xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision 650094e1)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  *
29  * $FreeBSD: head/sys/dev/ath/if_ath.c 203751 2010-02-10 11:12:39Z rpaulo $");
30  */
31 
32 /*
33  * Driver for the Atheros Wireless LAN controller.
34  *
35  * This software is derived from work of Atsushi Onoe; his contribution
36  * is greatly appreciated.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ath.h"
41 #include "opt_wlan.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/priv.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_arp.h>
66 #include <net/if_llc.h>
67 #include <net/ifq_var.h>
68 
69 #include <netproto/802_11/ieee80211_var.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #ifdef IEEE80211_SUPPORT_SUPERG
72 #include <netproto/802_11/ieee80211_superg.h>
73 #endif
74 #ifdef IEEE80211_SUPPORT_TDMA
75 #include <netproto/802_11/ieee80211_tdma.h>
76 #endif
77 
78 #include <net/bpf.h>
79 
80 #ifdef INET
81 #include <netinet/in.h>
82 #include <netinet/if_ether.h>
83 #endif
84 
85 #include <dev/netif/ath/ath/if_athvar.h>
86 #include <dev/netif/ath/hal/ath_hal/ah_devid.h>		/* XXX for softled */
87 
88 #ifdef ATH_TX99_DIAG
89 #include <dev/netif/ath_tx99/ath_tx99.h>
90 #endif
91 
92 /*
93  * ATH_BCBUF determines the number of vap's that can transmit
94  * beacons and also (currently) the number of vap's that can
95  * have unique mac addresses/bssid.  When staggering beacons
96  * 4 is probably a good max as otherwise the beacons become
97  * very closely spaced and there is limited time for cab q traffic
98  * to go out.  You can burst beacons instead but that is not good
99  * for stations in power save and at some point you really want
100  * another radio (and channel).
101  *
102  * The limit on the number of mac addresses is tied to our use of
103  * the U/L bit and tracking addresses in a byte; it would be
104  * worthwhile to allow more for applications like proxy sta.
105  */
106 CTASSERT(ATH_BCBUF <= 8);
107 
108 /* unaligned little endian access */
109 #define LE_READ_2(p)							\
110 	((u_int16_t)							\
111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112 #define LE_READ_4(p)							\
113 	((u_int32_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116 
117 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
118 		    const char name[IFNAMSIZ], int unit, int opmode,
119 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
120 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
121 static void	ath_vap_delete(struct ieee80211vap *);
122 static void	ath_init(void *);
123 static void	ath_stop_locked(struct ifnet *);
124 static void	ath_stop(struct ifnet *);
125 static void	ath_start(struct ifnet *);
126 static int	ath_reset(struct ifnet *);
127 static int	ath_reset_vap(struct ieee80211vap *, u_long);
128 static int	ath_media_change(struct ifnet *);
129 static void	ath_watchdog_callout(void *);
130 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
131 static void	ath_fatal_proc(void *, int);
132 static void	ath_bmiss_vap(struct ieee80211vap *);
133 static void	ath_bmiss_task(void *, int);
134 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
135 			struct ieee80211_node *);
136 static int	ath_key_alloc(struct ieee80211vap *,
137 			struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211vap *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211vap *);
144 static void	ath_key_update_end(struct ieee80211vap *);
145 static void	ath_update_mcast(struct ifnet *);
146 static void	ath_update_promisc(struct ifnet *);
147 static void	ath_mode_init(struct ath_softc *);
148 static void	ath_setslottime(struct ath_softc *);
149 static void	ath_updateslot(struct ifnet *);
150 static int	ath_beaconq_setup(struct ath_hal *);
151 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
152 static void	ath_beacon_update(struct ieee80211vap *, int item);
153 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
154 static void	ath_beacon_proc(void *, int);
155 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
156 			struct ieee80211vap *);
157 static void	ath_bstuck_task(void *, int);
158 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
159 static void	ath_beacon_free(struct ath_softc *);
160 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
161 static void	ath_descdma_cleanup(struct ath_softc *sc,
162 			struct ath_descdma *, ath_bufhead *);
163 static int	ath_desc_alloc(struct ath_softc *);
164 static void	ath_desc_free(struct ath_softc *);
165 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
166 			const uint8_t [IEEE80211_ADDR_LEN]);
167 static void	ath_node_free(struct ieee80211_node *);
168 static void	ath_node_getsignal(const struct ieee80211_node *,
169 			int8_t *, int8_t *);
170 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
171 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
172 			int subtype, int rssi, int nf);
173 static void	ath_setdefantenna(struct ath_softc *, u_int);
174 static void	ath_rx_task(void *, int);
175 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
176 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
177 static int	ath_tx_setup(struct ath_softc *, int, int);
178 static int	ath_wme_update(struct ieee80211com *);
179 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
180 static void	ath_tx_cleanup(struct ath_softc *);
181 static void	ath_freetx(struct mbuf *);
182 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
183 			     struct ath_buf *, struct mbuf *);
184 static void	ath_tx_task_q0(void *, int);
185 static void	ath_tx_task_q0123(void *, int);
186 static void	ath_tx_task(void *, int);
187 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_draintxq(struct ath_softc *);
190 static void	ath_stoprecv(struct ath_softc *);
191 static int	ath_startrecv(struct ath_softc *);
192 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
193 static void	ath_scan_start(struct ieee80211com *);
194 static void	ath_scan_end(struct ieee80211com *);
195 static void	ath_set_channel(struct ieee80211com *);
196 static void	ath_calibrate_callout(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 static void	ath_led_event(struct ath_softc *, int);
207 
208 static int	ath_rate_setup(struct ath_softc *, u_int mode);
209 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
210 
211 static void	ath_sysctlattach(struct ath_softc *);
212 static int	ath_raw_xmit(struct ieee80211_node *,
213 			struct mbuf *, const struct ieee80211_bpf_params *);
214 static void	ath_announce(struct ath_softc *);
215 static void	ath_sysctl_stats_attach(struct ath_softc *sc);
216 
217 #ifdef IEEE80211_SUPPORT_TDMA
218 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
219 		    u_int32_t bintval);
220 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
221 		    const struct ieee80211_tdma_state *tdma);
222 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
223 static void	ath_tdma_update(struct ieee80211_node *ni,
224 		    const struct ieee80211_tdma_param *tdma, int);
225 static void	ath_tdma_beacon_send(struct ath_softc *sc,
226 		    struct ieee80211vap *vap);
227 
228 static __inline void
229 ath_hal_setcca(struct ath_hal *ah, int ena)
230 {
231 	/*
232 	 * NB: fill me in; this is not provided by default because disabling
233 	 *     CCA in most locales violates regulatory.
234 	 */
235 }
236 
237 static __inline int
238 ath_hal_getcca(struct ath_hal *ah)
239 {
240 	u_int32_t diag;
241 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
242 		return 1;
243 	return ((diag & 0x500000) == 0);
244 }
245 
246 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
247 #define	TDMA_LPF_LEN		6
248 #define	TDMA_DUMMY_MARKER	0x127
249 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
250 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
251 #define	TDMA_LPF(x, y, len) \
252     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
253 #define	TDMA_SAMPLE(x, y) do {					\
254 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
255 } while (0)
256 #define	TDMA_EP_RND(x,mul) \
257 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
258 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
259 #endif /* IEEE80211_SUPPORT_TDMA */
260 
261 SYSCTL_DECL(_hw_ath);
262 
263 /* XXX validate sysctl values */
264 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
265 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
266 	    0, "long chip calibration interval (secs)");
267 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
268 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
269 	    0, "short chip calibration interval (msecs)");
270 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
271 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
272 	    0, "reset chip calibration results (secs)");
273 
274 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
275 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
276 	    0, "rx buffers allocated");
277 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
278 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
279 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
280 	    0, "tx buffers allocated");
281 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
282 
283 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
284 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
285 	    0, "max missed beacon xmits before chip reset");
286 
287 #ifdef ATH_DEBUG
288 enum {
289 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
290 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
291 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
292 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
293 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
294 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
295 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
296 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
297 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
298 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
299 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
300 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
301 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
302 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
303 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
304 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
305 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
306 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
307 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
308 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
309 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
310 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
311 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
312 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
313 	ATH_DEBUG_ANY		= 0xffffffff
314 };
315 static	int ath_debug = 0;
316 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
317 	    0, "control debugging printfs");
318 TUNABLE_INT("hw.ath.debug", &ath_debug);
319 
320 #define	IFF_DUMPPKTS(sc, m) \
321 	((sc->sc_debug & (m)) || \
322 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
323 #define	DPRINTF(sc, m, fmt, ...) do {				\
324 	if (sc->sc_debug & (m))					\
325 		kprintf(fmt, __VA_ARGS__);			\
326 } while (0)
327 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
328 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
329 		ath_keyprint(sc, __func__, ix, hk, mac);	\
330 } while (0)
331 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
332 	u_int ix, int);
333 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
334 	u_int qnum, u_int ix, int done);
335 #else
336 #define	IFF_DUMPPKTS(sc, m) \
337 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
338 #define	DPRINTF(sc, m, fmt, ...) do {				\
339 	(void) sc;						\
340 } while (0)
341 #define	KEYPRINTF(sc, k, ix, mac) do {				\
342 	(void) sc;						\
343 } while (0)
344 #endif
345 
346 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
347 
348 int
349 ath_attach(u_int16_t devid, struct ath_softc *sc)
350 {
351 	struct ifnet *ifp;
352 	struct ieee80211com *ic;
353 	struct ath_hal *ah = NULL;
354 	HAL_STATUS status;
355 	int error = 0, i;
356 	u_int wmodes;
357 	uint8_t macaddr[IEEE80211_ADDR_LEN];
358 
359 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
360 
361 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
362 	if (ifp == NULL) {
363 		device_printf(sc->sc_dev, "can not if_alloc()\n");
364 		error = ENOSPC;
365 		goto bad;
366 	}
367 	ic = ifp->if_l2com;
368 
369 	/* set these up early for if_printf use */
370 	if_initname(ifp, device_get_name(sc->sc_dev),
371 		device_get_unit(sc->sc_dev));
372 
373 	/* prepare sysctl tree for use in sub modules */
374 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
375 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
376 		SYSCTL_STATIC_CHILDREN(_hw),
377 		OID_AUTO,
378 		device_get_nameunit(sc->sc_dev),
379 		CTLFLAG_RD, 0, "");
380 
381 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
382 	if (ah == NULL) {
383 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
384 			status);
385 		error = ENXIO;
386 		goto bad;
387 	}
388 	sc->sc_ah = ah;
389 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
390 #ifdef	ATH_DEBUG
391 	sc->sc_debug = ath_debug;
392 #endif
393 
394 	/*
395 	 * Check if the MAC has multi-rate retry support.
396 	 * We do this by trying to setup a fake extended
397 	 * descriptor.  MAC's that don't have support will
398 	 * return false w/o doing anything.  MAC's that do
399 	 * support it will return true w/o doing anything.
400 	 */
401 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
402 
403 	/*
404 	 * Check if the device has hardware counters for PHY
405 	 * errors.  If so we need to enable the MIB interrupt
406 	 * so we can act on stat triggers.
407 	 */
408 	if (ath_hal_hwphycounters(ah))
409 		sc->sc_needmib = 1;
410 
411 	/*
412 	 * Get the hardware key cache size.
413 	 */
414 	sc->sc_keymax = ath_hal_keycachesize(ah);
415 	if (sc->sc_keymax > ATH_KEYMAX) {
416 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
417 			ATH_KEYMAX, sc->sc_keymax);
418 		sc->sc_keymax = ATH_KEYMAX;
419 	}
420 	/*
421 	 * Reset the key cache since some parts do not
422 	 * reset the contents on initial power up.
423 	 */
424 	for (i = 0; i < sc->sc_keymax; i++)
425 		ath_hal_keyreset(ah, i);
426 
427 	/*
428 	 * Collect the default channel list.
429 	 */
430 	error = ath_getchannels(sc);
431 	if (error != 0)
432 		goto bad;
433 
434 	/*
435 	 * Setup rate tables for all potential media types.
436 	 */
437 	ath_rate_setup(sc, IEEE80211_MODE_11A);
438 	ath_rate_setup(sc, IEEE80211_MODE_11B);
439 	ath_rate_setup(sc, IEEE80211_MODE_11G);
440 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
441 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
442 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
443 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
444 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
445 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
446 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
447 
448 	/* NB: setup here so ath_rate_update is happy */
449 	ath_setcurmode(sc, IEEE80211_MODE_11A);
450 
451 	/*
452 	 * Allocate tx+rx descriptors and populate the lists.
453 	 */
454 	wlan_assert_serialized();
455 	wlan_serialize_exit();
456 	error = ath_desc_alloc(sc);
457 	wlan_serialize_enter();
458 	if (error != 0) {
459 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
460 		goto bad;
461 	}
462 	callout_init(&sc->sc_cal_ch);
463 	callout_init(&sc->sc_wd_ch);
464 
465 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
466 		taskqueue_thread_enqueue, &sc->sc_tq);
467 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
468 		"%s taskq", ifp->if_xname);
469 
470 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_task, sc);
471 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_task, sc);
472 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_task, sc);
473 
474 	/*
475 	 * Allocate hardware transmit queues: one queue for
476 	 * beacon frames and one data queue for each QoS
477 	 * priority.  Note that the hal handles reseting
478 	 * these queues at the needed time.
479 	 *
480 	 * XXX PS-Poll
481 	 */
482 	sc->sc_bhalq = ath_beaconq_setup(ah);
483 	if (sc->sc_bhalq == (u_int) -1) {
484 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
485 		error = EIO;
486 		goto bad2;
487 	}
488 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
489 	if (sc->sc_cabq == NULL) {
490 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
491 		error = EIO;
492 		goto bad2;
493 	}
494 	/* NB: insure BK queue is the lowest priority h/w queue */
495 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
496 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
497 			ieee80211_wme_acnames[WME_AC_BK]);
498 		error = EIO;
499 		goto bad2;
500 	}
501 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
502 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
503 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
504 		/*
505 		 * Not enough hardware tx queues to properly do WME;
506 		 * just punt and assign them all to the same h/w queue.
507 		 * We could do a better job of this if, for example,
508 		 * we allocate queues when we switch from station to
509 		 * AP mode.
510 		 */
511 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
512 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
513 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
514 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
515 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
516 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
517 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
518 	}
519 
520 	/*
521 	 * Special case certain configurations.  Note the
522 	 * CAB queue is handled by these specially so don't
523 	 * include them when checking the txq setup mask.
524 	 */
525 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
526 	case 0x01:
527 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0, sc);
528 		break;
529 	case 0x0f:
530 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0123, sc);
531 		break;
532 	default:
533 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task, sc);
534 		break;
535 	}
536 
537 	/*
538 	 * Setup rate control.  Some rate control modules
539 	 * call back to change the anntena state so expose
540 	 * the necessary entry points.
541 	 * XXX maybe belongs in struct ath_ratectrl?
542 	 */
543 	sc->sc_setdefantenna = ath_setdefantenna;
544 	sc->sc_rc = ath_rate_attach(sc);
545 	if (sc->sc_rc == NULL) {
546 		error = EIO;
547 		goto bad2;
548 	}
549 
550 	sc->sc_blinking = 0;
551 	sc->sc_ledstate = 1;
552 	sc->sc_ledon = 0;			/* low true */
553 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
554 	callout_init_mp(&sc->sc_ledtimer);
555 	/*
556 	 * Auto-enable soft led processing for IBM cards and for
557 	 * 5211 minipci cards.  Users can also manually enable/disable
558 	 * support with a sysctl.
559 	 */
560 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
561 	if (sc->sc_softled) {
562 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
563 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
564 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
565 	}
566 
567 	ifp->if_softc = sc;
568 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
569 	ifp->if_start = ath_start;
570 	ifp->if_ioctl = ath_ioctl;
571 	ifp->if_init = ath_init;
572 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
573 	ifq_set_ready(&ifp->if_snd);
574 
575 	ic->ic_ifp = ifp;
576 	/* XXX not right but it's not used anywhere important */
577 	ic->ic_phytype = IEEE80211_T_OFDM;
578 	ic->ic_opmode = IEEE80211_M_STA;
579 	ic->ic_caps =
580 		  IEEE80211_C_STA		/* station mode */
581 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
582 		| IEEE80211_C_HOSTAP		/* hostap mode */
583 		| IEEE80211_C_MONITOR		/* monitor mode */
584 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
585 		| IEEE80211_C_WDS		/* 4-address traffic works */
586 		| IEEE80211_C_MBSS		/* mesh point link mode */
587 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
588 		| IEEE80211_C_SHSLOT		/* short slot time supported */
589 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
590 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
591 		| IEEE80211_C_TXFRAG		/* handle tx frags */
592 		;
593 	/*
594 	 * Query the hal to figure out h/w crypto support.
595 	 */
596 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
597 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
598 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
599 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
600 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
601 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
602 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
603 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
604 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
605 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
606 		/*
607 		 * Check if h/w does the MIC and/or whether the
608 		 * separate key cache entries are required to
609 		 * handle both tx+rx MIC keys.
610 		 */
611 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
612 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
613 		/*
614 		 * If the h/w supports storing tx+rx MIC keys
615 		 * in one cache slot automatically enable use.
616 		 */
617 		if (ath_hal_hastkipsplit(ah) ||
618 		    !ath_hal_settkipsplit(ah, AH_FALSE))
619 			sc->sc_splitmic = 1;
620 		/*
621 		 * If the h/w can do TKIP MIC together with WME then
622 		 * we use it; otherwise we force the MIC to be done
623 		 * in software by the net80211 layer.
624 		 */
625 		if (ath_hal_haswmetkipmic(ah))
626 			sc->sc_wmetkipmic = 1;
627 	}
628 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
629 	/*
630 	 * Check for multicast key search support.
631 	 */
632 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
633 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
634 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
635 	}
636 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
637 	/*
638 	 * Mark key cache slots associated with global keys
639 	 * as in use.  If we knew TKIP was not to be used we
640 	 * could leave the +32, +64, and +32+64 slots free.
641 	 */
642 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
643 		setbit(sc->sc_keymap, i);
644 		setbit(sc->sc_keymap, i+64);
645 		if (sc->sc_splitmic) {
646 			setbit(sc->sc_keymap, i+32);
647 			setbit(sc->sc_keymap, i+32+64);
648 		}
649 	}
650 	/*
651 	 * TPC support can be done either with a global cap or
652 	 * per-packet support.  The latter is not available on
653 	 * all parts.  We're a bit pedantic here as all parts
654 	 * support a global cap.
655 	 */
656 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
657 		ic->ic_caps |= IEEE80211_C_TXPMGT;
658 
659 	/*
660 	 * Mark WME capability only if we have sufficient
661 	 * hardware queues to do proper priority scheduling.
662 	 */
663 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
664 		ic->ic_caps |= IEEE80211_C_WME;
665 	/*
666 	 * Check for misc other capabilities.
667 	 */
668 	if (ath_hal_hasbursting(ah))
669 		ic->ic_caps |= IEEE80211_C_BURST;
670 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
671 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
672 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
673 	if (ath_hal_hasfastframes(ah))
674 		ic->ic_caps |= IEEE80211_C_FF;
675 	wmodes = ath_hal_getwirelessmodes(ah);
676 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
677 		ic->ic_caps |= IEEE80211_C_TURBOP;
678 #ifdef IEEE80211_SUPPORT_TDMA
679 	if (ath_hal_macversion(ah) > 0x78) {
680 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
681 		ic->ic_tdma_update = ath_tdma_update;
682 	}
683 #endif
684 	/*
685 	 * Indicate we need the 802.11 header padded to a
686 	 * 32-bit boundary for 4-address and QoS frames.
687 	 */
688 	ic->ic_flags |= IEEE80211_F_DATAPAD;
689 
690 	/*
691 	 * Query the hal about antenna support.
692 	 */
693 	sc->sc_defant = ath_hal_getdefantenna(ah);
694 
695 	/*
696 	 * Not all chips have the VEOL support we want to
697 	 * use with IBSS beacons; check here for it.
698 	 */
699 	sc->sc_hasveol = ath_hal_hasveol(ah);
700 
701 	/* get mac address from hardware */
702 	ath_hal_getmac(ah, macaddr);
703 	if (sc->sc_hasbmask)
704 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
705 
706 	/* NB: used to size node table key mapping array */
707 	ic->ic_max_keyix = sc->sc_keymax;
708 	/* call MI attach routine. */
709 	ieee80211_ifattach(ic, macaddr);
710 	ic->ic_setregdomain = ath_setregdomain;
711 	ic->ic_getradiocaps = ath_getradiocaps;
712 	sc->sc_opmode = HAL_M_STA;
713 
714 	/* override default methods */
715 	ic->ic_newassoc = ath_newassoc;
716 	ic->ic_updateslot = ath_updateslot;
717 	ic->ic_wme.wme_update = ath_wme_update;
718 	ic->ic_vap_create = ath_vap_create;
719 	ic->ic_vap_delete = ath_vap_delete;
720 	ic->ic_raw_xmit = ath_raw_xmit;
721 	ic->ic_update_mcast = ath_update_mcast;
722 	ic->ic_update_promisc = ath_update_promisc;
723 	ic->ic_node_alloc = ath_node_alloc;
724 	sc->sc_node_free = ic->ic_node_free;
725 	ic->ic_node_free = ath_node_free;
726 	ic->ic_node_getsignal = ath_node_getsignal;
727 	ic->ic_scan_start = ath_scan_start;
728 	ic->ic_scan_end = ath_scan_end;
729 	ic->ic_set_channel = ath_set_channel;
730 
731 	ieee80211_radiotap_attach(ic,
732 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
733 		ATH_TX_RADIOTAP_PRESENT,
734 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
735 		ATH_RX_RADIOTAP_PRESENT);
736 
737 	/*
738 	 * Setup dynamic sysctl's now that country code and
739 	 * regdomain are available from the hal.
740 	 */
741 	ath_sysctlattach(sc);
742 	ath_sysctl_stats_attach(sc);
743 
744 	if (bootverbose)
745 		ieee80211_announce(ic);
746 	ath_announce(sc);
747 	return 0;
748 bad2:
749 	ath_tx_cleanup(sc);
750 	ath_desc_free(sc);
751 bad:
752 	if (ah)
753 		ath_hal_detach(ah);
754 	if (ifp != NULL)
755 		if_free(ifp);
756 	sc->sc_invalid = 1;
757 	return error;
758 }
759 
760 int
761 ath_detach(struct ath_softc *sc)
762 {
763 	struct ifnet *ifp = sc->sc_ifp;
764 
765 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
766 		__func__, ifp->if_flags);
767 
768 	/*
769 	 * NB: the order of these is important:
770 	 * o stop the chip so no more interrupts will fire
771 	 * o call the 802.11 layer before detaching the hal to
772 	 *   insure callbacks into the driver to delete global
773 	 *   key cache entries can be handled
774 	 * o free the taskqueue which drains any pending tasks
775 	 * o reclaim the tx queue data structures after calling
776 	 *   the 802.11 layer as we'll get called back to reclaim
777 	 *   node state and potentially want to use them
778 	 * o to cleanup the tx queues the hal is called, so detach
779 	 *   it last
780 	 * Other than that, it's straightforward...
781 	 */
782 	ath_stop(ifp);
783 	ieee80211_ifdetach(ifp->if_l2com);
784 	taskqueue_free(sc->sc_tq);
785 #ifdef ATH_TX99_DIAG
786 	if (sc->sc_tx99 != NULL)
787 		sc->sc_tx99->detach(sc->sc_tx99);
788 #endif
789 	ath_rate_detach(sc->sc_rc);
790 	ath_desc_free(sc);
791 	ath_tx_cleanup(sc);
792 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
793 	if (sc->sc_sysctl_tree) {
794 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
795 		sc->sc_sysctl_tree = NULL;
796 	}
797 	if_free(ifp);
798 
799 	return 0;
800 }
801 
802 /*
803  * MAC address handling for multiple BSS on the same radio.
804  * The first vap uses the MAC address from the EEPROM.  For
805  * subsequent vap's we set the U/L bit (bit 1) in the MAC
806  * address and use the next six bits as an index.
807  */
808 static void
809 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
810 {
811 	int i;
812 
813 	if (clone && sc->sc_hasbmask) {
814 		/* NB: we only do this if h/w supports multiple bssid */
815 		for (i = 0; i < 8; i++)
816 			if ((sc->sc_bssidmask & (1<<i)) == 0)
817 				break;
818 		if (i != 0)
819 			mac[0] |= (i << 2)|0x2;
820 	} else
821 		i = 0;
822 	sc->sc_bssidmask |= 1<<i;
823 	sc->sc_hwbssidmask[0] &= ~mac[0];
824 	if (i == 0)
825 		sc->sc_nbssid0++;
826 }
827 
828 static void
829 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
830 {
831 	int i = mac[0] >> 2;
832 	uint8_t mask;
833 
834 	if (i != 0 || --sc->sc_nbssid0 == 0) {
835 		sc->sc_bssidmask &= ~(1<<i);
836 		/* recalculate bssid mask from remaining addresses */
837 		mask = 0xff;
838 		for (i = 1; i < 8; i++)
839 			if (sc->sc_bssidmask & (1<<i))
840 				mask &= ~((i<<2)|0x2);
841 		sc->sc_hwbssidmask[0] |= mask;
842 	}
843 }
844 
845 /*
846  * Assign a beacon xmit slot.  We try to space out
847  * assignments so when beacons are staggered the
848  * traffic coming out of the cab q has maximal time
849  * to go out before the next beacon is scheduled.
850  */
851 static int
852 assign_bslot(struct ath_softc *sc)
853 {
854 	u_int slot, free;
855 
856 	free = 0;
857 	for (slot = 0; slot < ATH_BCBUF; slot++)
858 		if (sc->sc_bslot[slot] == NULL) {
859 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
860 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
861 				return slot;
862 			free = slot;
863 			/* NB: keep looking for a double slot */
864 		}
865 	return free;
866 }
867 
868 static struct ieee80211vap *
869 ath_vap_create(struct ieee80211com *ic,
870 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
871 	const uint8_t bssid[IEEE80211_ADDR_LEN],
872 	const uint8_t mac0[IEEE80211_ADDR_LEN])
873 {
874 	struct ath_softc *sc = ic->ic_ifp->if_softc;
875 	struct ath_vap *avp;
876 	struct ieee80211vap *vap;
877 	uint8_t mac[IEEE80211_ADDR_LEN];
878 	int ic_opmode, needbeacon, error;
879 
880 	avp = (struct ath_vap *) kmalloc(sizeof(struct ath_vap),
881 	    M_80211_VAP, M_WAITOK | M_ZERO);
882 	needbeacon = 0;
883 	IEEE80211_ADDR_COPY(mac, mac0);
884 
885 	ic_opmode = opmode;		/* default to opmode of new vap */
886 	switch (opmode) {
887 	case IEEE80211_M_STA:
888 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
889 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
890 			goto bad;
891 		}
892 		if (sc->sc_nvaps) {
893 			/*
894 			 * With multiple vaps we must fall back
895 			 * to s/w beacon miss handling.
896 			 */
897 			flags |= IEEE80211_CLONE_NOBEACONS;
898 		}
899 		if (flags & IEEE80211_CLONE_NOBEACONS) {
900 			/*
901 			 * Station mode w/o beacons are implemented w/ AP mode.
902 			 */
903 			ic_opmode = IEEE80211_M_HOSTAP;
904 		}
905 		break;
906 	case IEEE80211_M_IBSS:
907 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
908 			device_printf(sc->sc_dev,
909 			    "only 1 ibss vap supported\n");
910 			goto bad;
911 		}
912 		needbeacon = 1;
913 		break;
914 	case IEEE80211_M_AHDEMO:
915 #ifdef IEEE80211_SUPPORT_TDMA
916 		if (flags & IEEE80211_CLONE_TDMA) {
917 			if (sc->sc_nvaps != 0) {
918 				device_printf(sc->sc_dev,
919 				    "only 1 tdma vap supported\n");
920 				goto bad;
921 			}
922 			needbeacon = 1;
923 			flags |= IEEE80211_CLONE_NOBEACONS;
924 		}
925 		/* fall thru... */
926 #endif
927 	case IEEE80211_M_MONITOR:
928 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
929 			/*
930 			 * Adopt existing mode.  Adding a monitor or ahdemo
931 			 * vap to an existing configuration is of dubious
932 			 * value but should be ok.
933 			 */
934 			/* XXX not right for monitor mode */
935 			ic_opmode = ic->ic_opmode;
936 		}
937 		break;
938 	case IEEE80211_M_HOSTAP:
939 	case IEEE80211_M_MBSS:
940 		needbeacon = 1;
941 		break;
942 	case IEEE80211_M_WDS:
943 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
944 			device_printf(sc->sc_dev,
945 			    "wds not supported in sta mode\n");
946 			goto bad;
947 		}
948 		/*
949 		 * Silently remove any request for a unique
950 		 * bssid; WDS vap's always share the local
951 		 * mac address.
952 		 */
953 		flags &= ~IEEE80211_CLONE_BSSID;
954 		if (sc->sc_nvaps == 0)
955 			ic_opmode = IEEE80211_M_HOSTAP;
956 		else
957 			ic_opmode = ic->ic_opmode;
958 		break;
959 	default:
960 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
961 		goto bad;
962 	}
963 	/*
964 	 * Check that a beacon buffer is available; the code below assumes it.
965 	 */
966 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
967 		device_printf(sc->sc_dev, "no beacon buffer available\n");
968 		goto bad;
969 	}
970 
971 	/* STA, AHDEMO? */
972 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
973 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
974 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
975 	}
976 
977 	vap = &avp->av_vap;
978 	/* XXX can't hold mutex across if_alloc */
979 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
980 	    bssid, mac);
981 	if (error != 0) {
982 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
983 		    __func__, error);
984 		goto bad2;
985 	}
986 
987 	/* h/w crypto support */
988 	vap->iv_key_alloc = ath_key_alloc;
989 	vap->iv_key_delete = ath_key_delete;
990 	vap->iv_key_set = ath_key_set;
991 	vap->iv_key_update_begin = ath_key_update_begin;
992 	vap->iv_key_update_end = ath_key_update_end;
993 
994 	/* override various methods */
995 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
996 	vap->iv_recv_mgmt = ath_recv_mgmt;
997 	vap->iv_reset = ath_reset_vap;
998 	vap->iv_update_beacon = ath_beacon_update;
999 	avp->av_newstate = vap->iv_newstate;
1000 	vap->iv_newstate = ath_newstate;
1001 	avp->av_bmiss = vap->iv_bmiss;
1002 	vap->iv_bmiss = ath_bmiss_vap;
1003 
1004 	avp->av_bslot = -1;
1005 	if (needbeacon) {
1006 		/*
1007 		 * Allocate beacon state and setup the q for buffered
1008 		 * multicast frames.  We know a beacon buffer is
1009 		 * available because we checked above.
1010 		 */
1011 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1012 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1013 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1014 			/*
1015 			 * Assign the vap to a beacon xmit slot.  As above
1016 			 * this cannot fail to find a free one.
1017 			 */
1018 			avp->av_bslot = assign_bslot(sc);
1019 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1020 			    ("beacon slot %u not empty", avp->av_bslot));
1021 			sc->sc_bslot[avp->av_bslot] = vap;
1022 			sc->sc_nbcnvaps++;
1023 		}
1024 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1025 			/*
1026 			 * Multple vaps are to transmit beacons and we
1027 			 * have h/w support for TSF adjusting; enable
1028 			 * use of staggered beacons.
