
5424 
5425 		/* stop the beacon queue */
5426 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5427 
5428 		/* Stop the data queues */
5429 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5430 			if (ATH_TXQ_SETUP(sc, i)) {
5431 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5432 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5433 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5434 			}
5435 		}
5436 	}
5437 
5438 	return 1;
5439 }
5440 
5441 #ifdef	ATH_DEBUG
5442 void
5443 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5444 {
5445 	struct ath_hal *ah = sc->sc_ah;
5446 	struct ath_buf *bf;
5447 	int i = 0;
5448 
5449 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5450 		return;
5451 
5452 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5453 	    __func__, txq->axq_qnum);
5454 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5455 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5456 			ath_hal_txprocdesc(ah, bf->bf_lastds,
5457 			    &bf->bf_status.ds_txstat) == HAL_OK);
5458 		i++;
5459 	}
5460 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5461 	    __func__, txq->axq_qnum);
5462 }
5463 #endif /* ATH_DEBUG */
5464 
5465 /*
5466  * Drain the transmit queues and reclaim resources.
5467  */
5468 void
5469 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5470 {
5471 	struct ath_hal *ah = sc->sc_ah;
5472 	struct ifnet *ifp = sc->sc_ifp;
5473 	int i;
5474 	struct ath_buf *bf_last;
5475 
5476 	(void) ath_stoptxdma(sc);
5477 
5478 	/*
5479 	 * Dump the queue contents
5480 	 */
5481 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5482 		/*
5483 		 * XXX TODO: should we just handle the completed TX frames
5484 		 * here, whether or not the reset is a full one or not?
5485 		 */
5486 		if (ATH_TXQ_SETUP(sc, i)) {
5487 #ifdef	ATH_DEBUG
5488 			if (sc->sc_debug & ATH_DEBUG_RESET)
5489 				ath_tx_dump(sc, &sc->sc_txq[i]);
5490 #endif	/* ATH_DEBUG */
5491 			if (reset_type == ATH_RESET_NOLOSS) {
5492 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5493 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5494 				/*
5495 				 * Free the holding buffer; DMA is now
5496 				 * stopped.
5497 				 */
5498 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5499 				/*
5500 				 * Setup the link pointer to be the
5501 				 * _last_ buffer/descriptor in the list.
5502 				 * If there's nothing in the list, set it
5503 				 * to NULL.
5504 				 */
5505 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5506 				    axq_q_s);
5507 				if (bf_last != NULL) {
5508 					ath_hal_gettxdesclinkptr(ah,
5509 					    bf_last->bf_lastds,
5510 					    &sc->sc_txq[i].axq_link);
5511 				} else {
5512 					sc->sc_txq[i].axq_link = NULL;
5513 				}
5514 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5515 			} else
5516 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5517 		}
5518 	}
5519 #ifdef ATH_DEBUG
5520 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5521 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5522 		if (bf != NULL && bf->bf_m != NULL) {
5523 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5524 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5525 				    &bf->bf_status.ds_txstat) == HAL_OK);
5526 			ieee80211_dump_pkt(ifp->if_l2com,
5527 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5528 			    0, -1);
5529 		}
5530 	}
5531 #endif /* ATH_DEBUG */
5532 	IF_LOCK(&ifp->if_snd);
5533 #if defined(__DragonFly__)
5534 	ifq_clr_oactive(&ifp->if_snd);
5535 #else
5536 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5537 #endif
5538 	IF_UNLOCK(&ifp->if_snd);
5539 	sc->sc_wd_timer = 0;
5540 }
5541 
5542 /*
5543  * Update internal state after a channel change.
5544  */
5545 static void
5546 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5547 {
5548 	enum ieee80211_phymode mode;
5549 
5550 	/*
5551 	 * Change channels and update the h/w rate map
5552 	 * if we're switching; e.g. 11a to 11b/g.
5553 	 */
5554 	mode = ieee80211_chan2mode(chan);
5555 	if (mode != sc->sc_curmode)
5556 		ath_setcurmode(sc, mode);
5557 	sc->sc_curchan = chan;
5558 }
5559 
5560 /*
5561  * Set/change channels.  If the channel is really being changed,
5562  * it's done by resetting the chip.  To accomplish this we must
5563  * first cleanup any pending DMA, then restart stuff after a la
5564  * ath_init.
5565  */
5566 static int
5567 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5568 {
5569 	struct ifnet *ifp = sc->sc_ifp;
5570 	struct ieee80211com *ic = ifp->if_l2com;
5571 	struct ath_hal *ah = sc->sc_ah;
5572 	int ret = 0;
5573 
5574 	/* Treat this as an interface reset */
5575 	ATH_PCU_UNLOCK_ASSERT(sc);
5576 	ATH_UNLOCK_ASSERT(sc);
5577 
5578 	/* (Try to) stop TX/RX from occuring */
5579 	taskqueue_block(sc->sc_tq);
5580 
5581 	ATH_PCU_LOCK(sc);
5582 
5583 	/* Disable interrupts */
5584 	ath_hal_intrset(ah, 0);
5585 
5586 	/* Stop new RX/TX/interrupt completion */
5587 	if (ath_reset_grablock(sc, 1) == 0) {
5588 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5589 		    __func__);
5590 	}
5591 
5592 	/* Stop pending RX/TX completion */
5593 	ath_txrx_stop_locked(sc);
5594 
5595 	ATH_PCU_UNLOCK(sc);
5596 
5597 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5598 	    __func__, ieee80211_chan2ieee(ic, chan),
5599 	    chan->ic_freq, chan->ic_flags);
5600 	if (chan != sc->sc_curchan) {
5601 		HAL_STATUS status;
5602 		/*
5603 		 * To switch channels clear any pending DMA operations;
5604 		 * wait long enough for the RX fifo to drain, reset the
5605 		 * hardware at the new frequency, and then re-enable
5606 		 * the relevant bits of the h/w.
5607 		 */
5608 #if 0
5609 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5610 #endif
5611 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5612 		/*
5613 		 * First, handle completed TX/RX frames.
5614 		 */
5615 		ath_rx_flush(sc);
5616 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5617 		/*
5618 		 * Next, flush the non-scheduled frames.
5619 		 */
5620 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5621 
5622 		ath_update_chainmasks(sc, chan);
5623 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5624 		    sc->sc_cur_rxchainmask);
5625 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5626 			if_printf(ifp, "%s: unable to reset "
5627 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5628 			    __func__, ieee80211_chan2ieee(ic, chan),
5629 			    chan->ic_freq, chan->ic_flags, status);
5630 			ret = EIO;
5631 			goto finish;
5632 		}
5633 		sc->sc_diversity = ath_hal_getdiversity(ah);
5634 
5635 		ATH_RX_LOCK(sc);
5636 		sc->sc_rx_stopped = 1;
5637 		sc->sc_rx_resetted = 1;
5638 		ATH_RX_UNLOCK(sc);
5639 
5640 		/* Let DFS at it in case it's a DFS channel */
5641 		ath_dfs_radar_enable(sc, chan);
5642 
5643 		/* Let spectral at in case spectral is enabled */
5644 		ath_spectral_enable(sc, chan);
5645 
5646 		/*
5647 		 * Let bluetooth coexistence at in case it's needed for this
5648 		 * channel
5649 		 */
5650 		ath_btcoex_enable(sc, ic->ic_curchan);
5651 
5652 		/*
5653 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5654 		 * that support it.
5655 		 */
5656 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5657 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5658 		else
5659 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5660 
5661 		/*
5662 		 * Re-enable rx framework.
5663 		 */
5664 		if (ath_startrecv(sc) != 0) {
5665 			if_printf(ifp, "%s: unable to restart recv logic\n",
5666 			    __func__);
5667 			ret = EIO;
5668 			goto finish;
5669 		}
5670 
5671 		/*
5672 		 * Change channels and update the h/w rate map
5673 		 * if we're switching; e.g. 11a to 11b/g.
5674 		 */
5675 		ath_chan_change(sc, chan);
5676 
5677 		/*
5678 		 * Reset clears the beacon timers; reset them
5679 		 * here if needed.
5680 		 */
5681 		if (sc->sc_beacons) {		/* restart beacons */
5682 #ifdef IEEE80211_SUPPORT_TDMA
5683 			if (sc->sc_tdma)
5684 				ath_tdma_config(sc, NULL);
5685 			else
5686 #endif
5687 			ath_beacon_config(sc, NULL);
5688 		}
5689 
5690 		/*
5691 		 * Re-enable interrupts.
5692 		 */
5693 #if 0
5694 		ath_hal_intrset(ah, sc->sc_imask);
5695 #endif
5696 	}
5697 
5698 finish:
5699 	ATH_PCU_LOCK(sc);
5700 	sc->sc_inreset_cnt--;
5701 	/* XXX only do this if sc_inreset_cnt == 0? */
5702 	ath_hal_intrset(ah, sc->sc_imask);
5703 	ATH_PCU_UNLOCK(sc);
5704 
5705 	IF_LOCK(&ifp->if_snd);
5706 #if defined(__DragonFly__)
5707 	ifq_clr_oactive(&ifp->if_snd);
5708 #else
5709 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5710 #endif
5711 	IF_UNLOCK(&ifp->if_snd);
5712 	ath_txrx_start(sc);
5713 	/* XXX ath_start? */
5714 
5715 	return ret;
5716 }
5717 
5718 /*
5719  * Periodically recalibrate the PHY to account
5720  * for temperature/environment changes.
5721  */
5722 static void
5723 ath_calibrate(void *arg)
5724 {
5725 	struct ath_softc *sc = arg;
5726 	struct ath_hal *ah = sc->sc_ah;
5727 	struct ifnet *ifp = sc->sc_ifp;
5728 	struct ieee80211com *ic = ifp->if_l2com;
5729 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5730 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5731 	int nextcal;
5732 
5733 	ATH_LOCK_ASSERT(sc);
5734 
5735 	/*
5736 	 * Force the hardware awake for ANI work.
5737 	 */
5738 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5739 
5740 	/* Skip trying to do this if we're in reset */
5741 	if (sc->sc_inreset_cnt)
5742 		goto restart;
5743 
5744 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5745 		goto restart;
5746 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5747 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5748 	if (sc->sc_doresetcal)
5749 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5750 
5751 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5752 	if (aniCal) {
5753 		sc->sc_stats.ast_ani_cal++;
5754 		sc->sc_lastani = ticks;
5755 		ath_hal_ani_poll(ah, sc->sc_curchan);
5756 	}
5757 
5758 	if (longCal) {
5759 		sc->sc_stats.ast_per_cal++;
5760 		sc->sc_lastlongcal = ticks;
5761 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5762 			/*
5763 			 * Rfgain is out of bounds, reset the chip
5764 			 * to load new gain values.
5765 			 */
5766 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5767 				"%s: rfgain change\n", __func__);
5768 			sc->sc_stats.ast_per_rfgain++;
5769 			sc->sc_resetcal = 0;
5770 			sc->sc_doresetcal = AH_TRUE;
5771 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5772 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5773 			ath_power_restore_power_state(sc);
5774 			return;
5775 		}
5776 		/*
5777 		 * If this long cal is after an idle period, then
5778 		 * reset the data collection state so we start fresh.
5779 		 */
5780 		if (sc->sc_resetcal) {
5781 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5782 			sc->sc_lastcalreset = ticks;
5783 			sc->sc_lastshortcal = ticks;
5784 			sc->sc_resetcal = 0;
5785 			sc->sc_doresetcal = AH_TRUE;
5786 		}
5787 	}
5788 
5789 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5790 	if (shortCal || longCal) {
5791 		isCalDone = AH_FALSE;
5792 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5793 			if (longCal) {
5794 				/*
5795 				 * Calibrate noise floor data again in case of change.
5796 				 */
5797 				ath_hal_process_noisefloor(ah);
5798 			}
5799 		} else {
5800 			DPRINTF(sc, ATH_DEBUG_ANY,
5801 				"%s: calibration of channel %u failed\n",
5802 				__func__, sc->sc_curchan->ic_freq);
5803 			sc->sc_stats.ast_per_calfail++;
5804 		}
5805 		if (shortCal)
5806 			sc->sc_lastshortcal = ticks;
5807 	}
5808 	if (!isCalDone) {
5809 restart:
5810 		/*
5811 		 * Use a shorter interval to potentially collect multiple
5812 		 * data samples required to complete calibration.  Once
5813 		 * we're told the work is done we drop back to a longer
5814 		 * interval between requests.  We're more aggressive doing
5815 		 * work when operating as an AP to improve operation right
5816 		 * after startup.
5817 		 */
5818 		sc->sc_lastshortcal = ticks;
5819 		nextcal = ath_shortcalinterval*hz/1000;
5820 		if (sc->sc_opmode != HAL_M_HOSTAP)
5821 			nextcal *= 10;
5822 		sc->sc_doresetcal = AH_TRUE;
5823 	} else {
5824 		/* nextcal should be the shortest time for next event */
5825 		nextcal = ath_longcalinterval*hz;
5826 		if (sc->sc_lastcalreset == 0)
5827 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5828 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5829 			sc->sc_resetcal = 1;	/* setup reset next trip */
5830 		sc->sc_doresetcal = AH_FALSE;
5831 	}
5832 	/* ANI calibration may occur more often than short/long/resetcal */
5833 	if (ath_anicalinterval > 0)
5834 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5835 
5836 	if (nextcal != 0) {
5837 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5838 		    __func__, nextcal, isCalDone ? "" : "!");
5839 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5840 	} else {
5841 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5842 		    __func__);
5843 		/* NB: don't rearm timer */
5844 	}
5845 	/*
5846 	 * Restore power state now that we're done.
5847 	 */
5848 	ath_power_restore_power_state(sc);
5849 }
5850 
5851 static void
5852 ath_scan_start(struct ieee80211com *ic)
5853 {
5854 	struct ifnet *ifp = ic->ic_ifp;
5855 	struct ath_softc *sc = ifp->if_softc;
5856 	struct ath_hal *ah = sc->sc_ah;
5857 	u_int32_t rfilt;
5858 
5859 	/* XXX calibration timer? */
5860 
5861 	ATH_LOCK(sc);
5862 	sc->sc_scanning = 1;
5863 	sc->sc_syncbeacon = 0;
5864 	rfilt = ath_calcrxfilter(sc);
5865 	ATH_UNLOCK(sc);
5866 
5867 	ATH_PCU_LOCK(sc);
5868 	ath_hal_setrxfilter(ah, rfilt);
5869 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5870 	ATH_PCU_UNLOCK(sc);
5871 
5872 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5873 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5874 }
5875 
5876 static void
5877 ath_scan_end(struct ieee80211com *ic)
5878 {
5879 	struct ifnet *ifp = ic->ic_ifp;
5880 	struct ath_softc *sc = ifp->if_softc;
5881 	struct ath_hal *ah = sc->sc_ah;
5882 	u_int32_t rfilt;
5883 
5884 	ATH_LOCK(sc);
5885 	sc->sc_scanning = 0;
5886 	rfilt = ath_calcrxfilter(sc);
5887 	ATH_UNLOCK(sc);
5888 
5889 	ATH_PCU_LOCK(sc);
5890 	ath_hal_setrxfilter(ah, rfilt);
5891 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5892 
5893 	ath_hal_process_noisefloor(ah);
5894 	ATH_PCU_UNLOCK(sc);
5895 
5896 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5897 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5898 		 sc->sc_curaid);
5899 }
5900 
5901 #ifdef	ATH_ENABLE_11N
5902 /*
5903  * For now, just do a channel change.
5904  *
5905  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5906  * control state and resetting the hardware without dropping frames out
5907  * of the queue.
5908  *
5909  * The unfortunate trouble here is making absolutely sure that the
5910  * channel width change has propagated enough so the hardware
5911  * absolutely isn't handed bogus frames for it's current operating
5912  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5913  * does occur in parallel, we need to make certain we've blocked
5914  * any further ongoing TX (and RX, that can cause raw TX)
5915  * before we do this.