1029 			 */
1030 			sc->sc_stagbeacons = 1;
1031 		}
1032 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1033 	}
1034 
1035 	ic->ic_opmode = ic_opmode;
1036 	if (opmode != IEEE80211_M_WDS) {
1037 		sc->sc_nvaps++;
1038 		if (opmode == IEEE80211_M_STA)
1039 			sc->sc_nstavaps++;
1040 		if (opmode == IEEE80211_M_MBSS)
1041 			sc->sc_nmeshvaps++;
1042 	}
1043 	switch (ic_opmode) {
1044 	case IEEE80211_M_IBSS:
1045 		sc->sc_opmode = HAL_M_IBSS;
1046 		break;
1047 	case IEEE80211_M_STA:
1048 		sc->sc_opmode = HAL_M_STA;
1049 		break;
1050 	case IEEE80211_M_AHDEMO:
1051 #ifdef IEEE80211_SUPPORT_TDMA
1052 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1053 			sc->sc_tdma = 1;
1054 			/* NB: disable tsf adjust */
1055 			sc->sc_stagbeacons = 0;
1056 		}
1057 		/*
1058 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1059 		 * just ap mode.
1060 		 */
1061 		/* fall thru... */
1062 #endif
1063 	case IEEE80211_M_HOSTAP:
1064 	case IEEE80211_M_MBSS:
1065 		sc->sc_opmode = HAL_M_HOSTAP;
1066 		break;
1067 	case IEEE80211_M_MONITOR:
1068 		sc->sc_opmode = HAL_M_MONITOR;
1069 		break;
1070 	default:
1071 		/* XXX should not happen */
1072 		break;
1073 	}
1074 	if (sc->sc_hastsfadd) {
1075 		/*
1076 		 * Configure whether or not TSF adjust should be done.
1077 		 */
1078 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1079 	}
1080 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1081 		/*
1082 		 * Enable s/w beacon miss handling.
1083 		 */
1084 		sc->sc_swbmiss = 1;
1085 	}
1086 
1087 	/* complete setup */
1088 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1089 	return vap;
1090 bad2:
1091 	reclaim_address(sc, mac);
1092 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1093 bad:
1094 	kfree(avp, M_80211_VAP);
1095 	return NULL;
1096 }
1097 
1098 static void
1099 ath_vap_delete(struct ieee80211vap *vap)
1100 {
1101 	struct ieee80211com *ic = vap->iv_ic;
1102 	struct ifnet *ifp = ic->ic_ifp;
1103 	struct ath_softc *sc = ifp->if_softc;
1104 	struct ath_hal *ah = sc->sc_ah;
1105 	struct ath_vap *avp = ATH_VAP(vap);
1106 
1107 	if (ifp->if_flags & IFF_RUNNING) {
1108 		/*
1109 		 * Quiesce the hardware while we remove the vap.  In
1110 		 * particular we need to reclaim all references to
1111 		 * the vap state by any frames pending on the tx queues.
1112 		 */
1113 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1114 		ath_draintxq(sc);		/* stop xmit side */
1115 		ath_stoprecv(sc);		/* stop recv side */
1116 	}
1117 
1118 	ieee80211_vap_detach(vap);
1119 	/*
1120 	 * Reclaim beacon state.  Note this must be done before
1121 	 * the vap instance is reclaimed as we may have a reference
1122 	 * to it in the buffer for the beacon frame.
1123 	 */
1124 	if (avp->av_bcbuf != NULL) {
1125 		if (avp->av_bslot != -1) {
1126 			sc->sc_bslot[avp->av_bslot] = NULL;
1127 			sc->sc_nbcnvaps--;
1128 		}
1129 		ath_beacon_return(sc, avp->av_bcbuf);
1130 		avp->av_bcbuf = NULL;
1131 		if (sc->sc_nbcnvaps == 0) {
1132 			sc->sc_stagbeacons = 0;
1133 			if (sc->sc_hastsfadd)
1134 				ath_hal_settsfadjust(sc->sc_ah, 0);
1135 		}
1136 		/*
1137 		 * Reclaim any pending mcast frames for the vap.
1138 		 */
1139 		ath_tx_draintxq(sc, &avp->av_mcastq);
1140 	}
1141 	/*
1142 	 * Update bookkeeping.
1143 	 */
1144 	if (vap->iv_opmode == IEEE80211_M_STA) {
1145 		sc->sc_nstavaps--;
1146 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1147 			sc->sc_swbmiss = 0;
1148 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1149 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1150 		reclaim_address(sc, vap->iv_myaddr);
1151 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1152 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1153 			sc->sc_nmeshvaps--;
1154 	}
1155 	if (vap->iv_opmode != IEEE80211_M_WDS)
1156 		sc->sc_nvaps--;
1157 #ifdef IEEE80211_SUPPORT_TDMA
1158 	/* TDMA operation ceases when the last vap is destroyed */
1159 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1160 		sc->sc_tdma = 0;
1161 		sc->sc_swbmiss = 0;
1162 	}
1163 #endif
1164 	kfree(avp, M_80211_VAP);
1165 
1166 	if (ifp->if_flags & IFF_RUNNING) {
1167 		/*
1168 		 * Restart rx+tx machines if still running (RUNNING will
1169 		 * be reset if we just destroyed the last vap).
1170 		 */
1171 		if (ath_startrecv(sc) != 0)
1172 			if_printf(ifp, "%s: unable to restart recv logic\n",
1173 			    __func__);
1174 		if (sc->sc_beacons) {		/* restart beacons */
1175 #ifdef IEEE80211_SUPPORT_TDMA
1176 			if (sc->sc_tdma)
1177 				ath_tdma_config(sc, NULL);
1178 			else
1179 #endif
1180 				ath_beacon_config(sc, NULL);
1181 		}
1182 		ath_hal_intrset(ah, sc->sc_imask);
1183 	}
1184 }
1185 
1186 void
1187 ath_suspend(struct ath_softc *sc)
1188 {
1189 	struct ifnet *ifp = sc->sc_ifp;
1190 	struct ieee80211com *ic = ifp->if_l2com;
1191 
1192 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1193 		__func__, ifp->if_flags);
1194 
1195 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1196 	if (ic->ic_opmode == IEEE80211_M_STA)
1197 		ath_stop(ifp);
1198 	else
1199 		ieee80211_suspend_all(ic);
1200 	/*
1201 	 * NB: don't worry about putting the chip in low power
1202 	 * mode; pci will power off our socket on suspend and
1203 	 * CardBus detaches the device.
1204 	 */
1205 }
1206 
1207 /*
1208  * Reset the key cache since some parts do not reset the
1209  * contents on resume.  First we clear all entries, then
1210  * re-load keys that the 802.11 layer assumes are setup
1211  * in h/w.
1212  */
1213 static void
1214 ath_reset_keycache(struct ath_softc *sc)
1215 {
1216 	struct ifnet *ifp = sc->sc_ifp;
1217 	struct ieee80211com *ic = ifp->if_l2com;
1218 	struct ath_hal *ah = sc->sc_ah;
1219 	int i;
1220 
1221 	for (i = 0; i < sc->sc_keymax; i++)
1222 		ath_hal_keyreset(ah, i);
1223 	ieee80211_crypto_reload_keys(ic);
1224 }
1225 
1226 void
1227 ath_resume(struct ath_softc *sc)
1228 {
1229 	struct ifnet *ifp = sc->sc_ifp;
1230 	struct ieee80211com *ic = ifp->if_l2com;
1231 	struct ath_hal *ah = sc->sc_ah;
1232 	HAL_STATUS status;
1233 
1234 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1235 		__func__, ifp->if_flags);
1236 
1237 	/*
1238 	 * Must reset the chip before we reload the
1239 	 * keycache as we were powered down on suspend.
1240 	 */
1241 	ath_hal_reset(ah, sc->sc_opmode,
1242 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1243 	    AH_FALSE, &status);
1244 	ath_reset_keycache(sc);
1245 	if (sc->sc_resume_up) {
1246 		if (ic->ic_opmode == IEEE80211_M_STA) {
1247 			ath_init(sc);
1248 			/*
1249 			 * Program the beacon registers using the last rx'd
1250 			 * beacon frame and enable sync on the next beacon
1251 			 * we see.  This should handle the case where we
1252 			 * wakeup and find the same AP and also the case where
1253 			 * we wakeup and need to roam.  For the latter we
1254 			 * should get bmiss events that trigger a roam.
1255 			 */
1256 			ath_beacon_config(sc, NULL);
1257 			sc->sc_syncbeacon = 1;
1258 		} else
1259 			ieee80211_resume_all(ic);
1260 	}
1261 	if (sc->sc_softled) {
1262 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1263 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1264 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1265 	}
1266 }
1267 
1268 void
1269 ath_shutdown(struct ath_softc *sc)
1270 {
1271 	struct ifnet *ifp = sc->sc_ifp;
1272 
1273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1274 		__func__, ifp->if_flags);
1275 
1276 	ath_stop(ifp);
1277 	/* NB: no point powering down chip as we're about to reboot */
1278 }
1279 
1280 /*
1281  * Interrupt handler.  Most of the actual processing is deferred.
1282  */
1283 void
1284 ath_intr(void *arg)
1285 {
1286 	struct ath_softc *sc = arg;
1287 	struct ifnet *ifp = sc->sc_ifp;
1288 	struct ath_hal *ah = sc->sc_ah;
1289 	HAL_INT status;
1290 	HAL_INT ostatus;
1291 
1292 	if (sc->sc_invalid) {
1293 		/*
1294 		 * The hardware is not ready/present, don't touch anything.
1295 		 * Note this can happen early on if the IRQ is shared.
1296 		 */
1297 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1298 		return;
1299 	}
1300 
1301 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1302 		return;
1303 	if ((ifp->if_flags & IFF_UP) == 0 ||
1304 	    (ifp->if_flags & IFF_RUNNING) == 0) {
1305 		HAL_INT status;
1306 
1307 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1308 			__func__, ifp->if_flags);
1309 		ath_hal_getisr(ah, &status);	/* clear ISR */
1310 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1311 		return;
1312 	}
1313 	/*
1314 	 * Figure out the reason(s) for the interrupt.  Note
1315 	 * that the hal returns a pseudo-ISR that may include
1316 	 * bits we haven't explicitly enabled so we mask the
1317 	 * value to insure we only process bits we requested.
1318 	 */
1319 	ath_hal_getisr(ah, &ostatus);		/* NB: clears ISR too */
1320 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, ostatus);
1321 	status = ostatus & sc->sc_imask;	/* discard unasked for bits */
1322 	if (status & HAL_INT_FATAL) {
1323 		sc->sc_stats.ast_hardware++;
1324 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1325 		ath_fatal_proc(sc, 0);
1326 	} else {
1327 		if (status & HAL_INT_SWBA) {
1328 			/*
1329 			 * Software beacon alert--time to send a beacon.
1330 			 * Handle beacon transmission directly; deferring
1331 			 * this is too slow to meet timing constraints
1332 			 * under load.
1333 			 */
1334 #ifdef IEEE80211_SUPPORT_TDMA
1335 			if (sc->sc_tdma) {
1336 				if (sc->sc_tdmaswba == 0) {
1337 					struct ieee80211com *ic = ifp->if_l2com;
1338 					struct ieee80211vap *vap =
1339 					    TAILQ_FIRST(&ic->ic_vaps);
1340 					ath_tdma_beacon_send(sc, vap);
1341 					sc->sc_tdmaswba =
1342 					    vap->iv_tdma->tdma_bintval;
1343 				} else
1344 					sc->sc_tdmaswba--;
1345 			} else
1346 #endif
1347 			{
1348 				ath_beacon_proc(sc, 0);
1349 #ifdef IEEE80211_SUPPORT_SUPERG
1350 				/*
1351 				 * Schedule the rx taskq in case there's no
1352 				 * traffic so any frames held on the staging
1353 				 * queue are aged and potentially flushed.
1354 				 */
1355 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1356 #endif
1357 			}
1358 		}
1359 
1360 		/*
1361 		 * NB: The hardware should re-read the link when the RXE
1362 		 *     bit is written, but it doesn't work at least on
1363 		 *     older chipsets.
1364 		 */
1365 		if (status & HAL_INT_RXEOL) {
1366 			sc->sc_stats.ast_rxeol++;
1367 			sc->sc_rxlink = NULL;
1368 		}
1369 
1370 		if (status & HAL_INT_TXURN) {
1371 			sc->sc_stats.ast_txurn++;
1372 			/* bump tx trigger level */
1373 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1374 		}
1375 
1376 		if (status & HAL_INT_RX)
1377 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1378 
1379 		if (status & HAL_INT_TX)
1380 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1381 
1382 		if (status & HAL_INT_BMISS) {
1383 			sc->sc_stats.ast_bmiss++;
1384 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1385 		}
1386 
1387 		if (status & HAL_INT_MIB) {
1388 			sc->sc_stats.ast_mib++;
1389 			/*
1390 			 * Disable interrupts until we service the MIB
1391 			 * interrupt; otherwise it will continue to fire.
1392 			 */
1393 			ath_hal_intrset(ah, 0);
1394 			/*
1395 			 * Let the hal handle the event.  We assume it will
1396 			 * clear whatever condition caused the interrupt.
1397 			 */
1398 			ath_hal_mibevent(ah, &sc->sc_halstats);
1399 			ath_hal_intrset(ah, sc->sc_imask);
1400 		}
1401 
1402 		if (status & HAL_INT_RXORN) {
1403 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1404 			sc->sc_stats.ast_rxorn++;
1405 		}
1406 	}
1407 }
1408 
1409 static void
1410 ath_fatal_proc(void *arg, int pending)
1411 {
1412 	struct ath_softc *sc = arg;
1413 	struct ifnet *ifp = sc->sc_ifp;
1414 	u_int32_t *state;
1415 	u_int32_t len;
1416 	void *sp;
1417 
1418 	if_printf(ifp, "hardware error; resetting\n");
1419 	/*
1420 	 * Fatal errors are unrecoverable.  Typically these
1421 	 * are caused by DMA errors.  Collect h/w state from
1422 	 * the hal so we can diagnose what's going on.
1423 	 */
1424 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1425 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1426 		state = sp;
1427 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1428 		    state[0], state[1] , state[2], state[3],
1429 		    state[4], state[5]);
1430 	}
1431 	ath_reset(ifp);
1432 }
1433 
1434 static void
1435 ath_bmiss_vap(struct ieee80211vap *vap)
1436 {
1437 	/*
1438 	 * Workaround phantom bmiss interrupts by sanity-checking
1439 	 * the time of our last rx'd frame.  If it is within the
1440 	 * beacon miss interval then ignore the interrupt.  If it's
1441 	 * truly a bmiss we'll get another interrupt soon and that'll
1442 	 * be dispatched up for processing.  Note this applies only
1443 	 * for h/w beacon miss events.
1444 	 */
1445 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1446 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1447 		struct ath_softc *sc = ifp->if_softc;
1448 		u_int64_t lastrx = sc->sc_lastrx;
1449 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1450 		u_int bmisstimeout =
1451 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1452 
1453 		DPRINTF(sc, ATH_DEBUG_BEACON,
1454 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1455 		    __func__, (unsigned long long) tsf,
1456 		    (unsigned long long)(tsf - lastrx),
1457 		    (unsigned long long) lastrx, bmisstimeout);
1458 
1459 		if (tsf - lastrx <= bmisstimeout) {
1460 			sc->sc_stats.ast_bmiss_phantom++;
1461 			return;
1462 		}
1463 	}
1464 	ATH_VAP(vap)->av_bmiss(vap);
1465 }
1466 
1467 static int
1468 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1469 {
1470 	uint32_t rsize;
1471 	void *sp;
1472 
1473 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
1474 		return 0;
1475 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1476 	*hangs = *(uint32_t *)sp;
1477 	return 1;
1478 }
1479 
1480 static void
1481 ath_bmiss_task(void *arg, int pending)
1482 {
1483 	struct ath_softc *sc = arg;
1484 	struct ifnet *ifp = sc->sc_ifp;
1485 	uint32_t hangs;
1486 
1487 	wlan_serialize_enter();
1488 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1489 
1490 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1491 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1492 		ath_reset(ifp);
1493 	} else {
1494 		ieee80211_beacon_miss(ifp->if_l2com);
1495 	}
1496 	wlan_serialize_exit();
1497 }
1498 
1499 /*
1500  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1501  * calcs together with WME.  If necessary disable the crypto
1502  * hardware and mark the 802.11 state so keys will be setup
1503  * with the MIC work done in software.
1504  */
1505 static void
1506 ath_settkipmic(struct ath_softc *sc)
1507 {
1508 	struct ifnet *ifp = sc->sc_ifp;
1509 	struct ieee80211com *ic = ifp->if_l2com;
1510 
1511 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1512 		if (ic->ic_flags & IEEE80211_F_WME) {
1513 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1514 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1515 		} else {
1516 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1517 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1518 		}
1519 	}
1520 }
1521 
1522 static void
1523 ath_init(void *arg)
1524 {
1525 	struct ath_softc *sc = (struct ath_softc *) arg;
1526 	struct ifnet *ifp = sc->sc_ifp;
1527 	struct ieee80211com *ic = ifp->if_l2com;
1528 	struct ath_hal *ah = sc->sc_ah;
1529 	HAL_STATUS status;
1530 
1531 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1532 		__func__, ifp->if_flags);
1533 
1534 	/*
1535 	 * Stop anything previously setup.  This is safe
1536 	 * whether this is the first time through or not.
1537 	 */
1538 	ath_stop_locked(ifp);
1539 
1540 	/*
1541 	 * The basic interface to setting the hardware in a good
1542 	 * state is ``reset''.  On return the hardware is known to
1543 	 * be powered up and with interrupts disabled.  This must
1544 	 * be followed by initialization of the appropriate bits
1545 	 * and then setup of the interrupt mask.
1546 	 */
1547 	ath_settkipmic(sc);
1548 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1549 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1550 			status);
1551 		return;
1552 	}
1553 	ath_chan_change(sc, ic->ic_curchan);
1554 
1555 	/*
1556 	 * Likewise this is set during reset so update
1557 	 * state cached in the driver.
1558 	 */
1559 	sc->sc_diversity = ath_hal_getdiversity(ah);
1560 	sc->sc_lastlongcal = 0;
1561 	sc->sc_resetcal = 1;
1562 	sc->sc_lastcalreset = 0;
1563 
1564 	/*
1565 	 * Setup the hardware after reset: the key cache
1566 	 * is filled as needed and the receive engine is
1567 	 * set going.  Frame transmit is handled entirely
1568 	 * in the frame output path; there's nothing to do
1569 	 * here except setup the interrupt mask.
1570 	 */
1571 	if (ath_startrecv(sc) != 0) {
1572 		if_printf(ifp, "unable to start recv logic\n");
1573 		return;
1574 	}
1575 
1576 	/*
1577 	 * Enable interrupts.
1578 	 */
1579 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1580 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1581 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1582 	/*
1583 	 * Enable MIB interrupts when there are hardware phy counters.
1584 	 * Note we only do this (at the moment) for station mode.
1585 	 */
1586 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1587 		sc->sc_imask |= HAL_INT_MIB;
1588 
1589 	ifp->if_flags |= IFF_RUNNING;
1590 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
1591 	ath_hal_intrset(ah, sc->sc_imask);
1592 
1593 
1594 #ifdef ATH_TX99_DIAG
1595 	if (sc->sc_tx99 != NULL)
1596 		sc->sc_tx99->start(sc->sc_tx99);
1597 	else
1598 #endif
1599 	ieee80211_start_all(ic);		/* start all vap's */
1600 }
1601 
1602 static void
1603 ath_stop_locked(struct ifnet *ifp)
1604 {
1605 	struct ath_softc *sc = ifp->if_softc;
1606 	struct ath_hal *ah = sc->sc_ah;
1607 
1608 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1609 		__func__, sc->sc_invalid, ifp->if_flags);
1610 
1611 	if (ifp->if_flags & IFF_RUNNING) {
1612 		/*
1613 		 * Shutdown the hardware and driver:
1614 		 *    reset 802.11 state machine
1615 		 *    turn off timers
1616 		 *    disable interrupts
1617 		 *    turn off the radio
1618 		 *    clear transmit machinery
1619 		 *    clear receive machinery
1620 		 *    drain and release tx queues
1621 		 *    reclaim beacon resources
1622 		 *    power down hardware
1623 		 *
1624 		 * Note that some of this work is not possible if the
1625 		 * hardware is gone (invalid).
1626 		 */
1627 #ifdef ATH_TX99_DIAG
1628 		if (sc->sc_tx99 != NULL)
1629 			sc->sc_tx99->stop(sc->sc_tx99);
1630 #endif
1631 		callout_stop(&sc->sc_wd_ch);
1632 		sc->sc_wd_timer = 0;
1633 		ifp->if_flags &= ~IFF_RUNNING;
1634 		if (!sc->sc_invalid) {
1635 			if (sc->sc_softled) {
1636 				callout_stop(&sc->sc_ledtimer);
1637 				ath_hal_gpioset(ah, sc->sc_ledpin,
1638 					!sc->sc_ledon);
1639 				sc->sc_blinking = 0;
1640 			}
1641 			ath_hal_intrset(ah, 0);
1642 		}
1643 		ath_draintxq(sc);
1644 		if (!sc->sc_invalid) {
1645 			ath_stoprecv(sc);
1646 			ath_hal_phydisable(ah);
1647 		} else
1648 			sc->sc_rxlink = NULL;
1649 		ath_beacon_free(sc);	/* XXX not needed */
1650 	}
1651 }
1652 
1653 static void
1654 ath_stop(struct ifnet *ifp)
1655 {
1656 	struct ath_softc *sc __unused = ifp->if_softc;
1657 
1658 	ath_stop_locked(ifp);
1659 }
1660 
1661 /*
1662  * Reset the hardware w/o losing operational state.  This is
1663  * basically a more efficient way of doing ath_stop, ath_init,
1664  * followed by state transitions to the current 802.11
1665  * operational state.  Used to recover from various errors and
1666  * to reset or reload hardware state.
1667  */
1668 static int
1669 ath_reset(struct ifnet *ifp)
1670 {
1671 	struct ath_softc *sc = ifp->if_softc;
1672 	struct ieee80211com *ic = ifp->if_l2com;
1673 	struct ath_hal *ah = sc->sc_ah;
1674 	HAL_STATUS status;
1675 
1676 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1677 	ath_draintxq(sc);		/* stop xmit side */
1678 	ath_stoprecv(sc);		/* stop recv side */
1679 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1680 	/* NB: indicate channel change so we do a full reset */
1681 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1682 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1683 			__func__, status);
1684 	sc->sc_diversity = ath_hal_getdiversity(ah);
1685 	if (ath_startrecv(sc) != 0)	/* restart recv */
1686 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1687 	/*
1688 	 * We may be doing a reset in response to an ioctl
1689 	 * that changes the channel so update any state that
1690 	 * might change as a result.
1691 	 */
1692 	ath_chan_change(sc, ic->ic_curchan);
1693 	if (sc->sc_beacons) {		/* restart beacons */
1694 #ifdef IEEE80211_SUPPORT_TDMA
1695 		if (sc->sc_tdma)
1696 			ath_tdma_config(sc, NULL);
1697 		else
1698 #endif
1699 			ath_beacon_config(sc, NULL);
1700 	}
1701 	ath_hal_intrset(ah, sc->sc_imask);
1702 
1703 	ath_start(ifp);			/* restart xmit */
1704 	return 0;
1705 }
1706 
1707 static int
1708 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1709 {
1710 	struct ieee80211com *ic = vap->iv_ic;
1711 	struct ifnet *ifp = ic->ic_ifp;
1712 	struct ath_softc *sc = ifp->if_softc;
1713 	struct ath_hal *ah = sc->sc_ah;
1714 
1715 	switch (cmd) {
1716 	case IEEE80211_IOC_TXPOWER:
1717 		/*
1718 		 * If per-packet TPC is enabled, then we have nothing
1719 		 * to do; otherwise we need to force the global limit.
1720 		 * All this can happen directly; no need to reset.
1721 		 */
1722 		if (!ath_hal_gettpc(ah))
1723 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1724 		return 0;
1725 	}
1726 	return ath_reset(ifp);
1727 }
1728 
1729 static struct ath_buf *
1730 _ath_getbuf_locked(struct ath_softc *sc)
1731 {
1732 	struct ath_buf *bf;
1733 
1734 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1735 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1736 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1737 	else
1738 		bf = NULL;
1739 	if (bf == NULL) {
1740 		kprintf("ath: ran out of descriptors\n");
1741 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1742 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1743 			"out of xmit buffers" : "xmit buffer busy");
1744 	}
1745 	return bf;
1746 }
1747 
1748 static struct ath_buf *
1749 ath_getbuf(struct ath_softc *sc)
1750 {
1751 	struct ath_buf *bf;
1752 
1753 	bf = _ath_getbuf_locked(sc);
1754 	if (bf == NULL) {
1755 		struct ifnet *ifp = sc->sc_ifp;
1756 
1757 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1758 		sc->sc_stats.ast_tx_qstop++;
1759 		ifp->if_flags |= IFF_OACTIVE;
1760 	}
1761 	return bf;
1762 }
1763 
1764 /*
1765  * Cleanup driver resources when we run out of buffers
1766  * while processing fragments; return the tx buffers
1767  * allocated and drop node references.
1768  */
1769 static void
1770 ath_txfrag_cleanup(struct ath_softc *sc,
1771 	ath_bufhead *frags, struct ieee80211_node *ni)
1772 {
1773 	struct ath_buf *bf, *next;
1774 
1775 	STAILQ_FOREACH_MUTABLE(bf, frags, bf_list, next) {
1776 		/* NB: bf assumed clean */
1777 		STAILQ_REMOVE_HEAD(frags, bf_list);
1778 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1779 		ieee80211_node_decref(ni);
1780 	}
1781 }
1782 
1783 /*
1784  * Setup xmit of a fragmented frame.  Allocate a buffer
1785  * for each frag and bump the node reference count to
1786  * reflect the held reference to be setup by ath_tx_start.
1787  */
1788 static int
1789 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1790 	struct mbuf *m0, struct ieee80211_node *ni)
1791 {
1792 	struct mbuf *m;
1793 	struct ath_buf *bf;
1794 
1795 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1796 		bf = _ath_getbuf_locked(sc);
1797 		if (bf == NULL) {	/* out of buffers, cleanup */
1798 			ath_txfrag_cleanup(sc, frags, ni);
1799 			break;
1800 		}
1801 		ieee80211_node_incref(ni);
1802 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1803 	}
1804 
1805 	return !STAILQ_EMPTY(frags);
1806 }
1807 
1808 static void
1809 ath_start(struct ifnet *ifp)
1810 {
1811 	struct ath_softc *sc = ifp->if_softc;
1812 	struct ieee80211_node *ni;
1813 	struct ath_buf *bf;
1814 	struct mbuf *m, *next;
1815 	ath_bufhead frags;
1816 
1817 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
1818 		ifq_purge(&ifp->if_snd);
1819 		return;
1820 	}
1821 	for (;;) {
1822 		/*
1823 		 * Grab a TX buffer and associated resources.
1824 		 */
1825 		bf = ath_getbuf(sc);
1826 		if (bf == NULL)
1827 			break;
1828 
1829 		IF_DEQUEUE(&ifp->if_snd, m);
1830 		if (m == NULL) {
1831 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1832 			break;
1833 		}
1834 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1835 		/*
1836 		 * Check for fragmentation.  If this frame
1837 		 * has been broken up verify we have enough
1838 		 * buffers to send all the fragments so all
1839 		 * go out or none...
1840 		 */
1841 		STAILQ_INIT(&frags);
1842 		if ((m->m_flags & M_FRAG) &&
1843 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1844 			DPRINTF(sc, ATH_DEBUG_XMIT,
1845 			    "%s: out of txfrag buffers\n", __func__);
1846 			sc->sc_stats.ast_tx_nofrag++;
1847 			ifp->if_oerrors++;
1848 			ath_freetx(m);
1849 			goto bad;
1850 		}
1851 		ifp->if_opackets++;
1852 	nextfrag:
1853 		/*
1854 		 * Pass the frame to the h/w for transmission.
1855 		 * Fragmented frames have each frag chained together
1856 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1857 		 * to send all the frags because of work done by
1858 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1859 		 * calling ath_tx_start so it can use it to extend the
1860 		 * the tx duration to cover the subsequent frag and
1861 		 * so it can reclaim all the mbufs in case of an error;
1862 		 * ath_tx_start clears m_nextpkt once it commits to
1863 		 * handing the frame to the hardware.
1864 		 */
1865 		next = m->m_nextpkt;
1866 		if (ath_tx_start(sc, ni, bf, m)) {
1867 	bad:
1868 			ifp->if_oerrors++;
1869 	reclaim:
1870 			bf->bf_m = NULL;
1871 			bf->bf_node = NULL;
1872 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1873 			ath_txfrag_cleanup(sc, &frags, ni);
1874 			if (ni != NULL)
1875 				ieee80211_free_node(ni);
1876 			continue;
1877 		}
1878 		if (next != NULL) {
1879 			/*
1880 			 * Beware of state changing between frags.
1881 			 * XXX check sta power-save state?
1882 			 */
1883 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1884 				DPRINTF(sc, ATH_DEBUG_XMIT,
1885 				    "%s: flush fragmented packet, state %s\n",
1886 				    __func__,
1887 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1888 				ath_freetx(next);
1889 				goto reclaim;
1890 			}
1891 			m = next;
1892 			bf = STAILQ_FIRST(&frags);
1893 			KASSERT(bf != NULL, ("no buf for txfrag"));
1894 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1895 			goto nextfrag;
1896 		}
1897 
1898 		sc->sc_wd_timer = 5;
1899 	}
1900 }
1901 
1902 static int
1903 ath_media_change(struct ifnet *ifp)
1904 {
1905 	int error = ieee80211_media_change(ifp);
1906 	/* NB: only the fixed rate can change and that doesn't need a reset */
1907 	return (error == ENETRESET ? 0 : error);
1908 }
1909 
1910 #ifdef ATH_DEBUG
1911 static void
1912 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1913 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1914 {
1915 	static const char *ciphers[] = {
1916 		"WEP",
1917 		"AES-OCB",
1918 		"AES-CCM",
1919 		"CKIP",
1920 		"TKIP",
1921 		"CLR",
1922 	};
1923 	int i, n;
1924 
1925 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1926 	for (i = 0, n = hk->kv_len; i < n; i++)
1927 		kprintf("%02x", hk->kv_val[i]);
1928 	kprintf(" mac %6D", mac, ":");
1929 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1930 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1931 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1932 			kprintf("%02x", hk->kv_mic[i]);
1933 		if (!sc->sc_splitmic) {
1934 			kprintf(" txmic ");
1935 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1936 				kprintf("%02x", hk->kv_txmic[i]);
1937 		}
1938 	}
1939 	kprintf("\n");
1940 }
1941 #endif
1942 
1943 /*
1944  * Set a TKIP key into the hardware.  This handles the
1945  * potential distribution of key state to multiple key
1946  * cache slots for TKIP.
1947  */
1948 static int
1949 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1950 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1951 {
1952 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1953 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1954 	struct ath_hal *ah = sc->sc_ah;
1955 
1956 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1957 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1958 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1959 		if (sc->sc_splitmic) {
1960 			/*
1961 			 * TX key goes at first index, RX key at the rx index.
1962 			 * The hal handles the MIC keys at index+64.
1963 			 */
1964 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1965 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1966 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1967 				return 0;
1968 
1969 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1970 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1971 			/* XXX delete tx key on failure? */
1972 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1973 		} else {
1974 			/*
1975 			 * Room for both TX+RX MIC keys in one key cache
1976 			 * slot, just set key at the first index; the hal
1977 			 * will handle the rest.