5916  */
5917 static void
5918 ath_update_chw(struct ieee80211com *ic)
5919 {
5920 	struct ifnet *ifp = ic->ic_ifp;
5921 	struct ath_softc *sc = ifp->if_softc;
5922 
5923 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5924 	ath_set_channel(ic);
5925 }
5926 #endif	/* ATH_ENABLE_11N */
5927 
5928 static void
5929 ath_set_channel(struct ieee80211com *ic)
5930 {
5931 	struct ifnet *ifp = ic->ic_ifp;
5932 	struct ath_softc *sc = ifp->if_softc;
5933 
5934 	ATH_LOCK(sc);
5935 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5936 	ATH_UNLOCK(sc);
5937 
5938 	(void) ath_chan_set(sc, ic->ic_curchan);
5939 	/*
5940 	 * If we are returning to our bss channel then mark state
5941 	 * so the next recv'd beacon's tsf will be used to sync the
5942 	 * beacon timers.  Note that since we only hear beacons in
5943 	 * sta/ibss mode this has no effect in other operating modes.
5944 	 */
5945 	ATH_LOCK(sc);
5946 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5947 		sc->sc_syncbeacon = 1;
5948 	ath_power_restore_power_state(sc);
5949 	ATH_UNLOCK(sc);
5950 }
5951 
5952 /*
5953  * Walk the vap list and check if there any vap's in RUN state.
5954  */
5955 static int
5956 ath_isanyrunningvaps(struct ieee80211vap *this)
5957 {
5958 	struct ieee80211com *ic = this->iv_ic;
5959 	struct ieee80211vap *vap;
5960 
5961 	IEEE80211_LOCK_ASSERT(ic);
5962 
5963 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5964 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5965 			return 1;
5966 	}
5967 	return 0;
5968 }
5969 
5970 static int
5971 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5972 {
5973 	struct ieee80211com *ic = vap->iv_ic;
5974 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5975 	struct ath_vap *avp = ATH_VAP(vap);
5976 	struct ath_hal *ah = sc->sc_ah;
5977 	struct ieee80211_node *ni = NULL;
5978 	int i, error, stamode;
5979 	u_int32_t rfilt;
5980 	int csa_run_transition = 0;
5981 	enum ieee80211_state ostate = vap->iv_state;
5982 
5983 	static const HAL_LED_STATE leds[] = {
5984 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5985 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5986 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5987 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5988 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5989 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5990 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5991 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5992 	};
5993 
5994 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5995 		ieee80211_state_name[ostate],
5996 		ieee80211_state_name[nstate]);
5997 
5998 	/*
5999 	 * net80211 _should_ have the comlock asserted at this point.
6000 	 * There are some comments around the calls to vap->iv_newstate
6001 	 * which indicate that it (newstate) may end up dropping the
6002 	 * lock.  This and the subsequent lock assert check after newstate
6003 	 * are an attempt to catch these and figure out how/why.
6004 	 */
6005 	IEEE80211_LOCK_ASSERT(ic);
6006 
6007 	/* Before we touch the hardware - wake it up */
6008 	ATH_LOCK(sc);
6009 	/*
6010 	 * If the NIC is in anything other than SLEEP state,
6011 	 * we need to ensure that self-generated frames are
6012 	 * set for PWRMGT=0.  Otherwise we may end up with
6013 	 * strange situations.
6014 	 *
6015 	 * XXX TODO: is this actually the case? :-)
6016 	 */
6017 	if (nstate != IEEE80211_S_SLEEP)
6018 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6019 
6020 	/*
6021 	 * Now, wake the thing up.
6022 	 */
6023 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
6024 
6025 	/*
6026 	 * And stop the calibration callout whilst we have
6027 	 * ATH_LOCK held.
6028 	 */
6029 	callout_stop_sync(&sc->sc_cal_ch);
6030 	ATH_UNLOCK(sc);
6031 
6032 	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
6033 		csa_run_transition = 1;
6034 
6035 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
6036 
6037 	if (nstate == IEEE80211_S_SCAN) {
6038 		/*
6039 		 * Scanning: turn off beacon miss and don't beacon.
6040 		 * Mark beacon state so when we reach RUN state we'll
6041 		 * [re]setup beacons.  Unblock the task q thread so
6042 		 * deferred interrupt processing is done.
6043 		 */
6044 
6045 		/* Ensure we stay awake during scan */
6046 		ATH_LOCK(sc);
6047 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6048 		ath_power_setpower(sc, HAL_PM_AWAKE);
6049 		ATH_UNLOCK(sc);
6050 
6051 		ath_hal_intrset(ah,
6052 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
6053 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6054 		sc->sc_beacons = 0;
6055 		taskqueue_unblock(sc->sc_tq);
6056 	}
6057 
6058 	ni = ieee80211_ref_node(vap->iv_bss);
6059 	rfilt = ath_calcrxfilter(sc);
6060 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
6061 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
6062 		   vap->iv_opmode == IEEE80211_M_IBSS);
6063 
6064 	/*
6065 	 * XXX Dont need to do this (and others) if we've transitioned
6066 	 * from SLEEP->RUN.
6067 	 */
6068 	if (stamode && nstate == IEEE80211_S_RUN) {
6069 		sc->sc_curaid = ni->ni_associd;
6070 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
6071 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
6072 	}
6073 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
6074 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
6075 	ath_hal_setrxfilter(ah, rfilt);
6076 
6077 	/* XXX is this to restore keycache on resume? */
6078 	if (vap->iv_opmode != IEEE80211_M_STA &&
6079 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
6080 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
6081 			if (ath_hal_keyisvalid(ah, i))
6082 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
6083 	}
6084 
6085 	/*
6086 	 * Invoke the parent method to do net80211 work.
6087 	 */
6088 	error = avp->av_newstate(vap, nstate, arg);
6089 	if (error != 0)
6090 		goto bad;
6091 
6092 	/*
6093 	 * See above: ensure av_newstate() doesn't drop the lock
6094 	 * on us.
6095 	 */
6096 	IEEE80211_LOCK_ASSERT(ic);
6097 
6098 	if (nstate == IEEE80211_S_RUN) {
6099 		/* NB: collect bss node again, it may have changed */
6100 		ieee80211_free_node(ni);
6101 		ni = ieee80211_ref_node(vap->iv_bss);
6102 
6103 		DPRINTF(sc, ATH_DEBUG_STATE,
6104 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
6105 		    "capinfo 0x%04x chan %d\n", __func__,
6106 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6107 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6108 
6109 		switch (vap->iv_opmode) {
6110 #ifdef IEEE80211_SUPPORT_TDMA
6111 		case IEEE80211_M_AHDEMO:
6112 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6113 				break;
6114 			/* fall thru... */
6115 #endif
6116 		case IEEE80211_M_HOSTAP:
6117 		case IEEE80211_M_IBSS:
6118 		case IEEE80211_M_MBSS:
6119 			/*
6120 			 * Allocate and setup the beacon frame.
6121 			 *
6122 			 * Stop any previous beacon DMA.  This may be
6123 			 * necessary, for example, when an ibss merge
6124 			 * causes reconfiguration; there will be a state
6125 			 * transition from RUN->RUN that means we may
6126 			 * be called with beacon transmission active.
6127 			 */
6128 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6129 
6130 			error = ath_beacon_alloc(sc, ni);
6131 			if (error != 0)
6132 				goto bad;
6133 			/*
6134 			 * If joining an adhoc network defer beacon timer
6135 			 * configuration to the next beacon frame so we
6136 			 * have a current TSF to use.  Otherwise we're
6137 			 * starting an ibss/bss so there's no need to delay;
6138 			 * if this is the first vap moving to RUN state, then
6139 			 * beacon state needs to be [re]configured.
6140 			 */
6141 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6142 			    ni->ni_tstamp.tsf != 0) {
6143 				sc->sc_syncbeacon = 1;
6144 			} else if (!sc->sc_beacons) {
6145 #ifdef IEEE80211_SUPPORT_TDMA
6146 				if (vap->iv_caps & IEEE80211_C_TDMA)
6147 					ath_tdma_config(sc, vap);
6148 				else
6149 #endif
6150 					ath_beacon_config(sc, vap);
6151 				sc->sc_beacons = 1;
6152 			}
6153 			break;
6154 		case IEEE80211_M_STA:
6155 			/*
6156 			 * Defer beacon timer configuration to the next
6157 			 * beacon frame so we have a current TSF to use
6158 			 * (any TSF collected when scanning is likely old).