1978 			 */
1979 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1980 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1981 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1982 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1983 		}
1984 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1985 		if (sc->sc_splitmic) {
1986 			/*
1987 			 * NB: must pass MIC key in expected location when
1988 			 * the keycache only holds one MIC key per entry.
1989 			 */
1990 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1991 		} else
1992 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1993 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1994 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1995 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1996 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1997 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1998 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1999 	}
2000 	return 0;
2001 #undef IEEE80211_KEY_XR
2002 }
2003 
2004 /*
2005  * Set a net80211 key into the hardware.  This handles the
2006  * potential distribution of key state to multiple key
2007  * cache slots for TKIP with hardware MIC support.
2008  */
2009 static int
2010 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2011 	struct ieee80211_node *bss)
2012 {
2013 	static const u_int8_t ciphermap[] = {
2014 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2015 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2016 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2017 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2018 		(u_int8_t) -1,		/* 4 is not allocated */
2019 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2020 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2021 	};
2022 	struct ath_hal *ah = sc->sc_ah;
2023 	const struct ieee80211_cipher *cip = k->wk_cipher;
2024 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2025 	const u_int8_t *mac;
2026 	HAL_KEYVAL hk;
2027 
2028 	memset(&hk, 0, sizeof(hk));
2029 	/*
2030 	 * Software crypto uses a "clear key" so non-crypto
2031 	 * state kept in the key cache are maintained and
2032 	 * so that rx frames have an entry to match.
2033 	 */
2034 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2035 		KASSERT(cip->ic_cipher < NELEM(ciphermap),
2036 			("invalid cipher type %u", cip->ic_cipher));
2037 		hk.kv_type = ciphermap[cip->ic_cipher];
2038 		hk.kv_len = k->wk_keylen;
2039 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2040 	} else
2041 		hk.kv_type = HAL_CIPHER_CLR;
2042 
2043 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2044 		/*
2045 		 * Group keys on hardware that supports multicast frame
2046 		 * key search use a MAC that is the sender's address with
2047 		 * the high bit set instead of the app-specified address.
2048 		 */
2049 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2050 		gmac[0] |= 0x80;
2051 		mac = gmac;
2052 	} else
2053 		mac = k->wk_macaddr;
2054 
2055 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2056 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2057 		return ath_keyset_tkip(sc, k, &hk, mac);
2058 	} else {
2059 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2060 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2061 	}
2062 }
2063 
2064 /*
2065  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2066  * each key, one for decrypt/encrypt and the other for the MIC.
2067  */
2068 static u_int16_t
2069 key_alloc_2pair(struct ath_softc *sc,
2070 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2071 {
2072 	u_int i, keyix;
2073 
2074 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2075 	/* XXX could optimize */
2076 	for (i = 0; i < NELEM(sc->sc_keymap)/4; i++) {
2077 		u_int8_t b = sc->sc_keymap[i];
2078 		if (b != 0xff) {
2079 			/*
2080 			 * One or more slots in this byte are free.
2081 			 */
2082 			keyix = i*NBBY;
2083 			while (b & 1) {
2084 		again:
2085 				keyix++;
2086 				b >>= 1;
2087 			}
2088 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2089 			if (isset(sc->sc_keymap, keyix+32) ||
2090 			    isset(sc->sc_keymap, keyix+64) ||
2091 			    isset(sc->sc_keymap, keyix+32+64)) {
2092 				/* full pair unavailable */
2093 				/* XXX statistic */
2094 				if (keyix == (i+1)*NBBY) {
2095 					/* no slots were appropriate, advance */
2096 					continue;
2097 				}
2098 				goto again;
2099 			}
2100 			setbit(sc->sc_keymap, keyix);
2101 			setbit(sc->sc_keymap, keyix+64);
2102 			setbit(sc->sc_keymap, keyix+32);
2103 			setbit(sc->sc_keymap, keyix+32+64);
2104 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2105 				"%s: key pair %u,%u %u,%u\n",
2106 				__func__, keyix, keyix+64,
2107 				keyix+32, keyix+32+64);
2108 			*txkeyix = keyix;
2109 			*rxkeyix = keyix+32;
2110 			return 1;
2111 		}
2112 	}
2113 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2119  * each key, one for decrypt/encrypt and the other for the MIC.
2120  */
2121 static u_int16_t
2122 key_alloc_pair(struct ath_softc *sc,
2123 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2124 {
2125 	u_int i, keyix;
2126 
2127 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2128 	/* XXX could optimize */
2129 	for (i = 0; i < NELEM(sc->sc_keymap)/4; i++) {
2130 		u_int8_t b = sc->sc_keymap[i];
2131 		if (b != 0xff) {
2132 			/*
2133 			 * One or more slots in this byte are free.
2134 			 */
2135 			keyix = i*NBBY;
2136 			while (b & 1) {
2137 		again:
2138 				keyix++;
2139 				b >>= 1;
2140 			}
2141 			if (isset(sc->sc_keymap, keyix+64)) {
2142 				/* full pair unavailable */
2143 				/* XXX statistic */
2144 				if (keyix == (i+1)*NBBY) {
2145 					/* no slots were appropriate, advance */
2146 					continue;
2147 				}
2148 				goto again;
2149 			}
2150 			setbit(sc->sc_keymap, keyix);
2151 			setbit(sc->sc_keymap, keyix+64);
2152 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2153 				"%s: key pair %u,%u\n",
2154 				__func__, keyix, keyix+64);
2155 			*txkeyix = *rxkeyix = keyix;
2156 			return 1;
2157 		}
2158 	}
2159 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2160 	return 0;
2161 }
2162 
2163 /*
2164  * Allocate a single key cache slot.
2165  */
2166 static int
2167 key_alloc_single(struct ath_softc *sc,
2168 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2169 {
2170 	u_int i, keyix;
2171 
2172 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2173 	for (i = 0; i < NELEM(sc->sc_keymap); i++) {
2174 		u_int8_t b = sc->sc_keymap[i];
2175 		if (b != 0xff) {
2176 			/*
2177 			 * One or more slots are free.
2178 			 */
2179 			keyix = i*NBBY;
2180 			while (b & 1)
2181 				keyix++, b >>= 1;
2182 			setbit(sc->sc_keymap, keyix);
2183 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2184 				__func__, keyix);
2185 			*txkeyix = *rxkeyix = keyix;
2186 			return 1;
2187 		}
2188 	}
2189 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2190 	return 0;
2191 }
2192 
2193 /*
2194  * Allocate one or more key cache slots for a uniacst key.  The
2195  * key itself is needed only to identify the cipher.  For hardware
2196  * TKIP with split cipher+MIC keys we allocate two key cache slot
2197  * pairs so that we can setup separate TX and RX MIC keys.  Note
2198  * that the MIC key for a TKIP key at slot i is assumed by the
2199  * hardware to be at slot i+64.  This limits TKIP keys to the first
2200  * 64 entries.
2201  */
2202 static int
2203 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2204 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2205 {
2206 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2207 
2208 	/*
2209 	 * Group key allocation must be handled specially for
2210 	 * parts that do not support multicast key cache search
2211 	 * functionality.  For those parts the key id must match
2212 	 * the h/w key index so lookups find the right key.  On
2213 	 * parts w/ the key search facility we install the sender's
2214 	 * mac address (with the high bit set) and let the hardware
2215 	 * find the key w/o using the key id.  This is preferred as
2216 	 * it permits us to support multiple users for adhoc and/or
2217 	 * multi-station operation.
2218 	 */
2219 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2220 		/*
2221 		 * Only global keys should have key index assigned.
2222 		 */
2223 		if (!(&vap->iv_nw_keys[0] <= k &&
2224 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2225 			/* should not happen */
2226 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2227 				"%s: bogus group key\n", __func__);
2228 			return 0;
2229 		}
2230 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2231 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2232 		    !sc->sc_mcastkey) {
2233 			/*
2234 			 * XXX we pre-allocate the global keys so
2235 			 * have no way to check if they've already
2236 			 * been allocated.
2237 			 */
2238 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2239 			return 1;
2240 		}
2241 		/*
2242 		 * Group key and device supports multicast key search.
2243 		 */
2244 		k->wk_keyix = IEEE80211_KEYIX_NONE;
2245 	}
2246 
2247 	/*
2248 	 * We allocate two pair for TKIP when using the h/w to do
2249 	 * the MIC.  For everything else, including software crypto,
2250 	 * we allocate a single entry.  Note that s/w crypto requires
2251 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2252 	 * not support pass-through cache entries and we map all
2253 	 * those requests to slot 0.
2254 	 */
2255 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2256 		return key_alloc_single(sc, keyix, rxkeyix);
2257 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2258 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2259 		if (sc->sc_splitmic)
2260 			return key_alloc_2pair(sc, keyix, rxkeyix);
2261 		else
2262 			return key_alloc_pair(sc, keyix, rxkeyix);
2263 	} else {
2264 		return key_alloc_single(sc, keyix, rxkeyix);
2265 	}
2266 }
2267 
2268 /*
2269  * Delete an entry in the key cache allocated by ath_key_alloc.
2270  */
2271 static int
2272 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2273 {
2274 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2275 	struct ath_hal *ah = sc->sc_ah;
2276 	const struct ieee80211_cipher *cip = k->wk_cipher;
2277 	u_int keyix = k->wk_keyix;
2278 
2279 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2280 
2281 	ath_hal_keyreset(ah, keyix);
2282 	/*
2283 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2284 	 */
2285 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2286 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2287 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2288 	if (keyix >= IEEE80211_WEP_NKID) {
2289 		/*
2290 		 * Don't touch keymap entries for global keys so
2291 		 * they are never considered for dynamic allocation.
2292 		 */
2293 		clrbit(sc->sc_keymap, keyix);
2294 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2295 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2296 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2297 			if (sc->sc_splitmic) {
2298 				/* +32 for RX key, +32+64 for RX key MIC */
2299 				clrbit(sc->sc_keymap, keyix+32);
2300 				clrbit(sc->sc_keymap, keyix+32+64);
2301 			}
2302 		}
2303 	}
2304 	return 1;
2305 }
2306 
2307 /*
2308  * Set the key cache contents for the specified key.  Key cache
2309  * slot(s) must already have been allocated by ath_key_alloc.
2310  */
2311 static int
2312 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2313 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2314 {
2315 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2316 
2317 	return ath_keyset(sc, k, vap->iv_bss);
2318 }
2319 
2320 /*
2321  * Block/unblock tx+rx processing while a key change is done.
2322  * We assume the caller serializes key management operations
2323  * so we only need to worry about synchronization with other
2324  * uses that originate in the driver.
2325  */
2326 static void
2327 ath_key_update_begin(struct ieee80211vap *vap)
2328 {
2329 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2330 	struct ath_softc *sc = ifp->if_softc;
2331 
2332 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2333 	taskqueue_block(sc->sc_tq);
2334 }
2335 
2336 static void
2337 ath_key_update_end(struct ieee80211vap *vap)
2338 {
2339 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2340 	struct ath_softc *sc = ifp->if_softc;
2341 
2342 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2343 	taskqueue_unblock(sc->sc_tq);
2344 }
2345 
2346 /*
2347  * Calculate the receive filter according to the
2348  * operating mode and state:
2349  *
2350  * o always accept unicast, broadcast, and multicast traffic
2351  * o accept PHY error frames when hardware doesn't have MIB support
2352  *   to count and we need them for ANI (sta mode only until recently)
2353  *   and we are not scanning (ANI is disabled)
2354  *   NB: older hal's add rx filter bits out of sight and we need to
2355  *	 blindly preserve them
2356  * o probe request frames are accepted only when operating in
2357  *   hostap, adhoc, mesh, or monitor modes
2358  * o enable promiscuous mode
2359  *   - when in monitor mode
2360  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2361  * o accept beacons:
2362  *   - when operating in station mode for collecting rssi data when
2363  *     the station is otherwise quiet, or
2364  *   - when operating in adhoc mode so the 802.11 layer creates
2365  *     node table entries for peers,
2366  *   - when scanning
2367  *   - when doing s/w beacon miss (e.g. for ap+sta)
2368  *   - when operating in ap mode in 11g to detect overlapping bss that
2369  *     require protection
2370  *   - when operating in mesh mode to detect neighbors
2371  * o accept control frames:
2372  *   - when in monitor mode
2373  * XXX BAR frames for 11n
2374  * XXX HT protection for 11n
2375  */
2376 static u_int32_t
2377 ath_calcrxfilter(struct ath_softc *sc)
2378 {
2379 	struct ifnet *ifp = sc->sc_ifp;
2380 	struct ieee80211com *ic = ifp->if_l2com;
2381 	u_int32_t rfilt;
2382 
2383 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2384 	if (!sc->sc_needmib && !sc->sc_scanning)
2385 		rfilt |= HAL_RX_FILTER_PHYERR;
2386 	if (ic->ic_opmode != IEEE80211_M_STA)
2387 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2388 	/* XXX ic->ic_monvaps != 0? */
2389 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2390 		rfilt |= HAL_RX_FILTER_PROM;
2391 	if (ic->ic_opmode == IEEE80211_M_STA ||
2392 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2393 	    sc->sc_swbmiss || sc->sc_scanning)
2394 		rfilt |= HAL_RX_FILTER_BEACON;
2395 	/*
2396 	 * NB: We don't recalculate the rx filter when
2397 	 * ic_protmode changes; otherwise we could do
2398 	 * this only when ic_protmode != NONE.
2399 	 */
2400 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2401 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2402 		rfilt |= HAL_RX_FILTER_BEACON;
2403 	if (sc->sc_nmeshvaps) {
2404 		rfilt |= HAL_RX_FILTER_BEACON;
2405 		if (sc->sc_hasbmatch)
2406 			rfilt |= HAL_RX_FILTER_BSSID;
2407 		else
2408 			rfilt |= HAL_RX_FILTER_PROM;
2409 	}
2410 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2411 		rfilt |= HAL_RX_FILTER_CONTROL;
2412 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2413 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2414 	return rfilt;
2415 }
2416 
2417 static void
2418 ath_update_promisc(struct ifnet *ifp)
2419 {
2420 	struct ath_softc *sc = ifp->if_softc;
2421 	u_int32_t rfilt;
2422 
2423 	/* configure rx filter */
2424 	rfilt = ath_calcrxfilter(sc);
2425 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2426 
2427 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2428 }
2429 
2430 static void
2431 ath_update_mcast(struct ifnet *ifp)
2432 {
2433 	struct ath_softc *sc = ifp->if_softc;
2434 	u_int32_t mfilt[2];
2435 
2436 	/* calculate and install multicast filter */
2437 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2438 		struct ifmultiaddr *ifma;
2439 		/*
2440 		 * Merge multicast addresses to form the hardware filter.
2441 		 */
2442 		mfilt[0] = mfilt[1] = 0;
2443 #ifdef __FreeBSD__
2444 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2445 #endif
2446 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2447 			caddr_t dl;
2448 			u_int32_t val;
2449 			u_int8_t pos;
2450 
2451 			/* calculate XOR of eight 6bit values */
2452 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2453 			val = LE_READ_4(dl + 0);
2454 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2455 			val = LE_READ_4(dl + 3);
2456 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2457 			pos &= 0x3f;
2458 			mfilt[pos / 32] |= (1 << (pos % 32));
2459 		}
2460 #ifdef __FreeBSD__
2461 		if_maddr_runlock(ifp);
2462 #endif
2463 	} else
2464 		mfilt[0] = mfilt[1] = ~0;
2465 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2466 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2467 		__func__, mfilt[0], mfilt[1]);
2468 }
2469 
2470 static void
2471 ath_mode_init(struct ath_softc *sc)
2472 {
2473 	struct ifnet *ifp = sc->sc_ifp;
2474 	struct ath_hal *ah = sc->sc_ah;
2475 	u_int32_t rfilt;
2476 
2477 	/* configure rx filter */
2478 	rfilt = ath_calcrxfilter(sc);
2479 	ath_hal_setrxfilter(ah, rfilt);
2480 
2481 	/* configure operational mode */
2482 	ath_hal_setopmode(ah);
2483 
2484 	/* handle any link-level address change */
2485 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2486 
2487 	/* calculate and install multicast filter */
2488 	ath_update_mcast(ifp);
2489 }
2490 
2491 /*
2492  * Set the slot time based on the current setting.
2493  */
2494 static void
2495 ath_setslottime(struct ath_softc *sc)
2496 {
2497 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2498 	struct ath_hal *ah = sc->sc_ah;
2499 	u_int usec;
2500 
2501 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2502 		usec = 13;
2503 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2504 		usec = 21;
2505 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2506 		/* honor short/long slot time only in 11g */
2507 		/* XXX shouldn't honor on pure g or turbo g channel */
2508 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2509 			usec = HAL_SLOT_TIME_9;
2510 		else
2511 			usec = HAL_SLOT_TIME_20;
2512 	} else
2513 		usec = HAL_SLOT_TIME_9;
2514 
2515 	DPRINTF(sc, ATH_DEBUG_RESET,
2516 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2517 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2518 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2519 
2520 	ath_hal_setslottime(ah, usec);
2521 	sc->sc_updateslot = OK;
2522 }
2523 
2524 /*
2525  * Callback from the 802.11 layer to update the
2526  * slot time based on the current setting.
2527  */
2528 static void
2529 ath_updateslot(struct ifnet *ifp)
2530 {
2531 	struct ath_softc *sc = ifp->if_softc;
2532 	struct ieee80211com *ic = ifp->if_l2com;
2533 
2534 	/*
2535 	 * When not coordinating the BSS, change the hardware
2536 	 * immediately.  For other operation we defer the change
2537 	 * until beacon updates have propagated to the stations.
2538 	 */
2539 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2540 	    ic->ic_opmode == IEEE80211_M_MBSS)
2541 		sc->sc_updateslot = UPDATE;
2542 	else
2543 		ath_setslottime(sc);
2544 }
2545 
2546 /*
2547  * Setup a h/w transmit queue for beacons.
2548  */
2549 static int
2550 ath_beaconq_setup(struct ath_hal *ah)
2551 {
2552 	HAL_TXQ_INFO qi;
2553 
2554 	memset(&qi, 0, sizeof(qi));
2555 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2556 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2557 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2558 	/* NB: for dynamic turbo, don't enable any other interrupts */
2559 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2560 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2561 }
2562 
2563 /*
2564  * Setup the transmit queue parameters for the beacon queue.
2565  */
2566 static int
2567 ath_beaconq_config(struct ath_softc *sc)
2568 {
2569 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2570 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2571 	struct ath_hal *ah = sc->sc_ah;
2572 	HAL_TXQ_INFO qi;
2573 
2574 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2575 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2576 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2577 		/*
2578 		 * Always burst out beacon and CAB traffic.
2579 		 */
2580 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2581 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2582 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2583 	} else {
2584 		struct wmeParams *wmep =
2585 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2586 		/*
2587 		 * Adhoc mode; important thing is to use 2x cwmin.
2588 		 */
2589 		qi.tqi_aifs = wmep->wmep_aifsn;
2590 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2591 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2592 	}
2593 
2594 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2595 		device_printf(sc->sc_dev, "unable to update parameters for "
2596 			"beacon hardware queue!\n");
2597 		return 0;
2598 	} else {
2599 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2600 		return 1;
2601 	}
2602 #undef ATH_EXPONENT_TO_VALUE
2603 }
2604 
2605 /*
2606  * Allocate and setup an initial beacon frame.
2607  */
2608 static int
2609 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2610 {
2611 	struct ieee80211vap *vap = ni->ni_vap;
2612 	struct ath_vap *avp = ATH_VAP(vap);
2613 	struct ath_buf *bf;
2614 	struct mbuf *m;
2615 	int error;
2616 
2617 	bf = avp->av_bcbuf;
2618 	if (bf->bf_m != NULL) {
2619 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2620 		m_freem(bf->bf_m);
2621 		bf->bf_m = NULL;
2622 	}
2623 	if (bf->bf_node != NULL) {
2624 		ieee80211_free_node(bf->bf_node);
2625 		bf->bf_node = NULL;
2626 	}
2627 
2628 	/*
2629 	 * NB: the beacon data buffer must be 32-bit aligned;
2630 	 * we assume the mbuf routines will return us something
2631 	 * with this alignment (perhaps should assert).
2632 	 */
2633 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2634 	if (m == NULL) {
2635 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2636 		sc->sc_stats.ast_be_nombuf++;
2637 		return ENOMEM;
2638 	}
2639 	error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2640 				     bf->bf_segs, 1, &bf->bf_nseg,
2641 				     BUS_DMA_NOWAIT);
2642 	if (error != 0) {
2643 		device_printf(sc->sc_dev,
2644 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_segment returns %d\n",
2645 		    __func__, error);
2646 		m_freem(m);
2647 		return error;
2648 	}
2649 
2650 	/*
2651 	 * Calculate a TSF adjustment factor required for staggered
2652 	 * beacons.  Note that we assume the format of the beacon
2653 	 * frame leaves the tstamp field immediately following the
2654 	 * header.
2655 	 */
2656 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2657 		uint64_t tsfadjust;
2658 		struct ieee80211_frame *wh;
2659 
2660 		/*
2661 		 * The beacon interval is in TU's; the TSF is in usecs.
2662 		 * We figure out how many TU's to add to align the timestamp
2663 		 * then convert to TSF units and handle byte swapping before
2664 		 * inserting it in the frame.  The hardware will then add this
2665 		 * each time a beacon frame is sent.  Note that we align vap's
2666 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2667 		 * timestamp in one beacon interval while the others get a
2668 		 * timstamp aligned to the next interval.
2669 		 */
2670 		tsfadjust = ni->ni_intval *
2671 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2672 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2673 
2674 		DPRINTF(sc, ATH_DEBUG_BEACON,
2675 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2676 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2677 		    avp->av_bslot, ni->ni_intval,
2678 		    (long long unsigned) le64toh(tsfadjust));
2679 
2680 		wh = mtod(m, struct ieee80211_frame *);
2681 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2682 	}
2683 	bf->bf_m = m;
2684 	bf->bf_node = ieee80211_ref_node(ni);
2685 
2686 	return 0;
2687 }
2688 
2689 /*
2690  * Setup the beacon frame for transmit.
2691  */
2692 static void
2693 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2694 {
2695 #define	USE_SHPREAMBLE(_ic) \
2696 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2697 		== IEEE80211_F_SHPREAMBLE)
2698 	struct ieee80211_node *ni = bf->bf_node;
2699 	struct ieee80211com *ic = ni->ni_ic;
2700 	struct mbuf *m = bf->bf_m;
2701 	struct ath_hal *ah = sc->sc_ah;
2702 	struct ath_desc *ds;
2703 	int flags, antenna;
2704 	const HAL_RATE_TABLE *rt;
2705 	u_int8_t rix, rate;
2706 
2707 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2708 		__func__, m, m->m_len);
2709 
2710 	/* setup descriptors */
2711 	ds = bf->bf_desc;
2712 
2713 	flags = HAL_TXDESC_NOACK;
2714 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2715 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2716 		flags |= HAL_TXDESC_VEOL;
2717 		/*
2718 		 * Let hardware handle antenna switching.
2719 		 */
2720 		antenna = sc->sc_txantenna;
2721 	} else {
2722 		ds->ds_link = 0;
2723 		/*
2724 		 * Switch antenna every 4 beacons.
2725 		 * XXX assumes two antenna
2726 		 */
2727 		if (sc->sc_txantenna != 0)
2728 			antenna = sc->sc_txantenna;
2729 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2730 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2731 		else
2732 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2733 	}
2734 
2735 	KASSERT(bf->bf_nseg == 1,
2736 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2737 	ds->ds_data = bf->bf_segs[0].ds_addr;
2738 	/*
2739 	 * Calculate rate code.
2740 	 * XXX everything at min xmit rate
2741 	 */
2742 	rix = 0;
2743 	rt = sc->sc_currates;
2744 	rate = rt->info[rix].rateCode;
2745 	if (USE_SHPREAMBLE(ic))
2746 		rate |= rt->info[rix].shortPreamble;
2747 	ath_hal_setuptxdesc(ah, ds
2748 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2749 		, sizeof(struct ieee80211_frame)/* header length */
2750 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2751 		, ni->ni_txpower		/* txpower XXX */
2752 		, rate, 1			/* series 0 rate/tries */
2753 		, HAL_TXKEYIX_INVALID		/* no encryption */
2754 		, antenna			/* antenna mode */
2755 		, flags				/* no ack, veol for beacons */
2756 		, 0				/* rts/cts rate */
2757 		, 0				/* rts/cts duration */
2758 	);
2759 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2760 	ath_hal_filltxdesc(ah, ds
2761 		, roundup(m->m_len, 4)		/* buffer length */
2762 		, AH_TRUE			/* first segment */
2763 		, AH_TRUE			/* last segment */
2764 		, ds				/* first descriptor */
2765 	);
2766 #if 0
2767 	ath_desc_swap(ds);
2768 #endif
2769 #undef USE_SHPREAMBLE
2770 }
2771 
2772 static void
2773 ath_beacon_update(struct ieee80211vap *vap, int item)
2774 {
2775 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2776 
2777 	setbit(bo->bo_flags, item);
2778 }
2779 
2780 /*
2781  * Append the contents of src to dst; both queues
2782  * are assumed to be locked.
2783  */
2784 static void
2785 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2786 {
2787 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2788 	if (src->axq_depth)
2789 		dst->axq_link = src->axq_link;
2790 	src->axq_link = NULL;
2791 	dst->axq_depth += src->axq_depth;
2792 	src->axq_depth = 0;
2793 }
2794 
2795 /*
2796  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2797  * frame contents are done as needed and the slot time is
2798  * also adjusted based on current state.
2799  */
2800 static void
2801 ath_beacon_proc(void *arg, int pending)
2802 {
2803 	struct ath_softc *sc = arg;
2804 	struct ath_hal *ah = sc->sc_ah;
2805 	struct ieee80211vap *vap;
2806 	struct ath_buf *bf;
2807 	int slot, otherant;
2808 	uint32_t bfaddr;
2809 
2810 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2811 		__func__, pending);
2812 	/*
2813 	 * Check if the previous beacon has gone out.  If
2814 	 * not don't try to post another, skip this period
2815 	 * and wait for the next.  Missed beacons indicate
2816 	 * a problem and should not occur.  If we miss too
2817 	 * many consecutive beacons reset the device.
2818 	 */
2819 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2820 		sc->sc_bmisscount++;
2821 		DPRINTF(sc, ATH_DEBUG_BEACON,
2822 			"%s: missed %u consecutive beacons\n",
2823 			__func__, sc->sc_bmisscount);
2824 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2825 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2826 		return;
2827 	}
2828 	if (sc->sc_bmisscount != 0) {
2829 		DPRINTF(sc, ATH_DEBUG_BEACON,
2830 			"%s: resume beacon xmit after %u misses\n",
2831 			__func__, sc->sc_bmisscount);
2832 		sc->sc_bmisscount = 0;
2833 	}
2834 
2835 	/*
2836 	 * Stop any current dma before messing with the beacon linkages.
2837 	 */
2838 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2839 		DPRINTF(sc, ATH_DEBUG_ANY,
2840 			"%s: beacon queue %u did not stop?\n",
2841 			__func__, sc->sc_bhalq);
2842 	}
2843 
2844 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2845 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2846 		uint32_t tsftu;
2847 
2848 		tsftu = ath_hal_gettsf32(ah) >> 10;
2849 		/* XXX lintval */
2850 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2851 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2852 		bfaddr = 0;
2853 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2854 			bf = ath_beacon_generate(sc, vap);
2855 			if (bf != NULL)
2856 				bfaddr = bf->bf_daddr;
2857 		}
2858 	} else {					/* burst'd beacons */
2859 		uint32_t *bflink = &bfaddr;
2860 
2861 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2862 			vap = sc->sc_bslot[slot];
2863 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2864 				bf = ath_beacon_generate(sc, vap);
2865 				if (bf != NULL) {
2866 					*bflink = bf->bf_daddr;
2867 					bflink = &bf->bf_desc->ds_link;
2868 				}
2869 			}
2870 		}
2871 		*bflink = 0;				/* terminate list */
2872 	}
2873 
2874 	/*
2875 	 * Handle slot time change when a non-ERP station joins/leaves
2876 	 * an 11g network.  The 802.11 layer notifies us via callback,
2877 	 * we mark updateslot, then wait one beacon before effecting
2878 	 * the change.  This gives associated stations at least one
2879 	 * beacon interval to note the state change.
2880 	 */
2881 	/* XXX locking */
2882 	if (sc->sc_updateslot == UPDATE) {
2883 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2884 		sc->sc_slotupdate = slot;
2885 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2886 		ath_setslottime(sc);		/* commit change to h/w */
2887 
2888 	/*
2889 	 * Check recent per-antenna transmit statistics and flip
2890 	 * the default antenna if noticeably more frames went out
2891 	 * on the non-default antenna.
2892 	 * XXX assumes 2 anntenae
2893 	 */
2894 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2895 		otherant = sc->sc_defant & 1 ? 2 : 1;
2896 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2897 			ath_setdefantenna(sc, otherant);
2898 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2899 	}
2900 
2901 	if (bfaddr != 0) {
2902 		/* NB: cabq traffic should already be queued and primed */
2903 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2904 		sc->sc_stats.ast_be_xmit++;
2905 		ath_hal_txstart(ah, sc->sc_bhalq);
2906 	}
2907 	/* else no beacon will be generated */
2908 }
2909 
2910 static struct ath_buf *
2911 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2912 {
2913 	struct ath_vap *avp = ATH_VAP(vap);
2914 	struct ath_txq *cabq = sc->sc_cabq;
2915 	struct ath_buf *bf;
2916 	struct mbuf *m;
2917 	int nmcastq, error;
2918 
2919 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2920 	    ("not running, state %d", vap->iv_state));
2921 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2922 
2923 	/*
2924 	 * Update dynamic beacon contents.  If this returns
2925 	 * non-zero then we need to remap the memory because
2926 	 * the beacon frame changed size (probably because
2927 	 * of the TIM bitmap).
2928 	 */
2929 	bf = avp->av_bcbuf;
2930 	m = bf->bf_m;
2931 	nmcastq = avp->av_mcastq.axq_depth;
2932 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2933 		/* XXX too conservative? */
2934 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2935 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2936 					     bf->bf_segs, 1, &bf->bf_nseg,
2937 					     BUS_DMA_NOWAIT);
2938 		if (error != 0) {
2939 			if_printf(vap->iv_ifp,
2940 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
2941 			    __func__, error);
2942 			return NULL;
2943 		}
2944 	}
2945 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2946 		DPRINTF(sc, ATH_DEBUG_BEACON,
2947 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2948 		    __func__, nmcastq, cabq->axq_depth);
2949 		sc->sc_stats.ast_cabq_busy++;
2950 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2951 			/*
2952 			 * CABQ traffic from a previous vap is still pending.
2953 			 * We must drain the q before this beacon frame goes
2954 			 * out as otherwise this vap's stations will get cab
2955 			 * frames from a different vap.
2956 			 * XXX could be slow causing us to miss DBA
2957 			 */
2958 			ath_tx_draintxq(sc, cabq);
2959 		}
2960 	}
2961 	ath_beacon_setup(sc, bf);
2962 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2963 
2964 	/*
2965 	 * Enable the CAB queue before the beacon queue to
2966 	 * insure cab frames are triggered by this beacon.
2967 	 */
2968 	if (avp->av_boff.bo_tim[4] & 1) {
2969 		struct ath_hal *ah = sc->sc_ah;
2970 
2971 		/* NB: only at DTIM */
2972 		if (nmcastq) {
2973 			struct ath_buf *bfm;
2974 			int qbusy;
2975 
2976 			/*
2977 			 * Move frames from the s/w mcast q to the h/w cab q.
2978 			 * XXX MORE_DATA bit
2979 			 */
2980 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2981 			qbusy = ath_hal_txqenabled(ah, cabq->axq_qnum);
2982 			if (qbusy == 0) {
2983 				if (cabq->axq_link != NULL) {
2984 					cpu_sfence();
2985 					*cabq->axq_link = bfm->bf_daddr;
2986 					cabq->axq_flags |= ATH_TXQ_PUTPENDING;
2987 				} else {
2988 					cpu_sfence();
2989 					ath_hal_puttxbuf(ah, cabq->axq_qnum,
2990 						bfm->bf_daddr);
2991 				}
2992 			} else {
2993 				if (cabq->axq_link != NULL) {
2994 					cpu_sfence();
2995 					*cabq->axq_link = bfm->bf_daddr;
2996 				}
2997 				cabq->axq_flags |= ATH_TXQ_PUTPENDING;
2998 			}
2999 			ath_txqmove(cabq, &avp->av_mcastq);
3000 
3001 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3002 		}
3003 		/* NB: gated by beacon so safe to start here */
3004 		ath_hal_txstart(ah, cabq->axq_qnum);
3005 	}
3006 	return bf;
3007 }
3008 
3009 static void
3010 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3011 {
3012 	struct ath_vap *avp = ATH_VAP(vap);
3013 	struct ath_hal *ah = sc->sc_ah;
3014 	struct ath_buf *bf;
3015 	struct mbuf *m;
3016 	int error;
3017 
3018 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3019 
3020 	/*
3021 	 * Update dynamic beacon contents.  If this returns
3022 	 * non-zero then we need to remap the memory because
3023 	 * the beacon frame changed size (probably because
3024 	 * of the TIM bitmap).
3025 	 */
3026 	bf = avp->av_bcbuf;
3027 	m = bf->bf_m;
3028 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3029 		/* XXX too conservative? */
3030 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3031 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
3032 					     bf->bf_segs, 1, &bf->bf_nseg,
3033 					     BUS_DMA_NOWAIT);
3034 		if (error != 0) {
3035 			if_printf(vap->iv_ifp,
3036 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
3037 			    __func__, error);
3038 			return;
3039 		}
3040 	}
3041 	ath_beacon_setup(sc, bf);
3042 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3043 
3044 	/* NB: caller is known to have already stopped tx dma */
3045 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3046 	ath_hal_txstart(ah, sc->sc_bhalq);
3047 }
3048 
3049 /*
3050  * Reset the hardware after detecting beacons have stopped.
3051  */
3052 static void
3053 ath_bstuck_task(void *arg, int pending)
3054 {
3055 	struct ath_softc *sc = arg;
3056 	struct ifnet *ifp = sc->sc_ifp;
3057 
3058 	wlan_serialize_enter();
3059 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3060 		  sc->sc_bmisscount);
3061 	sc->sc_stats.ast_bstuck++;
3062 	ath_reset(ifp);
3063 	wlan_serialize_exit();
3064 }
3065 
3066 /*
3067  * Reclaim beacon resources and return buffer to the pool.
3068  */
3069 static void
3070 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3071 {
3072 
3073 	if (bf->bf_m != NULL) {
3074 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3075 		m_freem(bf->bf_m);
3076 		bf->bf_m = NULL;
3077 	}
3078 	if (bf->bf_node != NULL) {
3079 		ieee80211_free_node(bf->bf_node);
3080 		bf->bf_node = NULL;
3081 	}
3082 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3083 }
3084 
3085 /*
3086  * Reclaim beacon resources.
3087  */
3088 static void
3089 ath_beacon_free(struct ath_softc *sc)
3090 {
3091 	struct ath_buf *bf;
3092 
3093 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3094 		if (bf->bf_m != NULL) {
3095 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3096 			m_freem(bf->bf_m);
3097 			bf->bf_m = NULL;
3098 		}
3099 		if (bf->bf_node != NULL) {
3100 			ieee80211_free_node(bf->bf_node);
3101 			bf->bf_node = NULL;
3102 		}
3103 	}
3104 }
3105 
3106 /*
3107  * Configure the beacon and sleep timers.
3108  *
3109  * When operating as an AP this resets the TSF and sets
3110  * up the hardware to notify us when we need to issue beacons.
3111  *
3112  * When operating in station mode this sets up the beacon
3113  * timers according to the timestamp of the last received
3114  * beacon and the current TSF, configures PCF and DTIM
3115  * handling, programs the sleep registers so the hardware
3116  * will wakeup in time to receive beacons, and configures
3117  * the beacon miss handling so we'll receive a BMISS
3118  * interrupt when we stop seeing beacons from the AP
3119  * we've associated with.
3120  */
3121 static void
3122 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3123 {
3124 #define	TSF_TO_TU(_h,_l) \
3125 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3126 #define	FUDGE	2
3127 	struct ath_hal *ah = sc->sc_ah;
3128 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3129 	struct ieee80211_node *ni;
3130 	u_int32_t nexttbtt, intval, tsftu;
3131 	u_int64_t tsf;
3132 
3133 	if (vap == NULL)
3134 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3135 	ni = vap->iv_bss;
3136 
3137 	/* extract tstamp from last beacon and convert to TU */
3138 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3139 			     LE_READ_4(ni->ni_tstamp.data));
3140 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3141 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3142 		/*
3143 		 * For multi-bss ap/mesh support beacons are either staggered
3144 		 * evenly over N slots or burst together.  For the former
3145 		 * arrange for the SWBA to be delivered for each slot.
3146 		 * Slots that are not occupied will generate nothing.
3147 		 */
3148 		/* NB: the beacon interval is kept internally in TU's */
3149 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3150 		if (sc->sc_stagbeacons)
3151 			intval /= ATH_BCBUF;
3152 	} else {
3153 		/* NB: the beacon interval is kept internally in TU's */
3154 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3155 	}
3156 	if (nexttbtt == 0)		/* e.g. for ap mode */
3157 		nexttbtt = intval;
3158 	else if (intval)		/* NB: can be 0 for monitor mode */
3159 		nexttbtt = roundup(nexttbtt, intval);
3160 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3161 		__func__, nexttbtt, intval, ni->ni_intval);
3162 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3163 		HAL_BEACON_STATE bs;
3164 		int dtimperiod, dtimcount;
3165 		int cfpperiod, cfpcount;
3166 
3167 		/*
3168 		 * Setup dtim and cfp parameters according to
3169 		 * last beacon we received (which may be none).
3170 		 */
3171 		dtimperiod = ni->ni_dtim_period;
3172 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3173 			dtimperiod = 1;
3174 		dtimcount = ni->ni_dtim_count;
3175 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3176 			dtimcount = 0;		/* XXX? */
3177 		cfpperiod = 1;			/* NB: no PCF support yet */
3178 		cfpcount = 0;
3179 		/*
3180 		 * Pull nexttbtt forward to reflect the current
3181 		 * TSF and calculate dtim+cfp state for the result.
3182 		 */
3183 		tsf = ath_hal_gettsf64(ah);
3184 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3185 		do {
3186 			nexttbtt += intval;
3187 			if (--dtimcount < 0) {
3188 				dtimcount = dtimperiod - 1;
3189 				if (--cfpcount < 0)
3190 					cfpcount = cfpperiod - 1;
3191 			}
3192 		} while (nexttbtt < tsftu);
3193 		memset(&bs, 0, sizeof(bs));
3194 		bs.bs_intval = intval;
3195 		bs.bs_nexttbtt = nexttbtt;
3196 		bs.bs_dtimperiod = dtimperiod*intval;
3197 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3198 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3199 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3200 		bs.bs_cfpmaxduration = 0;
3201 #if 0
3202 		/*
3203 		 * The 802.11 layer records the offset to the DTIM
3204 		 * bitmap while receiving beacons; use it here to
3205 		 * enable h/w detection of our AID being marked in
3206 		 * the bitmap vector (to indicate frames for us are
3207 		 * pending at the AP).
3208 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3209 		 * XXX enable based on h/w rev for newer chips
3210 		 */
3211 		bs.bs_timoffset = ni->ni_timoff;
3212 #endif
3213 		/*
3214 		 * Calculate the number of consecutive beacons to miss
3215 		 * before taking a BMISS interrupt.
3216 		 * Note that we clamp the result to at most 10 beacons.
3217 		 */
3218 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3219 		if (bs.bs_bmissthreshold > 10)
3220 			bs.bs_bmissthreshold = 10;
3221 		else if (bs.bs_bmissthreshold <= 0)
3222 			bs.bs_bmissthreshold = 1;
3223 
3224 		/*
3225 		 * Calculate sleep duration.  The configuration is
3226 		 * given in ms.  We insure a multiple of the beacon
3227 		 * period is used.  Also, if the sleep duration is
3228 		 * greater than the DTIM period then it makes senses
3229 		 * to make it a multiple of that.
3230 		 *
3231 		 * XXX fixed at 100ms
3232 		 */
3233 		bs.bs_sleepduration =
3234 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3235 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3236 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3237 
3238 		DPRINTF(sc, ATH_DEBUG_BEACON,
3239 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3240 			, __func__
3241 			, tsf, tsftu
3242 			, bs.bs_intval
3243 			, bs.bs_nexttbtt
3244 			, bs.bs_dtimperiod
3245 			, bs.bs_nextdtim
3246 			, bs.bs_bmissthreshold
3247 			, bs.bs_sleepduration
3248 			, bs.bs_cfpperiod
3249 			, bs.bs_cfpmaxduration
3250 			, bs.bs_cfpnext
3251 			, bs.bs_timoffset
3252 		);
3253 		ath_hal_intrset(ah, 0);
3254 		ath_hal_beacontimers(ah, &bs);
3255 		sc->sc_imask |= HAL_INT_BMISS;
3256 		ath_hal_intrset(ah, sc->sc_imask);
3257 	} else {
3258 		ath_hal_intrset(ah, 0);
3259 		if (nexttbtt == intval)
3260 			intval |= HAL_BEACON_RESET_TSF;
3261 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3262 			/*
3263 			 * In IBSS mode enable the beacon timers but only
3264 			 * enable SWBA interrupts if we need to manually
3265 			 * prepare beacon frames.  Otherwise we use a
3266 			 * self-linked tx descriptor and let the hardware
3267 			 * deal with things.
3268 			 */
3269 			intval |= HAL_BEACON_ENA;
3270 			if (!sc->sc_hasveol)
3271 				sc->sc_imask |= HAL_INT_SWBA;
3272 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3273 				/*
3274 				 * Pull nexttbtt forward to reflect
3275 				 * the current TSF.
3276 				 */
3277 				tsf = ath_hal_gettsf64(ah);
3278 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3279 				do {
3280 					nexttbtt += intval;
3281 				} while (nexttbtt < tsftu);
3282 			}
3283 			ath_beaconq_config(sc);
3284 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3285 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3286 			/*
3287 			 * In AP/mesh mode we enable the beacon timers
3288 			 * and SWBA interrupts to prepare beacon frames.
3289 			 */
3290 			intval |= HAL_BEACON_ENA;
3291 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3292 			ath_beaconq_config(sc);
3293 		}
3294 		ath_hal_beaconinit(ah, nexttbtt, intval);
3295 		sc->sc_bmisscount = 0;
3296 		ath_hal_intrset(ah, sc->sc_imask);
3297 		/*
3298 		 * When using a self-linked beacon descriptor in
3299 		 * ibss mode load it once here.
3300 		 */
3301 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3302 			ath_beacon_start_adhoc(sc, vap);
3303 	}
3304 	sc->sc_syncbeacon = 0;
3305 #undef FUDGE
3306 #undef TSF_TO_TU
3307 }
3308 
3309 static void
3310 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3311 {
3312 	bus_addr_t *paddr = (bus_addr_t*) arg;
3313 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3314 	*paddr = segs->ds_addr;
3315 }
3316 
3317 static int
3318 ath_descdma_setup(struct ath_softc *sc,
3319 	struct ath_descdma *dd, ath_bufhead *head,
3320 	const char *name, int nbuf, int ndesc)
3321 {
3322 #define	DS2PHYS(_dd, _ds) \
3323 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3324 	struct ifnet *ifp = sc->sc_ifp;
3325 	struct ath_desc *ds;
3326 	struct ath_buf *bf;
3327 	int i, bsize, error;
3328 
3329 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3330 	    __func__, name, nbuf, ndesc);
3331 
3332 	dd->dd_name = name;
3333 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3334 
3335 	/*
3336 	 * Setup DMA descriptor area.
3337 	 */
3338 	error = bus_dma_tag_create(dd->dd_dmat,	/* parent */
3339 		       PAGE_SIZE, 0,		/* alignment, bounds */
3340 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3341 		       BUS_SPACE_MAXADDR,	/* highaddr */
3342 		       NULL, NULL,		/* filter, filterarg */
3343 		       dd->dd_desc_len,		/* maxsize */
3344 		       1,			/* nsegments */
3345 		       dd->dd_desc_len,		/* maxsegsize */
3346 		       BUS_DMA_ALLOCNOW,	/* flags */
3347 		       &dd->dd_dmat);
3348 	if (error != 0) {
3349 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3350 		return error;
3351 	}
3352 
3353 	/* allocate descriptors */
3354 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3355 	if (error != 0) {
3356 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3357 			"error %u\n", dd->dd_name, error);
3358 		goto fail0;
3359 	}
3360 
3361 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3362 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3363 				 &dd->dd_dmamap);
3364 	if (error != 0) {
3365 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3366 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3367 		goto fail1;
3368 	}
3369 
3370 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3371 				dd->dd_desc, dd->dd_desc_len,
3372 				ath_load_cb, &dd->dd_desc_paddr,
3373 				BUS_DMA_NOWAIT);
3374 	if (error != 0) {
3375 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3376 			dd->dd_name, error);
3377 		goto fail2;
3378 	}
3379 
3380 	ds = dd->dd_desc;
3381 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3382 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3383 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3384 
3385 	/* allocate rx buffers */
3386 	bsize = sizeof(struct ath_buf) * nbuf;
3387 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3388 	if (bf == NULL) {
3389 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3390 			dd->dd_name, bsize);
3391 		goto fail3;
3392 	}
3393 	dd->dd_bufptr = bf;
3394 
3395 	STAILQ_INIT(head);
3396 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3397 		bf->bf_desc = ds;
3398 		bf->bf_daddr = DS2PHYS(dd, ds);
3399 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3400 				&bf->bf_dmamap);
3401 		if (error != 0) {
3402 			if_printf(ifp, "unable to create dmamap for %s "
3403 				"buffer %u, error %u\n", dd->dd_name, i, error);
3404 			ath_descdma_cleanup(sc, dd, head);
3405 			return error;
3406 		}
3407 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3408 	}
3409 	return 0;
3410 fail3:
3411 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3412 fail2:
3413 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3414 fail1:
3415 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3416 fail0:
3417 	bus_dma_tag_destroy(dd->dd_dmat);
3418 	memset(dd, 0, sizeof(*dd));
3419 	return error;
3420 #undef DS2PHYS
3421 }
3422 
3423 static void
3424 ath_descdma_cleanup(struct ath_softc *sc,
3425 	struct ath_descdma *dd, ath_bufhead *head)
3426 {
3427 	struct ath_buf *bf;
3428 	struct ieee80211_node *ni;
3429 
3430 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3431 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3432 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3433 	bus_dma_tag_destroy(dd->dd_dmat);
3434 
3435 	STAILQ_FOREACH(bf, head, bf_list) {
3436 		if (bf->bf_m) {
3437 			m_freem(bf->bf_m);
3438 			bf->bf_m = NULL;
3439 		}
3440 		if (bf->bf_dmamap != NULL) {
3441 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3442 			bf->bf_dmamap = NULL;
3443 		}
3444 		ni = bf->bf_node;
3445 		bf->bf_node = NULL;
3446 		if (ni != NULL) {
3447 			/*
3448 			 * Reclaim node reference.
3449 			 */
3450 			ieee80211_free_node(ni);
3451 		}
3452 	}
3453 
3454 	STAILQ_INIT(head);
3455 	kfree(dd->dd_bufptr, M_ATHDEV);
3456 	memset(dd, 0, sizeof(*dd));
3457 }
3458 
3459 static int
3460 ath_desc_alloc(struct ath_softc *sc)
3461 {
3462 	int error;
3463 
3464 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3465 			"rx", ath_rxbuf, 1);
3466 	if (error != 0)
3467 		return error;
3468 
3469 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3470 			"tx", ath_txbuf, ATH_TXDESC);
3471 	if (error != 0) {
3472 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3473 		return error;
3474 	}
3475 
3476 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3477 			"beacon", ATH_BCBUF, 1);
3478 	if (error != 0) {
3479 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3480 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3481 		return error;
3482 	}
3483 	return 0;
3484 }
3485 
3486 static void
3487 ath_desc_free(struct ath_softc *sc)
3488 {
3489 
3490 	if (sc->sc_bdma.dd_desc_len != 0)
3491 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3492 	if (sc->sc_txdma.dd_desc_len != 0)
3493 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3494 	if (sc->sc_rxdma.dd_desc_len != 0)
3495 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3496 }
3497 
3498 static struct ieee80211_node *
3499 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3500 {
3501 	struct ieee80211com *ic = vap->iv_ic;
3502 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3503 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3504 	struct ath_node *an;
3505 
3506 	an = kmalloc(space, M_80211_NODE, M_INTWAIT|M_ZERO);
3507 	if (an == NULL) {
3508 		/* XXX stat+msg */
3509 		return NULL;
3510 	}
3511 	ath_rate_node_init(sc, an);
3512 
3513 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3514 	return &an->an_node;
3515 }
3516 
3517 static void
3518 ath_node_free(struct ieee80211_node *ni)
3519 {
3520 	struct ieee80211com *ic = ni->ni_ic;
3521         struct ath_softc *sc = ic->ic_ifp->if_softc;
3522 
3523 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3524 
3525 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3526 	sc->sc_node_free(ni);
3527 }
3528 
3529 static void
3530 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3531 {
3532 	struct ieee80211com *ic = ni->ni_ic;
3533 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3534 	struct ath_hal *ah = sc->sc_ah;
3535 
3536 	*rssi = ic->ic_node_getrssi(ni);
3537 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3538 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3539 	else
3540 		*noise = -95;		/* nominally correct */
3541 }
3542 
3543 static int
3544 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3545 {
3546 	struct ath_hal *ah = sc->sc_ah;
3547 	int error;
3548 	struct mbuf *m;
3549 	struct ath_desc *ds;
3550 
3551 	m = bf->bf_m;
3552 	if (m == NULL) {
3553 		/*
3554 		 * NB: by assigning a page to the rx dma buffer we
3555 		 * implicitly satisfy the Atheros requirement that
3556 		 * this buffer be cache-line-aligned and sized to be
3557 		 * multiple of the cache line size.  Not doing this
3558 		 * causes weird stuff to happen (for the 5210 at least).
3559 		 */
3560 		m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
3561 		if (m == NULL) {
3562 			kprintf("ath_rxbuf_init: no mbuf\n");
3563 			DPRINTF(sc, ATH_DEBUG_ANY,
3564 				"%s: no mbuf/cluster\n", __func__);
3565 			sc->sc_stats.ast_rx_nombuf++;
3566 			return ENOMEM;
3567 		}
3568 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3569 
3570 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat,
3571 					     bf->bf_dmamap, m,
3572 					     bf->bf_segs, 1, &bf->bf_nseg,
3573 					     BUS_DMA_NOWAIT);
3574 		if (error != 0) {
3575 			DPRINTF(sc, ATH_DEBUG_ANY,
3576 			    "%s: bus_dmamap_load_mbuf_segment failed; error %d\n",
3577 			    __func__, error);
3578 			sc->sc_stats.ast_rx_busdma++;
3579 			m_freem(m);
3580 			return error;
3581 		}
3582 		KASSERT(bf->bf_nseg == 1,
3583 			("multi-segment packet; nseg %u", bf->bf_nseg));
3584 		bf->bf_m = m;
3585 	}
3586 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3587 
3588 	/*
3589 	 * Setup descriptors.  For receive we always terminate
3590 	 * the descriptor list with a self-linked entry so we'll
3591 	 * not get overrun under high load (as can happen with a
3592 	 * 5212 when ANI processing enables PHY error frames).
3593 	 *
3594 	 * To insure the last descriptor is self-linked we create
3595 	 * each descriptor as self-linked and add it to the end.  As
3596 	 * each additional descriptor is added the previous self-linked
3597 	 * entry is ``fixed'' naturally.  This should be safe even
3598 	 * if DMA is happening.  When processing RX interrupts we
3599 	 * never remove/process the last, self-linked, entry on the
3600 	 * descriptor list.  This insures the hardware always has
3601 	 * someplace to write a new frame.
3602 	 */
3603 	ds = bf->bf_desc;
3604 	ds->ds_link = bf->bf_daddr;	/* link to self */
3605 	ds->ds_data = bf->bf_segs[0].ds_addr;
3606 	ath_hal_setuprxdesc(ah, ds
3607 		, m->m_len		/* buffer size */
3608 		, 0
3609 	);
3610 
3611 	if (sc->sc_rxlink != NULL)
3612 		*sc->sc_rxlink = bf->bf_daddr;
3613 	sc->sc_rxlink = &ds->ds_link;
3614 	return 0;
3615 }
3616 
3617 /*
3618  * Extend 15-bit time stamp from rx descriptor to
3619  * a full 64-bit TSF using the specified TSF.
3620  */
3621 static __inline u_int64_t
3622 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3623 {
3624 	if ((tsf & 0x7fff) < rstamp)
3625 		tsf -= 0x8000;
3626 	return ((tsf &~ 0x7fff) | rstamp);
3627 }
3628 
3629 /*
3630  * Intercept management frames to collect beacon rssi data
3631  * and to do ibss merges.
3632  */
3633 static void
3634 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3635 	int subtype, int rssi, int nf)
3636 {
3637 	struct ieee80211vap *vap = ni->ni_vap;
3638 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3639 
3640 	/*
3641 	 * Call up first so subsequent work can use information
3642 	 * potentially stored in the node (e.g. for ibss merge).
3643 	 */
3644 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3645 	switch (subtype) {
3646 	case IEEE80211_FC0_SUBTYPE_BEACON:
3647 		/* update rssi statistics for use by the hal */
3648 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3649 		if (sc->sc_syncbeacon &&
3650 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3651 			/*
3652 			 * Resync beacon timers using the tsf of the beacon
3653 			 * frame we just received.
3654 			 */
3655 			ath_beacon_config(sc, vap);
3656 		}
3657 		/* fall thru... */
3658 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3659 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3660 		    vap->iv_state == IEEE80211_S_RUN) {
3661 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3662 			u_int64_t tsf = ath_extend_tsf(rstamp,
3663 				ath_hal_gettsf64(sc->sc_ah));
3664 			/*
3665 			 * Handle ibss merge as needed; check the tsf on the
3666 			 * frame before attempting the merge.  The 802.11 spec
3667 			 * says the station should change it's bssid to match
3668 			 * the oldest station with the same ssid, where oldest
3669 			 * is determined by the tsf.  Note that hardware
3670 			 * reconfiguration happens through callback to
3671 			 * ath_newstate as the state machine will go from
3672 			 * RUN -> RUN when this happens.
3673 			 */
3674 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3675 				DPRINTF(sc, ATH_DEBUG_STATE,
3676 				    "ibss merge, rstamp %u tsf %ju "
3677 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3678 				    (uintmax_t)ni->ni_tstamp.tsf);
3679 				(void) ieee80211_ibss_merge(ni);
3680 			}
3681 		}
3682 		break;
3683 	}
3684 }
3685 
3686 /*
3687  * Set the default antenna.
3688  */
3689 static void
3690 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3691 {
3692 	struct ath_hal *ah = sc->sc_ah;
3693 
3694 	/* XXX block beacon interrupts */
3695 	ath_hal_setdefantenna(ah, antenna);
3696 	if (sc->sc_defant != antenna)
3697 		sc->sc_stats.ast_ant_defswitch++;
3698 	sc->sc_defant = antenna;
3699 	sc->sc_rxotherant = 0;
3700 }
3701 
3702 static void
3703 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3704 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3705 {
3706 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3707 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3708 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3709 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3710 	struct ath_softc *sc = ifp->if_softc;
3711 	const HAL_RATE_TABLE *rt;
3712 	uint8_t rix;
3713 
3714 	rt = sc->sc_currates;
3715 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3716 	rix = rt->rateCodeToIndex[rs->rs_rate];
3717 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3718 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3719 #ifdef AH_SUPPORT_AR5416
3720 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3721 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3722 		struct ieee80211com *ic = ifp->if_l2com;
3723 
3724 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3725 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3726 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3727 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3728 		else
3729 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3730 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3731 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3732 	}
3733 #endif
3734 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3735 	if (rs->rs_status & HAL_RXERR_CRC)
3736 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3737 	/* XXX propagate other error flags from descriptor */
3738 	sc->sc_rx_th.wr_antnoise = nf;
3739 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3740 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3741 #undef CHAN_HT
3742 #undef CHAN_HT20
3743 #undef CHAN_HT40U
3744 #undef CHAN_HT40D
3745 }
3746 
3747 static void
3748 ath_handle_micerror(struct ieee80211com *ic,
3749 	struct ieee80211_frame *wh, int keyix)
3750 {
3751 	struct ieee80211_node *ni;
3752 
3753 	/* XXX recheck MIC to deal w/ chips that lie */
3754 	/* XXX discard MIC errors on !data frames */
3755 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3756 	if (ni != NULL) {
3757 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3758 		ieee80211_free_node(ni);
3759 	}
3760 }
3761 
3762 static void
3763 ath_rx_task(void *arg, int npending)
3764 {
3765 #define	PA2DESC(_sc, _pa) \
3766 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3767 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3768 	struct ath_softc *sc = arg;
3769 	struct ath_buf *bf;
3770 	struct ifnet *ifp;
3771 	struct ieee80211com *ic;
3772 	struct ath_hal *ah;
3773 	struct ath_desc *ds;
3774 	struct ath_rx_status *rs;
3775 	struct mbuf *m;
3776 	struct ieee80211_node *ni;
3777 	int len, type, ngood;
3778 	u_int phyerr;
3779 	HAL_STATUS status;
3780 	int16_t nf;
3781 	u_int64_t tsf;
3782 
3783 	wlan_serialize_enter();
3784 	ifp = sc->sc_ifp;
3785 	ic = ifp->if_l2com;
3786 	ah = sc->sc_ah;
3787 
3788 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3789 	ngood = 0;
3790 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3791 	sc->sc_stats.ast_rx_noise = nf;
3792 	tsf = ath_hal_gettsf64(ah);
3793 	do {
3794 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3795 		if (bf == NULL) {		/* NB: shouldn't happen */
3796 			if_printf(ifp, "%s: no buffer!\n", __func__);
3797 			break;
3798 		}
3799 		m = bf->bf_m;
3800 		if (m == NULL) {		/* NB: shouldn't happen */
3801 			/*
3802 			 * If mbuf allocation failed previously there
3803 			 * will be no mbuf; try again to re-populate it.
3804 			 */
3805 			/* XXX make debug msg */
3806 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3807 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3808 			goto rx_next;
3809 		}
3810 		ds = bf->bf_desc;
3811 		if (ds->ds_link == bf->bf_daddr) {
3812 			/* NB: never process the self-linked entry at the end */
3813 			break;
3814 		}
3815 		/* XXX sync descriptor memory */
3816 		/*
3817 		 * Must provide the virtual address of the current
3818 		 * descriptor, the physical address, and the virtual
3819 		 * address of the next descriptor in the h/w chain.
3820 		 * This allows the HAL to look ahead to see if the
3821 		 * hardware is done with a descriptor by checking the
3822 		 * done bit in the following descriptor and the address
3823 		 * of the current descriptor the DMA engine is working
3824 		 * on.  All this is necessary because of our use of
3825 		 * a self-linked list to avoid rx overruns.
3826 		 */
3827 		rs = &bf->bf_status.ds_rxstat;
3828 		status = ath_hal_rxprocdesc(ah, ds,
3829 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3830 #ifdef ATH_DEBUG
3831 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3832 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3833 #endif
3834 		if (status == HAL_EINPROGRESS)
3835 			break;
3836 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3837 		if (rs->rs_status != 0) {
3838 			if (rs->rs_status & HAL_RXERR_CRC)
3839 				sc->sc_stats.ast_rx_crcerr++;
3840 			if (rs->rs_status & HAL_RXERR_FIFO)
3841 				sc->sc_stats.ast_rx_fifoerr++;
3842 			if (rs->rs_status & HAL_RXERR_PHY) {
3843 				sc->sc_stats.ast_rx_phyerr++;
3844 				phyerr = rs->rs_phyerr & 0x1f;
3845 				sc->sc_stats.ast_rx_phy[phyerr]++;
3846 				goto rx_error;	/* NB: don't count in ierrors */
3847 			}
3848 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3849 				/*
3850 				 * Decrypt error.  If the error occurred
3851 				 * because there was no hardware key, then
3852 				 * let the frame through so the upper layers
3853 				 * can process it.  This is necessary for 5210
3854 				 * parts which have no way to setup a ``clear''
3855 				 * key cache entry.
3856 				 *
3857 				 * XXX do key cache faulting
3858 				 */
3859 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3860 					goto rx_accept;
3861 				sc->sc_stats.ast_rx_badcrypt++;
3862 			}
3863 			if (rs->rs_status & HAL_RXERR_MIC) {
3864 				sc->sc_stats.ast_rx_badmic++;
3865 				/*
3866 				 * Do minimal work required to hand off
3867 				 * the 802.11 header for notification.
3868 				 */
3869 				/* XXX frag's and qos frames */
3870 				len = rs->rs_datalen;
3871 				if (len >= sizeof (struct ieee80211_frame)) {
3872 					bus_dmamap_sync(sc->sc_dmat,
3873 					    bf->bf_dmamap,
3874 					    BUS_DMASYNC_POSTREAD);
3875 					ath_handle_micerror(ic,
3876 					    mtod(m, struct ieee80211_frame *),
3877 					    sc->sc_splitmic ?
3878 						rs->rs_keyix-32 : rs->rs_keyix);
3879 				}
3880 			}
3881 			ifp->if_ierrors++;
3882 rx_error:
3883 			/*
3884 			 * Cleanup any pending partial frame.
3885 			 */
3886 			if (sc->sc_rxpending != NULL) {
3887 				m_freem(sc->sc_rxpending);
3888 				sc->sc_rxpending = NULL;
3889 			}
3890 			/*
3891 			 * When a tap is present pass error frames
3892 			 * that have been requested.  By default we
3893 			 * pass decrypt+mic errors but others may be
3894 			 * interesting (e.g. crc).
3895 			 */
3896 			if (ieee80211_radiotap_active(ic) &&
3897 			    (rs->rs_status & sc->sc_monpass)) {
3898 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3899 				    BUS_DMASYNC_POSTREAD);
3900 				/* NB: bpf needs the mbuf length setup */
3901 				len = rs->rs_datalen;
3902 				m->m_pkthdr.len = m->m_len = len;
3903 				ath_rx_tap(ifp, m, rs, tsf, nf);
3904 				ieee80211_radiotap_rx_all(ic, m);
3905 			}
3906 			/* XXX pass MIC errors up for s/w reclaculation */
3907 			goto rx_next;
3908 		}
3909 rx_accept:
3910 		/*
3911 		 * Sync and unmap the frame.  At this point we're
3912 		 * committed to passing the mbuf somewhere so clear
3913 		 * bf_m; this means a new mbuf must be allocated
3914 		 * when the rx descriptor is setup again to receive
3915 		 * another frame.