6159 			 * However if it's due to a CSA -> RUN transition,
6160 			 * force a beacon update so we pick up a lack of
6161 			 * beacons from an AP in CAC and thus force a
6162 			 * scan.
6163 			 *
6164 			 * And, there's also corner cases here where
6165 			 * after a scan, the AP may have disappeared.
6166 			 * In that case, we may not receive an actual
6167 			 * beacon to update the beacon timer and thus we
6168 			 * won't get notified of the missing beacons.
6169 			 */
6170 			if (ostate != IEEE80211_S_RUN &&
6171 			    ostate != IEEE80211_S_SLEEP) {
6172 				DPRINTF(sc, ATH_DEBUG_BEACON,
6173 				    "%s: STA; syncbeacon=1\n", __func__);
6174 				sc->sc_syncbeacon = 1;
6175 
6176 				if (csa_run_transition)
6177 					ath_beacon_config(sc, vap);
6178 
6179 			/*
6180 			 * PR: kern/175227
6181 			 *
6182 			 * Reconfigure beacons during reset; as otherwise
6183 			 * we won't get the beacon timers reprogrammed
6184 			 * after a reset and thus we won't pick up a
6185 			 * beacon miss interrupt.
6186 			 *
6187 			 * Hopefully we'll see a beacon before the BMISS
6188 			 * timer fires (too often), leading to a STA
6189 			 * disassociation.
6190 			 */
6191 				sc->sc_beacons = 1;
6192 			}
6193 			break;
6194 		case IEEE80211_M_MONITOR:
6195 			/*
6196 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6197 			 * transitions so we must re-enable interrupts here to
6198 			 * handle the case of a single monitor mode vap.
6199 			 */
6200 			ath_hal_intrset(ah, sc->sc_imask);
6201 			break;
6202 		case IEEE80211_M_WDS:
6203 			break;
6204 		default:
6205 			break;
6206 		}
6207 		/*
6208 		 * Let the hal process statistics collected during a
6209 		 * scan so it can provide calibrated noise floor data.
6210 		 */
6211 		ath_hal_process_noisefloor(ah);
6212 		/*
6213 		 * Reset rssi stats; maybe not the best place...
6214 		 */
6215 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6216 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6217 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6218 
6219 		/*
6220 		 * Force awake for RUN mode.
6221 		 */
6222 		ATH_LOCK(sc);
6223 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6224 		ath_power_setpower(sc, HAL_PM_AWAKE);
6225 
6226 		/*
6227 		 * Finally, start any timers and the task q thread
6228 		 * (in case we didn't go through SCAN state).
6229 		 */
6230 		if (ath_longcalinterval != 0) {
6231 			/* start periodic recalibration timer */
6232 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6233 		} else {
6234 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6235 			    "%s: calibration disabled\n", __func__);
6236 		}
6237 		ATH_UNLOCK(sc);
6238 
6239 		taskqueue_unblock(sc->sc_tq);
6240 	} else if (nstate == IEEE80211_S_INIT) {
6241 		/*
6242 		 * If there are no vaps left in RUN state then
6243 		 * shutdown host/driver operation:
6244 		 * o disable interrupts
6245 		 * o disable the task queue thread
6246 		 * o mark beacon processing as stopped
6247 		 */
6248 		if (!ath_isanyrunningvaps(vap)) {
6249 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6250 			/* disable interrupts  */
6251 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6252 			taskqueue_block(sc->sc_tq);
6253 			sc->sc_beacons = 0;
6254 		}
6255 #ifdef IEEE80211_SUPPORT_TDMA
6256 		ath_hal_setcca(ah, AH_TRUE);
6257 #endif
6258 	} else if (nstate == IEEE80211_S_SLEEP) {
6259 		/* We're going to sleep, so transition appropriately */
6260 		/* For now, only do this if we're a single STA vap */
6261 		if (sc->sc_nvaps == 1 &&
6262 		    vap->iv_opmode == IEEE80211_M_STA) {
6263 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6264 			ATH_LOCK(sc);
6265 			/*
6266 			 * Always at least set the self-generated
6267 			 * frame config to set PWRMGT=1.
6268 			 */
6269 			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6270 
6271 			/*
6272 			 * If we're not syncing beacons, transition
6273 			 * to NETWORK_SLEEP.
6274 			 *
6275 			 * We stay awake if syncbeacon > 0 in case
6276 			 * we need to listen for some beacons otherwise
6277 			 * our beacon timer config may be wrong.
6278 			 */
6279 			if (sc->sc_syncbeacon == 0) {
6280 				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6281 			}
6282 			ATH_UNLOCK(sc);
6283 		}
6284 	}
6285 bad:
6286 	ieee80211_free_node(ni);
6287 
6288 	/*
6289 	 * Restore the power state - either to what it was, or
6290 	 * to network_sleep if it's alright.
6291 	 */
6292 	ATH_LOCK(sc);
6293 	ath_power_restore_power_state(sc);
6294 	ATH_UNLOCK(sc);
6295 	return error;
6296 }
6297 
6298 /*
6299  * Allocate a key cache slot to the station so we can
6300  * setup a mapping from key index to node. The key cache
6301  * slot is needed for managing antenna state and for
6302  * compression when stations do not use crypto.  We do
6303  * it uniliaterally here; if crypto is employed this slot
6304  * will be reassigned.
6305  */
6306 static void
6307 ath_setup_stationkey(struct ieee80211_node *ni)
6308 {
6309 	struct ieee80211vap *vap = ni->ni_vap;
6310 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6311 	ieee80211_keyix keyix, rxkeyix;
6312 
6313 	/* XXX should take a locked ref to vap->iv_bss */
6314 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6315 		/*
6316 		 * Key cache is full; we'll fall back to doing
6317 		 * the more expensive lookup in software.  Note
6318 		 * this also means no h/w compression.
6319 		 */
6320 		/* XXX msg+statistic */
6321 	} else {
6322 		/* XXX locking? */
6323 		ni->ni_ucastkey.wk_keyix = keyix;
6324 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6325 		/* NB: must mark device key to get called back on delete */
6326 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6327 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6328 		/* NB: this will create a pass-thru key entry */
6329 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6330 	}
6331 }
6332 
6333 /*
6334  * Setup driver-specific state for a newly associated node.
6335  * Note that we're called also on a re-associate, the isnew
6336  * param tells us if this is the first time or not.
6337  */
6338 static void
6339 ath_newassoc(struct ieee80211_node *ni, int isnew)
6340 {
6341 	struct ath_node *an = ATH_NODE(ni);
6342 	struct ieee80211vap *vap = ni->ni_vap;
6343 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6344 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6345 
6346 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6347 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6348 
6349 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: reassoc; isnew=%d, is_powersave=%d\n",
6350 	    __func__,
6351 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6352 	    isnew,
6353 	    an->an_is_powersave);
6354 
6355 	ATH_NODE_LOCK(an);
6356 	ath_rate_newassoc(sc, an, isnew);
6357 	ATH_NODE_UNLOCK(an);
6358 
6359 	if (isnew &&
6360 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6361 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6362 		ath_setup_stationkey(ni);
6363 
6364 	/*
6365 	 * If we're reassociating, make sure that any paused queues
6366 	 * get unpaused.
6367 	 *
6368 	 * Now, we may hvae frames in the hardware queue for this node.
6369 	 * So if we are reassociating and there are frames in the queue,
6370 	 * we need to go through the cleanup path to ensure that they're
6371 	 * marked as non-aggregate.