3916 		 */
3917 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3918 		    BUS_DMASYNC_POSTREAD);
3919 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3920 		bf->bf_m = NULL;
3921 
3922 		len = rs->rs_datalen;
3923 		m->m_len = len;
3924 
3925 		if (rs->rs_more) {
3926 			/*
3927 			 * Frame spans multiple descriptors; save
3928 			 * it for the next completed descriptor, it
3929 			 * will be used to construct a jumbogram.
3930 			 */
3931 			if (sc->sc_rxpending != NULL) {
3932 				/* NB: max frame size is currently 2 clusters */
3933 				sc->sc_stats.ast_rx_toobig++;
3934 				m_freem(sc->sc_rxpending);
3935 			}
3936 			m->m_pkthdr.rcvif = ifp;
3937 			m->m_pkthdr.len = len;
3938 			sc->sc_rxpending = m;
3939 			goto rx_next;
3940 		} else if (sc->sc_rxpending != NULL) {
3941 			/*
3942 			 * This is the second part of a jumbogram,
3943 			 * chain it to the first mbuf, adjust the
3944 			 * frame length, and clear the rxpending state.
3945 			 */
3946 			sc->sc_rxpending->m_next = m;
3947 			sc->sc_rxpending->m_pkthdr.len += len;
3948 			m = sc->sc_rxpending;
3949 			sc->sc_rxpending = NULL;
3950 		} else {
3951 			/*
3952 			 * Normal single-descriptor receive; setup
3953 			 * the rcvif and packet length.
3954 			 */
3955 			m->m_pkthdr.rcvif = ifp;
3956 			m->m_pkthdr.len = len;
3957 		}
3958 
3959 		ifp->if_ipackets++;
3960 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3961 
3962 		/*
3963 		 * Populate the rx status block.  When there are bpf
3964 		 * listeners we do the additional work to provide
3965 		 * complete status.  Otherwise we fill in only the
3966 		 * material required by ieee80211_input.  Note that
3967 		 * noise setting is filled in above.
3968 		 */
3969 		if (ieee80211_radiotap_active(ic))
3970 			ath_rx_tap(ifp, m, rs, tsf, nf);
3971 
3972 		/*
3973 		 * From this point on we assume the frame is at least
3974 		 * as large as ieee80211_frame_min; verify that.
3975 		 */
3976 		if (len < IEEE80211_MIN_LEN) {
3977 			if (!ieee80211_radiotap_active(ic)) {
3978 				DPRINTF(sc, ATH_DEBUG_RECV,
3979 				    "%s: short packet %d\n", __func__, len);
3980 				sc->sc_stats.ast_rx_tooshort++;
3981 			} else {
3982 				/* NB: in particular this captures ack's */
3983 				ieee80211_radiotap_rx_all(ic, m);
3984 			}
3985 			m_freem(m);
3986 			goto rx_next;
3987 		}
3988 
3989 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3990 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3991 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3992 
3993 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3994 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3995 		}
3996 
3997 		m_adj(m, -IEEE80211_CRC_LEN);
3998 
3999 		/*
4000 		 * Locate the node for sender, track state, and then
4001 		 * pass the (referenced) node up to the 802.11 layer
4002 		 * for its use.
4003 		 */
4004 		ni = ieee80211_find_rxnode_withkey(ic,
4005 			mtod(m, const struct ieee80211_frame_min *),
4006 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4007 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4008 		if (ni != NULL) {
4009 			/*
4010 			 * Sending station is known, dispatch directly.
4011 			 */
4012 			sc->sc_lastrs = rs;
4013 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4014 			ieee80211_free_node(ni);
4015 			/*
4016 			 * Arrange to update the last rx timestamp only for
4017 			 * frames from our ap when operating in station mode.
4018 			 * This assumes the rx key is always setup when
4019 			 * associated.
4020 			 */
4021 			if (ic->ic_opmode == IEEE80211_M_STA &&
4022 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4023 				ngood++;
4024 		} else {
4025 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4026 		}
4027 		/*
4028 		 * Track rx rssi and do any rx antenna management.
4029 		 */
4030 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4031 		if (sc->sc_diversity) {
4032 			/*
4033 			 * When using fast diversity, change the default rx
4034 			 * antenna if diversity chooses the other antenna 3
4035 			 * times in a row.
4036 			 */
4037 			if (sc->sc_defant != rs->rs_antenna) {
4038 				if (++sc->sc_rxotherant >= 3)
4039 					ath_setdefantenna(sc, rs->rs_antenna);
4040 			} else
4041 				sc->sc_rxotherant = 0;
4042 		}
4043 		if (sc->sc_softled) {
4044 			/*
4045 			 * Blink for any data frame.  Otherwise do a
4046 			 * heartbeat-style blink when idle.  The latter
4047 			 * is mainly for station mode where we depend on
4048 			 * periodic beacon frames to trigger the poll event.
4049 			 */
4050 			if (type == IEEE80211_FC0_TYPE_DATA) {
4051 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4052 				ath_led_event(sc,
4053 				    rt->rateCodeToIndex[rs->rs_rate]);
4054 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4055 				ath_led_event(sc, 0);
4056 		}
4057 rx_next:
4058 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4059 	} while (ath_rxbuf_init(sc, bf) == 0);
4060 
4061 	/* rx signal state monitoring */
4062 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4063 	if (ngood)
4064 		sc->sc_lastrx = tsf;
4065 
4066 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
4067 #ifdef IEEE80211_SUPPORT_SUPERG
4068 		ieee80211_ff_age_all(ic, 100);
4069 #endif
4070 		if (!ifq_is_empty(&ifp->if_snd))
4071 			ath_start(ifp);
4072 	}
4073 	wlan_serialize_exit();
4074 #undef PA2DESC
4075 }
4076 
4077 static void
4078 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4079 {
4080 	txq->axq_qnum = qnum;
4081 	txq->axq_ac = 0;
4082 	txq->axq_depth = 0;
4083 	txq->axq_intrcnt = 0;
4084 	txq->axq_link = NULL;
4085 	STAILQ_INIT(&txq->axq_q);
4086 }
4087 
4088 /*
4089  * Setup a h/w transmit queue.
4090  */
4091 static struct ath_txq *
4092 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4093 {
4094 	struct ath_hal *ah = sc->sc_ah;
4095 	HAL_TXQ_INFO qi;
4096 	int qnum;
4097 
4098 	memset(&qi, 0, sizeof(qi));
4099 	qi.tqi_subtype = subtype;
4100 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4101 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4102 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4103 	/*
4104 	 * Enable interrupts only for EOL and DESC conditions.
4105 	 * We mark tx descriptors to receive a DESC interrupt
4106 	 * when a tx queue gets deep; otherwise waiting for the
4107 	 * EOL to reap descriptors.  Note that this is done to
4108 	 * reduce interrupt load and this only defers reaping
4109 	 * descriptors, never transmitting frames.  Aside from
4110 	 * reducing interrupts this also permits more concurrency.
4111 	 * The only potential downside is if the tx queue backs
4112 	 * up in which case the top half of the kernel may backup
4113 	 * due to a lack of tx descriptors.
4114 	 */
4115 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4116 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4117 	if (qnum == -1) {
4118 		/*
4119 		 * NB: don't print a message, this happens
4120 		 * normally on parts with too few tx queues
4121 		 */
4122 		return NULL;
4123 	}
4124 	if (qnum >= NELEM(sc->sc_txq)) {
4125 		device_printf(sc->sc_dev,
4126 			"hal qnum %u out of range, max %zu!\n",
4127 			qnum, NELEM(sc->sc_txq));
4128 		ath_hal_releasetxqueue(ah, qnum);
4129 		return NULL;
4130 	}
4131 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4132 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4133 		sc->sc_txqsetup |= 1<<qnum;
4134 	}
4135 	return &sc->sc_txq[qnum];
4136 }
4137 
4138 /*
4139  * Setup a hardware data transmit queue for the specified
4140  * access control.  The hal may not support all requested
4141  * queues in which case it will return a reference to a
4142  * previously setup queue.  We record the mapping from ac's
4143  * to h/w queues for use by ath_tx_start and also track
4144  * the set of h/w queues being used to optimize work in the
4145  * transmit interrupt handler and related routines.
4146  */
4147 static int
4148 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4149 {
4150 	struct ath_txq *txq;
4151 
4152 	if (ac >= NELEM(sc->sc_ac2q)) {
4153 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4154 			ac, NELEM(sc->sc_ac2q));
4155 		return 0;
4156 	}
4157 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4158 	if (txq != NULL) {
4159 		txq->axq_ac = ac;
4160 		sc->sc_ac2q[ac] = txq;
4161 		return 1;
4162 	} else
4163 		return 0;
4164 }
4165 
4166 /*
4167  * Update WME parameters for a transmit queue.
4168  */
4169 static int
4170 ath_txq_update(struct ath_softc *sc, int ac)
4171 {
4172 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4173 #define	ATH_TXOP_TO_US(v)		(v<<5)
4174 	struct ifnet *ifp = sc->sc_ifp;
4175 	struct ieee80211com *ic = ifp->if_l2com;
4176 	struct ath_txq *txq = sc->sc_ac2q[ac];
4177 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4178 	struct ath_hal *ah = sc->sc_ah;
4179 	HAL_TXQ_INFO qi;
4180 
4181 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4182 #ifdef IEEE80211_SUPPORT_TDMA
4183 	if (sc->sc_tdma) {
4184 		/*
4185 		 * AIFS is zero so there's no pre-transmit wait.  The
4186 		 * burst time defines the slot duration and is configured
4187 		 * through net80211.  The QCU is setup to not do post-xmit
4188 		 * back off, lockout all lower-priority QCU's, and fire
4189 		 * off the DMA beacon alert timer which is setup based
4190 		 * on the slot configuration.
4191 		 */
4192 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4193 			      | HAL_TXQ_TXERRINT_ENABLE
4194 			      | HAL_TXQ_TXURNINT_ENABLE
4195 			      | HAL_TXQ_TXEOLINT_ENABLE
4196 			      | HAL_TXQ_DBA_GATED
4197 			      | HAL_TXQ_BACKOFF_DISABLE
4198 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4199 			      ;
4200 		qi.tqi_aifs = 0;
4201 		/* XXX +dbaprep? */
4202 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4203 		qi.tqi_burstTime = qi.tqi_readyTime;
4204 	} else {
4205 #endif
4206 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4207 			      | HAL_TXQ_TXERRINT_ENABLE
4208 			      | HAL_TXQ_TXDESCINT_ENABLE
4209 			      | HAL_TXQ_TXURNINT_ENABLE
4210 			      ;
4211 		qi.tqi_aifs = wmep->wmep_aifsn;
4212 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4213 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4214 		qi.tqi_readyTime = 0;
4215 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4216 #ifdef IEEE80211_SUPPORT_TDMA
4217 	}
4218 #endif
4219 
4220 	DPRINTF(sc, ATH_DEBUG_RESET,
4221 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4222 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4223 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4224 
4225 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4226 		if_printf(ifp, "unable to update hardware queue "
4227 			"parameters for %s traffic!\n",
4228 			ieee80211_wme_acnames[ac]);
4229 		return 0;
4230 	} else {
4231 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4232 		return 1;
4233 	}
4234 #undef ATH_TXOP_TO_US
4235 #undef ATH_EXPONENT_TO_VALUE
4236 }
4237 
4238 /*
4239  * Callback from the 802.11 layer to update WME parameters.
4240  */
4241 static int
4242 ath_wme_update(struct ieee80211com *ic)
4243 {
4244 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4245 
4246 	return !ath_txq_update(sc, WME_AC_BE) ||
4247 	    !ath_txq_update(sc, WME_AC_BK) ||
4248 	    !ath_txq_update(sc, WME_AC_VI) ||
4249 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4250 }
4251 
4252 /*
4253  * Reclaim resources for a setup queue.
4254  */
4255 static void
4256 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4257 {
4258 
4259 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4260 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4261 }
4262 
4263 /*
4264  * Reclaim all tx queue resources.
4265  */
4266 static void
4267 ath_tx_cleanup(struct ath_softc *sc)
4268 {
4269 	int i;
4270 
4271 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4272 		if (ATH_TXQ_SETUP(sc, i))
4273 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4274 }
4275 
4276 /*
4277  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4278  * using the current rates in sc_rixmap.
4279  */
4280 static __inline int
4281 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4282 {
4283 	int rix = sc->sc_rixmap[rate];
4284 	/* NB: return lowest rix for invalid rate */
4285 	return (rix == 0xff ? 0 : rix);
4286 }
4287 
4288 /*
4289  * Reclaim mbuf resources.  For fragmented frames we
4290  * need to claim each frag chained with m_nextpkt.
4291  */
4292 static void
4293 ath_freetx(struct mbuf *m)
4294 {
4295 	struct mbuf *next;
4296 
4297 	do {
4298 		next = m->m_nextpkt;
4299 		m->m_nextpkt = NULL;
4300 		m_freem(m);
4301 	} while ((m = next) != NULL);
4302 }
4303 
4304 static int
4305 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4306 {
4307 	int error;
4308 
4309 	/*
4310 	 *
4311 	 * Load the DMA map so any coalescing is done.  This
4312 	 * also calculates the number of descriptors we need.
4313 	 */
4314 	error = bus_dmamap_load_mbuf_defrag(sc->sc_dmat, bf->bf_dmamap, &m0,
4315 				     bf->bf_segs, ATH_TXDESC,
4316 				     &bf->bf_nseg, BUS_DMA_NOWAIT);
4317 	if (error != 0) {
4318 		sc->sc_stats.ast_tx_busdma++;
4319 		ath_freetx(m0);
4320 		return error;
4321 	}
4322 
4323 	/*
4324 	 * Discard null packets.
4325 	 */
4326 	if (bf->bf_nseg == 0) {		/* null packet, discard */
4327 		sc->sc_stats.ast_tx_nodata++;
4328 		ath_freetx(m0);
4329 		return EIO;
4330 	}
4331 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4332 		__func__, m0, m0->m_pkthdr.len);
4333 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4334 	bf->bf_m = m0;
4335 
4336 	return 0;
4337 }
4338 
4339 static void
4340 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4341 {
4342 	struct ath_hal *ah = sc->sc_ah;
4343 	struct ath_desc *ds, *ds0;
4344 	int i;
4345 
4346 	/*
4347 	 * Fillin the remainder of the descriptor info.
4348 	 */
4349 	ds0 = ds = bf->bf_desc;
4350 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4351 		ds->ds_data = bf->bf_segs[i].ds_addr;
4352 		if (i == bf->bf_nseg - 1)
4353 			ds->ds_link = 0;
4354 		else
4355 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4356 		ath_hal_filltxdesc(ah, ds
4357 			, bf->bf_segs[i].ds_len	/* segment length */
4358 			, i == 0		/* first segment */
4359 			, i == bf->bf_nseg - 1	/* last segment */
4360 			, ds0			/* first descriptor */
4361 		);
4362 		DPRINTF(sc, ATH_DEBUG_XMIT,
4363 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4364 			__func__, i, ds->ds_link, ds->ds_data,
4365 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4366 	}
4367 	/*
4368 	 * Insert the frame on the outbound list and pass it on
4369 	 * to the hardware.  Multicast frames buffered for power
4370 	 * save stations and transmit from the CAB queue are stored
4371 	 * on a s/w only queue and loaded on to the CAB queue in
4372 	 * the SWBA handler since frames only go out on DTIM and
4373 	 * to avoid possible races.
4374 	 */
4375 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4376 	     ("busy status 0x%x", bf->bf_flags));
4377 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4378 #ifdef IEEE80211_SUPPORT_TDMA
4379 		/*
4380 		 * Supporting transmit dma.  If the queue is busy it is
4381 		 * impossible to determine if we've won the race against
4382 		 * the chipset checking the link field or not, so we don't
4383 		 * try.  Instead we let the TX interrupt detect the case
4384 		 * and restart the transmitter.
4385 		 *
4386 		 * If the queue is not busy we can start things rolling
4387 		 * right here.
4388 		 */
4389 		int qbusy;
4390 
4391 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4392 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4393 
4394 		if (qbusy == 0) {
4395 			if (txq->axq_link != NULL) {
4396 				/*
4397 				 * We had already started one previously but
4398 				 * not yet processed the TX interrupt.  Don't
4399 				 * try to race a restart because we do not
4400 				 * know where it stopped, let the TX interrupt
4401 				 * restart us when it figures out where we
4402 				 * stopped.
4403 				 */
4404 				cpu_sfence();
4405 				*txq->axq_link = bf->bf_daddr;
4406 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4407 			} else {
4408 				/*
4409 				 * We are first in line, we can safely start
4410 				 * at this address.
4411 				 */
4412 				cpu_sfence();
4413 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4414 						 bf->bf_daddr);
4415 			}
4416 		} else {
4417 			/*
4418 			 * The queue is busy, go ahead and link us in but
4419 			 * do not try to start/restart the tx.  We just
4420 			 * don't know whether it will pick up our link
4421 			 * or not and we don't want to double-xmit.
4422 			 */
4423 			if (txq->axq_link != NULL) {
4424 				cpu_sfence();
4425 				*txq->axq_link = bf->bf_daddr;
4426 			}
4427 			txq->axq_flags |= ATH_TXQ_PUTPENDING;
4428 		}
4429 #if 0
4430 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4431 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4432 #endif
4433 #else
4434 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4435 		if (txq->axq_link == NULL) {
4436 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4437 			DPRINTF(sc, ATH_DEBUG_XMIT,
4438 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4439 			    __func__, txq->axq_qnum,
4440 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4441 			    txq->axq_depth);
4442 		} else {
4443 			*txq->axq_link = bf->bf_daddr;
4444 			DPRINTF(sc, ATH_DEBUG_XMIT,
4445 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4446 			    txq->axq_qnum, txq->axq_link,
4447 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4448 		}
4449 #endif /* IEEE80211_SUPPORT_TDMA */
4450 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4451 		ath_hal_txstart(ah, txq->axq_qnum);
4452 	} else {
4453 		if (txq->axq_link != NULL) {
4454 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4455 			struct ieee80211_frame *wh;
4456 
4457 			/* mark previous frame */
4458 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4459 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4460 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4461 			    BUS_DMASYNC_PREWRITE);
4462 
4463 			/* link descriptor */
4464 			*txq->axq_link = bf->bf_daddr;
4465 		}
4466 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4467 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4468 	}
4469 }
4470 
4471 static int
4472 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4473     struct mbuf *m0)
4474 {
4475 	struct ieee80211vap *vap = ni->ni_vap;
4476 	struct ath_vap *avp = ATH_VAP(vap);
4477 	struct ath_hal *ah = sc->sc_ah;
4478 	struct ifnet *ifp = sc->sc_ifp;
4479 	struct ieee80211com *ic = ifp->if_l2com;
4480 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4481 	int error, iswep, ismcast, isfrag, ismrr;
4482 	int keyix, hdrlen, pktlen, try0;
4483 	u_int8_t rix, txrate, ctsrate;
4484 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4485 	struct ath_desc *ds;
4486 	struct ath_txq *txq;
4487 	struct ieee80211_frame *wh;
4488 	u_int subtype, flags, ctsduration;
4489 	HAL_PKT_TYPE atype;
4490 	const HAL_RATE_TABLE *rt;
4491 	HAL_BOOL shortPreamble;
4492 	struct ath_node *an;
4493 	u_int pri;
4494 
4495 	wh = mtod(m0, struct ieee80211_frame *);
4496 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4497 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4498 	isfrag = m0->m_flags & M_FRAG;
4499 	hdrlen = ieee80211_anyhdrsize(wh);
4500 	/*
4501 	 * Packet length must not include any
4502 	 * pad bytes; deduct them here.
4503 	 */
4504 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4505 
4506 	if (iswep) {
4507 		const struct ieee80211_cipher *cip;
4508 		struct ieee80211_key *k;
4509 
4510 		/*
4511 		 * Construct the 802.11 header+trailer for an encrypted
4512 		 * frame. The only reason this can fail is because of an
4513 		 * unknown or unsupported cipher/key type.
4514 		 */
4515 		k = ieee80211_crypto_encap(ni, m0);
4516 		if (k == NULL) {
4517 			/*
4518 			 * This can happen when the key is yanked after the
4519 			 * frame was queued.  Just discard the frame; the
4520 			 * 802.11 layer counts failures and provides
4521 			 * debugging/diagnostics.
4522 			 */
4523 			ath_freetx(m0);
4524 			return EIO;
4525 		}
4526 		/*
4527 		 * Adjust the packet + header lengths for the crypto
4528 		 * additions and calculate the h/w key index.  When
4529 		 * a s/w mic is done the frame will have had any mic
4530 		 * added to it prior to entry so m0->m_pkthdr.len will
4531 		 * account for it. Otherwise we need to add it to the
4532 		 * packet length.
4533 		 */
4534 		cip = k->wk_cipher;
4535 		hdrlen += cip->ic_header;
4536 		pktlen += cip->ic_header + cip->ic_trailer;
4537 		/* NB: frags always have any TKIP MIC done in s/w */
4538 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4539 			pktlen += cip->ic_miclen;
4540 		keyix = k->wk_keyix;
4541 
4542 		/* packet header may have moved, reset our local pointer */
4543 		wh = mtod(m0, struct ieee80211_frame *);
4544 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4545 		/*
4546 		 * Use station key cache slot, if assigned.
4547 		 */
4548 		keyix = ni->ni_ucastkey.wk_keyix;
4549 		if (keyix == IEEE80211_KEYIX_NONE)
4550 			keyix = HAL_TXKEYIX_INVALID;
4551 	} else
4552 		keyix = HAL_TXKEYIX_INVALID;
4553 
4554 	pktlen += IEEE80211_CRC_LEN;
4555 
4556 	/*
4557 	 * Load the DMA map so any coalescing is done.  This
4558 	 * also calculates the number of descriptors we need.
4559 	 */
4560 	error = ath_tx_dmasetup(sc, bf, m0);
4561 	if (error != 0) {
4562 		return error;
4563 	}
4564 	bf->bf_node = ni;			/* NB: held reference */
4565 	m0 = bf->bf_m;				/* NB: may have changed */
4566 	wh = mtod(m0, struct ieee80211_frame *);
4567 
4568 	/* setup descriptors */
4569 	ds = bf->bf_desc;
4570 	rt = sc->sc_currates;
4571 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4572 
4573 	/*
4574 	 * NB: the 802.11 layer marks whether or not we should
4575 	 * use short preamble based on the current mode and
4576 	 * negotiated parameters.
4577 	 */
4578 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4579 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4580 		shortPreamble = AH_TRUE;
4581 		sc->sc_stats.ast_tx_shortpre++;
4582 	} else {
4583 		shortPreamble = AH_FALSE;
4584 	}
4585 
4586 	an = ATH_NODE(ni);
4587 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4588 	ismrr = 0;				/* default no multi-rate retry*/
4589 	pri = M_WME_GETAC(m0);			/* honor classification */
4590 	/* XXX use txparams instead of fixed values */
4591 	/*
4592 	 * Calculate Atheros packet type from IEEE80211 packet header,
4593 	 * setup for rate calculations, and select h/w transmit queue.
4594 	 */
4595 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4596 	case IEEE80211_FC0_TYPE_MGT:
4597 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4598 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4599 			atype = HAL_PKT_TYPE_BEACON;
4600 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4601 			atype = HAL_PKT_TYPE_PROBE_RESP;
4602 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4603 			atype = HAL_PKT_TYPE_ATIM;
4604 		else
4605 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4606 		rix = an->an_mgmtrix;
4607 		txrate = rt->info[rix].rateCode;
4608 		if (shortPreamble)
4609 			txrate |= rt->info[rix].shortPreamble;
4610 		try0 = ATH_TXMGTTRY;
4611 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4612 		break;
4613 	case IEEE80211_FC0_TYPE_CTL:
4614 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4615 		rix = an->an_mgmtrix;
4616 		txrate = rt->info[rix].rateCode;
4617 		if (shortPreamble)
4618 			txrate |= rt->info[rix].shortPreamble;
4619 		try0 = ATH_TXMGTTRY;
4620 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4621 		break;
4622 	case IEEE80211_FC0_TYPE_DATA:
4623 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4624 		/*
4625 		 * Data frames: multicast frames go out at a fixed rate,
4626 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4627 		 * the rate control module for the rate to use.
4628 		 */
4629 		if (ismcast) {
4630 			rix = an->an_mcastrix;
4631 			txrate = rt->info[rix].rateCode;
4632 			if (shortPreamble)
4633 				txrate |= rt->info[rix].shortPreamble;
4634 			try0 = 1;
4635 		} else if (m0->m_flags & M_EAPOL) {
4636 			/* XXX? maybe always use long preamble? */
4637 			rix = an->an_mgmtrix;
4638 			txrate = rt->info[rix].rateCode;
4639 			if (shortPreamble)
4640 				txrate |= rt->info[rix].shortPreamble;
4641 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4642 		} else {
4643 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4644 				&rix, &try0, &txrate);
4645 			sc->sc_txrix = rix;		/* for LED blinking */
4646 			sc->sc_lastdatarix = rix;	/* for fast frames */
4647 			if (try0 != ATH_TXMAXTRY)
4648 				ismrr = 1;
4649 		}
4650 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4651 			flags |= HAL_TXDESC_NOACK;
4652 		break;
4653 	default:
4654 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4655 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4656 		/* XXX statistic */
4657 		ath_freetx(m0);
4658 		return EIO;
4659 	}
4660 	txq = sc->sc_ac2q[pri];
4661 
4662 	/*
4663 	 * When servicing one or more stations in power-save mode
4664 	 * (or) if there is some mcast data waiting on the mcast
4665 	 * queue (to prevent out of order delivery) multicast
4666 	 * frames must be buffered until after the beacon.
4667 	 */
4668 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4669 		txq = &avp->av_mcastq;
4670 
4671 	/*
4672 	 * Calculate miscellaneous flags.
4673 	 */
4674 	if (ismcast) {
4675 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4676 	} else if (pktlen > vap->iv_rtsthreshold &&
4677 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4678 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4679 		cix = rt->info[rix].controlRate;
4680 		sc->sc_stats.ast_tx_rts++;
4681 	}
4682 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4683 		sc->sc_stats.ast_tx_noack++;
4684 #ifdef IEEE80211_SUPPORT_TDMA
4685 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4686 		DPRINTF(sc, ATH_DEBUG_TDMA,
4687 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4688 		sc->sc_stats.ast_tdma_ack++;
4689 		ath_freetx(m0);
4690 		return EIO;
4691 	}
4692 #endif
4693 
4694 	/*
4695 	 * If 802.11g protection is enabled, determine whether
4696 	 * to use RTS/CTS or just CTS.  Note that this is only
4697 	 * done for OFDM unicast frames.
4698 	 */
4699 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4700 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4701 	    (flags & HAL_TXDESC_NOACK) == 0) {
4702 		/* XXX fragments must use CCK rates w/ protection */
4703 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4704 			flags |= HAL_TXDESC_RTSENA;
4705 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4706 			flags |= HAL_TXDESC_CTSENA;
4707 		if (isfrag) {
4708 			/*
4709 			 * For frags it would be desirable to use the
4710 			 * highest CCK rate for RTS/CTS.  But stations
4711 			 * farther away may detect it at a lower CCK rate
4712 			 * so use the configured protection rate instead
4713 			 * (for now).
4714 			 */
4715 			cix = rt->info[sc->sc_protrix].controlRate;
4716 		} else
4717 			cix = rt->info[sc->sc_protrix].controlRate;
4718 		sc->sc_stats.ast_tx_protect++;
4719 	}
4720 
4721 	/*
4722 	 * Calculate duration.  This logically belongs in the 802.11
4723 	 * layer but it lacks sufficient information to calculate it.
4724 	 */
4725 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4726 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4727 		u_int16_t dur;
4728 		if (shortPreamble)
4729 			dur = rt->info[rix].spAckDuration;
4730 		else
4731 			dur = rt->info[rix].lpAckDuration;
4732 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4733 			dur += dur;		/* additional SIFS+ACK */
4734 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4735 			/*
4736 			 * Include the size of next fragment so NAV is
4737 			 * updated properly.  The last fragment uses only
4738 			 * the ACK duration
4739 			 */
4740 			dur += ath_hal_computetxtime(ah, rt,
4741 					m0->m_nextpkt->m_pkthdr.len,
4742 					rix, shortPreamble);
4743 		}
4744 		if (isfrag) {
4745 			/*
4746 			 * Force hardware to use computed duration for next
4747 			 * fragment by disabling multi-rate retry which updates
4748 			 * duration based on the multi-rate duration table.
4749 			 */
4750 			ismrr = 0;
4751 			try0 = ATH_TXMGTTRY;	/* XXX? */
4752 		}
4753 		*(u_int16_t *)wh->i_dur = htole16(dur);
4754 	}
4755 
4756 	/*
4757 	 * Calculate RTS/CTS rate and duration if needed.
4758 	 */
4759 	ctsduration = 0;
4760 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4761 		/*
4762 		 * CTS transmit rate is derived from the transmit rate
4763 		 * by looking in the h/w rate table.  We must also factor
4764 		 * in whether or not a short preamble is to be used.
4765 		 */
4766 		/* NB: cix is set above where RTS/CTS is enabled */
4767 		KASSERT(cix != 0xff, ("cix not setup"));
4768 		ctsrate = rt->info[cix].rateCode;
4769 		/*
4770 		 * Compute the transmit duration based on the frame
4771 		 * size and the size of an ACK frame.  We call into the
4772 		 * HAL to do the computation since it depends on the
4773 		 * characteristics of the actual PHY being used.
4774 		 *
4775 		 * NB: CTS is assumed the same size as an ACK so we can
4776 		 *     use the precalculated ACK durations.
4777 		 */
4778 		if (shortPreamble) {
4779 			ctsrate |= rt->info[cix].shortPreamble;
4780 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4781 				ctsduration += rt->info[cix].spAckDuration;
4782 			ctsduration += ath_hal_computetxtime(ah,
4783 				rt, pktlen, rix, AH_TRUE);
4784 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4785 				ctsduration += rt->info[rix].spAckDuration;
4786 		} else {
4787 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4788 				ctsduration += rt->info[cix].lpAckDuration;
4789 			ctsduration += ath_hal_computetxtime(ah,
4790 				rt, pktlen, rix, AH_FALSE);
4791 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4792 				ctsduration += rt->info[rix].lpAckDuration;
4793 		}
4794 		/*
4795 		 * Must disable multi-rate retry when using RTS/CTS.
4796 		 */
4797 		ismrr = 0;
4798 		try0 = ATH_TXMGTTRY;		/* XXX */
4799 	} else
4800 		ctsrate = 0;
4801 
4802 	/*
4803 	 * At this point we are committed to sending the frame
4804 	 * and we don't need to look at m_nextpkt; clear it in
4805 	 * case this frame is part of frag chain.
4806 	 */
4807 	m0->m_nextpkt = NULL;
4808 
4809 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4810 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4811 		    sc->sc_hwmap[rix].ieeerate, -1);
4812 
4813 	if (ieee80211_radiotap_active_vap(vap)) {
4814 		u_int64_t tsf = ath_hal_gettsf64(ah);
4815 
4816 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4817 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4818 		if (iswep)
4819 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4820 		if (isfrag)
4821 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4822 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4823 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4824 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4825 
4826 		ieee80211_radiotap_tx(vap, m0);
4827 	}
4828 
4829 	/*
4830 	 * Determine if a tx interrupt should be generated for
4831 	 * this descriptor.  We take a tx interrupt to reap
4832 	 * descriptors when the h/w hits an EOL condition or
4833 	 * when the descriptor is specifically marked to generate
4834 	 * an interrupt.  We periodically mark descriptors in this
4835 	 * way to insure timely replenishing of the supply needed
4836 	 * for sending frames.  Defering interrupts reduces system
4837 	 * load and potentially allows more concurrent work to be
4838 	 * done but if done to aggressively can cause senders to
4839 	 * backup.
4840 	 *
4841 	 * NB: use >= to deal with sc_txintrperiod changing
4842 	 *     dynamically through sysctl.
4843 	 */
4844 	if (flags & HAL_TXDESC_INTREQ) {
4845 		txq->axq_intrcnt = 0;
4846 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4847 		flags |= HAL_TXDESC_INTREQ;
4848 		txq->axq_intrcnt = 0;
4849 	}
4850 
4851 	/*
4852 	 * Formulate first tx descriptor with tx controls.
4853 	 */
4854 	/* XXX check return value? */
4855 	ath_hal_setuptxdesc(ah, ds
4856 		, pktlen		/* packet length */
4857 		, hdrlen		/* header length */
4858 		, atype			/* Atheros packet type */
4859 		, ni->ni_txpower	/* txpower */
4860 		, txrate, try0		/* series 0 rate/tries */
4861 		, keyix			/* key cache index */
4862 		, sc->sc_txantenna	/* antenna mode */
4863 		, flags			/* flags */
4864 		, ctsrate		/* rts/cts rate */
4865 		, ctsduration		/* rts/cts duration */
4866 	);
4867 	bf->bf_txflags = flags;
4868 	/*
4869 	 * Setup the multi-rate retry state only when we're
4870 	 * going to use it.  This assumes ath_hal_setuptxdesc
4871 	 * initializes the descriptors (so we don't have to)
4872 	 * when the hardware supports multi-rate retry and
4873 	 * we don't use it.
4874 	 */
4875 	if (ismrr)
4876 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4877 
4878 	ath_tx_handoff(sc, txq, bf);
4879 	return 0;
4880 }
4881 
4882 /*
4883  * Process completed xmit descriptors from the specified queue.
4884  */
4885 static int
4886 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4887 {
4888 	struct ath_hal *ah = sc->sc_ah;
4889 	struct ifnet *ifp = sc->sc_ifp;
4890 	struct ieee80211com *ic = ifp->if_l2com;
4891 	struct ath_buf *bf, *last;
4892 	struct ath_desc *ds, *ds0;
4893 	struct ath_tx_status *ts;
4894 	struct ieee80211_node *ni;
4895 	struct ath_node *an;
4896 	int sr, lr, pri, nacked;
4897 	HAL_STATUS status;
4898 
4899 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4900 		__func__, txq->axq_qnum,
4901 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4902 		txq->axq_link);
4903 	nacked = 0;
4904 	for (;;) {
4905 		int qbusy;
4906 
4907 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4908 		bf = STAILQ_FIRST(&txq->axq_q);
4909 		if (bf == NULL)
4910 			break;
4911 		ds0 = &bf->bf_desc[0];
4912 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4913 		ts = &bf->bf_status.ds_txstat;
4914 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4915 		status = ath_hal_txprocdesc(ah, ds, ts);
4916 #ifdef ATH_DEBUG
4917 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4918 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4919 			    status == HAL_OK);
4920 #endif
4921 		if (status == HAL_EINPROGRESS) {
4922 #ifdef IEEE80211_SUPPORT_TDMA
4923 			/*
4924 			 * If not done and the queue is not busy then the
4925 			 * transmitter raced the hardware on the link field
4926 			 * and we have to restart it.
4927 			 */
4928 			if (!qbusy) {
4929 				cpu_sfence();
4930 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4931 						 bf->bf_daddr);
4932 				ath_hal_txstart(ah, txq->axq_qnum);
4933 			}
4934 #endif
4935 			break;
4936 		}
4937 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4938 #ifdef IEEE80211_SUPPORT_TDMA
4939 		if (txq->axq_depth > 0) {
4940 			/*
4941 			 * More frames follow.  Mark the buffer busy
4942 			 * so it's not re-used while the hardware may
4943 			 * still re-read the link field in the descriptor.
4944 			 */
4945 			bf->bf_flags |= ATH_BUF_BUSY;
4946 		} else
4947 #else
4948 		if (txq->axq_depth == 0)
4949 #endif
4950 			txq->axq_link = NULL;
4951 
4952 		ni = bf->bf_node;
4953 		if (ni != NULL) {
4954 			an = ATH_NODE(ni);
4955 			if (ts->ts_status == 0) {
4956 				u_int8_t txant = ts->ts_antenna;
4957 				sc->sc_stats.ast_ant_tx[txant]++;
4958 				sc->sc_ant_tx[txant]++;
4959 				if (ts->ts_finaltsi != 0)
4960 					sc->sc_stats.ast_tx_altrate++;
4961 				pri = M_WME_GETAC(bf->bf_m);
4962 				if (pri >= WME_AC_VO)
4963 					ic->ic_wme.wme_hipri_traffic++;
4964 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4965 					ni->ni_inact = ni->ni_inact_reload;
4966 			} else {
4967 				if (ts->ts_status & HAL_TXERR_XRETRY)
4968 					sc->sc_stats.ast_tx_xretries++;
4969 				if (ts->ts_status & HAL_TXERR_FIFO)
4970 					sc->sc_stats.ast_tx_fifoerr++;
4971 				if (ts->ts_status & HAL_TXERR_FILT)
4972 					sc->sc_stats.ast_tx_filtered++;
4973 				if (bf->bf_m->m_flags & M_FF)
4974 					sc->sc_stats.ast_ff_txerr++;
4975 			}
4976 			sr = ts->ts_shortretry;
4977 			lr = ts->ts_longretry;
4978 			sc->sc_stats.ast_tx_shortretry += sr;
4979 			sc->sc_stats.ast_tx_longretry += lr;
4980 			/*
4981 			 * Hand the descriptor to the rate control algorithm.
4982 			 */
4983 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4984 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4985 				/*
4986 				 * If frame was ack'd update statistics,
4987 				 * including the last rx time used to
4988 				 * workaround phantom bmiss interrupts.
4989 				 */
4990 				if (ts->ts_status == 0) {
4991 					nacked++;
4992 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4993 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4994 						ts->ts_rssi);
4995 				}
4996 				ath_rate_tx_complete(sc, an, bf);
4997 			}
4998 			/*
4999 			 * Do any tx complete callback.  Note this must
5000 			 * be done before releasing the node reference.
5001 			 */
5002 			if (bf->bf_m->m_flags & M_TXCB)
5003 				ieee80211_process_callback(ni, bf->bf_m,
5004 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5005 				        ts->ts_status : HAL_TXERR_XRETRY);
5006 			ieee80211_free_node(ni);
5007 		}
5008 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5009 		    BUS_DMASYNC_POSTWRITE);
5010 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5011 
5012 		m_freem(bf->bf_m);
5013 		bf->bf_m = NULL;
5014 		bf->bf_node = NULL;
5015 
5016 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5017 		if (last != NULL)
5018 			last->bf_flags &= ~ATH_BUF_BUSY;
5019 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5020 	}
5021 #ifdef IEEE80211_SUPPORT_SUPERG
5022 	/*
5023 	 * Flush fast-frame staging queue when traffic slows.
5024 	 */
5025 	if (txq->axq_depth <= 1)
5026 		ieee80211_ff_flush(ic, txq->axq_ac);
5027 #endif
5028 	return nacked;
5029 }
5030 
5031 static __inline int
5032 txqactive(struct ath_hal *ah, int qnum)
5033 {
5034 	u_int32_t txqs = 1<<qnum;
5035 	ath_hal_gettxintrtxqs(ah, &txqs);
5036 	return (txqs & (1<<qnum));
5037 }
5038 
5039 /*
5040  * Deferred processing of transmit interrupt; special-cased
5041  * for a single hardware transmit queue (e.g. 5210 and 5211).
5042  */
5043 static void
5044 ath_tx_task_q0(void *arg, int npending)
5045 {
5046 	struct ath_softc *sc = arg;
5047 	struct ifnet *ifp = sc->sc_ifp;
5048 
5049 	wlan_serialize_enter();
5050 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5051 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5052 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5053 		ath_tx_processq(sc, sc->sc_cabq);
5054 	ifp->if_flags &= ~IFF_OACTIVE;
5055 	sc->sc_wd_timer = 0;
5056 
5057 	if (sc->sc_softled)
5058 		ath_led_event(sc, sc->sc_txrix);
5059 
5060 	ath_start(ifp);
5061 	wlan_serialize_exit();
5062 }
5063 
5064 /*
5065  * Deferred processing of transmit interrupt; special-cased
5066  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5067  */
5068 static void
5069 ath_tx_task_q0123(void *arg, int npending)
5070 {
5071 	struct ath_softc *sc = arg;
5072 	struct ifnet *ifp = sc->sc_ifp;
5073 	int nacked;
5074 
5075 	wlan_serialize_enter();
5076 	/*
5077 	 * Process each active queue.
5078 	 */
5079 	nacked = 0;
5080 	if (txqactive(sc->sc_ah, 0))
5081 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5082 	if (txqactive(sc->sc_ah, 1))
5083 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5084 	if (txqactive(sc->sc_ah, 2))
5085 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5086 	if (txqactive(sc->sc_ah, 3))
5087 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5088 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5089 		ath_tx_processq(sc, sc->sc_cabq);
5090 	if (nacked)
5091 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5092 
5093 	ifp->if_flags &= ~IFF_OACTIVE;
5094 	sc->sc_wd_timer = 0;
5095 
5096 	if (sc->sc_softled)
5097 		ath_led_event(sc, sc->sc_txrix);
5098 
5099 	ath_start(ifp);
5100 	wlan_serialize_exit();
5101 }
5102 
5103 /*
5104  * Deferred processing of transmit interrupt.
5105  */
5106 static void
5107 ath_tx_task(void *arg, int npending)
5108 {
5109 	struct ath_softc *sc = arg;
5110 	struct ifnet *ifp = sc->sc_ifp;
5111 	int i, nacked;
5112 
5113 	wlan_serialize_enter();
5114 
5115 	/*
5116 	 * Process each active queue.
5117 	 */
5118 	nacked = 0;
5119 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5120 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5121 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5122 	}
5123 	if (nacked)
5124 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5125 
5126 	ifp->if_flags &= ~IFF_OACTIVE;
5127 	sc->sc_wd_timer = 0;
5128 
5129 	if (sc->sc_softled)
5130 		ath_led_event(sc, sc->sc_txrix);
5131 
5132 	ath_start(ifp);
5133 	wlan_serialize_exit();
5134 }
5135 
5136 static void
5137 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5138 {
5139 #ifdef ATH_DEBUG
5140 	struct ath_hal *ah = sc->sc_ah;
5141 #endif
5142 	struct ieee80211_node *ni;
5143 	struct ath_buf *bf;
5144 	u_int ix;
5145 
5146 	/*
5147 	 * NB: this assumes output has been stopped and
5148 	 *     we do not need to block ath_tx_proc
5149 	 */
5150 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5151 	if (bf != NULL)
5152 		bf->bf_flags &= ~ATH_BUF_BUSY;
5153 	for (ix = 0;; ix++) {
5154 		bf = STAILQ_FIRST(&txq->axq_q);
5155 		if (bf == NULL) {
5156 			txq->axq_link = NULL;
5157 			break;
5158 		}
5159 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5160 #ifdef ATH_DEBUG
5161 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5162 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5163 
5164 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5165 				ath_hal_txprocdesc(ah, bf->bf_desc,
5166 				    &bf->bf_status.ds_txstat) == HAL_OK);
5167 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5168 			    bf->bf_m->m_len, 0, -1);
5169 		}
5170 #endif /* ATH_DEBUG */
5171 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5172 		ni = bf->bf_node;
5173 		bf->bf_node = NULL;
5174 		if (ni != NULL) {
5175 			/*
5176 			 * Do any callback and reclaim the node reference.
5177 			 */
5178 			if (bf->bf_m->m_flags & M_TXCB)
5179 				ieee80211_process_callback(ni, bf->bf_m, -1);
5180 			ieee80211_free_node(ni);
5181 		}
5182 		m_freem(bf->bf_m);
5183 		bf->bf_m = NULL;
5184 		bf->bf_flags &= ~ATH_BUF_BUSY;
5185 
5186 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5187 	}
5188 }
5189 
5190 static void
5191 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5192 {
5193 	struct ath_hal *ah = sc->sc_ah;
5194 
5195 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5196 	    __func__, txq->axq_qnum,
5197 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5198 	    txq->axq_link);
5199 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5200 }
5201 
5202 /*
5203  * Drain the transmit queues and reclaim resources.
5204  */
5205 static void
5206 ath_draintxq(struct ath_softc *sc)
5207 {
5208 	struct ath_hal *ah = sc->sc_ah;
5209 	struct ifnet *ifp = sc->sc_ifp;
5210 	int i;
5211 
5212 	/* XXX return value */
5213 	if (!sc->sc_invalid) {
5214 		/* don't touch the hardware if marked invalid */
5215 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5216 		    __func__, sc->sc_bhalq,
5217 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5218 		    NULL);
5219 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5220 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5221 			if (ATH_TXQ_SETUP(sc, i))
5222 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5223 	}
5224 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5225 		if (ATH_TXQ_SETUP(sc, i))
5226 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5227 #ifdef ATH_DEBUG
5228 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5229 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5230 		if (bf != NULL && bf->bf_m != NULL) {
5231 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5232 				ath_hal_txprocdesc(ah, bf->bf_desc,
5233 				    &bf->bf_status.ds_txstat) == HAL_OK);
5234 			ieee80211_dump_pkt(ifp->if_l2com,
5235 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5236 			    0, -1);
5237 		}
5238 	}
5239 #endif /* ATH_DEBUG */
5240 	ifp->if_flags &= ~IFF_OACTIVE;
5241 	sc->sc_wd_timer = 0;
5242 }
5243 
5244 /*
5245  * Disable the receive h/w in preparation for a reset.
5246  */
5247 static void
5248 ath_stoprecv(struct ath_softc *sc)
5249 {
5250 #define	PA2DESC(_sc, _pa) \
5251 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5252 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5253 	struct ath_hal *ah = sc->sc_ah;
5254 
5255 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5256 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5257 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5258 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5259 #ifdef ATH_DEBUG
5260 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5261 		struct ath_buf *bf;
5262 		u_int ix;
5263 
5264 		kprintf("%s: rx queue %p, link %p\n", __func__,
5265 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5266 		ix = 0;
5267 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5268 			struct ath_desc *ds = bf->bf_desc;
5269 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5270 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5271 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5272 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5273 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5274 			ix++;
5275 		}
5276 	}
5277 #endif
5278 	if (sc->sc_rxpending != NULL) {
5279 		m_freem(sc->sc_rxpending);
5280 		sc->sc_rxpending = NULL;
5281 	}
5282 	sc->sc_rxlink = NULL;		/* just in case */
5283 #undef PA2DESC
5284 }
5285 
5286 /*
5287  * Enable the receive h/w following a reset.
5288  */
5289 static int
5290 ath_startrecv(struct ath_softc *sc)
5291 {
5292 	struct ath_hal *ah = sc->sc_ah;
5293 	struct ath_buf *bf;
5294 
5295 	sc->sc_rxlink = NULL;
5296 	sc->sc_rxpending = NULL;
5297 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5298 		int error = ath_rxbuf_init(sc, bf);
5299 		if (error != 0) {
5300 			DPRINTF(sc, ATH_DEBUG_RECV,
5301 				"%s: ath_rxbuf_init failed %d\n",
5302 				__func__, error);
5303 			return error;
5304 		}
5305 	}
5306 
5307 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5308 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5309 	ath_hal_rxena(ah);		/* enable recv descriptors */
5310 	ath_mode_init(sc);		/* set filters, etc. */
5311 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5312 	return 0;
5313 }
5314 
5315 /*
5316  * Update internal state after a channel change.
5317  */
5318 static void
5319 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5320 {
5321 	enum ieee80211_phymode mode;
5322 
5323 	/*
5324 	 * Change channels and update the h/w rate map
5325 	 * if we're switching; e.g. 11a to 11b/g.
5326 	 */
5327 	mode = ieee80211_chan2mode(chan);
5328 	if (mode != sc->sc_curmode)
5329 		ath_setcurmode(sc, mode);
5330 	sc->sc_curchan = chan;
5331 }
5332 
5333 /*
5334  * Set/change channels.  If the channel is really being changed,
5335  * it's done by reseting the chip.  To accomplish this we must
5336  * first cleanup any pending DMA, then restart stuff after a la
5337  * ath_init.
5338  */
5339 static int
5340 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5341 {
5342 	struct ifnet *ifp = sc->sc_ifp;
5343 	struct ieee80211com *ic = ifp->if_l2com;
5344 	struct ath_hal *ah = sc->sc_ah;
5345 
5346 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5347 	    __func__, ieee80211_chan2ieee(ic, chan),
5348 	    chan->ic_freq, chan->ic_flags);
5349 	if (chan != sc->sc_curchan) {
5350 		HAL_STATUS status;
5351 		/*
5352 		 * To switch channels clear any pending DMA operations;
5353 		 * wait long enough for the RX fifo to drain, reset the
5354 		 * hardware at the new frequency, and then re-enable
5355 		 * the relevant bits of the h/w.
5356 		 */
5357 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5358 		ath_draintxq(sc);		/* clear pending tx frames */
5359 		ath_stoprecv(sc);		/* turn off frame recv */
5360 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5361 			if_printf(ifp, "%s: unable to reset "
5362 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5363 			    __func__, ieee80211_chan2ieee(ic, chan),
5364 			    chan->ic_freq, chan->ic_flags, status);
5365 			return EIO;
5366 		}
5367 		sc->sc_diversity = ath_hal_getdiversity(ah);
5368 
5369 		/*
5370 		 * Re-enable rx framework.
5371 		 */
5372 		if (ath_startrecv(sc) != 0) {
5373 			if_printf(ifp, "%s: unable to restart recv logic\n",
5374 			    __func__);
5375 			return EIO;
5376 		}
5377 
5378 		/*
5379 		 * Change channels and update the h/w rate map
5380 		 * if we're switching; e.g. 11a to 11b/g.
5381 		 */
5382 		ath_chan_change(sc, chan);
5383 
5384 		/*
5385 		 * Re-enable interrupts.
5386 		 */
5387 		ath_hal_intrset(ah, sc->sc_imask);
5388 	}
5389 	return 0;
5390 }
5391 
5392 /*
5393  * Periodically recalibrate the PHY to account
5394  * for temperature/environment changes.
5395  */
5396 static void
5397 ath_calibrate_callout(void *arg)
5398 {
5399 	struct ath_softc *sc = arg;
5400 	struct ath_hal *ah = sc->sc_ah;
5401 	struct ifnet *ifp = sc->sc_ifp;
5402 	struct ieee80211com *ic = ifp->if_l2com;
5403 	HAL_BOOL longCal, isCalDone;
5404 	int nextcal;
5405 
5406 	wlan_serialize_enter();
5407 
5408 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5409 		goto restart;
5410 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5411 	if (longCal) {
5412 		sc->sc_stats.ast_per_cal++;
5413 		sc->sc_lastlongcal = ticks;
5414 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5415 			/*
5416 			 * Rfgain is out of bounds, reset the chip
5417 			 * to load new gain values.
5418 			 */
5419 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5420 				"%s: rfgain change\n", __func__);
5421 			sc->sc_stats.ast_per_rfgain++;
5422 			ath_reset(ifp);
5423 		}
5424 		/*
5425 		 * If this long cal is after an idle period, then
5426 		 * reset the data collection state so we start fresh.
5427 		 */
5428 		if (sc->sc_resetcal) {
5429 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5430 			sc->sc_lastcalreset = ticks;
5431 			sc->sc_resetcal = 0;
5432 		}
5433 	}
5434 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5435 		if (longCal) {
5436 			/*
5437 			 * Calibrate noise floor data again in case of change.
5438 			 */
5439 			ath_hal_process_noisefloor(ah);
5440 		}
5441 	} else {
5442 		DPRINTF(sc, ATH_DEBUG_ANY,
5443 			"%s: calibration of channel %u failed\n",
5444 			__func__, sc->sc_curchan->ic_freq);
5445 		sc->sc_stats.ast_per_calfail++;
5446 	}
5447 	if (!isCalDone) {
5448 restart:
5449 		/*
5450 		 * Use a shorter interval to potentially collect multiple
5451 		 * data samples required to complete calibration.  Once
5452 		 * we're told the work is done we drop back to a longer
5453 		 * interval between requests.  We're more aggressive doing
5454 		 * work when operating as an AP to improve operation right
5455 		 * after startup.
5456 		 */
5457 		nextcal = (1000*ath_shortcalinterval)/hz;
5458 		if (sc->sc_opmode != HAL_M_HOSTAP)
5459 			nextcal *= 10;
5460 	} else {
5461 		nextcal = ath_longcalinterval*hz;
5462 		if (sc->sc_lastcalreset == 0)
5463 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5464 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5465 			sc->sc_resetcal = 1;	/* setup reset next trip */
5466 	}
5467 
5468 	if (nextcal != 0) {
5469 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5470 		    __func__, nextcal, isCalDone ? "" : "!");
5471 		callout_reset(&sc->sc_cal_ch, nextcal,
5472 			      ath_calibrate_callout, sc);
5473 	} else {
5474 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5475 		    __func__);
5476 		/* NB: don't rearm timer */
5477 	}
5478 	wlan_serialize_exit();
5479 }
5480 
5481 static void
5482 ath_scan_start(struct ieee80211com *ic)
5483 {
5484 	struct ifnet *ifp = ic->ic_ifp;
5485 	struct ath_softc *sc = ifp->if_softc;
5486 	struct ath_hal *ah = sc->sc_ah;
5487 	u_int32_t rfilt;
5488 
5489 	/* XXX calibration timer? */
5490 
5491 	sc->sc_scanning = 1;
5492 	sc->sc_syncbeacon = 0;
5493 	rfilt = ath_calcrxfilter(sc);
5494 	ath_hal_setrxfilter(ah, rfilt);
5495 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5496 
5497 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0\n",
5498 		 __func__, rfilt, ifp->if_broadcastaddr, ":");
5499 }
5500 
5501 static void
5502 ath_scan_end(struct ieee80211com *ic)
5503 {
5504 	struct ifnet *ifp = ic->ic_ifp;
5505 	struct ath_softc *sc = ifp->if_softc;
5506 	struct ath_hal *ah = sc->sc_ah;
5507 	u_int32_t rfilt;
5508 
5509 	sc->sc_scanning = 0;
5510 	rfilt = ath_calcrxfilter(sc);
5511 	ath_hal_setrxfilter(ah, rfilt);
5512 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5513 
5514 	ath_hal_process_noisefloor(ah);
5515 
5516 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0x%x\n",
5517 		 __func__, rfilt, sc->sc_curbssid, ":",
5518 		 sc->sc_curaid);
5519 }
5520 
5521 static void
5522 ath_set_channel(struct ieee80211com *ic)
5523 {
5524 	struct ifnet *ifp = ic->ic_ifp;
5525 	struct ath_softc *sc = ifp->if_softc;
5526 
5527 	(void) ath_chan_set(sc, ic->ic_curchan);
5528 	/*
5529 	 * If we are returning to our bss channel then mark state
5530 	 * so the next recv'd beacon's tsf will be used to sync the
5531 	 * beacon timers.  Note that since we only hear beacons in
5532 	 * sta/ibss mode this has no effect in other operating modes.
5533 	 */
5534 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5535 		sc->sc_syncbeacon = 1;
5536 }
5537 
5538 /*
5539  * Walk the vap list and check if there any vap's in RUN state.
5540  */
5541 static int
5542 ath_isanyrunningvaps(struct ieee80211vap *this)
5543 {
5544 	struct ieee80211com *ic = this->iv_ic;
5545 	struct ieee80211vap *vap;
5546 
5547 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5548 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5549 			return 1;
5550 	}
5551 	return 0;
5552 }
5553 
5554 static int
5555 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5556 {
5557 	struct ieee80211com *ic = vap->iv_ic;
5558 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5559 	struct ath_vap *avp = ATH_VAP(vap);
5560 	struct ath_hal *ah = sc->sc_ah;
5561 	struct ieee80211_node *ni = NULL;
5562 	int i, error, stamode;
5563 	u_int32_t rfilt;
5564 	static const HAL_LED_STATE leds[] = {
5565 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5566 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5567 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5568 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5569 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5570 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5571 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5572 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5573 	};
5574 
5575 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5576 		ieee80211_state_name[vap->iv_state],
5577 		ieee80211_state_name[nstate]);
5578 
5579 	callout_stop(&sc->sc_cal_ch);
5580 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5581 
5582 	if (nstate == IEEE80211_S_SCAN) {
5583 		/*
5584 		 * Scanning: turn off beacon miss and don't beacon.
5585 		 * Mark beacon state so when we reach RUN state we'll
5586 		 * [re]setup beacons.  Unblock the task q thread so
5587 		 * deferred interrupt processing is done.
5588 		 */
5589 		ath_hal_intrset(ah,
5590 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5591 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5592 		sc->sc_beacons = 0;
5593 		taskqueue_unblock(sc->sc_tq);
5594 	}
5595 
5596 	ni = vap->iv_bss;
5597 	rfilt = ath_calcrxfilter(sc);
5598 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5599 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5600 		   vap->iv_opmode == IEEE80211_M_IBSS);
5601 	if (stamode && nstate == IEEE80211_S_RUN) {
5602 		sc->sc_curaid = ni->ni_associd;
5603 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5604 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5605 	}
5606 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0x%x\n",
5607 	   __func__, rfilt, sc->sc_curbssid, ":", sc->sc_curaid);
5608 	ath_hal_setrxfilter(ah, rfilt);
5609 
5610 	/* XXX is this to restore keycache on resume? */
5611 	if (vap->iv_opmode != IEEE80211_M_STA &&
5612 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5613 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5614 			if (ath_hal_keyisvalid(ah, i))
5615 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5616 	}
5617 
5618 	/*
5619 	 * Invoke the parent method to do net80211 work.
5620 	 */
5621 	error = avp->av_newstate(vap, nstate, arg);
5622 	if (error != 0)
5623 		goto bad;
5624 
5625 	if (nstate == IEEE80211_S_RUN) {
5626 		/* NB: collect bss node again, it may have changed */
5627 		ni = vap->iv_bss;
5628 
5629 		DPRINTF(sc, ATH_DEBUG_STATE,
5630 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %6D "
5631 		    "capinfo 0x%04x chan %d\n", __func__,
5632 		    vap->iv_flags, ni->ni_intval, ni->ni_bssid, ":",
5633 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5634 
5635 		switch (vap->iv_opmode) {
5636 #ifdef IEEE80211_SUPPORT_TDMA
5637 		case IEEE80211_M_AHDEMO:
5638 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5639 				break;
5640 			/* fall thru... */
5641 #endif
5642 		case IEEE80211_M_HOSTAP:
5643 		case IEEE80211_M_IBSS:
5644 		case IEEE80211_M_MBSS:
5645 			/*
5646 			 * Allocate and setup the beacon frame.
5647 			 *
5648 			 * Stop any previous beacon DMA.  This may be
5649 			 * necessary, for example, when an ibss merge
5650 			 * causes reconfiguration; there will be a state
5651 			 * transition from RUN->RUN that means we may
5652 			 * be called with beacon transmission active.
5653 			 */
5654 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5655 
5656 			error = ath_beacon_alloc(sc, ni);
5657 			if (error != 0)
5658 				goto bad;
5659 			/*
5660 			 * If joining an adhoc network defer beacon timer
5661 			 * configuration to the next beacon frame so we
5662 			 * have a current TSF to use.  Otherwise we're
5663 			 * starting an ibss/bss so there's no need to delay;
5664 			 * if this is the first vap moving to RUN state, then
5665 			 * beacon state needs to be [re]configured.
5666 			 */
5667 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5668 			    ni->ni_tstamp.tsf != 0) {
5669 				sc->sc_syncbeacon = 1;
5670 			} else if (!sc->sc_beacons) {
5671 #ifdef IEEE80211_SUPPORT_TDMA
5672 				if (vap->iv_caps & IEEE80211_C_TDMA)
5673 					ath_tdma_config(sc, vap);
5674 				else
5675 #endif
5676 					ath_beacon_config(sc, vap);
5677 				sc->sc_beacons = 1;
5678 			}
5679 			break;
5680 		case IEEE80211_M_STA:
5681 			/*
5682 			 * Defer beacon timer configuration to the next
5683 			 * beacon frame so we have a current TSF to use
5684 			 * (any TSF collected when scanning is likely old).
5685 			 */
5686 			sc->sc_syncbeacon = 1;
5687 			break;
5688 		case IEEE80211_M_MONITOR:
5689 			/*
5690 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5691 			 * transitions so we must re-enable interrupts here to
5692 			 * handle the case of a single monitor mode vap.
5693 			 */
5694 			ath_hal_intrset(ah, sc->sc_imask);
5695 			break;
5696 		case IEEE80211_M_WDS:
5697 			break;
5698 		default:
5699 			break;
5700 		}
5701 		/*
5702 		 * Let the hal process statistics collected during a
5703 		 * scan so it can provide calibrated noise floor data.
5704 		 */
5705 		ath_hal_process_noisefloor(ah);
5706 		/*
5707 		 * Reset rssi stats; maybe not the best place...
5708 		 */
5709 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5710 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5711 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5712 		/*
5713 		 * Finally, start any timers and the task q thread
5714 		 * (in case we didn't go through SCAN state).
5715 		 */
5716 		if (ath_longcalinterval != 0) {
5717 			/* start periodic recalibration timer */
5718 			callout_reset(&sc->sc_cal_ch, 1,
5719 				      ath_calibrate_callout, sc);
5720 		} else {
5721 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5722 			    "%s: calibration disabled\n", __func__);
5723 		}
5724 		taskqueue_unblock(sc->sc_tq);
5725 	} else if (nstate == IEEE80211_S_INIT) {
5726 		/*
5727 		 * If there are no vaps left in RUN state then
5728 		 * shutdown host/driver operation:
5729 		 * o disable interrupts
5730 		 * o disable the task queue thread
5731 		 * o mark beacon processing as stopped
5732 		 */
5733 		if (!ath_isanyrunningvaps(vap)) {
5734 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5735 			/* disable interrupts  */
5736 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5737 			taskqueue_block(sc->sc_tq);
5738 			sc->sc_beacons = 0;
5739 		}
5740 #ifdef IEEE80211_SUPPORT_TDMA
5741 		ath_hal_setcca(ah, AH_TRUE);
5742 #endif
5743 	}
5744 bad:
5745 	return error;
5746 }
5747 
5748 /*
5749  * Allocate a key cache slot to the station so we can
5750  * setup a mapping from key index to node. The key cache
5751  * slot is needed for managing antenna state and for
5752  * compression when stations do not use crypto.  We do
5753  * it uniliaterally here; if crypto is employed this slot
5754  * will be reassigned.
5755  */
5756 static void
5757 ath_setup_stationkey(struct ieee80211_node *ni)
5758 {
5759 	struct ieee80211vap *vap = ni->ni_vap;
5760 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5761 	ieee80211_keyix keyix, rxkeyix;
5762 
5763 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5764 		/*
5765 		 * Key cache is full; we'll fall back to doing
5766 		 * the more expensive lookup in software.  Note
5767 		 * this also means no h/w compression.
5768 		 */
5769 		/* XXX msg+statistic */
5770 	} else {
5771 		/* XXX locking? */
5772 		ni->ni_ucastkey.wk_keyix = keyix;
5773 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5774 		/* NB: must mark device key to get called back on delete */
5775 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5776 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5777 		/* NB: this will create a pass-thru key entry */
5778 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5779 	}
5780 }
5781 
5782 /*
5783  * Setup driver-specific state for a newly associated node.