6372 	 */
6373 	if (! isnew) {
6374 		DPRINTF(sc, ATH_DEBUG_NODE,
6375 		    "%s: %s: reassoc; is_powersave=%d\n",
6376 		    __func__,
6377 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6378 		    an->an_is_powersave);
6379 
6380 		/* XXX for now, we can't hold the lock across assoc */
6381 		ath_tx_node_reassoc(sc, an);
6382 
6383 		/* XXX for now, we can't hold the lock across wakeup */
6384 		if (an->an_is_powersave)
6385 			ath_tx_node_wakeup(sc, an);
6386 	}
6387 }
6388 
6389 static int
6390 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6391 	int nchans, struct ieee80211_channel chans[])
6392 {
6393 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6394 	struct ath_hal *ah = sc->sc_ah;
6395 	HAL_STATUS status;
6396 
6397 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6398 	    "%s: rd %u cc %u location %c%s\n",
6399 	    __func__, reg->regdomain, reg->country, reg->location,
6400 	    reg->ecm ? " ecm" : "");
6401 
6402 	status = ath_hal_set_channels(ah, chans, nchans,
6403 	    reg->country, reg->regdomain);
6404 	if (status != HAL_OK) {
6405 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6406 		    __func__, status);
6407 		return EINVAL;		/* XXX */
6408 	}
6409 
6410 	return 0;
6411 }
6412 
6413 static void
6414 ath_getradiocaps(struct ieee80211com *ic,
6415 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6416 {
6417 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6418 	struct ath_hal *ah = sc->sc_ah;
6419 
6420 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6421 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6422 
6423 	/* XXX check return */
6424 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6425 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6426 
6427 }
6428 
6429 static int
6430 ath_getchannels(struct ath_softc *sc)
6431 {
6432 	struct ifnet *ifp = sc->sc_ifp;
6433 	struct ieee80211com *ic = ifp->if_l2com;
6434 	struct ath_hal *ah = sc->sc_ah;
6435 	HAL_STATUS status;
6436 
6437 	/*
6438 	 * Collect channel set based on EEPROM contents.
6439 	 */
6440 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6441 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6442 	if (status != HAL_OK) {
6443 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6444 		    "status %d\n", __func__, status);
6445 		return EINVAL;
6446 	}
6447 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6448 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6449 	/* XXX map Atheros sku's to net80211 SKU's */
6450 	/* XXX net80211 types too small */
6451 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6452 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6453 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6454 	ic->ic_regdomain.isocc[1] = ' ';
6455 
6456 	ic->ic_regdomain.ecm = 1;
6457 	ic->ic_regdomain.location = 'I';
6458 
6459 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6460 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6461 	    __func__, sc->sc_eerd, sc->sc_eecc,
6462 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6463 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6464 	return 0;
6465 }
6466 
6467 static int
6468 ath_rate_setup(struct ath_softc *sc, u_int mode)
6469 {
6470 	struct ath_hal *ah = sc->sc_ah;
6471 	const HAL_RATE_TABLE *rt;
6472 
6473 	switch (mode) {
6474 	case IEEE80211_MODE_11A:
6475 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6476 		break;
6477 	case IEEE80211_MODE_HALF:
6478 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6479 		break;
6480 	case IEEE80211_MODE_QUARTER:
6481 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6482 		break;
6483 	case IEEE80211_MODE_11B:
6484 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6485 		break;
6486 	case IEEE80211_MODE_11G:
6487 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6488 		break;
6489 	case IEEE80211_MODE_TURBO_A:
6490 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6491 		break;
6492 	case IEEE80211_MODE_TURBO_G:
6493 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6494 		break;
6495 	case IEEE80211_MODE_STURBO_A:
6496 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6497 		break;
6498 	case IEEE80211_MODE_11NA:
6499 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6500 		break;
6501 	case IEEE80211_MODE_11NG:
6502 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6503 		break;
6504 	default:
6505 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6506 			__func__, mode);
6507 		return 0;
6508 	}
6509 	sc->sc_rates[mode] = rt;
6510 	return (rt != NULL);
6511 }
6512 
6513 static void
6514 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6515 {
6516 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6517 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6518 	static const struct {
6519 		u_int		rate;		/* tx/rx 802.11 rate */
6520 		u_int16_t	timeOn;		/* LED on time (ms) */
6521 		u_int16_t	timeOff;	/* LED off time (ms) */
6522 	} blinkrates[] = {
6523 		{ 108,  40,  10 },
6524 		{  96,  44,  11 },
6525 		{  72,  50,  13 },
6526 		{  48,  57,  14 },
6527 		{  36,  67,  16 },
6528 		{  24,  80,  20 },
6529 		{  22, 100,  25 },
6530 		{  18, 133,  34 },
6531 		{  12, 160,  40 },
6532 		{  10, 200,  50 },
6533 		{   6, 240,  58 },
6534 		{   4, 267,  66 },
6535 		{   2, 400, 100 },
6536 		{   0, 500, 130 },
6537 		/* XXX half/quarter rates */
6538 	};
6539 	const HAL_RATE_TABLE *rt;
6540 	int i, j;
6541 
6542 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6543 	rt = sc->sc_rates[mode];
6544 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6545 	for (i = 0; i < rt->rateCount; i++) {
6546 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6547 		if (rt->info[i].phy != IEEE80211_T_HT)
6548 			sc->sc_rixmap[ieeerate] = i;
6549 		else
6550 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6551 	}
6552 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6553 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6554 		if (i >= rt->rateCount) {
6555 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6556 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6557 			continue;
6558 		}
6559 		sc->sc_hwmap[i].ieeerate =
6560 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6561 		if (rt->info[i].phy == IEEE80211_T_HT)
6562 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6563 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6564 		if (rt->info[i].shortPreamble ||
6565 		    rt->info[i].phy == IEEE80211_T_OFDM)
6566 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6567 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6568 		for (j = 0; j < N(blinkrates)-1; j++)
6569 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6570 				break;
6571 		/* NB: this uses the last entry if the rate isn't found */
6572 		/* XXX beware of overlow */
6573 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6574 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6575 	}
6576 	sc->sc_currates = rt;
6577 	sc->sc_curmode = mode;
6578 	/*
6579 	 * All protection frames are transmited at 2Mb/s for
6580 	 * 11g, otherwise at 1Mb/s.
6581 	 */
6582 	if (mode == IEEE80211_MODE_11G)
6583 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6584 	else
6585 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6586 	/* NB: caller is responsible for resetting rate control state */
6587 #undef N
6588 }
6589 
6590 static void
6591 ath_watchdog(void *arg)
6592 {
6593 	struct ath_softc *sc = arg;
6594 	int do_reset = 0;
6595 
6596 	ATH_LOCK_ASSERT(sc);
6597 
6598 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6599 		struct ifnet *ifp = sc->sc_ifp;
6600 		uint32_t hangs;
6601 
6602 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6603 
6604 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6605 		    hangs != 0) {
6606 			if_printf(ifp, "%s hang detected (0x%x)\n",
6607 			    hangs & 0xff ? "bb" : "mac", hangs);
6608 		} else
6609 			if_printf(ifp, "device timeout\n");
6610 		do_reset = 1;
6611 #if defined(__DragonFly__)
6612 		++ifp->if_oerrors;
6613 #else
6614 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6615 #endif
6616 		sc->sc_stats.ast_watchdog++;
6617 
6618 		ath_power_restore_power_state(sc);
6619 	}
6620 
6621 	/*
6622 	 * We can't hold the lock across the ath_reset() call.
6623 	 *
6624 	 * And since this routine can't hold a lock and sleep,
6625 	 * do the reset deferred.
6626 	 */
6627 	if (do_reset) {
6628 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6629 	}
6630 
6631 #if defined(__DragonFly__)
6632 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
6633 #else
6634 	callout_schedule(&sc->sc_wd_ch, hz);
6635 #endif
6636 }
6637 
6638 #if defined(__DragonFly__)
6639 
6640 /*
6641  * (DragonFly network start)
6642  */
6643 static void
6644 ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
6645 {
6646        struct ath_softc *sc = ifp->if_softc;
6647        struct mbuf *m;
6648        int wst;
6649 
6650        ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
6651        wst = wlan_serialize_push();
6652 
6653        if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6654                ifq_purge(&ifp->if_snd);
6655                wlan_serialize_pop(wst);
6656                return;
6657        }
6658        ifq_set_oactive(&ifp->if_snd);
6659        for (;;) {
6660                m = ifq_dequeue(&ifp->if_snd);
6661                if (m == NULL)
6662                        break;
6663                ath_transmit(ifp, m);
6664        }
6665        ifq_clr_oactive(&ifp->if_snd);
6666        wlan_serialize_pop(wst);
6667 }
6668 
6669 #endif
6670 
6671 /*
6672  * Fetch the rate control statistics for the given node.
6673  */
6674 static int
6675 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6676 {
6677 	struct ath_node *an;
6678 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6679 	struct ieee80211_node *ni;
6680 	int error = 0;
6681 
6682 	/* Perform a lookup on the given node */
6683 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6684 	if (ni == NULL) {
6685 		error = EINVAL;
6686 		goto bad;
6687 	}
6688 
6689 	/* Lock the ath_node */
6690 	an = ATH_NODE(ni);
6691 	ATH_NODE_LOCK(an);
6692 
6693 	/* Fetch the rate control stats for this node */
6694 	error = ath_rate_fetch_node_stats(sc, an, rs);
6695 
6696 	/* No matter what happens here, just drop through */
6697 
6698 	/* Unlock the ath_node */
6699 	ATH_NODE_UNLOCK(an);
6700 
6701 	/* Unref the node */
6702 	ieee80211_node_decref(ni);
6703 
6704 bad:
6705 	return (error);
6706 }
6707 
6708 #ifdef ATH_DIAGAPI
6709 /*
6710  * Diagnostic interface to the HAL.  This is used by various
6711  * tools to do things like retrieve register contents for
6712  * debugging.  The mechanism is intentionally opaque so that
6713  * it can change frequently w/o concern for compatiblity.
6714  */
6715 static int
6716 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6717 {
6718 	struct ath_hal *ah = sc->sc_ah;
6719 	u_int id = ad->ad_id & ATH_DIAG_ID;
6720 	void *indata = NULL;
6721 	void *outdata = NULL;
6722 	u_int32_t insize = ad->ad_in_size;
6723 	u_int32_t outsize = ad->ad_out_size;
6724 	int error = 0;
6725 
6726 	if (ad->ad_id & ATH_DIAG_IN) {
6727 		/*
6728 		 * Copy in data.
6729 		 */
6730 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6731 		if (indata == NULL) {
6732 			error = ENOMEM;
6733 			goto bad;
6734 		}
6735 		error = copyin(ad->ad_in_data, indata, insize);
6736 		if (error)
6737 			goto bad;
6738 	}
6739 	if (ad->ad_id & ATH_DIAG_DYN) {
6740 		/*
6741 		 * Allocate a buffer for the results (otherwise the HAL
6742 		 * returns a pointer to a buffer where we can read the
6743 		 * results).  Note that we depend on the HAL leaving this
6744 		 * pointer for us to use below in reclaiming the buffer;
6745 		 * may want to be more defensive.
6746 		 */
6747 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6748 		if (outdata == NULL) {
6749 			error = ENOMEM;
6750 			goto bad;
6751 		}
6752 	}
6753 
6754 
6755 	ATH_LOCK(sc);
6756 	if (id != HAL_DIAG_REGS)
6757 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6758 	ATH_UNLOCK(sc);
6759 
6760 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6761 		if (outsize < ad->ad_out_size)
6762 			ad->ad_out_size = outsize;
6763 		if (outdata != NULL)
6764 			error = copyout(outdata, ad->ad_out_data,
6765 					ad->ad_out_size);
6766 	} else {
6767 		error = EINVAL;
6768 	}
6769 
6770 	ATH_LOCK(sc);
6771 	if (id != HAL_DIAG_REGS)
6772 		ath_power_restore_power_state(sc);
6773 	ATH_UNLOCK(sc);
6774 
6775 bad:
6776 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6777 		kfree(indata, M_TEMP);
6778 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6779 		kfree(outdata, M_TEMP);
6780 	return error;
6781 }
6782 #endif /* ATH_DIAGAPI */
6783 
6784 #if defined(__DragonFly__)
6785 
6786 static int
6787 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
6788 	  struct ucred *cred __unused)
6789 
6790 #else
6791 
6792 static int
6793 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6794 
6795 #endif
6796 {
6797 #define	IS_RUNNING(ifp) \
6798 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6799 	struct ath_softc *sc = ifp->if_softc;
6800 	struct ieee80211com *ic = ifp->if_l2com;
6801 	struct ifreq *ifr = (struct ifreq *)data;
6802 	const HAL_RATE_TABLE *rt;
6803 	int error = 0;
6804 
6805 	switch (cmd) {
6806 	case SIOCSIFFLAGS:
6807 		if (IS_RUNNING(ifp)) {
6808 			/*
6809 			 * To avoid rescanning another access point,
6810 			 * do not call ath_init() here.  Instead,
6811 			 * only reflect promisc mode settings.
6812 			 */
6813 			ATH_LOCK(sc);
6814 			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6815 			ath_mode_init(sc);
6816 			ath_power_restore_power_state(sc);
6817 			ATH_UNLOCK(sc);
6818 		} else if (ifp->if_flags & IFF_UP) {
6819 			/*
6820 			 * Beware of being called during attach/detach
6821 			 * to reset promiscuous mode.  In that case we
6822 			 * will still be marked UP but not RUNNING.
6823 			 * However trying to re-init the interface
6824 			 * is the wrong thing to do as we've already
6825 			 * torn down much of our state.  There's
6826 			 * probably a better way to deal with this.
6827 			 */
6828 			if (!sc->sc_invalid)
6829 				ath_init(sc);	/* XXX lose error */
6830 		} else {
6831 			ATH_LOCK(sc);
6832 			ath_stop_locked(ifp);
6833 			if (!sc->sc_invalid)
6834 				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6835 			ATH_UNLOCK(sc);
6836 		}
6837 		break;
6838 	case SIOCGIFMEDIA:
6839 	case SIOCSIFMEDIA:
6840 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6841 		break;
6842 	case SIOCGATHSTATS:
6843 		/* NB: embed these numbers to get a consistent view */
6844 #if defined(__DragonFly__)
6845 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6846 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6847 #else
6848 		sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp,
6849 		    IFCOUNTER_OPACKETS);
6850 		sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp,
6851 		    IFCOUNTER_IPACKETS);
6852 #endif
6853 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6854 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6855 #ifdef IEEE80211_SUPPORT_TDMA
6856 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6857 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6858 #endif
6859 		rt = sc->sc_currates;
6860 		sc->sc_stats.ast_tx_rate =
6861 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6862 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6863 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6864 		error = copyout(&sc->sc_stats,
6865 		    ifr->ifr_data, sizeof (sc->sc_stats));
6866 		break;
6867 	case SIOCGATHAGSTATS:
6868 		error = copyout(&sc->sc_aggr_stats,
6869 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6870 		break;
6871 	case SIOCZATHSTATS:
6872 		error = priv_check(curthread, PRIV_DRIVER);
6873 		if (error == 0) {
6874 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6875 			memset(&sc->sc_aggr_stats, 0,
6876 			    sizeof(sc->sc_aggr_stats));
6877 			memset(&sc->sc_intr_stats, 0,
6878 			    sizeof(sc->sc_intr_stats));
6879 		}
6880 		break;
6881 #ifdef ATH_DIAGAPI
6882 	case SIOCGATHDIAG:
6883 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6884 		break;
6885 	case SIOCGATHPHYERR:
6886 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6887 		break;
6888 #endif
6889 	case SIOCGATHSPECTRAL:
6890 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6891 		break;
6892 	case SIOCGATHNODERATESTATS:
6893 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6894 		break;
6895 	case SIOCGIFADDR:
6896 		error = ether_ioctl(ifp, cmd, data);
6897 		break;
6898 	default:
6899 		error = EINVAL;
6900 		break;
6901 	}
6902 	return error;
6903 #undef IS_RUNNING
6904 }
6905 
6906 /*
6907  * Announce various information on device/driver attach.