5784  * Note that we're called also on a re-associate, the isnew
5785  * param tells us if this is the first time or not.
5786  */
5787 static void
5788 ath_newassoc(struct ieee80211_node *ni, int isnew)
5789 {
5790 	struct ath_node *an = ATH_NODE(ni);
5791 	struct ieee80211vap *vap = ni->ni_vap;
5792 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5793 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5794 
5795 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5796 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5797 
5798 	ath_rate_newassoc(sc, an, isnew);
5799 	if (isnew &&
5800 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5801 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5802 		ath_setup_stationkey(ni);
5803 }
5804 
5805 static int
5806 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5807 	int nchans, struct ieee80211_channel chans[])
5808 {
5809 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5810 	struct ath_hal *ah = sc->sc_ah;
5811 	HAL_STATUS status;
5812 
5813 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5814 	    "%s: rd %u cc %u location %c%s\n",
5815 	    __func__, reg->regdomain, reg->country, reg->location,
5816 	    reg->ecm ? " ecm" : "");
5817 
5818 	status = ath_hal_set_channels(ah, chans, nchans,
5819 	    reg->country, reg->regdomain);
5820 	if (status != HAL_OK) {
5821 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5822 		    __func__, status);
5823 		return EINVAL;		/* XXX */
5824 	}
5825 	return 0;
5826 }
5827 
5828 static void
5829 ath_getradiocaps(struct ieee80211com *ic,
5830 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5831 {
5832 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5833 	struct ath_hal *ah = sc->sc_ah;
5834 
5835 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5836 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5837 
5838 	/* XXX check return */
5839 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5840 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5841 
5842 }
5843 
5844 static int
5845 ath_getchannels(struct ath_softc *sc)
5846 {
5847 	struct ifnet *ifp = sc->sc_ifp;
5848 	struct ieee80211com *ic = ifp->if_l2com;
5849 	struct ath_hal *ah = sc->sc_ah;
5850 	HAL_STATUS status;
5851 
5852 	/*
5853 	 * Collect channel set based on EEPROM contents.
5854 	 */
5855 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5856 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5857 	if (status != HAL_OK) {
5858 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5859 		    "status %d\n", __func__, status);
5860 		return EINVAL;
5861 	}
5862 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5863 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5864 	/* XXX map Atheros sku's to net80211 SKU's */
5865 	/* XXX net80211 types too small */
5866 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5867 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5868 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5869 	ic->ic_regdomain.isocc[1] = ' ';
5870 
5871 	ic->ic_regdomain.ecm = 1;
5872 	ic->ic_regdomain.location = 'I';
5873 
5874 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5875 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5876 	    __func__, sc->sc_eerd, sc->sc_eecc,
5877 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5878 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5879 	return 0;
5880 }
5881 
5882 static void
5883 ath_led_done_callout(void *arg)
5884 {
5885 	struct ath_softc *sc = arg;
5886 
5887 	wlan_serialize_enter();
5888 	sc->sc_blinking = 0;
5889 	wlan_serialize_exit();
5890 }
5891 
5892 /*
5893  * Turn the LED off: flip the pin and then set a timer so no
5894  * update will happen for the specified duration.
5895  */
5896 static void
5897 ath_led_off_callout(void *arg)
5898 {
5899 	struct ath_softc *sc = arg;
5900 
5901 	wlan_serialize_enter();
5902 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5903 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff,
5904 			ath_led_done_callout, sc);
5905 	wlan_serialize_exit();
5906 }
5907 
5908 /*
5909  * Blink the LED according to the specified on/off times.
5910  */
5911 static void
5912 ath_led_blink(struct ath_softc *sc, int on, int off)
5913 {
5914 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5915 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5916 	sc->sc_blinking = 1;
5917 	sc->sc_ledoff = off;
5918 	callout_reset(&sc->sc_ledtimer, on, ath_led_off_callout, sc);
5919 }
5920 
5921 static void
5922 ath_led_event(struct ath_softc *sc, int rix)
5923 {
5924 	sc->sc_ledevent = ticks;	/* time of last event */
5925 	if (sc->sc_blinking)		/* don't interrupt active blink */
5926 		return;
5927 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5928 }
5929 
5930 static int
5931 ath_rate_setup(struct ath_softc *sc, u_int mode)
5932 {
5933 	struct ath_hal *ah = sc->sc_ah;
5934 	const HAL_RATE_TABLE *rt;
5935 
5936 	switch (mode) {
5937 	case IEEE80211_MODE_11A:
5938 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5939 		break;
5940 	case IEEE80211_MODE_HALF:
5941 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5942 		break;
5943 	case IEEE80211_MODE_QUARTER:
5944 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5945 		break;
5946 	case IEEE80211_MODE_11B:
5947 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5948 		break;
5949 	case IEEE80211_MODE_11G:
5950 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5951 		break;
5952 	case IEEE80211_MODE_TURBO_A:
5953 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5954 		break;
5955 	case IEEE80211_MODE_TURBO_G:
5956 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5957 		break;
5958 	case IEEE80211_MODE_STURBO_A:
5959 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5960 		break;
5961 	case IEEE80211_MODE_11NA:
5962 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5963 		break;
5964 	case IEEE80211_MODE_11NG:
5965 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5966 		break;
5967 	default:
5968 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5969 			__func__, mode);
5970 		return 0;
5971 	}
5972 	sc->sc_rates[mode] = rt;
5973 	return (rt != NULL);
5974 }
5975 
5976 static void
5977 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5978 {
5979 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5980 	static const struct {
5981 		u_int		rate;		/* tx/rx 802.11 rate */
5982 		u_int16_t	timeOn;		/* LED on time (ms) */
5983 		u_int16_t	timeOff;	/* LED off time (ms) */
5984 	} blinkrates[] = {
5985 		{ 108,  40,  10 },
5986 		{  96,  44,  11 },
5987 		{  72,  50,  13 },
5988 		{  48,  57,  14 },
5989 		{  36,  67,  16 },
5990 		{  24,  80,  20 },
5991 		{  22, 100,  25 },
5992 		{  18, 133,  34 },
5993 		{  12, 160,  40 },
5994 		{  10, 200,  50 },
5995 		{   6, 240,  58 },
5996 		{   4, 267,  66 },
5997 		{   2, 400, 100 },
5998 		{   0, 500, 130 },
5999 		/* XXX half/quarter rates */
6000 	};
6001 	const HAL_RATE_TABLE *rt;
6002 	int i, j;
6003 
6004 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6005 	rt = sc->sc_rates[mode];
6006 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6007 	for (i = 0; i < rt->rateCount; i++) {
6008 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6009 		if (rt->info[i].phy != IEEE80211_T_HT)
6010 			sc->sc_rixmap[ieeerate] = i;
6011 		else
6012 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6013 	}
6014 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6015 	for (i = 0; i < NELEM(sc->sc_hwmap); i++) {
6016 		if (i >= rt->rateCount) {
6017 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6018 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6019 			continue;
6020 		}
6021 		sc->sc_hwmap[i].ieeerate =
6022 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6023 		if (rt->info[i].phy == IEEE80211_T_HT)
6024 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6025 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6026 		if (rt->info[i].shortPreamble ||
6027 		    rt->info[i].phy == IEEE80211_T_OFDM)
6028 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6029 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6030 		for (j = 0; j < NELEM(blinkrates)-1; j++)
6031 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6032 				break;
6033 		/* NB: this uses the last entry if the rate isn't found */
6034 		/* XXX beware of overlow */
6035 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6036 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6037 	}
6038 	sc->sc_currates = rt;
6039 	sc->sc_curmode = mode;
6040 	/*
6041 	 * All protection frames are transmited at 2Mb/s for
6042 	 * 11g, otherwise at 1Mb/s.
6043 	 */
6044 	if (mode == IEEE80211_MODE_11G)
6045 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6046 	else
6047 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6048 	/* NB: caller is responsible for reseting rate control state */
6049 }
6050 
6051 #ifdef ATH_DEBUG
6052 static void
6053 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6054 	u_int ix, int done)
6055 {
6056 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6057 	struct ath_hal *ah = sc->sc_ah;
6058 	const struct ath_desc *ds;
6059 	int i;
6060 
6061 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6062 		kprintf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6063 		       "      %08x %08x %08x %08x\n",
6064 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6065 		    ds->ds_link, ds->ds_data,
6066 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6067 		    ds->ds_ctl0, ds->ds_ctl1,
6068 		    ds->ds_hw[0], ds->ds_hw[1]);
6069 		if (ah->ah_magic == 0x20065416) {
6070 			kprintf("        %08x %08x %08x %08x %08x %08x %08x\n",
6071 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6072 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6073 			    ds->ds_hw[8]);
6074 		}
6075 	}
6076 }
6077 
6078 static void
6079 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6080 	u_int qnum, u_int ix, int done)
6081 {
6082 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6083 	struct ath_hal *ah = sc->sc_ah;
6084 	const struct ath_desc *ds;
6085 	int i;
6086 
6087 	kprintf("Q%u[%3u]", qnum, ix);
6088 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6089 		kprintf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6090 		       "        %08x %08x %08x %08x %08x %08x\n",
6091 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6092 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6093 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6094 		    ds->ds_ctl0, ds->ds_ctl1,
6095 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6096 		if (ah->ah_magic == 0x20065416) {
6097 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6098 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6099 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6100 			    ds->ds_hw[10],ds->ds_hw[11]);
6101 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6102 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6103 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6104 			    ds->ds_hw[18], ds->ds_hw[19]);
6105 		}
6106 	}
6107 }
6108 #endif /* ATH_DEBUG */
6109 
6110 static void
6111 ath_watchdog_callout(void *arg)
6112 {
6113 	struct ath_softc *sc = arg;
6114 
6115 	wlan_serialize_enter();
6116 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6117 		struct ifnet *ifp = sc->sc_ifp;
6118 		uint32_t hangs;
6119 
6120 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6121 		    hangs != 0) {
6122 			if_printf(ifp, "%s hang detected (0x%x)\n",
6123 			    hangs & 0xff ? "bb" : "mac", hangs);
6124 		} else
6125 			if_printf(ifp, "device timeout\n");
6126 		ath_reset(ifp);
6127 		ifp->if_oerrors++;
6128 		sc->sc_stats.ast_watchdog++;
6129 	}
6130 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
6131 	wlan_serialize_exit();
6132 }
6133 
6134 #ifdef ATH_DIAGAPI
6135 /*
6136  * Diagnostic interface to the HAL.  This is used by various
6137  * tools to do things like retrieve register contents for
6138  * debugging.  The mechanism is intentionally opaque so that
6139  * it can change frequently w/o concern for compatiblity.
6140  */
6141 static int
6142 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6143 {
6144 	struct ath_hal *ah = sc->sc_ah;
6145 	u_int id = ad->ad_id & ATH_DIAG_ID;
6146 	void *indata = NULL;
6147 	void *outdata = NULL;
6148 	u_int32_t insize = ad->ad_in_size;
6149 	u_int32_t outsize = ad->ad_out_size;
6150 	int error = 0;
6151 
6152 	if (ad->ad_id & ATH_DIAG_IN) {
6153 		/*
6154 		 * Copy in data.
6155 		 */
6156 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6157 		if (indata == NULL) {
6158 			error = ENOMEM;
6159 			goto bad;
6160 		}
6161 		error = copyin(ad->ad_in_data, indata, insize);
6162 		if (error)
6163 			goto bad;
6164 	}
6165 	if (ad->ad_id & ATH_DIAG_DYN) {
6166 		/*
6167 		 * Allocate a buffer for the results (otherwise the HAL
6168 		 * returns a pointer to a buffer where we can read the
6169 		 * results).  Note that we depend on the HAL leaving this
6170 		 * pointer for us to use below in reclaiming the buffer;
6171 		 * may want to be more defensive.
6172 		 */
6173 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6174 		if (outdata == NULL) {
6175 			error = ENOMEM;
6176 			goto bad;
6177 		}
6178 	}
6179 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6180 		if (outsize < ad->ad_out_size)
6181 			ad->ad_out_size = outsize;
6182 		if (outdata != NULL)
6183 			error = copyout(outdata, ad->ad_out_data,
6184 					ad->ad_out_size);
6185 	} else {
6186 		error = EINVAL;
6187 	}
6188 bad:
6189 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6190 		kfree(indata, M_TEMP);
6191 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6192 		kfree(outdata, M_TEMP);
6193 	return error;
6194 }
6195 #endif /* ATH_DIAGAPI */
6196 
6197 static int
6198 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
6199 {
6200 #define	IS_RUNNING(ifp) \
6201 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6202 	struct ath_softc *sc = ifp->if_softc;
6203 	struct ieee80211com *ic = ifp->if_l2com;
6204 	struct ifreq *ifr = (struct ifreq *)data;
6205 	const HAL_RATE_TABLE *rt;
6206 	int error = 0;
6207 
6208 	switch (cmd) {
6209 	case SIOCSIFFLAGS:
6210 		if (IS_RUNNING(ifp)) {
6211 			/*
6212 			 * To avoid rescanning another access point,
6213 			 * do not call ath_init() here.  Instead,
6214 			 * only reflect promisc mode settings.
6215 			 */
6216 			ath_mode_init(sc);
6217 		} else if (ifp->if_flags & IFF_UP) {
6218 			/*
6219 			 * Beware of being called during attach/detach
6220 			 * to reset promiscuous mode.  In that case we
6221 			 * will still be marked UP but not RUNNING.
6222 			 * However trying to re-init the interface
6223 			 * is the wrong thing to do as we've already
6224 			 * torn down much of our state.  There's
6225 			 * probably a better way to deal with this.
6226 			 */
6227 			if (!sc->sc_invalid)
6228 				ath_init(sc);	/* XXX lose error */
6229 		} else {
6230 			ath_stop_locked(ifp);
6231 #ifdef notyet
6232 			/* XXX must wakeup in places like ath_vap_delete */
6233 			if (!sc->sc_invalid)
6234 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6235 #endif
6236 		}
6237 		break;
6238 	case SIOCGIFMEDIA:
6239 	case SIOCSIFMEDIA:
6240 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6241 		break;
6242 	case SIOCGATHSTATS:
6243 		/* NB: embed these numbers to get a consistent view */
6244 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6245 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6246 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6247 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6248 #ifdef IEEE80211_SUPPORT_TDMA
6249 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6250 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6251 #endif
6252 		rt = sc->sc_currates;
6253 		/* XXX HT rates */
6254 		sc->sc_stats.ast_tx_rate =
6255 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6256 		return copyout(&sc->sc_stats,
6257 		    ifr->ifr_data, sizeof (sc->sc_stats));
6258 	case SIOCZATHSTATS:
6259 		error = priv_check(curthread, PRIV_DRIVER);
6260 		if (error == 0)
6261 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6262 		break;
6263 #ifdef ATH_DIAGAPI
6264 	case SIOCGATHDIAG:
6265 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6266 		break;
6267 #endif
6268 	case SIOCGIFADDR:
6269 		error = ether_ioctl(ifp, cmd, data);
6270 		break;
6271 	default:
6272 		error = EINVAL;
6273 		break;
6274 	}
6275 	return error;
6276 #undef IS_RUNNING
6277 }
6278 
6279 static int
6280 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6281 {
6282 	struct ath_softc *sc = arg1;
6283 	u_int slottime;
6284 	int error;
6285 
6286 	wlan_serialize_enter();
6287 	slottime = ath_hal_getslottime(sc->sc_ah);
6288 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6289 	if (error == 0 && req->newptr) {
6290 		if (!ath_hal_setslottime(sc->sc_ah, slottime))
6291 			error = EINVAL;
6292 	}
6293 	wlan_serialize_exit();
6294 	return error;
6295 }
6296 
6297 static int
6298 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6299 {
6300 	struct ath_softc *sc = arg1;
6301 	u_int acktimeout;
6302 	int error;
6303 
6304 	wlan_serialize_enter();
6305 	acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6306 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6307 	if (error == 0 && req->newptr) {
6308 		if (!ath_hal_setacktimeout(sc->sc_ah, acktimeout))
6309 			error = EINVAL;
6310 	}
6311 	wlan_serialize_exit();
6312 	return error;
6313 }
6314 
6315 static int
6316 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6317 {
6318 	struct ath_softc *sc = arg1;
6319 	u_int ctstimeout;
6320 	int error;
6321 
6322 	wlan_serialize_enter();
6323 	ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6324 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6325 	if (error == 0 && req->newptr) {
6326 		if (!ath_hal_setctstimeout(sc->sc_ah, ctstimeout))
6327 			error = EINVAL;
6328 	}
6329 	wlan_serialize_exit();
6330 	return error;
6331 }
6332 
6333 static int
6334 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6335 {
6336 	struct ath_softc *sc = arg1;
6337 	int softled = sc->sc_softled;
6338 	int error;
6339 
6340 	error = sysctl_handle_int(oidp, &softled, 0, req);
6341 	if (error || !req->newptr)
6342 		return error;
6343 	wlan_serialize_enter();
6344 	softled = (softled != 0);
6345 	if (softled != sc->sc_softled) {
6346 		if (softled) {
6347 			/* NB: handle any sc_ledpin change */
6348 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6349 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6350 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6351 				!sc->sc_ledon);
6352 		}
6353 		sc->sc_softled = softled;
6354 	}
6355 	wlan_serialize_exit();
6356 	return 0;
6357 }
6358 
6359 static int
6360 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6361 {
6362 	struct ath_softc *sc = arg1;
6363 	int ledpin = sc->sc_ledpin;
6364 	int error;
6365 
6366 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6367 	if (error || !req->newptr)
6368 		return error;
6369 	wlan_serialize_enter();
6370 	if (ledpin != sc->sc_ledpin) {
6371 		sc->sc_ledpin = ledpin;
6372 		if (sc->sc_softled) {
6373 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6374 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6375 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6376 				!sc->sc_ledon);
6377 		}
6378 	}
6379 	wlan_serialize_exit();
6380 	return 0;
6381 }
6382 
6383 static int
6384 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6385 {
6386 	struct ath_softc *sc = arg1;
6387 	u_int txantenna;
6388 	int error;
6389 
6390 	wlan_serialize_enter();
6391 	txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6392 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6393 
6394 	if (!error && req->newptr) {
6395 		/* XXX assumes 2 antenna ports */
6396 		if (txantenna < HAL_ANT_VARIABLE ||
6397 		    txantenna > HAL_ANT_FIXED_B) {
6398 			error = EINVAL;
6399 		} else {
6400 			ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6401 			/*
6402 			 * NB: with the switch locked this isn't meaningful,
6403 			 *     but set it anyway so things like radiotap get
6404 			 *     consistent info in their data.
6405 			 */
6406 			sc->sc_txantenna = txantenna;
6407 		}
6408 	}
6409 	wlan_serialize_exit();
6410 	return error;
6411 }
6412 
6413 static int
6414 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6415 {
6416 	struct ath_softc *sc = arg1;
6417 	u_int defantenna;
6418 	int error;
6419 
6420 	wlan_serialize_enter();
6421 	defantenna = ath_hal_getdefantenna(sc->sc_ah);
6422 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6423 	if (error == 0 && req->newptr)
6424 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6425 	wlan_serialize_exit();
6426 	return error;
6427 }
6428 
6429 static int
6430 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6431 {
6432 	struct ath_softc *sc = arg1;
6433 	u_int diversity;
6434 	int error;
6435 
6436 	wlan_serialize_enter();
6437 	diversity = ath_hal_getdiversity(sc->sc_ah);
6438 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6439 	if (error == 0 && req->newptr) {
6440 		if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6441 			error = EINVAL;
6442 		else
6443 			sc->sc_diversity = diversity;
6444 	}
6445 	wlan_serialize_exit();
6446 	return error;
6447 }
6448 
6449 static int
6450 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6451 {
6452 	struct ath_softc *sc = arg1;
6453 	u_int32_t diag;
6454 	int error;
6455 
6456 	wlan_serialize_enter();
6457 	if (!ath_hal_getdiag(sc->sc_ah, &diag)) {
6458 		error = EINVAL;
6459 	} else {
6460 		error = sysctl_handle_int(oidp, &diag, 0, req);
6461 		if (error == 0 && req->newptr) {
6462 			if (!ath_hal_setdiag(sc->sc_ah, diag))
6463 				error = EINVAL;
6464 		}
6465 	}
6466 	wlan_serialize_exit();
6467 	return error;
6468 }
6469 
6470 static int
6471 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6472 {
6473 	struct ath_softc *sc = arg1;
6474 	struct ifnet *ifp = sc->sc_ifp;
6475 	u_int32_t scale;
6476 	int error;
6477 
6478 	wlan_serialize_enter();
6479 	(void)ath_hal_gettpscale(sc->sc_ah, &scale);
6480 	error = sysctl_handle_int(oidp, &scale, 0, req);
6481 	if (error == 0 && req->newptr) {
6482 		if (!ath_hal_settpscale(sc->sc_ah, scale))
6483 			error = EINVAL;
6484 		else if (ifp->if_flags & IFF_RUNNING)
6485 			error = ath_reset(ifp);
6486 	}
6487 	wlan_serialize_exit();
6488 	return error;
6489 }
6490 
6491 static int
6492 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6493 {
6494 	struct ath_softc *sc = arg1;
6495 	u_int tpc;
6496 	int error;
6497 
6498 	wlan_serialize_enter();
6499 	tpc = ath_hal_gettpc(sc->sc_ah);
6500 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6501 	if (error == 0 && req->newptr) {
6502 		if (!ath_hal_settpc(sc->sc_ah, tpc))
6503 			error = EINVAL;
6504 	}
6505 	wlan_serialize_exit();
6506 	return error;
6507 }
6508 
6509 static int
6510 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6511 {
6512 	struct ath_softc *sc = arg1;
6513 	struct ifnet *ifp;
6514 	struct ath_hal *ah;
6515 	u_int rfkill;
6516 	int error;
6517 
6518 	wlan_serialize_enter();
6519 	ifp = sc->sc_ifp;
6520 	ah = sc->sc_ah;
6521 	rfkill = ath_hal_getrfkill(ah);
6522 
6523 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6524 	if (error == 0 && req->newptr) {
6525 		if (rfkill != ath_hal_getrfkill(ah)) {
6526 			if (!ath_hal_setrfkill(ah, rfkill))
6527 				error = EINVAL;
6528 			else if (ifp->if_flags & IFF_RUNNING)
6529 				error = ath_reset(ifp);
6530 		}
6531 	}
6532 	wlan_serialize_exit();
6533 	return error;
6534 }
6535 
6536 static int
6537 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6538 {
6539 	struct ath_softc *sc = arg1;
6540 	u_int rfsilent;
6541 	int error;
6542 
6543 	wlan_serialize_enter();
6544 	(void)ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6545 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6546 	if (error == 0 && req->newptr) {
6547 		if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) {
6548 			error = EINVAL;
6549 		} else {
6550 			sc->sc_rfsilentpin = rfsilent & 0x1c;
6551 			sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6552 		}
6553 	}
6554 	wlan_serialize_exit();
6555 	return error;
6556 }
6557 
6558 static int
6559 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6560 {
6561 	struct ath_softc *sc = arg1;
6562 	u_int32_t tpack;
6563 	int error;
6564 
6565 	wlan_serialize_enter();
6566 	(void)ath_hal_gettpack(sc->sc_ah, &tpack);
6567 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6568 	if (error == 0 && req->newptr) {
6569 		if (!ath_hal_settpack(sc->sc_ah, tpack))
6570 			error = EINVAL;
6571 	}
6572 	wlan_serialize_exit();
6573 	return error;
6574 }
6575 
6576 static int
6577 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6578 {
6579 	struct ath_softc *sc = arg1;
6580 	u_int32_t tpcts;
6581 	int error;
6582 
6583 	wlan_serialize_enter();
6584 	(void)ath_hal_gettpcts(sc->sc_ah, &tpcts);
6585 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6586 	if (error == 0 && req->newptr) {
6587 		if (!ath_hal_settpcts(sc->sc_ah, tpcts))
6588 			error = EINVAL;
6589 	}
6590 	wlan_serialize_exit();
6591 	return error;
6592 }
6593 
6594 static int
6595 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6596 {
6597 	struct ath_softc *sc = arg1;
6598 	int intmit, error;
6599 
6600 	wlan_serialize_enter();
6601 	intmit = ath_hal_getintmit(sc->sc_ah);
6602 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6603 	if (error == 0 && req->newptr) {
6604 		if (!ath_hal_setintmit(sc->sc_ah, intmit))
6605 			error = EINVAL;
6606 	}
6607 	wlan_serialize_exit();
6608 	return error;
6609 }
6610 
6611 #ifdef IEEE80211_SUPPORT_TDMA
6612 static int
6613 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6614 {
6615 	struct ath_softc *sc = arg1;
6616 	int setcca, error;
6617 
6618 	wlan_serialize_enter();
6619 	setcca = sc->sc_setcca;
6620 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6621 	if (error == 0 && req->newptr)
6622 		sc->sc_setcca = (setcca != 0);
6623 	wlan_serialize_exit();
6624 	return error;
6625 }
6626 #endif /* IEEE80211_SUPPORT_TDMA */
6627 
6628 static void
6629 ath_sysctlattach(struct ath_softc *sc)
6630 {
6631 	struct sysctl_ctx_list *ctx;
6632 	struct sysctl_oid *tree;
6633 	struct ath_hal *ah = sc->sc_ah;
6634 
6635 	ctx = &sc->sc_sysctl_ctx;
6636 	tree = sc->sc_sysctl_tree;
6637         if (tree == NULL) {
6638 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6639 		return;
6640 	}
6641 
6642 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6643 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6644 		"EEPROM country code");
6645 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6646 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6647 		"EEPROM regdomain code");
6648 #ifdef	ATH_DEBUG
6649 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6650 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6651 		"control debugging printfs");
6652 #endif
6653 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6654 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6655 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6656 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6657 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6658 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6659 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6660 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6661 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6662 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6663 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6664 		ath_sysctl_softled, "I", "enable/disable software LED support");
6665 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6666 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6667 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6668 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6669 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6670 		"setting to turn LED on");
6671 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6672 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6673 		"idle time for inactivity LED (ticks)");
6674 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6675 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6676 		ath_sysctl_txantenna, "I", "antenna switch");
6677 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6678 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6679 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6680 	if (ath_hal_hasdiversity(ah))
6681 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6682 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6683 			ath_sysctl_diversity, "I", "antenna diversity");
6684 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6685 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6686 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6687 		"tx descriptor batching");
6688 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6689 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6690 		ath_sysctl_diag, "I", "h/w diagnostic control");
6691 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6692 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6693 		ath_sysctl_tpscale, "I", "tx power scaling");
6694 	if (ath_hal_hastpc(ah)) {
6695 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6696 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6697 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6698 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6699 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6700 			ath_sysctl_tpack, "I", "tx power for ack frames");
6701 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6702 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6703 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6704 	}
6705 	if (ath_hal_hasrfsilent(ah)) {
6706 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6707 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6708 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6709 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6710 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6711 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6712 	}
6713 	if (ath_hal_hasintmit(ah)) {
6714 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6715 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6716 			ath_sysctl_intmit, "I", "interference mitigation");
6717 	}
6718 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6719 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6720 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6721 		"mask of error frames to pass when monitoring");
6722 #ifdef IEEE80211_SUPPORT_TDMA
6723 	if (ath_hal_macversion(ah) > 0x78) {
6724 		sc->sc_tdmadbaprep = 2;
6725 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6726 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6727 			"TDMA DBA preparation time");
6728 		sc->sc_tdmaswbaprep = 10;
6729 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6730 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6731 			"TDMA SWBA preparation time");
6732 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6733 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6734 			"TDMA slot guard time");
6735 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6736 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6737 			"TDMA calculated super frame");
6738 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6739 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6740 			ath_sysctl_setcca, "I", "enable CCA control");
6741 	}
6742 #endif
6743 }
6744 
6745 static int
6746 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6747 	struct ath_buf *bf, struct mbuf *m0,
6748 	const struct ieee80211_bpf_params *params)
6749 {
6750 	struct ifnet *ifp = sc->sc_ifp;
6751 	struct ieee80211com *ic = ifp->if_l2com;
6752 	struct ath_hal *ah = sc->sc_ah;
6753 	struct ieee80211vap *vap = ni->ni_vap;
6754 	int error, ismcast, ismrr;
6755 	int keyix, hdrlen, pktlen, try0, txantenna;
6756 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6757 	struct ieee80211_frame *wh;
6758 	u_int flags, ctsduration;
6759 	HAL_PKT_TYPE atype;
6760 	const HAL_RATE_TABLE *rt;
6761 	struct ath_desc *ds;
6762 	u_int pri;
6763 
6764 	wh = mtod(m0, struct ieee80211_frame *);
6765 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6766 	hdrlen = ieee80211_anyhdrsize(wh);
6767 	/*
6768 	 * Packet length must not include any
6769 	 * pad bytes; deduct them here.
6770 	 */
6771 	/* XXX honor IEEE80211_BPF_DATAPAD */
6772 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6773 
6774 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6775 		const struct ieee80211_cipher *cip;
6776 		struct ieee80211_key *k;
6777 
6778 		/*
6779 		 * Construct the 802.11 header+trailer for an encrypted
6780 		 * frame. The only reason this can fail is because of an
6781 		 * unknown or unsupported cipher/key type.
6782 		 */
6783 		k = ieee80211_crypto_encap(ni, m0);
6784 		if (k == NULL) {
6785 			/*
6786 			 * This can happen when the key is yanked after the
6787 			 * frame was queued.  Just discard the frame; the
6788 			 * 802.11 layer counts failures and provides
6789 			 * debugging/diagnostics.
6790 			 */
6791 			ath_freetx(m0);
6792 			return EIO;
6793 		}
6794 		/*
6795 		 * Adjust the packet + header lengths for the crypto
6796 		 * additions and calculate the h/w key index.  When
6797 		 * a s/w mic is done the frame will have had any mic
6798 		 * added to it prior to entry so m0->m_pkthdr.len will
6799 		 * account for it. Otherwise we need to add it to the
6800 		 * packet length.
6801 		 */
6802 		cip = k->wk_cipher;
6803 		hdrlen += cip->ic_header;
6804 		pktlen += cip->ic_header + cip->ic_trailer;
6805 		/* NB: frags always have any TKIP MIC done in s/w */
6806 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6807 			pktlen += cip->ic_miclen;
6808 		keyix = k->wk_keyix;
6809 
6810 		/* packet header may have moved, reset our local pointer */
6811 		wh = mtod(m0, struct ieee80211_frame *);
6812 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6813 		/*
6814 		 * Use station key cache slot, if assigned.