6908  */
6909 static void
6910 ath_announce(struct ath_softc *sc)
6911 {
6912 	struct ifnet *ifp = sc->sc_ifp;
6913 	struct ath_hal *ah = sc->sc_ah;
6914 
6915 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6916 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6917 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6918 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6919 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6920 	if (bootverbose) {
6921 		int i;
6922 		for (i = 0; i <= WME_AC_VO; i++) {
6923 			struct ath_txq *txq = sc->sc_ac2q[i];
6924 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6925 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6926 		}
6927 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6928 			sc->sc_cabq->axq_qnum);
6929 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6930 	}
6931 	if (ath_rxbuf != ATH_RXBUF)
6932 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6933 	if (ath_txbuf != ATH_TXBUF)
6934 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6935 	if (sc->sc_mcastkey && bootverbose)
6936 		if_printf(ifp, "using multicast key search\n");
6937 }
6938 
6939 static void
6940 ath_dfs_tasklet(void *p, int npending)
6941 {
6942 	struct ath_softc *sc = (struct ath_softc *) p;
6943 	struct ifnet *ifp = sc->sc_ifp;
6944 	struct ieee80211com *ic = ifp->if_l2com;
6945 
6946 	/*
6947 	 * If previous processing has found a radar event,
6948 	 * signal this to the net80211 layer to begin DFS
6949 	 * processing.
6950 	 */
6951 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6952 		/* DFS event found, initiate channel change */
6953 		/*
6954 		 * XXX doesn't currently tell us whether the event
6955 		 * XXX was found in the primary or extension
6956 		 * XXX channel!
6957 		 */
6958 		IEEE80211_LOCK(ic);
6959 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6960 		IEEE80211_UNLOCK(ic);
6961 	}
6962 }
6963 
6964 /*
6965  * Enable/disable power save.  This must be called with
6966  * no TX driver locks currently held, so it should only
6967  * be called from the RX path (which doesn't hold any
6968  * TX driver locks.)
6969  */
6970 static void
6971 ath_node_powersave(struct ieee80211_node *ni, int enable)
6972 {
6973 #ifdef	ATH_SW_PSQ
6974 	struct ath_node *an = ATH_NODE(ni);
6975 	struct ieee80211com *ic = ni->ni_ic;
6976 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6977 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6978 
6979 	/* XXX and no TXQ locks should be held here */
6980 
6981 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6s: enable=%d\n",
6982 	    __func__,
6983 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6984 	    !! enable);
6985 
6986 	/* Suspend or resume software queue handling */
6987 	if (enable)
6988 		ath_tx_node_sleep(sc, an);
6989 	else
6990 		ath_tx_node_wakeup(sc, an);
6991 
6992 	/* Update net80211 state */
6993 	avp->av_node_ps(ni, enable);
6994 #else
6995 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6996 
6997 	/* Update net80211 state */
6998 	avp->av_node_ps(ni, enable);
6999 #endif/* ATH_SW_PSQ */
7000 }
7001 
7002 /*
7003  * Notification from net80211 that the powersave queue state has
7004  * changed.
7005  *
7006  * Since the software queue also may have some frames:
7007  *
7008  * + if the node software queue has frames and the TID state
7009  *   is 0, we set the TIM;
7010  * + if the node and the stack are both empty, we clear the TIM bit.
7011  * + If the stack tries to set the bit, always set it.
7012  * + If the stack tries to clear the bit, only clear it if the
7013  *   software queue in question is also cleared.
7014  *
7015  * TODO: this is called during node teardown; so let's ensure this
7016  * is all correctly handled and that the TIM bit is cleared.
7017  * It may be that the node flush is called _AFTER_ the net80211
7018  * stack clears the TIM.
7019  *
7020  * Here is the racy part.  Since it's possible >1 concurrent,
7021  * overlapping TXes will appear complete with a TX completion in
7022  * another thread, it's possible that the concurrent TIM calls will
7023  * clash.  We can't hold the node lock here because setting the
7024  * TIM grabs the net80211 comlock and this may cause a LOR.
7025  * The solution is either to totally serialise _everything_ at
7026  * this point (ie, all TX, completion and any reset/flush go into
7027  * one taskqueue) or a new "ath TIM lock" needs to be created that
7028  * just wraps the driver state change and this call to avp->av_set_tim().
7029  *
7030  * The same race exists in the net80211 power save queue handling
7031  * as well.  Since multiple transmitting threads may queue frames
7032  * into the driver, as well as ps-poll and the driver transmitting
7033  * frames (and thus clearing the psq), it's quite possible that
7034  * a packet entering the PSQ and a ps-poll being handled will
7035  * race, causing the TIM to be cleared and not re-set.
7036  */
7037 static int
7038 ath_node_set_tim(struct ieee80211_node *ni, int enable)
7039 {
7040 #ifdef	ATH_SW_PSQ
7041 	struct ieee80211com *ic = ni->ni_ic;
7042 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7043 	struct ath_node *an = ATH_NODE(ni);
7044 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
7045 	int changed = 0;
7046 
7047 	ATH_TX_LOCK(sc);
7048 	an->an_stack_psq = enable;
7049 
7050 	/*
7051 	 * This will get called for all operating modes,
7052 	 * even if avp->av_set_tim is unset.
7053 	 * It's currently set for hostap/ibss modes; but
7054 	 * the same infrastructure is used for both STA
7055 	 * and AP/IBSS node power save.
7056 	 */
7057 	if (avp->av_set_tim == NULL) {
7058 		ATH_TX_UNLOCK(sc);
7059 		return (0);
7060 	}
7061 
7062 	/*
7063 	 * If setting the bit, always set it here.
7064 	 * If clearing the bit, only clear it if the
7065 	 * software queue is also empty.
7066 	 *
7067 	 * If the node has left power save, just clear the TIM
7068 	 * bit regardless of the state of the power save queue.
7069 	 *
7070 	 * XXX TODO: although atomics are used, it's quite possible
7071 	 * that a race will occur between this and setting/clearing
7072 	 * in another thread.  TX completion will occur always in
7073 	 * one thread, however setting/clearing the TIM bit can come
7074 	 * from a variety of different process contexts!
7075 	 */
7076 	if (enable && an->an_tim_set == 1) {
7077 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7078 		    "%s: %s: enable=%d, tim_set=1, ignoring\n",
7079 		    __func__,
7080 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7081 		    enable);
7082 		ATH_TX_UNLOCK(sc);
7083 	} else if (enable) {
7084 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7085 		    "%s: %s: enable=%d, enabling TIM\n",
7086 		    __func__,
7087 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7088 		    enable);
7089 		an->an_tim_set = 1;
7090 		ATH_TX_UNLOCK(sc);
7091 		changed = avp->av_set_tim(ni, enable);
7092 	} else if (an->an_swq_depth == 0) {
7093 		/* disable */
7094 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7095 		    "%s: %s: enable=%d, an_swq_depth == 0, disabling\n",
7096 		    __func__,
7097 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7098 		    enable);
7099 		an->an_tim_set = 0;
7100 		ATH_TX_UNLOCK(sc);
7101 		changed = avp->av_set_tim(ni, enable);
7102 	} else if (! an->an_is_powersave) {
7103 		/*
7104 		 * disable regardless; the node isn't in powersave now
7105 		 */
7106 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7107 		    "%s: %s: enable=%d, an_pwrsave=0, disabling\n",
7108 		    __func__,
7109 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7110 		    enable);
7111 		an->an_tim_set = 0;
7112 		ATH_TX_UNLOCK(sc);
7113 		changed = avp->av_set_tim(ni, enable);
7114 	} else {
7115 		/*
7116 		 * psq disable, node is currently in powersave, node
7117 		 * software queue isn't empty, so don't clear the TIM bit
7118 		 * for now.
7119 		 */
7120 		ATH_TX_UNLOCK(sc);
7121 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7122 		    "%s: %s: enable=%d, an_swq_depth > 0, ignoring\n",
7123 		    __func__,
7124 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7125 		    enable);
7126 		changed = 0;
7127 	}
7128 
7129 	return (changed);
7130 #else
7131 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
7132 
7133 	/*
7134 	 * Some operating modes don't set av_set_tim(), so don't
7135 	 * update it here.
7136 	 */
7137 	if (avp->av_set_tim == NULL)
7138 		return (0);
7139 
7140 	return (avp->av_set_tim(ni, enable));
7141 #endif /* ATH_SW_PSQ */
7142 }
7143 
7144 /*
7145  * Set or update the TIM from the software queue.
7146  *
7147  * Check the software queue depth before attempting to do lock
7148  * anything; that avoids trying to obtain the lock.  Then,
7149  * re-check afterwards to ensure nothing has changed in the
7150  * meantime.
7151  *
7152  * set:   This is designed to be called from the TX path, after
7153  *        a frame has been queued; to see if the swq > 0.
7154  *
7155  * clear: This is designed to be called from the buffer completion point
7156  *        (right now it's ath_tx_default_comp()) where the state of
7157  *        a software queue has changed.
7158  *
7159  * It makes sense to place it at buffer free / completion rather
7160  * than after each software queue operation, as there's no real
7161  * point in churning the TIM bit as the last frames in the software
7162  * queue are transmitted.  If they fail and we retry them, we'd
7163  * just be setting the TIM bit again anyway.
7164  */
7165 void
7166 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
7167      int enable)
7168 {
7169 #ifdef	ATH_SW_PSQ
7170 	struct ath_node *an;
7171 	struct ath_vap *avp;
7172 
7173 	/* Don't do this for broadcast/etc frames */
7174 	if (ni == NULL)
7175 		return;
7176 
7177 	an = ATH_NODE(ni);
7178 	avp = ATH_VAP(ni->ni_vap);
7179 
7180 	/*
7181 	 * And for operating modes without the TIM handler set, let's
7182 	 * just skip those.
7183 	 */
7184 	if (avp->av_set_tim == NULL)
7185 		return;
7186 
7187 	ATH_TX_LOCK_ASSERT(sc);
7188 
7189 	if (enable) {
7190 		if (an->an_is_powersave &&
7191 		    an->an_tim_set == 0 &&
7192 		    an->an_swq_depth != 0) {
7193 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7194 			    "%s: %s: swq_depth>0, tim_set=0, set!\n",
7195 			    __func__,
7196 			    ath_hal_ether_sprintf(ni->ni_macaddr));
7197 			an->an_tim_set = 1;
7198 			(void) avp->av_set_tim(ni, 1);
7199 		}
7200 	} else {
7201 		/*
7202 		 * Don't bother grabbing the lock unless the queue is empty.
7203 		 */
7204 		if (an->an_swq_depth != 0)
7205 			return;
7206 
7207 		if (an->an_is_powersave &&
7208 		    an->an_stack_psq == 0 &&
7209 		    an->an_tim_set == 1 &&
7210 		    an->an_swq_depth == 0) {
7211 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7212 			    "%s: %s: swq_depth=0, tim_set=1, psq_set=0,"
7213 			    " clear!\n",
7214 			    __func__,
7215 			    ath_hal_ether_sprintf(ni->ni_macaddr));
7216 			an->an_tim_set = 0;
7217 			(void) avp->av_set_tim(ni, 0);
7218 		}
7219 	}
7220 #else
7221 	return;
7222 #endif	/* ATH_SW_PSQ */
7223 }
7224 
7225 /*
7226  * Received a ps-poll frame from net80211.
7227  *
7228  * Here we get a chance to serve out a software-queued frame ourselves
7229  * before we punt it to net80211 to transmit us one itself - either
7230  * because there's traffic in the net80211 psq, or a NULL frame to
7231  * indicate there's nothing else.
7232  */
7233 static void
7234 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
7235 {
7236 #ifdef	ATH_SW_PSQ
7237 	struct ath_node *an;
7238 	struct ath_vap *avp;
7239 	struct ieee80211com *ic = ni->ni_ic;
7240 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7241 	int tid;
7242 
7243 	/* Just paranoia */
7244 	if (ni == NULL)
7245 		return;
7246 
7247 	/*
7248 	 * Unassociated (temporary node) station.
7249 	 */
7250 	if (ni->ni_associd == 0)
7251 		return;
7252 
7253 	/*
7254 	 * We do have an active node, so let's begin looking into it.
7255 	 */
7256 	an = ATH_NODE(ni);
7257 	avp = ATH_VAP(ni->ni_vap);
7258 
7259 	/*
7260 	 * For now, we just call the original ps-poll method.
7261 	 * Once we're ready to flip this on:
7262 	 *
7263 	 * + Set leak to 1, as no matter what we're going to have
7264 	 *   to send a frame;
7265 	 * + Check the software queue and if there's something in it,
7266 	 *   schedule the highest TID thas has traffic from this node.
7267 	 *   Then make sure we schedule the software scheduler to
7268 	 *   run so it picks up said frame.
7269 	 *
7270 	 * That way whatever happens, we'll at least send _a_ frame
7271 	 * to the given node.
7272 	 *
7273 	 * Again, yes, it's crappy QoS if the node has multiple
7274 	 * TIDs worth of traffic - but let's get it working first
7275 	 * before we optimise it.
7276 	 *
7277 	 * Also yes, there's definitely latency here - we're not
7278 	 * direct dispatching to the hardware in this path (and
7279 	 * we're likely being called from the packet receive path,
7280 	 * so going back into TX may be a little hairy!) but again
7281 	 * I'd like to get this working first before optimising
7282 	 * turn-around time.
7283 	 */
7284 
7285 	ATH_TX_LOCK(sc);
7286 
7287 	/*
7288 	 * Legacy - we're called and the node isn't asleep.
7289 	 * Immediately punt.
7290 	 */
7291 	if (! an->an_is_powersave) {
7292 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7293 		    "%s: %s: not in powersave?\n",
7294 		    __func__,
7295 		    ath_hal_ether_sprintf(ni->ni_macaddr));
7296 		ATH_TX_UNLOCK(sc);
7297 		avp->av_recv_pspoll(ni, m);
7298 		return;
7299 	}
7300 
7301 	/*
7302 	 * We're in powersave.
7303 	 *
7304 	 * Leak a frame.
7305 	 */
7306 	an->an_leak_count = 1;
7307 
7308 	/*
7309 	 * Now, if there's no frames in the node, just punt to
7310 	 * recv_pspoll.
7311 	 *
7312 	 * Don't bother checking if the TIM bit is set, we really
7313 	 * only care if there are any frames here!
7314 	 */
7315 	if (an->an_swq_depth == 0) {
7316 		ATH_TX_UNLOCK(sc);
7317 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7318 		    "%s: %s: SWQ empty; punting to net80211\n",
7319 		    __func__,
7320 		    ath_hal_ether_sprintf(ni->ni_macaddr));
7321 		avp->av_recv_pspoll(ni, m);
7322 		return;
7323 	}
7324 
7325 	/*
7326 	 * Ok, let's schedule the highest TID that has traffic
7327 	 * and then schedule something.
7328 	 */
7329 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7330 		struct ath_tid *atid = &an->an_tid[tid];
7331 		/*
7332 		 * No frames? Skip.
7333 		 */
7334 		if (atid->axq_depth == 0)
7335 			continue;
7336 		ath_tx_tid_sched(sc, atid);
7337 		/*
7338 		 * XXX we could do a direct call to the TXQ
7339 		 * scheduler code here to optimise latency
7340 		 * at the expense of a REALLY deep callstack.
7341 		 */
7342 		ATH_TX_UNLOCK(sc);
7343 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7344 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7345 		    "%s: %s: leaking frame to TID %d\n",
7346 		    __func__,
7347 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7348 		    tid);
7349 		return;
7350 	}
7351 
7352 	ATH_TX_UNLOCK(sc);
7353 
7354 	/*
7355 	 * XXX nothing in the TIDs at this point? Eek.
7356 	 */
7357 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7358 	    "%s: %s: TIDs empty, but ath_node showed traffic?!\n",
7359 	    __func__,
7360 	    ath_hal_ether_sprintf(ni->ni_macaddr));
7361 	avp->av_recv_pspoll(ni, m);
7362 #else
7363 	avp->av_recv_pspoll(ni, m);
7364 #endif	/* ATH_SW_PSQ */
7365 }
7366 
7367 MODULE_VERSION(if_ath, 1);
7368 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7369 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7370 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7371 #endif
7372