6815 		 */
6816 		keyix = ni->ni_ucastkey.wk_keyix;
6817 		if (keyix == IEEE80211_KEYIX_NONE)
6818 			keyix = HAL_TXKEYIX_INVALID;
6819 	} else
6820 		keyix = HAL_TXKEYIX_INVALID;
6821 
6822 	error = ath_tx_dmasetup(sc, bf, m0);
6823 	if (error != 0)
6824 		return error;
6825 	m0 = bf->bf_m;				/* NB: may have changed */
6826 	wh = mtod(m0, struct ieee80211_frame *);
6827 	bf->bf_node = ni;			/* NB: held reference */
6828 
6829 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6830 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6831 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6832 		flags |= HAL_TXDESC_RTSENA;
6833 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6834 		flags |= HAL_TXDESC_CTSENA;
6835 	/* XXX leave ismcast to injector? */
6836 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6837 		flags |= HAL_TXDESC_NOACK;
6838 
6839 	rt = sc->sc_currates;
6840 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6841 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6842 	txrate = rt->info[rix].rateCode;
6843 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6844 		txrate |= rt->info[rix].shortPreamble;
6845 	sc->sc_txrix = rix;
6846 	try0 = params->ibp_try0;
6847 	ismrr = (params->ibp_try1 != 0);
6848 	txantenna = params->ibp_pri >> 2;
6849 	if (txantenna == 0)			/* XXX? */
6850 		txantenna = sc->sc_txantenna;
6851 	ctsduration = 0;
6852 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6853 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6854 		ctsrate = rt->info[cix].rateCode;
6855 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6856 			ctsrate |= rt->info[cix].shortPreamble;
6857 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6858 				ctsduration += rt->info[cix].spAckDuration;
6859 			ctsduration += ath_hal_computetxtime(ah,
6860 				rt, pktlen, rix, AH_TRUE);
6861 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6862 				ctsduration += rt->info[rix].spAckDuration;
6863 		} else {
6864 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6865 				ctsduration += rt->info[cix].lpAckDuration;
6866 			ctsduration += ath_hal_computetxtime(ah,
6867 				rt, pktlen, rix, AH_FALSE);
6868 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6869 				ctsduration += rt->info[rix].lpAckDuration;
6870 		}
6871 		ismrr = 0;			/* XXX */
6872 	} else
6873 		ctsrate = 0;
6874 	pri = params->ibp_pri & 3;
6875 	/*
6876 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6877 	 * set the sequence number, duration, etc.
6878 	 */
6879 	atype = HAL_PKT_TYPE_PSPOLL;
6880 
6881 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6882 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6883 		    sc->sc_hwmap[rix].ieeerate, -1);
6884 
6885 	if (ieee80211_radiotap_active_vap(vap)) {
6886 		u_int64_t tsf = ath_hal_gettsf64(ah);
6887 
6888 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6889 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6890 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6891 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6892 		if (m0->m_flags & M_FRAG)
6893 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6894 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6895 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6896 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6897 
6898 		ieee80211_radiotap_tx(vap, m0);
6899 	}
6900 
6901 	/*
6902 	 * Formulate first tx descriptor with tx controls.
6903 	 */
6904 	ds = bf->bf_desc;
6905 	/* XXX check return value? */
6906 	ath_hal_setuptxdesc(ah, ds
6907 		, pktlen		/* packet length */
6908 		, hdrlen		/* header length */
6909 		, atype			/* Atheros packet type */
6910 		, params->ibp_power	/* txpower */
6911 		, txrate, try0		/* series 0 rate/tries */
6912 		, keyix			/* key cache index */
6913 		, txantenna		/* antenna mode */
6914 		, flags			/* flags */
6915 		, ctsrate		/* rts/cts rate */
6916 		, ctsduration		/* rts/cts duration */
6917 	);
6918 	bf->bf_txflags = flags;
6919 
6920 	if (ismrr) {
6921 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6922 		rate1 = rt->info[rix].rateCode;
6923 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6924 			rate1 |= rt->info[rix].shortPreamble;
6925 		if (params->ibp_try2) {
6926 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6927 			rate2 = rt->info[rix].rateCode;
6928 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6929 				rate2 |= rt->info[rix].shortPreamble;
6930 		} else
6931 			rate2 = 0;
6932 		if (params->ibp_try3) {
6933 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6934 			rate3 = rt->info[rix].rateCode;
6935 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6936 				rate3 |= rt->info[rix].shortPreamble;
6937 		} else
6938 			rate3 = 0;
6939 		ath_hal_setupxtxdesc(ah, ds
6940 			, rate1, params->ibp_try1	/* series 1 */
6941 			, rate2, params->ibp_try2	/* series 2 */
6942 			, rate3, params->ibp_try3	/* series 3 */
6943 		);
6944 	}
6945 
6946 	/* NB: no buffered multicast in power save support */
6947 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6948 	return 0;
6949 }
6950 
6951 static int
6952 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6953 	const struct ieee80211_bpf_params *params)
6954 {
6955 	struct ieee80211com *ic = ni->ni_ic;
6956 	struct ifnet *ifp = ic->ic_ifp;
6957 	struct ath_softc *sc = ifp->if_softc;
6958 	struct ath_buf *bf;
6959 	int error;
6960 
6961 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6962 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6963 		    (ifp->if_flags & IFF_RUNNING) == 0 ?
6964 			"!running" : "invalid");
6965 		m_freem(m);
6966 		error = ENETDOWN;
6967 		goto bad;
6968 	}
6969 	/*
6970 	 * Grab a TX buffer and associated resources.
6971 	 */
6972 	bf = ath_getbuf(sc);
6973 	if (bf == NULL) {
6974 		sc->sc_stats.ast_tx_nobuf++;
6975 		m_freem(m);
6976 		error = ENOBUFS;
6977 		goto bad;
6978 	}
6979 
6980 	if (params == NULL) {
6981 		/*
6982 		 * Legacy path; interpret frame contents to decide
6983 		 * precisely how to send the frame.
6984 		 */
6985 		if (ath_tx_start(sc, ni, bf, m)) {
6986 			error = EIO;		/* XXX */
6987 			goto bad2;
6988 		}
6989 	} else {
6990 		/*
6991 		 * Caller supplied explicit parameters to use in
6992 		 * sending the frame.
6993 		 */
6994 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6995 			error = EIO;		/* XXX */
6996 			goto bad2;
6997 		}
6998 	}
6999 	sc->sc_wd_timer = 5;
7000 	ifp->if_opackets++;
7001 	sc->sc_stats.ast_tx_raw++;
7002 
7003 	return 0;
7004 bad2:
7005 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7006 bad:
7007 	ifp->if_oerrors++;
7008 	sc->sc_stats.ast_tx_raw_fail++;
7009 	ieee80211_free_node(ni);
7010 	return error;
7011 }
7012 
7013 /*
7014  * Announce various information on device/driver attach.
7015  */
7016 static void
7017 ath_announce(struct ath_softc *sc)
7018 {
7019 	struct ifnet *ifp = sc->sc_ifp;
7020 	struct ath_hal *ah = sc->sc_ah;
7021 
7022 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7023 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7024 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7025 	if (bootverbose) {
7026 		int i;
7027 		for (i = 0; i <= WME_AC_VO; i++) {
7028 			struct ath_txq *txq = sc->sc_ac2q[i];
7029 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7030 				txq->axq_qnum, ieee80211_wme_acnames[i]);
7031 		}
7032 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7033 			sc->sc_cabq->axq_qnum);
7034 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7035 	}
7036 	if (ath_rxbuf != ATH_RXBUF)
7037 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7038 	if (ath_txbuf != ATH_TXBUF)
7039 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7040 	if (sc->sc_mcastkey && bootverbose)
7041 		if_printf(ifp, "using multicast key search\n");
7042 }
7043 
7044 #ifdef IEEE80211_SUPPORT_TDMA
7045 static __inline uint32_t
7046 ath_hal_getnexttbtt(struct ath_hal *ah)
7047 {
7048 #define	AR_TIMER0	0x8028
7049 	return OS_REG_READ(ah, AR_TIMER0);
7050 }
7051 
7052 static __inline void
7053 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7054 {
7055 	/* XXX handle wrap/overflow */
7056 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7057 }
7058 
7059 static void
7060 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7061 {
7062 	struct ath_hal *ah = sc->sc_ah;
7063 	HAL_BEACON_TIMERS bt;
7064 
7065 	bt.bt_intval = bintval | HAL_BEACON_ENA;
7066 	bt.bt_nexttbtt = nexttbtt;
7067 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7068 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7069 	bt.bt_nextatim = nexttbtt+1;
7070 	ath_hal_beaconsettimers(ah, &bt);
7071 }
7072 
7073 /*
7074  * Calculate the beacon interval.  This is periodic in the
7075  * superframe for the bss.  We assume each station is configured
7076  * identically wrt transmit rate so the guard time we calculate
7077  * above will be the same on all stations.  Note we need to
7078  * factor in the xmit time because the hardware will schedule
7079  * a frame for transmit if the start of the frame is within
7080  * the burst time.  When we get hardware that properly kills
7081  * frames in the PCU we can reduce/eliminate the guard time.
7082  *
7083  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7084  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7085  * with 1us timer granularity should allow us to reduce/eliminate
7086  * this.
7087  */
7088 static void
7089 ath_tdma_bintvalsetup(struct ath_softc *sc,
7090 	const struct ieee80211_tdma_state *tdma)
7091 {
7092 	/* copy from vap state (XXX check all vaps have same value?) */
7093 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7094 
7095 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7096 		tdma->tdma_slotcnt, 1024);
7097 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7098 	if (sc->sc_tdmabintval & 1)
7099 		sc->sc_tdmabintval++;
7100 
7101 	if (tdma->tdma_slot == 0) {
7102 		/*
7103 		 * Only slot 0 beacons; other slots respond.
7104 		 */
7105 		sc->sc_imask |= HAL_INT_SWBA;
7106 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7107 	} else {
7108 		/* XXX all vaps must be slot 0 or slot !0 */
7109 		sc->sc_imask &= ~HAL_INT_SWBA;
7110 	}
7111 }
7112 
7113 /*
7114  * Max 802.11 overhead.  This assumes no 4-address frames and
7115  * the encapsulation done by ieee80211_encap (llc).  We also
7116  * include potential crypto overhead.
7117  */
7118 #define	IEEE80211_MAXOVERHEAD \
7119 	(sizeof(struct ieee80211_qosframe) \
7120 	 + sizeof(struct llc) \
7121 	 + IEEE80211_ADDR_LEN \
7122 	 + IEEE80211_WEP_IVLEN \
7123 	 + IEEE80211_WEP_KIDLEN \
7124 	 + IEEE80211_WEP_CRCLEN \
7125 	 + IEEE80211_WEP_MICLEN \
7126 	 + IEEE80211_CRC_LEN)
7127 
7128 /*
7129  * Setup initially for tdma operation.  Start the beacon
7130  * timers and enable SWBA if we are slot 0.  Otherwise
7131  * we wait for slot 0 to arrive so we can sync up before
7132  * starting to transmit.
7133  */
7134 static void
7135 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7136 {
7137 	struct ath_hal *ah = sc->sc_ah;
7138 	struct ifnet *ifp = sc->sc_ifp;
7139 	struct ieee80211com *ic = ifp->if_l2com;
7140 	const struct ieee80211_txparam *tp;
7141 	const struct ieee80211_tdma_state *tdma = NULL;
7142 	int rix;
7143 
7144 	if (vap == NULL) {
7145 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7146 		if (vap == NULL) {
7147 			if_printf(ifp, "%s: no vaps?\n", __func__);
7148 			return;
7149 		}
7150 	}
7151 	tp = vap->iv_bss->ni_txparms;
7152 	/*
7153 	 * Calculate the guard time for each slot.  This is the
7154 	 * time to send a maximal-size frame according to the
7155 	 * fixed/lowest transmit rate.  Note that the interface
7156 	 * mtu does not include the 802.11 overhead so we must
7157 	 * tack that on (ath_hal_computetxtime includes the
7158 	 * preamble and plcp in it's calculation).
7159 	 */
7160 	tdma = vap->iv_tdma;
7161 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7162 		rix = ath_tx_findrix(sc, tp->ucastrate);
7163 	else
7164 		rix = ath_tx_findrix(sc, tp->mcastrate);
7165 	/* XXX short preamble assumed */
7166 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7167 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7168 
7169 	ath_hal_intrset(ah, 0);
7170 
7171 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7172 	if (sc->sc_setcca)
7173 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7174 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7175 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7176 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7177 	sc->sc_syncbeacon = 0;
7178 
7179 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7180 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7181 
7182 	ath_hal_intrset(ah, sc->sc_imask);
7183 
7184 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7185 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7186 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7187 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7188 	    sc->sc_tdmadbaprep);
7189 }
7190 
7191 /*
7192  * Update tdma operation.  Called from the 802.11 layer
7193  * when a beacon is received from the TDMA station operating
7194  * in the slot immediately preceding us in the bss.  Use
7195  * the rx timestamp for the beacon frame to update our
7196  * beacon timers so we follow their schedule.  Note that
7197  * by using the rx timestamp we implicitly include the
7198  * propagation delay in our schedule.
7199  */
7200 static void
7201 ath_tdma_update(struct ieee80211_node *ni,
7202 	const struct ieee80211_tdma_param *tdma, int changed)
7203 {
7204 #define	TSF_TO_TU(_h,_l) \
7205 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7206 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7207 	struct ieee80211vap *vap = ni->ni_vap;
7208 	struct ieee80211com *ic = ni->ni_ic;
7209 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7210 	struct ath_hal *ah = sc->sc_ah;
7211 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7212 	u_int64_t tsf, rstamp, nextslot;
7213 	u_int32_t txtime, nextslottu, timer0;
7214 	int32_t tudelta, tsfdelta;
7215 	const struct ath_rx_status *rs;
7216 	int rix;
7217 
7218 	sc->sc_stats.ast_tdma_update++;
7219 
7220 	/*
7221 	 * Check for and adopt configuration changes.
7222 	 */
7223 	if (changed != 0) {
7224 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7225 
7226 		ath_tdma_bintvalsetup(sc, ts);
7227 		if (changed & TDMA_UPDATE_SLOTLEN)
7228 			ath_wme_update(ic);
7229 
7230 		DPRINTF(sc, ATH_DEBUG_TDMA,
7231 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7232 		    "bintval %u TU\n", __func__,
7233 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7234 		    sc->sc_tdmabintval);
7235 
7236 		/* XXX right? */
7237 		ath_hal_intrset(ah, sc->sc_imask);
7238 		/* NB: beacon timers programmed below */
7239 	}
7240 
7241 	/* extend rx timestamp to 64 bits */
7242 	rs = sc->sc_lastrs;
7243 	tsf = ath_hal_gettsf64(ah);
7244 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7245 	/*
7246 	 * The rx timestamp is set by the hardware on completing
7247 	 * reception (at the point where the rx descriptor is DMA'd
7248 	 * to the host).  To find the start of our next slot we
7249 	 * must adjust this time by the time required to send
7250 	 * the packet just received.
7251 	 */
7252 	rix = rt->rateCodeToIndex[rs->rs_rate];
7253 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7254 	    rt->info[rix].shortPreamble);
7255 	/* NB: << 9 is to cvt to TU and /2 */
7256 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7257 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7258 
7259 	/*
7260 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7261 	 * to usecs and calculate the difference between what the
7262 	 * other station thinks and what we have programmed.  This
7263 	 * lets us figure how to adjust our timers to match.  The
7264 	 * adjustments are done by pulling the TSF forward and possibly
7265 	 * rewriting the beacon timers.
7266 	 */
7267 	timer0 = ath_hal_getnexttbtt(ah);
7268 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7269 
7270 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7271 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7272 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7273 
7274 	if (tsfdelta < 0) {
7275 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7276 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7277 		tsfdelta = -tsfdelta % 1024;
7278 		nextslottu++;
7279 	} else if (tsfdelta > 0) {
7280 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7281 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7282 		tsfdelta = 1024 - (tsfdelta % 1024);
7283 		nextslottu++;
7284 	} else {
7285 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7286 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7287 	}
7288 	tudelta = nextslottu - timer0;
7289 
7290 	/*
7291 	 * Copy sender's timetstamp into tdma ie so they can
7292 	 * calculate roundtrip time.  We submit a beacon frame
7293 	 * below after any timer adjustment.  The frame goes out
7294 	 * at the next TBTT so the sender can calculate the
7295 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7296 	 *
7297 	 * NB: This tstamp is subtlely preserved when
7298 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7299 	 *     slot position changes) because ieee80211_add_tdma
7300 	 *     skips over the data.
7301 	 */
7302 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7303 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7304 		&ni->ni_tstamp.data, 8);
7305 #if 0
7306 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7307 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7308 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7309 	    (int)(nextslot - tsf), tsfdelta,
7310 	    nextslottu, timer0, tudelta);
7311 #endif
7312 	/*
7313 	 * Adjust the beacon timers only when pulling them forward
7314 	 * or when going back by less than the beacon interval.
7315 	 * Negative jumps larger than the beacon interval seem to
7316 	 * cause the timers to stop and generally cause instability.
7317 	 * This basically filters out jumps due to missed beacons.
7318 	 */
7319 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7320 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7321 		sc->sc_stats.ast_tdma_timers++;
7322 	}
7323 	if (tsfdelta > 0) {
7324 		ath_hal_adjusttsf(ah, tsfdelta);
7325 		sc->sc_stats.ast_tdma_tsf++;
7326 	}
7327 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7328 #undef TU_TO_TSF
7329 #undef TSF_TO_TU
7330 }
7331 
7332 /*
7333  * Transmit a beacon frame at SWBA.  Dynamic updates
7334  * to the frame contents are done as needed.
7335  */
7336 static void
7337 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7338 {
7339 	struct ath_hal *ah = sc->sc_ah;
7340 	struct ath_buf *bf;
7341 	int otherant;
7342 
7343 	/*
7344 	 * Check if the previous beacon has gone out.  If
7345 	 * not don't try to post another, skip this period
7346 	 * and wait for the next.  Missed beacons indicate
7347 	 * a problem and should not occur.  If we miss too
7348 	 * many consecutive beacons reset the device.
7349 	 */
7350 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7351 		sc->sc_bmisscount++;
7352 		DPRINTF(sc, ATH_DEBUG_BEACON,
7353 			"%s: missed %u consecutive beacons\n",
7354 			__func__, sc->sc_bmisscount);
7355 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7356 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7357 		return;
7358 	}
7359 	if (sc->sc_bmisscount != 0) {
7360 		DPRINTF(sc, ATH_DEBUG_BEACON,
7361 			"%s: resume beacon xmit after %u misses\n",
7362 			__func__, sc->sc_bmisscount);
7363 		sc->sc_bmisscount = 0;
7364 	}
7365 
7366 	/*
7367 	 * Check recent per-antenna transmit statistics and flip
7368 	 * the default antenna if noticeably more frames went out
7369 	 * on the non-default antenna.
7370 	 * XXX assumes 2 anntenae
7371 	 */
7372 	if (!sc->sc_diversity) {
7373 		otherant = sc->sc_defant & 1 ? 2 : 1;
7374 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7375 			ath_setdefantenna(sc, otherant);
7376 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7377 	}
7378 
7379 	/*
7380 	 * Stop any current dma before messing with the beacon linkages.
7381 	 *
7382 	 * This should never fail since we check above that no frames
7383 	 * are still pending on the queue.
7384 	 */
7385 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7386 		DPRINTF(sc, ATH_DEBUG_ANY,
7387 			"%s: beacon queue %u did not stop?\n",
7388 			__func__, sc->sc_bhalq);
7389 		/* NB: the HAL still stops DMA, so proceed */
7390 	}
7391 	bf = ath_beacon_generate(sc, vap);
7392 	if (bf != NULL) {
7393 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7394 		ath_hal_txstart(ah, sc->sc_bhalq);
7395 
7396 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7397 
7398 		/*
7399 		 * Record local TSF for our last send for use
7400 		 * in arbitrating slot collisions.
7401 		 */
7402 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7403 	} else {
7404 		device_printf(sc->sc_dev, "tdma beacon gen failed!\n");
7405 	}
7406 }
7407 #endif /* IEEE80211_SUPPORT_TDMA */
7408 
7409 static int
7410 ath_sysctl_clearstats(SYSCTL_HANDLER_ARGS)
7411 {
7412 	struct ath_softc *sc = arg1;
7413 	int val = 0;
7414 	int error;
7415 
7416 	error = sysctl_handle_int(oidp, &val, 0, req);
7417 	if (error || !req->newptr)
7418 		return error;
7419 	if (val == 0)
7420 		return 0;       /* Not clearing the stats is still valid */
7421 	memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
7422 	val = 0;
7423 	return 0;
7424 }
7425 
7426 static void
7427 ath_sysctl_stats_attach(struct ath_softc *sc)
7428 {
7429 	struct sysctl_oid *tree;
7430 	struct sysctl_ctx_list *ctx;
7431 	struct sysctl_oid_list *child;
7432 
7433 	ctx = &sc->sc_sysctl_ctx;
7434 	tree = sc->sc_sysctl_tree;
7435 	child = SYSCTL_CHILDREN(tree);
7436 
7437 	/* Create "clear" node */
7438 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7439 	    "clear_stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7440 	    ath_sysctl_clearstats, "I", "clear stats");
7441 
7442 	/* Create stats node */
7443 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
7444 	    NULL, "Statistics");
7445 	child = SYSCTL_CHILDREN(tree);
7446 
7447 	/* This was generated from if_athioctl.h */
7448 
7449 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_watchdog", CTLFLAG_RD,
7450 	    &sc->sc_stats.ast_watchdog, 0, "device reset by watchdog");
7451 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_hardware", CTLFLAG_RD,
7452 	    &sc->sc_stats.ast_hardware, 0, "fatal hardware error interrupts");
7453 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss", CTLFLAG_RD,
7454 	    &sc->sc_stats.ast_bmiss, 0, "beacon miss interrupts");
7455 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss_phantom", CTLFLAG_RD,
7456 	    &sc->sc_stats.ast_bmiss_phantom, 0, "beacon miss interrupts");
7457 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bstuck", CTLFLAG_RD,
7458 	    &sc->sc_stats.ast_bstuck, 0, "beacon stuck interrupts");
7459 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxorn", CTLFLAG_RD,
7460 	    &sc->sc_stats.ast_rxorn, 0, "rx overrun interrupts");
7461 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxeol", CTLFLAG_RD,
7462 	    &sc->sc_stats.ast_rxeol, 0, "rx eol interrupts");
7463 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_txurn", CTLFLAG_RD,
7464 	    &sc->sc_stats.ast_txurn, 0, "tx underrun interrupts");
7465 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_mib", CTLFLAG_RD,
7466 	    &sc->sc_stats.ast_mib, 0, "mib interrupts");
7467 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_intrcoal", CTLFLAG_RD,
7468 	    &sc->sc_stats.ast_intrcoal, 0, "interrupts coalesced");
7469 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_packets", CTLFLAG_RD,
7470 	    &sc->sc_stats.ast_tx_packets, 0, "packet sent on the interface");
7471 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_mgmt", CTLFLAG_RD,
7472 	    &sc->sc_stats.ast_tx_mgmt, 0, "management frames transmitted");
7473 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_discard", CTLFLAG_RD,
7474 	    &sc->sc_stats.ast_tx_discard, 0, "frames discarded prior to assoc");
7475 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qstop", CTLFLAG_RD,
7476 	    &sc->sc_stats.ast_tx_qstop, 0, "output stopped 'cuz no buffer");
7477 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_encap", CTLFLAG_RD,
7478 	    &sc->sc_stats.ast_tx_encap, 0, "tx encapsulation failed");
7479 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nonode", CTLFLAG_RD,
7480 	    &sc->sc_stats.ast_tx_nonode, 0, "tx failed 'cuz no node");
7481 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nombuf", CTLFLAG_RD,
7482 	    &sc->sc_stats.ast_tx_nombuf, 0, "tx failed 'cuz no mbuf");
7483 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nomcl", CTLFLAG_RD,
7484 	    &sc->sc_stats.ast_tx_nomcl, 0, "tx failed 'cuz no cluster");
7485 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_linear", CTLFLAG_RD,
7486 	    &sc->sc_stats.ast_tx_linear, 0, "tx linearized to cluster");
7487 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nodata", CTLFLAG_RD,
7488 	    &sc->sc_stats.ast_tx_nodata, 0, "tx discarded empty frame");
7489 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_busdma", CTLFLAG_RD,
7490 	    &sc->sc_stats.ast_tx_busdma, 0, "tx failed for dma resrcs");
7491 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_xretries", CTLFLAG_RD,
7492 	    &sc->sc_stats.ast_tx_xretries, 0, "tx failed 'cuz too many retries");
7493 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_fifoerr", CTLFLAG_RD,
7494 	    &sc->sc_stats.ast_tx_fifoerr, 0, "tx failed 'cuz FIFO underrun");
7495 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_filtered", CTLFLAG_RD,
7496 	    &sc->sc_stats.ast_tx_filtered, 0, "tx failed 'cuz xmit filtered");
7497 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortretry", CTLFLAG_RD,
7498 	    &sc->sc_stats.ast_tx_shortretry, 0, "tx on-chip retries (short)");
7499 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_longretry", CTLFLAG_RD,
7500 	    &sc->sc_stats.ast_tx_longretry, 0, "tx on-chip retries (long)");
7501 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_badrate", CTLFLAG_RD,
7502 	    &sc->sc_stats.ast_tx_badrate, 0, "tx failed 'cuz bogus xmit rate");
7503 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_noack", CTLFLAG_RD,
7504 	    &sc->sc_stats.ast_tx_noack, 0, "tx frames with no ack marked");
7505 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_rts", CTLFLAG_RD,
7506 	    &sc->sc_stats.ast_tx_rts, 0, "tx frames with rts enabled");
7507 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_cts", CTLFLAG_RD,
7508 	    &sc->sc_stats.ast_tx_cts, 0, "tx frames with cts enabled");
7509 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortpre", CTLFLAG_RD,
7510 	    &sc->sc_stats.ast_tx_shortpre, 0, "tx frames with short preamble");
7511 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_altrate", CTLFLAG_RD,
7512 	    &sc->sc_stats.ast_tx_altrate, 0, "tx frames with alternate rate");
7513 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_protect", CTLFLAG_RD,
7514 	    &sc->sc_stats.ast_tx_protect, 0, "tx frames with protection");
7515 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsburst", CTLFLAG_RD,
7516 	    &sc->sc_stats.ast_tx_ctsburst, 0, "tx frames with cts and bursting");
7517 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsext", CTLFLAG_RD,
7518 	    &sc->sc_stats.ast_tx_ctsext, 0, "tx frames with cts extension");
7519 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_nombuf", CTLFLAG_RD,
7520 	    &sc->sc_stats.ast_rx_nombuf, 0, "rx setup failed 'cuz no mbuf");
7521 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_busdma", CTLFLAG_RD,
7522 	    &sc->sc_stats.ast_rx_busdma, 0, "rx setup failed for dma resrcs");
7523 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_orn", CTLFLAG_RD,
7524 	    &sc->sc_stats.ast_rx_orn, 0, "rx failed 'cuz of desc overrun");
7525 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_crcerr", CTLFLAG_RD,
7526 	    &sc->sc_stats.ast_rx_crcerr, 0, "rx failed 'cuz of bad CRC");
7527 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_fifoerr", CTLFLAG_RD,
7528 	    &sc->sc_stats.ast_rx_fifoerr, 0, "rx failed 'cuz of FIFO overrun");
7529 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badcrypt", CTLFLAG_RD,
7530 	    &sc->sc_stats.ast_rx_badcrypt, 0, "rx failed 'cuz decryption");
7531 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badmic", CTLFLAG_RD,
7532 	    &sc->sc_stats.ast_rx_badmic, 0, "rx failed 'cuz MIC failure");
7533 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_phyerr", CTLFLAG_RD,
7534 	    &sc->sc_stats.ast_rx_phyerr, 0, "rx failed 'cuz of PHY err");
7535 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_tooshort", CTLFLAG_RD,
7536 	    &sc->sc_stats.ast_rx_tooshort, 0, "rx discarded 'cuz frame too short");
7537 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_toobig", CTLFLAG_RD,
7538 	    &sc->sc_stats.ast_rx_toobig, 0, "rx discarded 'cuz frame too large");
7539 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_packets", CTLFLAG_RD,
7540 	    &sc->sc_stats.ast_rx_packets, 0, "packet recv on the interface");
7541 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_mgt", CTLFLAG_RD,
7542 	    &sc->sc_stats.ast_rx_mgt, 0, "management frames received");
7543 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_ctl", CTLFLAG_RD,
7544 	    &sc->sc_stats.ast_rx_ctl, 0, "rx discarded 'cuz ctl frame");
7545 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_xmit", CTLFLAG_RD,
7546 	    &sc->sc_stats.ast_be_xmit, 0, "beacons transmitted");
7547 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_nombuf", CTLFLAG_RD,
7548 	    &sc->sc_stats.ast_be_nombuf, 0, "beacon setup failed 'cuz no mbuf");
7549 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_cal", CTLFLAG_RD,
7550 	    &sc->sc_stats.ast_per_cal, 0, "periodic calibration calls");
7551 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_calfail", CTLFLAG_RD,
7552 	    &sc->sc_stats.ast_per_calfail, 0, "periodic calibration failed");
7553 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_rfgain", CTLFLAG_RD,
7554 	    &sc->sc_stats.ast_per_rfgain, 0, "periodic calibration rfgain reset");
7555 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_calls", CTLFLAG_RD,
7556 	    &sc->sc_stats.ast_rate_calls, 0, "rate control checks");
7557 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_raise", CTLFLAG_RD,
7558 	    &sc->sc_stats.ast_rate_raise, 0, "rate control raised xmit rate");
7559 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_drop", CTLFLAG_RD,
7560 	    &sc->sc_stats.ast_rate_drop, 0, "rate control dropped xmit rate");
7561 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_defswitch", CTLFLAG_RD,
7562 	    &sc->sc_stats.ast_ant_defswitch, 0, "rx/default antenna switches");
7563 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_txswitch", CTLFLAG_RD,
7564 	    &sc->sc_stats.ast_ant_txswitch, 0, "tx antenna switches");
7565 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_xmit", CTLFLAG_RD,
7566 	    &sc->sc_stats.ast_cabq_xmit, 0, "cabq frames transmitted");
7567 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_busy", CTLFLAG_RD,
7568 	    &sc->sc_stats.ast_cabq_busy, 0, "cabq found busy");
7569 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw", CTLFLAG_RD,
7570 	    &sc->sc_stats.ast_tx_raw, 0, "tx frames through raw api");
7571 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txok", CTLFLAG_RD,
7572 	    &sc->sc_stats.ast_ff_txok, 0, "fast frames tx'd successfully");
7573 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txerr", CTLFLAG_RD,
7574 	    &sc->sc_stats.ast_ff_txerr, 0, "fast frames tx'd w/ error");
7575 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_rx", CTLFLAG_RD,
7576 	    &sc->sc_stats.ast_ff_rx, 0, "fast frames rx'd");
7577 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_flush", CTLFLAG_RD,
7578 	    &sc->sc_stats.ast_ff_flush, 0, "fast frames flushed from staging q");
7579 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qfull", CTLFLAG_RD,
7580 	    &sc->sc_stats.ast_tx_qfull, 0, "tx dropped 'cuz of queue limit");
7581 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nobuf", CTLFLAG_RD,
7582 	    &sc->sc_stats.ast_tx_nobuf, 0, "tx dropped 'cuz no ath buffer");
7583 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_update", CTLFLAG_RD,
7584 	    &sc->sc_stats.ast_tdma_update, 0, "TDMA slot timing updates");
7585 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_timers", CTLFLAG_RD,
7586 	    &sc->sc_stats.ast_tdma_timers, 0, "TDMA slot update set beacon timers");
7587 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_tsf", CTLFLAG_RD,
7588 	    &sc->sc_stats.ast_tdma_tsf, 0, "TDMA slot update set TSF");
7589 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_ack", CTLFLAG_RD,
7590 	    &sc->sc_stats.ast_tdma_ack, 0, "TDMA tx failed 'cuz ACK required");
7591 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw_fail", CTLFLAG_RD,
7592 	    &sc->sc_stats.ast_tx_raw_fail, 0, "raw tx failed 'cuz h/w down");
7593 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nofrag", CTLFLAG_RD,
7594 	    &sc->sc_stats.ast_tx_nofrag, 0, "tx dropped 'cuz no ath frag buffer");
7595 #if 0
7596 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_missed", CTLFLAG_RD,
7597 	    &sc->sc_stats.ast_be_missed, 0, "number of -missed- beacons");
7598 #endif
7599 }
7600